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Abstract

We construct a simple modular dynamic emulator for a rainfall runoff model. We
investigate the accuracy of such an emulator and discuss the difficulties of such an ap-
proach. The emulator is used to investigate the effects of certain internal uncertainties
on the outputs of the model, which would be integral to a full reification analysis.
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1 Introduction

Mathematical models of complex physical systems, such as those for climate and floods are
usually implemented as a computer code, referred to as a “simulator”. When a simulator
is fast to run, we can compare it directly to field data. When a simulator is slow to run,
we construct a statistical approximation known as an emulator; see, for example, MUCM
(2009).

We consider a particular deterministic rainfall runoff model to illustrate the methodol-
ogy we develop here. The model, which is a discrete time version of a system of differential
equations, simulates fluctuations in water discharge and Calcium and Silica concentrations
over time. While this model is fast to simulate, we choose to emulate it dynamically; that
is, we build a single time-step emulator and run this emulator through time to emulate
the complete simulator output. Dynamic emulation takes advantage of our knowledge of
the internal simulator processes; for example, for the rainfall runoff model we only need
to know the state of the model, the model inputs and the forcing functions at any time
t to simulate its state at time t + 1. In this account, we go further and emulate three
internal modules of the single time-step simulator, which we refer to as “modular dynamic
emulation”. Here we need to know the state vector of each module, the inputs and outputs
to each module, as well the model inputs and forcing functions at any time t in order to
emulate the process at time t+ 1.

A key additional general issue we consider in this report is the inevitable mismatch
between a mathematical model and the real system it purports to model. Our approach to
account for this discrepancy, employs “reification”, a concept developed in Goldstein and
Rougier (2009). The idea is to formulate beliefs about a super model, called the “reified
model”, which incorporates all currently envisaged improvements to the current model.
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While we can’t build the reified model, at least not right now, we can perhaps formulate
an emulator of it. The reified model is considered to be ‘closer’ to the real system than the
current model. Uncertainties in the emulator of the reified model feed through to increase
the uncertainties in predicting the real system. Thus, reification is a process whereby the
variance of the discrepancy between the current model and the real system is realistically
and systematically assessed, and therefore not unduly over-optimistic. In this account,
we develop modular dynamic emulation methods which would form a key part of such a
reification process, allowing for the incorporation of detailed improvements to the model
at the modular level.

This report is structured as follows. In Section 2 we summarise the reification process
and discuss emulation. In Section 3 we give a detailed account of the rainfall-runoff
model. In Section 4 we discuss dynamic and modular emulation and illustrate the modular
emulator performance as applied to the runoff model. In Section 5 we make an initial
investigation into the propagation of internal model discrepancies to final output, and in
Section 6 we consider future investigations.

2 Reification Strategies

Our eventual goal is to develop a reification strategy for the rainfall runoff model. Essen-
tially three different reification strategies may be considered for the class of such models:

(a) Direct emulation and reification; see, for example, House (2009).

(b) Dynamic emulation and reification.

(c) Modular emulation and reification.

The further we go down this list, the easier reification becomes, whereas the overall system
becomes harder to emulate, even though the component modules are themselves often
straightforward to emulate. Here we will focus on exploring simple reification ideas using
modular dynamic emulators.

2.1 Summary of the Reification Approach

Reification involves linking three models and the system outcomes y, using emulators of
each model, the current model f , an improved version f ′ of f and a reified model f∗ that
contains all possible improvements to f and f ′.

We emulate the current model f(x) using the following standard emulator form for
each component of f

fi(x) =
∑

j

βij gij(x) + ui(x) (1)

We then ask the subject-matter expert to consider an improved version f ′ of the model
and adjust the emulator accordingly; for example

f ′i(x, v) = fi(x) +
∑

k

γik gik(x, v) + ui(x, v) (2)

where v is a collection of additional inputs.
Then we ask the expert to consider a model f∗ that contains all possible improvements

to the model and construct the corresponding reified emulator

f∗i (x, v, w) =
∑

j

β∗ij gij(x) +
∑

k

γ∗ik gik(x, v) + u∗i (x) + u∗i (x, v) + u∗i (x, v, w) (3)
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where w is a further additional collection of inputs.
Applying the “best input” approach we link the reified emulator f∗i (x, v, w) to the real

system y by
y = f∗(x∗, v∗, w∗) + ε∗ (4)

where (x∗, v∗, w∗) represents the best input in the reified model. In most other appli-
cations, the best input approach is applied to the current model, rather than the reified
model.

Reification is often seen to be a difficult and laborious task. In this report we will ex-
plore some simple strategies that would form part of a structural reification analysis, House
(2009).

2.2 General Emulation Strategy

In order to carry out analysis of a function f(x), we must make many evaluations of
the model within a reasonable length of time. For many problems, this is not a realistic
possibility. In such cases, we may employ the method of model emulation; see, Craig
et al. (1997), Craig et al. (2001), Rougier (2009), Kennedy and O’Hagan (2001), O’Hagan
(2006), MUCM (2009). Emulation refers to the expression of our beliefs about the function
f(x) by means of a fast stochastic representation, which we can use both to approximate
the value of the function over the input space and also to assess the uncertainty that
we have introduced from using this approximation. For example, we might represent our
beliefs about the i-th component of f(x) in the form

fi(x) =
∑

j

gj(x)βij + ui(x) (5)

where each gj(x) is a known deterministic function of x, for example a polynomial term in
some sub-collection of the elements of x, the βij are unknown constants to estimate and
ui(x), the residual function, is specified as having zero mean and constant variance σ2

i for
each x, with a correlation function ci(x, x′) = corr(ui(x), ui(x′)) which only depends on the
distance between x and x′. There are many possible choices for the form of the ci(x, x′). If
we want to carry out a full probabilistic analysis, then we may suppose, for example, that
ui(x) is a Gaussian process, so that the joint distribution of any sub-collection of values
of ui(x) for different choices of x is multivariate normal.

There is an extensive literature on the construction of emulators for computer models,
based on a collection of model evaluations.; see, for example, O’Hagan (2006) and MUCM
(2009). Given these evaluations, we may choose our functional forms gj(x) and estimate
the coefficients βij using standard model building techniques from multiple regression,
and then assess the parameters of the residual process u(x) using, for example, variogram
methods on the estimated residuals from the fitted model. Given the emulator, we can
then carry out any required analysis, but, instead of evaluating the function at each input
choice, we evaluate the emulator expectation E[fi(x)] at each chosen x. We therefore
need to incorporate the emulator variance Var[fi(x)] into the analysis in an appropriate
manner.

In this report we apply the above general emulation strategy to internal components
of the single time-step model, using uncorrelated residual functions. We then make a brief
analysis of the effects of various internal uncertainties on certain model outputs.

3 The Rainfall Runoff Model
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Figure 1: West part of Switzerland, 15 km north of Lausanne, in the canton of Vaud.

We consider a rainfall runoff model described in Iorgulescu et al. (2005) (henceforth
IBM), that simulates fluctuations in water discharge and Calcium and Silica concentrations
over time. We illustrate our methods with its application to a particular sub-catchment of
the Haute-Mentue research catchment (Switzerland); see IBM who refer to other studies
and runoff models. Each model run simulates three time series: discharge (D) and the
tracers Calcium (Ca) and Silica (Si) over 839 consecutive hours. Any such simulation may
be compared to the corresponding 839 hours of field data collected at the sub-catchment
between August and September 1993. The field data also includes hourly rainfall which
is used as a forcing function (RAIN) to the model. There is a second forcing function,
actual evapotranspiration (AET), an evaporation rate, which is modelled as a deterministic
sinusoidal function of time.

3.1 The Mathematical Model

The model, depicted in Fig. 2, comprises three compartments with parallel transfer,
whereby water, input as rain, may enter three compartments representing three differ-
ent soil types, “Direct Precipitation” (DP), “Acid Soil” (AS) and “Ground Water” (GW).
The water is stored in each compartment for a fast or slow amount of time before being
discharged into the streams. The water can instead enter the “Ineffective Storage” com-
partment, in which case it will not be discharged and can only leave the system via actual
evapotranspiration (AET). Six parameters asoil, bsoil, ksoil, psoil, c

f
soil and cssoil characterise

the fluid dynamics of water flow through each soil (DP, AS, GW), subject to the constraint
kDP + kAS + kGW = 1, leaving 17 functionally independent input parameters. Details of
parameter descriptions, ranges and units are given in IBM.

Thus, in terms of the general description given in Section 2.2, the input vector x has
17 components, y represents the three time series for discharge, Calcium and Sodium, and
z represents the corresponding field data. The function f(·) relating y to x develops as
follows:

There is a fast f and a slow s sub-compartment for each of the three soil-type com-
partments DP, AS and GW. Updating the effective water stored from hour t to t+ 1 for
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Figure 2: Three compartment rainfall runoff model.

each sub-compartment is governed by the equations

ESf
soil(t+ 1) = ESf

soil(t) + rsoil(t)p
f
soil RAIN(t)− cfsoilES

f
soil(t) (6)

ESs
soil(t+ 1) = ESs

soil(t) + rsoil(t)ps
soil RAIN(t)− cssoilES

s
soil(t) (7)

where soil is one of DP, AS and GW, pf
soil + ps

soil = 1

rsoil(t) =
ksoil

1 + exp [asoil − bsoilS(t)]
(8)

with kDP + kAS + kGW = 1 and S(t), the total water stored in the system at time t is
given by

S(t) =
∑
soil

[ESf
soil(t) + ESs

soil(t)] + IS(t)

That is, the total water storage S in the system at any time is the sum of the effective
storages for each soil type, both fast and slow, plus the overall residual ineffective storage
IS. Physical interpretations of the six parameters for each compartment will emerge in
the next subsection. Updating the total storage from t to t+1 is governed by the equation

S(t+ 1) = S(t) + RAIN(t)−AET(t)−
∑
soil

Fsoil(t)

where the Fsoil(t) = cfsoilES
f
soil(t) + cssoilES

s
soil(t) are the flows out of each soil-type com-

partment. Similarly, updating the ineffective storage from t to t + 1 is governed by the
equation

IS(t+ 1) = IS(t) + RAIN(t)[1−
∑
soil

rsoil(t)]−AET(t) (9)
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Hourly model outputs, discharge D(t), Calcium Ca(t) and Silica Si(t) are given by

D(t) =
∑
soil

Fsoil(t) (10)

Ca(t) =
∑
soil

TCa
soilFsoil(t)

/
D(t) (11)

Si(t) =
∑
soil

TSi
soilFsoil(t)

/
D(t) (12)

where the T tracer
soil govern the tracer concentrations of Ca and Si emanating from each

soil-type compartment.
Thus, to run the model y = f(x) we need (i) a computer code implementation of f(·);

(ii) valid values for the 17 components of x; (iii) the forcing functions RAIN and AET;
(iv) the initial conditions ESf

soil, ES
s
soil and IS at t = 0; and (v) the values of the six

tracer concentrations T tracer
soil .

4 Modular Dynamic Emulation

4.1 Dynamic Emulation

Recall that our rainfall runoff model outputs three time series over 839 time steps. How-
ever, we can regard the model as being generated by a single time-step simulator f that
relates the state of the system at time t − 1 to the state at time t. The single time-step
simulator f is applied iteratively 839 times to produce the time series outputs of water
discharge, Calcium and Silica. Emulating the single time-step simulator f is simpler than
emulating the full 839-step simulator. Moreover, it will allow us to track various uncer-
tainties through time, such as uncertainty in the rainfall forcing function and uncertain
model discrepancy.

The simulator f has 26 inputs: the 17 usual inputs x to the model, the forcing functions
RAIN(t) and A(t) ≡ AET (t) at time t and the 7 state variables ESf/s

i (t−1) and S(t−1)
at time t−1. The 7 State Variables ESf/s

i (t) and S(t) are outputs of f at time t. Dynamic
emulation of the single time-step simulator f(x,A, S), where A and S represent forcing
functions and state variables, respectively, is often not straightforward. Moreover, an
accurate emulator for f(x,A, S) may still perform poorly over the 839 time step iterations,
due to the accumulation of emulator error. The 7 state variable inputs S have such a
dominant effect on the outputs of f(x,A, S), it can be hard to pick up subtle impact
of the other inputs. For example, emulation techniques such as active variables can be
misleading. Accounting for other sources of uncertainty, as required in reification, can
still be difficult at this level, although the process is much easier than direct reification,
see House (2009), as the modeller can consider improvements at the single time-step level.

4.2 Modular Emulation

Dynamic emulation requires identification and access to the state variables of the model.
If, in addition, we have access to some or all of the internal variables of the model, we
can explore its internal processes and attempt “modular emulation”. An advantage of
modular emulation is that we may be able to emulate the more subtle parts of the model
that may be masked by dynamic emulation. A further important advantage of modular
emulation is that it’s relatively simple to incorporate other sources of uncertainty when
linking the model to reality. That is, it is easier for the expert to consider improvements
to an individual process or module rather than to the whole model, thus simplifying
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reification. A downside is the difficulty of combining the modular emulators together, as
is the case with general dynamic emulation. To incorporate other sources of uncertainty
in order to reify the current model, we require satisfactory modular emulators. It should
be noted that one run of the rainfall runoff simulator gives 839 runs of the single time-step
simulator f and each of the three modular simulators for the same cost.

We identified active variables for each of the three modules described below and con-
structed fast emulators composed of linear models with second-order polynomials in the
active variables. The modular emulators were combined using the model structure and,
where necessary, linearised approximations were used to calculate propagation of uncer-
tainties. We intend to improve the emulators in a future account, for example, by using
gaussian process error terms instead of assuming uncorrelated errors, as we have done here
at this stage of development of modular emulation.

We now depict the three modules and indicate the emulation process we adopted for
each of them.

4.3 Module 1

RAIN

$$$d
$d

$d
$d

$d
$d

Split

r1(S)

nnnnnnnnnnnnnnn r2(S)

r3(S)

QQQQQQQQQQQQQQQ
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IS ///o/o/o/o/o/o/o AET

We found that the ri depend on only ki, ai, bi, S and RAIN and we were able to emulate
the split function outputs ri to a reasonable high degree of accuracy. We incorporated
uncertainty into the forcing function RAIN, and will report on this elsewhere. In order
to explore possible improvements to this module (see equations (2) and (3)), we have
included correlated noise on the 4 outputs of the split function. This correlation results
from the requirement that the four noise components sum to zero, which is equivalent
to the conservation of water entering the system. We discuss the effects of this model
improvement in Section 5.

4.4 Module 2

ESf
outf

OOOOOOO
r

p ooooooo

1−p
PPPPPP out

ESs outs

ooooooo

Similarly, we can emulate and reify any one of the three ‘compartments’, as depicted
above. We can choose how far ‘into the box’ we want to go; for example, we find that
outf at time t only depends on the two inputs ESf (t− 1) and cf, and is trivial to emulate.
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Again, we can reify this compartment process, or parts of it, although we do not do so
here.

4.5 Module 3
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The final simulator outputs, Discharge, Calcium and Silica, depicted in the module
above, are again straightforward to emulate. The runoff model assumes that the tracer
concentrations of Calcium and Silica (which govern their concentrations in the runoff) are
treated as fixed with known values. Modular emulation straightforwardly allows incorpo-
ration of tracer uncertainty, which is a first step in a reification of the runoff model. We
analysed the effects of such uncertainty and discuss the results in Section 5.

To carry out any one of the above single time-step emulation processes (whether it
be direct dynamic emulation or modular emulation) and track any uncertainty it was
necessary to approximate various means, variances and covariances of certain functions of
random quantities using first-order Taylor series approximations. These approximations
are detailed in Appendix A.

4.6 Emulator Performance

Fig. 3 shows the emulator prediction for the 7 state variables ESf
soil(t), ES

s
soil(t) and S(t)

over the complete time series of 839 hours, for a single run. The emulator mean is given
by the blue line with a credible two-sigma interval given by the red lines. The actual run
output is the black line. Note that the modular dynamic emulator behaves well for the
first six state variables, but deviates from the true run output of the 7th state variable
S(t) at late times, after many steps. The performance is sufficient for our purposes of
investigating internal model discrepancies. Similarly Fig. 4 shows the emulator prediction
for the 7 state variables ESf

soil(t), ES
s
soil(t) and S(t) from 550 to 650 hours, for a single

run. This is a zoomed in version of Fig. 3. Note that the adjusted R2 for each of the state
variables is in excess of 0.93, suggesting relatively accurate emulation.

5 Towards Reification: Examples

We explore two types of internal discrepancy. The first involves uncertainty regarding the
propagation of the state vector, resulting from the addition of noise to the split functions
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Figure 3: Emulator prediction for the 7 state variables ESf
soil(t), ES

s
soil(t) and S(t) over

the complete time series of 839 hours, for a single run. The emulator mean is given by the
blue line with a credible two-sigma interval given by the red lines. The actual run output
is the black line. Note that the modular dynamic emulator behaves well for the first six
state variables, but deviates from the true run output of the 7th state variable S(t) at late
times, after many steps. The performance is sufficient for our purposes of investigating
internal model discrepancies.
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Figure 4: Emulator prediction for the 7 state variables ESf
soil(t), ES

s
soil(t) and S(t) from

550 to 650 hours, for a single run. The emulator mean is given by the blue line with a
credible two-sigma interval given by the red lines. The actual run output is the black line.
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discussed in Section 4.3. The second seeks to incorporate uncertainty on the tracer con-
centrations, previously assumed constant. Each of these would form part of a structural
reification process discussed in Section 2.1, which we postpone to a future account.

5.1 Effects on State Variables

The effect of introducing uncertainty on the propagation of the state vector can be seen
in Fig. 5 and Fig. 6.

Fig. 5 shows emulator prediction for the 7 state variables ESf
soil(t), ES

s
soil(t) and S(t)

over the complete time series of 839 hours, for a single run, including the state propagation
model discrepancy. The emulator mean is given by the blue line with a credible two-
sigma interval given by the red lines. The actual run output is the black line. This
state propagation uncertainty is addressed by adding noise to each output of the split
function of module 1 depicted in Section 4.3. This is done by inflating each of the σi in
equation (14) of Appendix A by 30 percent, which effectively increases the uncertainty of
the split function’s six outputs which multiplies the incoming rainfall: see the second term
on the right hand side of equations (6) and (7). This represents the fact that module 1 is
the most uncertain part of the model, and the process we use to capture this uncertainty
can be viewed as a generalised reification step. These results should be compared to those
shown Fig. 3.

Fig. 6 shows a zoomed in version of Fig. 5, covering hours 550 to 650 and should be
compared with Fig. 4.

5.2 Effects on Calcium Output

We now consider the effect of introducing uncertainty in the propagation of the state vector
on the calcium output, shown in panels 1 and 3 of Fig. 7, and of introducing uncertainty
in both the propagation of the state vector and on the tracer concentrations for calcium
output, shown in panels 2 and 4 of Fig. 7.

Fig. 7 shows the emulator prediction for Calcium Ca(t) (see equation (11)) for a single
run including state propagation discrepancy over the full time series, with and without
tracer uncertainty (panels 1 and 2), and over a reduced part of the time series (panels 3
and 4). The green lines show the proportion of the Ca(t) output uncertainty due to the
added 10 percent uncertainty on each of the tracer concentrations TCa

soil (see equation (11)),
compared to the state propagation uncertainty and emulator uncertainty in red. In dry
periods the Calcium tracer uncertainty is far more important, while in wet periods the
state propagation uncertainty dominates.

6 Conclusions

We have developed fast modular dynamic emulators of sufficient accuracy for exploration
of internal model discrepancies, which may form part of a reification analysis. We have
incorporated uncertainty due to the tracer concentrations in the runoff model and due to
uncertain state propagation. There remains much to investigate, such as full structural
reification on the dynamic or modular level; for example, including an additional com-
partment, output functions, split function. In a future account we will consider: checking
assumptions via simulation; comparison of direct emulation with dynamic and modular
emulation; assessment of the relative impact of different uncertainties, upgrading constant
inputs to time dependent processes and external reification.
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Figure 5: Emulator prediction for the 7 state variables ESf
soil(t), ES

s
soil(t) and S(t) over

the complete time series of 839 hours, for a single run, including the state propagation
model discrepancy. The emulator mean is given by the blue line with a credible two-
sigma interval given by the red lines. The actual run output is the black line. This
state propagation uncertainty is addressed by adding noise to each output of the split
function of module 1 depicted in Section 4.3. This is done by inflating each of the σi in
equation (14) of Section A by 30 percent, which effectively increases the uncertainty of
the split function’s six outputs which multiplies the incoming rainfall: see the second term
on the right hand side of equations (6) and (7). This represents the fact that module 1 is
the most uncertain part of the model, and the process we use to capture this uncertainty
can be viewed as a generalised reification step. These results should be compared to those
shown Fig. 3.
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Figure 6: Emulator prediction for the 7 state variables ESf
soil(t), ES

s
soil(t) and S(t) from

550 to 650 hours, for a single run, including the state propagation model discrepancy. The
emulator mean is given by the blue line with a credible two-sigma interval given by the
red lines. The actual run output is the black line. This state propagation uncertainty
is addressed by adding correlated noise to the output of the split function of module 1
depicted in Section 4.3. These results should be compared to those shown in Fig. 4.
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Figure 7: Emulator prediction for Calcium Ca(t) (see equation (11)) for a single run
including state propagation discrepancy over the full time series, with and without tracer
uncertainty (panels 1 and 2), and over a reduced part of the time series (panels 3 and 4).
The green lines show the proportion of the Ca(t) output uncertainty due to the added
10 percent uncertainty on each of the tracer concentrations TCa

soil (see equation (11)),
compared to the state propagation uncertainty and emulator uncertainty in red. In dry
periods the Calcium tracer uncertainty is far more important, while in wet periods the
state propagation uncertainty dominates.
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A Approximate moments of a single time-step runoff model emulator

The “split” functions for the runoff model are of the form

Wi = ki(S)h(εi) (13)

where
ki(S) = exp [ai + big(S) + cig

2(S)] h(εi) = exp [εi] (14)

S and the εi are uncorrelated, with E[S] = µ, Var[S] = σ2, E[εi] = 0 and Var[εi] = σ2
i ;

and current choices for g(S) are S and logS.

We use the first-order approximation f(X) = f(µ)+(X−µ)f
′
(µ) to derive the following

approximate moments of f(X) given E[X] = µ and Var[X] = σ2

E[f(X)] = f(µ) Cov[fi(X), fj(X)] = σ2f
′
i (µ)f

′
j(µ) (15)

and hence, Var[f(X)] = σ2f
′
(µ)2.

Straightforward calculations show that approximately E[Wi] = ki(µ) and

Cov[Wi,Wj ] = k
′
i(µ)k

′
j(µ)σ2 + δij [ki(µ)kj(µ) + k

′
i(µ)k

′
j(µ)σ2]σiσj (16)

where δij = 1 if i = j and 0 otherwise. In particular,

Var[Wi] = k
′
i(µ)

2
σ2 + [ki(µ)2 + k

′
i(µ)

2
σ2]σ2

i (17)

This variance is based on the following general result for two uncorrelated random quan-
tities X and Y

Var[XY ] = Var[X][E[Y ]]2 + E[X2]Var[Y ] (18)

We can express these expectation, variance and covariance formulae for the Wi in the
vector form

E[W ] = k(µ) Var[W ] = σ2k
′
(µ)k

′
(µ)

T
+D (19)

where D is a diagonal matrix with entries

Dii = [ki(µ)2 + k
′
i(µ)

2
σ2]σ2

i (20)

Note that
k

′
i(µ) = [bi + 2cig(µ)]g

′
(µ)ki(µ) (21)

Including a random forcing function

When we include a forcing function F , such as rainfall or AET in the regression which is
measured with error, (14) above is modified to be

ki(S) = exp [ai + big(S) + cig
2(S) + diF ] h(εi + diε) = exp [εi + diε] (22)

where εi is as before, di is the regression coefficient for the forcing function F and ε is the
error in measuring F .

Putting δi = εi+diε, we see that E[δi] = 0, Var[δi] = σ2
i +d2

iσ
2
ε and Cov[δi, δj ] = didjσ

2
ε .
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It then follows, using similar approximations to those above, that

Cov[Wi,Wj ] = k
′
i(µ)k

′
j(µ)σ2[1 + didjσ

2
ε ] + didjki(µ)kj(µ)σ2

ε + (23)

δij [ki(µ)kj(µ) + k
′
i(µ)k

′
j(µ)σ2]σiσj

where δij = 1 if i = j and 0 otherwise. In particular,

Var[Wi] = k
′
i(µ)

2
σ2[1 + d2

iσ
2
ε ] + d2

i ki(µ)2σ2
ε + [ki(µ)2 + k

′
i(µ)

2
σ2]σ2

i (24)

Writing k(µ) as the vector with i-th element ki(µ), dk(µ) as the vector with i-th
element diki(µ), and dk

′
(µ) as the vector with i-th element dik

′
i(µ), we can express these

expectation, variance and covariance formulae for the Wi in the vector form E[W ] = k(µ)
and

Var[W ] = σ2k
′
(µ)k

′
(µ)

T
+ [σ2dk

′
(µ)dk

′
(µ)

T
+ dk(µ)dk(µ)T ]σ2

ε +D (25)

where D is a diagonal matrix with entries

Dii = [ki(µ)2 + k
′
i(µ)

2
σ2]σ2

i (26)

which is the same as (20).
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