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Abstract

Predictions of the solar wind at Earth are a central aspect of space
weather prediction. The outcome of such a prediction, however, is highly
sensitive to the method used for computing the magnetic field in the
corona. We analyze the impact of replacing the potential field coronal
boundary conditions, as used in operational space weather prediction
tools, by non-potential conditions. For this, we compare the predicted
solar wind plasma parameters with observations at 1 AU for two six-
months intervals, one at solar maximum and one in the descending phase
of the current cycle. As a baseline, we compare with the operational
Wang-Sheeley-Arge model. We find that for solar maximum, the non-
potential coronal model and an adapted solar wind speed formula lead to
the best solar wind predictions in a statistical sense. For the descending
phase, the potential coronal model performs best. The Wang-Sheeley-
Arge model outperforms the others in predicting high speed enhancements
and streamer interactions. A better parameter fitting for the adapted wind
speed formula is expected to improve the performance of the non-potential
model here.

1 Introduction
Finding suitable coronal boundary conditions for simulations of the inner helio-
sphere is a crucial point in solar wind prediction. While a magnetohydrodynam-
ics (MHD) simulation in the coronal domain (like in the MHD-Around-a-Sphere,
MAS, model (Mikic et al., 1999; Lionello et al., 2001; Riley et al., 2003, 2001))
would provide accurate boundary data, it is, on today’s computers, too time-
consuming for use in operational space weather forecasting. There exist, how-
ever, a number of simplified coronal simulation methods, which use, to different
degrees, extrapolation and simplifications. Most notably there are the Potential
Field Source Surface (PFSS) method (Altschuler and Newkirk , 1969; Schatten
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et al., 1969), the magnetofrictional (MF) method (Yang et al., 1986; van Balle-
gooijen et al., 2000; Yeates et al., 2008), and the Current Sheet Source Surface
(CSSS) method (Zhao and Hoeksema, 1995; Poduval and Zhao, 2014; Poduval ,
2016). For the outer corona, the Schatten Current Sheet (SCS) method (Schat-
ten, 1972) is commonly employed. An empirical wind speed formula is then
used to compute the boundary conditions for the heliospheric simulation from
the coronal simulation data at the interface between the two domains. Other
methods, for example Reiss et al. (2016); Owens et al. (2017); Riley et al. (2017),
do not simulate the corona (and heliosphere) at all, but rely on purely empirical
methods to forecast the solar wind. Recent research by (Pinto and Rouillard ,
2017) proposes an alternative approach as compromise between full MHD sim-
ulations and semi-empirical methods. They compute the structure of the solar
winds and its parameters by combining a large number of one-dimensional wind
profiles along open magnetic field lines.
The form of and the parameters for the empirical wind speed formula are a field
of research in their own right, although strongly tied to the coronal simulation
in use. Common forms are the Wang-Sheeley (WS) model (Wang and Sheeley ,
1990, 1992; Arge and Pizzo, 2000), the Wang-Sheeley-Arge (WSA) model (Arge
et al., 2003) and the Distance from the Coronal Hole Boundary (DCHB) model
(Riley et al., 2001). While the DCHB model has a physics-base explanation
of its parameters (which still are varied), the parameters in the WS and WSA
formulas are free and adapted for every period considered. Riley et al. (2015)
have attempted to find optimal parameters for WS, WSA and DCHB by ex-
haustive search, using a simplified method method in the heliospheric domain.
Poduval and Zhao (2014); Poduval (2016) determine the coefficients for their
wind speed prediction, which is based on the WS formula, by fitting parameters
to a quadratic function using observations that were mapped back to the source
surface of their simulation.
Over the last years, there have been a number of attempts to compare and
validate the different approaches for predicting the solar wind speed.
Comparisons of solar wind data of potential and magnetohydrodynamic (MHD)
simulations in Riley et al. (2006) show that, if time-dependent effects can be
neglected, the potential method provides a reasonable approximation to the
MHD method, although there still are notable differences.
Edwards et al. (2015) have compared the magnetic structure and the resulting
wind speed distribution from potential and non-potential simulations at 21.5
R� for two solar maximum dates. They have identified considerable differences
between the two types of coronal simulations: The non-potential model has
more complex magnetic structures, more open flux and, using the WSA wind
speed formula, leads to higher predicted wind speeds for the two dates. The
present work extends this by considering two time intervals of six months each
at solar maximum and the descending phase of the solar cycle, and continuing
the simulation to 1 AU for comparison with observational data.
Jian et al. (2015, 2016) present an extensive evaluation of a number of coro-
nal and heliospheric models that are available at the Community Coordinated
Modeling Centre. They find that there is not a single candidate that performs
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Table 1: Description of the solar wind models
Model name data source coronal model vr formula outer model
WSA GONG WSA Equation (2) Enlil
PFSS ADAPT DuMFriC PFSS Equation (4) Enlil
MF ADAPT DuMFriC NP Equation (4) Enlil

best, but that each model has its strengths and weaknesses.
In this work we aim to contribute to the efforts of bringing an order into the
multitude of solar wind prediction methods by comparing the impact of the
PFSS, MF and WSA method for computing the coronal boundary conditions
for solar wind simulations. To investigate the difference between potential and
non-potential boundary conditions we distinguish here between WSA and PFSS:
We perform the PFSS coronal simulation with the same input data and the same
method as the MF one (that is, Air Force Data Assimilative Photospheric Flux
Transport (ADAPT) synoptic Br maps), except that we compute the potential
field solution in inner corona. The WSA run, in contrast, uses the National
Oceanic and Atmospheric Administration / National Weather Service Space
Weather Prediction Center (NOAA/NSW SWPC) operational method. This
is also based on a PFSS model for the inner corona, but using observational
magnetograms from the National Solar Observatory (NSO) Global Oscillation
Network Group (GONG; Harvey et al., 1996) directly as input. We pick one six-
month interval at solar maximum and one in the descending phase of the solar
cycle for comparison and do both a statistical and an event-based comparison.
The remainder of the paper is structured as follows: In Section 2 we describe the
data and the simulation methods that we use in this work. Section 3 details the
solar wind models that are used for the different runs. We present our results
in Section 4 and conclude and give an outlook on future work in Section 5.

2 Data and Methods
The models were set up as follows (see also Table 1): WSA model driven by
daily updated GONG magnetograms; PFSS which used the DuMFriC PFSS
model 1 driven by ADAPT magnetograms; MF model which used the DuMFriC
non-potential (NP) MF model driven by ADAPT magnetograms.
The time intervals chosen for simulation are May 1 to October 31 in 2014 (solar
maximum, CR 2149 to 2156) and 2016 (descending phase, CR 2176 to 2183)
respectively. We chose these times for their position in the solar activity cycle
and due to data availability.
All Enlil and OMNI solar wind data is transformed to the Heliocentric Earth
Equatorial (HEEQ) coordinate system for the comparisons.

1https://github.com/antyeates1983/pfss

3



2.1 ADAPT Dataset
The photospheric boundary conditions for the coronal simulation are derived
from Air Force Data Assimilative Photospheric Flux Transport (ADAPT) syn-
optic Br maps (Arge et al., 2010; Henney et al., 2012; Hickmann et al., 2015).
The ADAPT maps are constructed from GONG magnetograms by evolving
them using a photospheric flux transport model which is based on the Worden-
Harvey model (Worden and Harvey , 2000). New data are assimilated into the
model once per day (weather permitting) and maps are output at twelve hour
cadence. In the current version, the ADAPT data set consists of an ensemble of
twelve realizations which account for model parameter uncertainties in the su-
pergranular flow. We picked realization number one for our experiments. This
choice is expected to have only a minimal influence on the results (see (Weinzierl
et al., 2016)).

2.2 Coronal and Inner Heliospheric Simulation
For the Potential Field Source Surface (PFSS) model (Altschuler and Newkirk ,
1969; Schatten et al., 1969), the magnetic field between 1 R� and 2.5 R�, i.e., in
the inner corona, is computed by extrapolation from the photospheric magnetic
field, assuming that the field is is current free (∇ × B = 0) and radial at 2.5
R�.
The non-potential coronal model simulates the evolution of the large-scale mag-
netic field between 1 R� and 2.5 R� using the magneto-frictional (MF) method
(Yang et al., 1986; van Ballegooijen et al., 2000; Yeates et al., 2008). Here, the
velocity v is approximated by the magneto-frictional form: v = ν−1(J×B/B2),
where J = ∇×B and ν is a friction coefficient. This enforces the relaxation of
the magnetic field towards a nonlinear force-free state where J × B = 0. The
MF model allows for a gradual build-up and conservation of magnetic energy
and electric currents in the corona.
The temporal evolution of B = ∇ × A is driven by photospheric Br maps
from which the update ∂A/∂t = −E for the vector potential A is computed.
The method used for the electric field reconstruction is described in (Weinzierl
et al., 2016) and based on work by Amari et al. (2003); Fisher et al. (2010);
Kazachenko et al. (2014).
The coronal simulation uses a grid that is equally spaced in ρ, s, φ, where
ρ = ln (r/R�) and s = cos θ in terms of spherical coordinates (r, θ φ). The
resolution is 60× 180× 360.
For extrapolation of the magnetic field in the outer corona (2.5 R� to 21.5 R�)
we use the Schatten Current Sheet (SCS) method (Schatten, 1972). Here, we
solve for a potential field using the absolute values of the radial magnetic field
component at r = 2.5R� and the assumption that B −−−→

r→∞
0. Then, the field

line direction is restored where Br < 0 at 2.5 R�, producing infinitesimally thin
current sheets.
The magnetic field at 21.5 R� and the expansion factor and coronal hole bound-
ary distance as described in Sec. 3 are used to compute the boundary conditions
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for the solar wind software Enlil (Odstrcil et al., 1996; Odstrcil , 2003), which
simulates the solar wind in the heliosphere. In this work, we are interested in
the wind speed, proton density and magnetic field at Earth. We run Enlil with
low resolution, which means 256 cells in r, 30 cells in θ and 90 cells in φ.

3 Solar Wind Models
As described in the introduction, most solar wind models consist of two parts.
An inner model covering the domain from R� to 21.5R� and an outer model
covering the domain from 21.5R� to some outer boundary such as 1.7AU. The
following sections detail the inner models used in this study to determine the
boundary conditions for the outer model. The baseline model is the WSA
model which is used operationally worldwide. In this paper, we introduce a
new approach to modelling the coronal part of the solar wind modelling chain
in Section 3.2, consisting of a potential or non-potential reconstruction of the
coronal field using the DuMFriC code driven by ADAPT maps feeding into a
alternative empirical formulation for the solar wind speed based on the DCHB
model by Riley et al. (2001). This provides alternative boundary conditions to
those obtained from the WSA model.

3.1 Wang-Sheeley-Arge Model
The empirical solar wind model used in operational space weather forecasting at
the NOAA/NSW SWPC is the Wang-Sheeley-Arge (WSA) model (Arge et al.,
2003). It computes the wind speed vr from the flux tube expansion factor

fs =
(
R�
Rs

)2 (
Br(R�)
Br(Rs)

)
, with Rs = 2.5R� in our case, and θb (in degrees), which

is the minimum distance of a fieldline footpoint from a coronal hole boundary
in the photosphere. The WSA formula reads

vr(fs, θb) = vslow +
vfast − vslow
(1 + fs)α

[
β − γe−(θb/ω)

δ
]ι
. (1)

There are eight free parameters, including the fast and slow wind speed vfast
and vslow.
The WSA formula was developed from the Wang-Sheeley (WS) model (Wang
and Sheeley , 1990, 1992; Arge and Pizzo, 2000), which only uses fs as an input
parameter and reads

vr(fs) = vslow +
vfast − vslow

(fs)α
, (2)

and the Distance from the Coronal Hole Boundary (DCHB) formula (Riley
et al., 2001) which only uses θb and reads

vr(θb) = vslow + (vfast − vslow)
[
1 + tanh

(
θb − ε
w

)]
, (3)
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with ε the thickness of the slow flow band and w the width over which flow is
raised to coronal hole values. Recent research suggests that θb is more important
than fs for determining the wind speed, and in some cases the presence of fs
actually weakens the predictive power of the WSA formula (Riley et al., 2015).
However, McGregor et al. (2011a) found evidence that the expansion factor
might influence the distribution of fast solar wind deep inside coronal holes,
and that both factors (θb and fs) might be important to accurately model the
solar wind.

3.2 Modified DCHB Model
All three formulas above were developed for input data using a relatively coarse
grid, not resolving much of the fine-scale structure of the magnetic field and
small (or thin) coronal holes. The derived solar wind speed and density maps
in Edwards et al. (2015) used Equation 2 without modifying the parameters
used in the WSA model. Here, for our MF and PFSS simulation, we devised a
new formula, tentatively cutting down on free parameters and leaving out the
expansion factor term. Our tentative empirical wind speed formula reads

vr(θb) = vslow + (vfast − vslow)(θb · ω)δ, (4)

with θb in radians, ω > 1, δ < 1, vslow ∈ [100, 400] and vfast ∈ [500, 1000].
Note that if we measured θb in degrees we would need ω < 1.
Because we use the same high resolution input and coronal hole detection
method for the PFSS method we use the same wind speed formula. As a first
rough parameter fit we use vslow = 200 kms−1, vfast = 700 km s−1, ω = 7 and
δ = 1/2.5.
We find overall that the optimal form of the wind speed formula and the opti-
mal parameter fit are very sensitive to the resolution of the photospheric mag-
netograms or synoptic maps, the resolution of the coronal simulation and the
sensitivity of the coronal hole detection algorithm.

4 Results
In order to compare the solar wind predictions at L1 provided by Enlil when
it is driven by the different models, we first produce the boundary conditions
separately by the MF, PFSS and WSA model as described in the previous
sections. For the MF model, we run DuMFriC with a four-month ramp-up
time, i.e., we start the simulation in January of the respective year, in order to
make sure that it has reached a valid state by May. For every day, we then do a
separate Enlil run with the new boundary conditions derived from the current
observational data.
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Table 2: Time-series statistics wind speed. The RMSE is in km/s.
Year (model) RMSE ρ
2014 (MF) 94.20 0.36
2014 (PFSS) 88.57 0.20
2014 (WSA) 18.15 0.19
2016 (MF) 118.01 0.34
2016 (PFSS) 111.31 0.40
2016 (WSA) 92.88 0.54

Table 3: Time-series statistics Bmag. The RMSE is in nT .
Year (model) RMSE ρ
2014 (MF) 2.54 0.16
2014 (PFSS) 2.15 0.10
2014 (WSA) 1.99 0.13
2016 (MF) 1.92 0.19
2016 (PFSS) 1.90 -0.11
2016 (WSA) 1.56 -0.006

4.1 Validation Metrics for Continuous Variables
We first do a comparison in terms of statistical metrics. Figures 1, 2 and 3 show
scatter plots of the wind speed vr, the magnetic field magnitude Bmag and the
density d, respectively. For a quantitative comparison we evaluated the Root

Mean Square Error RMSE =

√∑n
1 (fi−oi)2

n ; bias =
∑n

1 (fi−oi)
n , and the Pearson

correlation coefficient ρ ∈ [−1, 1] that describes the linear correlation between
the simulated and the observed quantities. Tables 2, 3 and 4 summarize the
models’ performance in these metrics for all variables and both time intervals.
As we have expected due to the existence of currents in the MF model, this
model gives a better correlation with the observed wind speed for solar maxi-

Table 4: Time-series statistics density. The RMSE is in p/m3.
Year (model) RMSE ρ
2014 (MF) 3.72 0.27
2014 (PFSS) 4.12 0.19
2014 (WSA) 4.32 0.24
2016 (MF) 4.11 0.18
2016 (PFSS) 3.94 0.34
2016 (WSA) 4.51 0.26
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Figure 1: Scatter plots and histograms for the wind speed vr at L1 for 2014 (left)
and 2016 (right). Units are km/s. The x axis corresponds to the simulation
data, the y axis corresponds to the OMNI data. The top row corresponds to
the MF model, the middle row to the PFSS model, and the bottom row to the
WSA model.
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Figure 2: Scatter plots and histograms for Bmag for 2014 (left) and 2016(right).
Units are nT . The x axis corresponds to the simulation data, the y axis cor-
responds to the OMNI data. The top row corresponds to the MF model, the
middle row to the PFSS model, and the bottom row to the WSA model.
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Figure 3: Scatter plots and histograms for density for 2014 (left) and 2016
(right). Units are p/m3. The x axis corresponds to the simulation data, the y
axis corresponds to the OMNI data. The top row corresponds to the MF model,
the middle row to the PFSS model, and the bottom row to the WSA model.
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mum than the PFSS model, and also than the operational WSA model. Looking
at the correlation coefficient for the wind speed and density, the potential 2016
(descending phase) results are better than the 2014 (solar maximum) results.
For the magnetic field magnitude, MF performs best for both years. It is inter-
esting to note, however, that this changes when we exclude the time intervals
with CMEs from our analysis. In this case, the WSA model performs best in
2016, and the PFSS in 2014 (cf. Weinzierl et al., in preparation). For the den-
sity, the MF model again performs better than the potential one in 2014, and
not as good in 2016.
The RMSE gives a different picture. Here, the two potential models mostly
outperform the non-potential one. For the wind speed, the 2014 results have
better (lower) values than the 2016 results, while it is the other way around
for Bmag, and mixed for the density. The reason for the poor performance of
the MF model can be observed in the scatter plots: The slope of a best-fit line
through the data points, is not one. This systematic error could be corrected
by optimizing the solar wind speed formula and its parameters. We will briefly
discuss such an optimization in Section 5.
We conclude that the statistics do not give us the one best method here, and
none of the methods are particularly good in terms of real correlation and match-
ing the observations on a one-to-one basis. However, we can see a tendency that
the non-potential model mostly improves the results at solar maximum.

4.2 Event-based Validation
In addition to the metrics defined in the previous section, event-based validation
is crucial in assessing the various models. For the purpose of this study, the focus
is on the arrival time of slow-to-fast stream interaction regions (SIRs). The error
on the arrival time of SIRs is typically of the order of one day, and so larger than
the error on arrival time of CMEs. The arrival of SIRs can trigger a geomagnetic
storm response and the fast solar wind is associated with high electron fluences
in the radiation belts. One of the drivers of developing the MF model was to get
a better characterization of coronal holes, associated with the fast solar wind.
The SIR detection algorithm was originally developed in (Owens et al., 2005)
and further refined in (MacNeice, 2009; Jian et al., 2015, 2016). We use here,
for comparability, the thresholds as given in (Jian et al., 2015). In Figure 4 we
show how our wind models perform in terms of predicting SIRs and high speed
enhancements (HSEs), i.e., abrupt accelerations in vr.
There exists a great number of metrics, or skill scores, for assessing the “good-
ness” of a binary forecast (cf., for example, (Barnes et al., 2016)). They are
usually based on the number nhit of events that very correctly predicted, the
number nmiss of events that were missed in the prediction and the number
nfalse of false alarms. One such skill score, which we will use here, is the criti-
cal success index or threat score (TS, see, e.g., (Schaefer , 1990) and references
therein) TS = nhit

nhit+nmiss+nfalse
. The TS assumes that it is most important to

avoid missing an event (i.e., keep nmiss low), even on the cost of increasing the
number of false alarms.
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Figure 4: SIR detection results for 2014 (top) and 2016 (bottom). Detected SIRs
from OMNI observations (top row) are marked in red and and copied down to
the other rows (second row is MF, third row is PFSS, bottom row WSA) for
easier comparison, as well as the velocity profile (red line in simulation plots).
Detected events for the simulations are highlighted in blue. Dashed vertical red
(OMNI) and blue (simulations) lines mark detected HSEs.

Table 5: SIR detection performance.
Year (model) nhit nmiss nfalse TS
2014 (MF) 3 3 4 0.3
2014 (PFSS) 3 3 5 0.27
2014 (WSA) 5 1 6 0.4
2016 (MF) 6 14 0 0.3
2016 (PFSS) 11 8 1 0.55
2016 (WSA) 11 7 2 0.55
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Table 5 summarizes the SIR prediction results. Overall, the WSA model per-
forms best in predicting the SIRs correctly. It has the highest TS for both time
intervals, with PFSS performing equally well in this metric for the descending
phase. The difference is that PFSS has one more miss and one more false alarm
in the 2016 interval. The MF model has no false alarms for this case, but a lot of
misses. For solar maximum, the result is not as clear. The MF model performs
slightly better than the PFSS model in terms of TS and false alarms. The WSA
model has a better TS and a higher hit rate, but also more false alarms.
Looking at the velocity profile in Figure 4, we can see that for some of the missed
SIRs in the MF and PFSS model, there actually is a peak around that time,
only not as high as required for the SIR detection algorithm. This, as in the
scatter plots, points to a systematic error. We conclude that a better parameter
optimization for the solar wind speed formula might improve the performance
here. In addition, an adaption of the SIR detection thresholds would lead to
more hits, but, as mentioned before, we have decided to leave the thresholds as
in (Jian et al., 2015) for better comparability.

5 Conclusion and Future Work
We have compared the performance of three different simulation pipelines for
solar wind prediction, using GONG or ADAPT maps as input, non-potential
or potential models for the solar corona, and Enlil for extrapolating the results
to 1AU. These models were compared with OMNI observations of wind speed,
magnetic field strength, and density. We did both a statistical analysis and
an evaluation of their performance in predicting SIRs; and we considered two
six-months periods, one at solar maximum and one in the descending phase of
the solar cycle.
We observed a difference in performance of the models due to the phase in
the solar cycle. At solar maximum, the non-potential model performed best
in the statistical metrics, while the potential and WSA model were better in
the descending phase. The better performance of the MF model during solar
maximum was expected, as this model, in contrast to the potential ones, includes
currents in the corona, which are more frequent at this time. In the event-based
validation, the operational WSA model always performed best in terms of hits
and threat score, but it also produced the most false alarms.
Future work will include testing the effect of re-introducing the expansion factor
term (in adapted form) into the empirical wind speed formula for the DuMFriC
potential and non-potential simulations. The models then have to be tested
with different input data, i.e., from different observatories and different forms
of synoptic maps, and extended from simulating the purely ambient wind to
including CMEs. The usage of a local method for computing the electric field,
avoiding the “halos” as described in Weinzierl et al. (2016), would be expected
to improve the MF model (cf. Yeates, 2017).
The next crucial step will be to use automatic optimization methods for param-
eter fitting. Although doing this was out of scope of this paper, we give here

13



some considerations concerning automatic parameter optimization.
It is generally assumed that the major part of the wind speed evolution hap-
pens close to the Sun, i.e., between the Sun and 0.3 AU (Rosenbauer et al., 1977;
Schwenn et al., 1978), although McGregor et al. (2011b) found that, especially
at solar minimum and for intermediate wind speeds, there is still some signif-
icant change in the wind speed between 0.385 AU and 1 AU. An optimization
using simulation data at 1 AU, however, is very time consuming as it requires
running an MHD simulation as e.g. Enlil or an appropriate approximation (see
(Riley and Lionello, 2011) for a comparison of techniques). Therefore, as a first
attempt, we could try and compare the speed distributions of the simulation at
0.1 AU and observations at 1 AU for receiving a parameter fit. We expect this
to yield better results during solar maximum than during solar minimum.
In order to evaluate a suitable method for fitting the parameters there are a
number of metrics for the distribution of the solar wind speed values that could
be considered. The metrics we propose to consider are the root mean squared
error (RMSE), the correlation factor, and the shape of the histogram, i.e. the
difference of the mean values, the difference of the variance and the difference
of the skewness.
Also, a simultaneous (multi-objective) optimization of a subset of these met-
ric and optimization of single objectives should be tested. A multi-objective
optimization determines the Pareto front of multiple fitness functions, that is,
the points where improving the score for one objective would worsen the score
for the other. Here, another question to consider is how to choose the "best"
point of the resulting set: by minimizing one of the objectives, or by using some
kind of trade-off? There exist a number of sophisticated methods alone for the
purpose of choosing the the optimal point on the Pareto front.
We have seen in Section 4, though, that all these metrics are only of limited
value for parameter optimization for operational space weather forecasting. As
noted by other authors Owens et al. (2005); MacNeice (2009) before, an op-
timal correlation factor or RMSE is no guarantee for a good forecast w.r.t.
relevant space weather events. Therefore, parameter fitting should ultimately
be based on the ability to predict space weather events, such as the arrival time
of stream interaction regions and high speed enhancements (see Section 4.2).
This, however, is computationally very expensive, as it requires the whole simu-
lation pipeline to be run a lot of times. We leave this as an interesting direction
for future research which has to combine mathematical, physical and computer
science skills.
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