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KNOT MODULES AND THE NAKANISHI INDEX

C. KEARTON AND S. M. J. WILSON

(Communicated by Ronald A. Fintushel)

Abstract. We examine the structure of the knot module of 938 and show
that the Nakanishi index of this knot is 2. The Nakanishi indices of 1069 and
10101 are also determined by means of the Fox-Smythe row class. Finally, we
point out that the Nakanishi index is not additive over knot composition.

1. Introduction

A knot k is a smooth oriented pair
(
S3, S1

)
; two knots are equivalent if there is

an orientation preserving diffeomorphism sending one onto the other. A classical
invariant of k is M(k) = H1

(
K̃
)

, the first homology of the infinite cyclic cover of

the exterior of k regarded as a module over Λ = Z
[
t, t−1

]
. A presentation of M(k)

may be obtained by means of the free differential calculus of Fox (see [4, 7]) or via
the Seifert matrix (see [7, 10, 12]).

Of course, M(k) has many presentation matrices, but any two are connected by a
finite sequence of elementary moves; see [7, Lemma 7.2.1]. Then Nakanishi’s index
is defined to be the least integer m such that the module is presented by an m×m
matrix. In [7, Table F.4] there is a list of minimal presentation matrices of knots
with index greater than 1; in the case of 938 a 2× 2 matrix is given, although it is
not certain that this is minimal. We use a Mayer-Vietoris sequence from algebraic
K-theory to establish the structure of the knot module; this enables us to show that
in fact this matrix is minimal and so the index of 938 is 2.

The Nakanishi indices of 1069 and 10101 are also shown to be 2, by means of the
Fox-Smythe row class. In the case of 1069 the computer program PARI was used
to help determine the row class. PARI was also used in the investigation of 10101,
although in this case our conclusions do not rely on the PARI calculations.

This settles all the knots in [7, Table F.3] for which Nakanishi’s index is listed
as unknown, i.e. those knots with less than or equal to 10 crossings.

Finally, we refer to an example of J.A. Hillman to illustrate that the Nakanishi
index is not additive over knot composition.
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2. The module structure of M (938)

In [7, Table F.4] the following presentation matrix of M = M(938) is given:

A =
(
t2 − t+ 1 t+ 1

0 5t2 − 9t+ 5

)
.

We set

f(t) = t2 − t+ 1,

g(t) = 5t2 − 9t+ 5,

so that A corresponds to a presentation with generators x, y and relations

f(t)x+ (t+ 1)y = 0,(2.1)

g(t)y = 0.

Lemma 2.1. Let ω =
(
1 +
√
−3
)
/2, a root of f(t). Then

M/f(t)M ∼= Z [ω] = Z
[
ω, ω−1

]
.

Proof. The equality follows from ω−1 = ω = 1−ω. From (2.1) we see thatM/f(t)M
is presented as a Z [ω]-module with generators x, y and relations

(ω + 1)y = 0,(
5ω2 − 9ω + 5

)
y = 0.

But ω2 − ω + 1 = 0 and ω is a unit, so this presentation is equivalent to

(ω + 1)y = 0,(2.2)
4y = 0.

Again, −(ω + 1)(ω + 1) + 4 = 1, so we have

y = 0.

Hence the result. Note moreover that the presentation gives an epimorphism
Z [ω]2 → Z [ω] sending x to 1 and y to 0.

Lemma 2.2. Let θ =
(
9 +
√
−19

)
/10, a root of g(t). Then

M/g(t)M ∼= Z
[
θ, θ−1

]
.

Proof. From (2.1) we see that M/g(t)M is presented as a Z
[
θ, θ−1

]
-module with

generators x, y and relation(
θ2 − θ + 1

)
x+ (θ + 1)y = 0.

But θ − 1 + θ−1 = 9
5 − 1 = 4

5 , so this presentation is equivalent to
4
5
θx+ (θ + 1)y = 0.

Thus there is a monomorphism M/g(t)M → Z
[
θ, θ−1

]
sending

x 7→ θ + 1, y 7→ −4
5
θ.

But
(
θ−1 + 1

)
(θ + 1) = 19

5 and gcd(19, 4) = 1, so the map is surjective.

Lemma 2.3. As Λ-modules,

M/(f(t), g(t))M ∼= Z [ω]/(4).
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Proof. From (2.1) and (2.2) we see that M/(f(t), g(t))M is presented as a Z [ω]-
module with generators x, y and relations

(ω + 1)y = 0,
4y = 0,

g(ω)x = 0.

Arguing as in Lemma 2.1, and noting that g(ω) = −4ω, we see that this presentation
is equivalent to

y = 0,
4x = 0.

Hence the result.

Essentially the same argument gives the following corollary.

Corollary 2.4. There is a ring isomorphism

Λ/(f, g) ∼= Z [ω]/(4).

Let φ =
(
1 +
√
−19

)
/2 and note that Z [φ] is the ring of integers of Q

(√
−19

)
,

which has class number 1, and so Z [φ] is a UFD.

Lemma 2.5. (i) Z
[
θ, θ−1

]
= Z

[
1
5 , φ
]
, (ii) Z

[
θ, θ−1

]× =
〈
−1, φ, φ

〉
.

Proof. (i) Clearly Z [φ] ⊆ Z
[
θ, θ−1

]
, and since 2− θ − θ−1 = 1

5 we have Z
[

1
5 , φ
]
⊆

Z
[
θ, θ−1

]
. Since θ = (φ+ 4) /5, Z

[
θ, θ−1

]
⊆ Z

[
1
5 , φ
]
.

(ii) Note that θ−1 = θ =
(
φ+ 4

)
/5, so φ ∈ Z

[
θ, θ−1

]
, and that φφ = 5.

Thus φ is irreducible and hence prime in Z [φ]. Moreover, φ, φ ∈ Z
[
θ, θ−1

]×, so〈
−1, φ, φ

〉
⊆ Z

[
θ, θ−1

]×.
Let ξ ∈ Z

[
θ, θ−1

]×. Then

ξ =
σ

5r
with σ ∈ Z [φ] ,

1
ξ

=
τ

5s
with τ ∈ Z [φ] ,

and so

στ = 5r+s =
(
φφ
)r+s

.

Since Z [φ] is a UFD with units ±1, σ = ±φuφw. Therefore

ξ = ±φu−rφw−r ∈
〈
−1, φ, φ

〉
.

Now ω is a primitive 6th root of unity, and Z [ω]× = 〈ω〉 has order 6.
Note that we have a cartesian square of rings

Λ/(fg) −−−−→ Λ/(f)y y
Λ/(g) −−−−→ Λ/(f, g)
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which, using the results above, can be written as

Λ/(fg) −−−−→ Z [ω]y yβ
Z
[
θ, θ−1

]
−−−−→

δ0
Z [ω] /(4)

(2.3)

where β(ω) = ω, and δ0(θ) = ω since both θ and ω are the image of t. (Here and
elsewhere we write plain λ rather than λ+ (4) to denote an element of Z [ω] /(4).)

Lemma 2.6. f(t)M ∩ g(t)M = {0}.

Proof. Since detA = f(t)g(t) we see that f(t)g(t) annihilates M ; indeed

f(t)M ⊆ ker g(t) and g(t)M ⊆ ker f(t).

Thus f(t)M ∩ g(t)M is killed by the ideal (f, g) = (f, 4). But M is Z-torsion free,
being a knot module; hence the result.

Thus we have a cartesian square
M −−−−→ M/f(t)My y

M/g(t)M −−−−→ M/(f, g)M

By the results above this can be written as

M
α−−−−→ Z [ω]

γ

y yβ
Z
[
θ, θ−1

]
−−−−→

δ
Z [ω] /(4)

(2.4)

where the maps are given by

α(x) = 1, α(y) = 0; γ(x) = θ + 1, γ(y) = −4
5
θ;

and δ = δ′δ0 where δ′ : Z [ω] /(4)→ Z [ω] /(4) is given by δ′(1) = (ω + 1)−1. Note
that ω + 1 is a unit in Z [ω] /(4), for

−(ω + 1)ω = −ω2 − ω = 1− 2ω

whose square is 1 in Z [ω] /(4).
The cartesian squares (2.3) and (2.4) are the same except that in (2.4) the lower

map has been twisted by δ′.
It follows from [1, IX Theorem 5.1] that M is a projective Λ/(fg)-module of

rank 1, which is free only if ω + 1 ∈ Z [ω] /(4) lies in the image of

Z
[
θ, θ−1

]× ⊕ Z [ω]×

in the Mayer-Vietoris sequence in [1, IX Theorem 5.3]. (An alternative reference is
[11, Lemma 4.20(v)].) That image is

δ0

(
Z
[
θ, θ−1

]×)
β
(
Z [ω]×

)
⊆ (Z [ω] /(4))× .

But δ0 (φ) = 5ω − 4 ≡ ω (mod 4). Thus the total image is just 〈ω〉, whose only
element of order 2 is −1. On the other hand, as we have observed, 1− 2ω is a unit
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of order 2 in Z [ω] /(4), which therefore cannot be in this image. Hence neither can
(ω + 1)−1 = −ω (1− 2ω)−1.

So M is not cyclic and it follows that the Nakanishi index of 938 is 2.

3. The row class of 10101

If we apply Seifert’s construction [7, p. 47] to the diagram in [7, Table F.1], we
find that the Seifert circuits are not nested. The Seifert surface V so constructed
has an obvious basis for H1 (V ), given by the cycles surrounding the four “holes”.
Taking these in the order of lower left-hand, top, lower middle and lower right-hand,
and orienting each of them in the anti-clockwise direction, we obtain the following
as a Seifert matrix for 10101:

U =


−1 −1 0 0

0 −3 1 1

0 1 −2 1

0 1 0 −2

 .

Thus M (10101) is presented by tU − U ′:
1− t −t 0 0

1 3− 3t t− 1 t− 1
0 t− 1 2− 2t t
0 t− 1 −1 2− 2t

 ∼


0 −t− 3(1− t)2 (t− 1)2 (t− 1)2

1 3− 3t t− 1 t− 1
0 t− 1 2− 2t t
0 t− 1 −1 2− 2t



∼

−3t2 + 5t− 3 (t− 1)2 (t− 1)2

t− 1 2(1− t) t
t− 1 −1 2(1− t)


∼

−3t2 + 5t− 3 + (t− 1)3 0 (t− 1)2 − 2(t− 1)3

t− 1− 2(t− 1)2 0 t+ 4(t− 1)2

t− 1 −1 2(1− t)


∼
(
t3 − 6t2 + 8t− 4 −2t3 + 7t2 − 8t+ 3
−2t2 + 5t− 3 4t2 − 7t+ 4

)
∼
(
t3 − 6t2 + 8t− 4 −5t2 + 8t− 5
−2t2 + 5t− 3 3t− 2

)
.

Let A(t) denote the final matrix above. (The corresponding entry in [7, Table F.4]
is incorrect, as calculation of its determinant shows.)

The Alexander polynomial is

f(t) = 7 t4 − 21 t3 + 29 t2 − 21 t+ 7.

Let θ be a root of f(t), L = Q (θ) and OL the ring of integers of L. Let K =
Q
(√

21
)
, so that OK = Z

[(
1 +
√

21
)
/2
]
.

Lemma 3.1. L contains K and is totally complex. [L : Q] = 4, and f(t) is irre-
ducible.

Proof. If we put y = t+ t−1, then

t−2f(t) = 7y2 − 21y + 15 = g(y)

with roots
(
21±

√
21
)
/14. These both lie in the interval (0, 2), so all the roots of

f(t) are non-real, [Q[θ] : Q] = 4, and f(t) is irreducible.
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Lemma 3.2.

Z
[
θ, θ−1

]
= Z

[
1
7
, 7θ
]
⊆ OL

[
1
7

]
.

Proof. Let η = θ + θ−1. Then g(η) = 0, so

7η2 − 21η + 15 = 0,

η (3− η)− 2 =
15
7
− 2 =

1
7
,

and hence 1
7 ∈ Z

[
θ, θ−1

]
. Moreover,

θ−1 = −7 θ3 − 21 θ2 + 29 θ − 21
7

∈ Z
[

1
7
, 7θ
]

which gives the equality. But h(x) = 73f
(
x
7

)
is the minimum polynomial of 7θ

over Z, and h(x) is monic, so 7θ ∈ OL. This gives the inclusion, which in fact is an
equality, although we do not need that here.

Let M = L
(√
−3
)
.

Lemma 3.3. M/L is unramified at all the finite and infinite primes.

Proof. M = L
(√
−7
)

also, since
√

21 =
√
−3
√
−7. Now the discriminant of

OL
[(

1 +
√
−3
)
/2
]

over OL is (3)OL , and that of OL
[√
−7
]

is (28)OL , so the dis-
criminant of OM over OL divides both of these and hence is OL. By Dedekind’s
theorem, [14, Theorem 4-8-14], M/L is unramified at all the finite primes. By
Lemma 3.1, L is totally complex, so M/L is unramified at all the infinite primes.

Let H be the Hilbert class field of L, i.e. the maximal unramified abelian exten-
sion of L. Lemma 3.3 shows that M ⊆ H . (In fact M = H , but we do not need
that here.)

Lemma 3.4. The ideal P5 = (5, 7(θ + 1))OL is non-principal.

Proof. First note that

NL/Q (7θ + 7) = h(−7) = 73f(−1) = 73 × 5× 17,

and so

N (P5)
∣∣∣ gcd

(
NL/Q (7θ + 7) , NL/Q (5)

)
= 5.

If α ∈ P5, then α = β (7θ + 7) + 5γ for some β, γ ∈ OL, and so

NL/Q(α) ≡ NL/Q (β)N (7θ + 7) ≡ 0 mod 5.

Therefore P5 6= OL, so N (P5) = 5 and therefore P5 is a prime divisor of (5)OL
with OL/P5 = F5. Hence the residue field over OL/P5 corresponding to M is
F5

[√
−3
]

= F25, a non-trivial extension. Thus the Artin symbol
(

P5
H/L

)
6= 1 and

P5 is non-principal (see [9, XI §5]).

Lemma 3.5. P5Z
[

1
7

]
is non-principal over OL

[
1
7

]
.
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Proof. First note that (1− θ)−1 ∈ OL and

NL/Q

(
1

1− θ

)
= NL/Q (1− θ)−1 =

(
f(1)

7

)−1

= 7.

Now 7 ramifies in K, in fact (7)OK = P 2 where P =
((

7 +
√

21
)
/2
)
OK

, so there are

either two conjugate prime divisors or one single prime divisor of (7)OL = (POL)2.
One of these must be (1− θ)−1

OL
and so any prime divisor of (7)OL is principal. Thus

the class group of OL maps isomorphically onto that of OL
[

1
7

]
and, therefore, since

P5 is non-principal, so is P5Z
[

1
7

]
(over OL

[
1
7

]
).

The argument in [5] shows that the element of the class group of Z
[
θ, θ−1

]
represented by the ideal generated by the ith row of A(θ) is independent of i, and
is an invariant, the row class, of the knot.

The row class of A(θ) is the ideal class in Z
[
θ, θ−1

]
of

I =
(
−2θ2 + 5θ − 3, 3θ − 2

)
= (−(2θ − 3)(θ − 1), 3θ − 2)

= (2θ − 3, 3θ − 2) = (2θ − 3, θ + 1) = (5, θ + 1)Z[θ,θ−1] .

So IOL
[

1
7

]
= P5Z

[
1
7

]
is non-principal. Therefore I is non-principal and so the row

class of 10101 is non-trivial. But if M (10101) were cyclic, (f(t)) and hence ( f(t) 0
0 1

)
would be a presentation matrix. Thus the row class would be trivial. Hence the
Nakanishi index of 10101 is 2.

4. The row class of 1069

In [7, Table F.4] the following presentation matrix of M (1069) is given:

A(t) =

[
t2 + t− 1 3 t3 − 9 t2 + 5 t− 1

2 t2 − 2 t+ 1 t4 − 2 t3

]
.

The Alexander polynomial is

f(t) = t6 − 7 t5 + 21 t4 − 29 t3 + 21 t2 − 7 t+ 1.

The following properties were found by using the computer program PARI:
(i) f(t) is irreducible, with root θ say.
(ii) Z [θ] = Z

[
θ, θ−1

]
is the ring of integers of Q [θ].

(iii) The class number of Z [θ] is 2.
(iv) The ideal(

2 θ2 − 2 θ + 1, θ4 − 2 θ3
)

=
(
2 θ2 − 2 θ + 1, θ − 2

)
= (5, θ − 2)

is not principal.
As in the previous section, the Nakanishi index of 1069 is 2.

5. Non-additivity of the Nakanishi index

First recall from [8] that knot modules have been characterised. Using this, we
can deduce from [6, pp. 562-563] that there exist two knots, k and l, with the
following properties:

(i) k and l both have Alexander polynomial f(t) = 13t2 − 25t + 13, which is
irreducible.
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(ii) M(k) is not cyclic, hence k has Nakanishi index 2. (This is because the degree
of the Alexander polynomial is an upper bound for the Nakanishi index, since
by [13, pp. 485-489] a knot module can always be presented via a non-singular
Seifert matrix.)

(iii) M(l) ∼= Λ/(f(t)), hence l has Nakanishi index 1.
(iv) M(k + k) ∼= M(l+ l) ∼= Λ/(f(t))⊕ Λ/(f(t)), so k + k has Nakanishi index 2.

It follows that the Nakanishi index is not additive over knot composition.
Of course, we could use 1069 or 10101 in place of k, but Hillman’s example is

much easier. Another method is to consider two knot polynomials with resultant
equal to 1, such as the cyclotomic polynomials Φ6 and Φ35, so that

Λ/ (Φ6Φ35) ∼= Λ/ (Φ6)⊕ Λ/ (Φ35) .

The argument in [6, p. 561] provides two knots k, l with knot modules Λ/ (Φ6),
Λ/ (Φ35) respectively, and then k + l has knot module Λ/ (Φ6Φ35).

6. The PARI Program

PARI (more completely, PARI/GP) is a software package implementing many
algorithms to do with the arithmetic of algebraic number fields and elliptic curves.
Originally developed at Bordeaux by a team led by Henri Cohen, it is now main-
tained by Karim Belabas at the Université Paris-Sud, Orsay, with the help of many
volunteer contributors. The web address of the PARI home page is

http://www.parigp-home.de/.
PARI/GP is available under the GNU General Public License. Acquisition of

the package (from the above address) is easy, installation is straightforward and
the documentation [2] is good. PARI is most easily used via its command line
interface, GP. It is not primarily an algebraic manipulation package, although it
has a similar feel, and it is extremely powerful in carrying out calculations which
few other packages attempt.

PARI/GP is used by many number theorists in their investigations. One might
add that the command line interface is necessarily somewhat awkward and technical
and the learning curve can be steep!

The principal use of PARI in the present research was to calculate the ideal class
groups of the relevant number fields. For this PARI implements the algorithm of
Buchmann [3].
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