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Abstract. The general solution to the complex Bateman equation is constructed. It is given in
implicit form in terms of a functional relationship for the unknown function.The known solution
of the usual Bateman equation is recovered as a special case.
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1. Introduction

We de¢ne the complex Bateman equation as
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The real form of the Bateman equation,
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arises when the unknown function depends upon only two arguments,
x � x1 � y1; y � x2 � y2

This equation, which is equivalent to the pair of ¢rst-order equations
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has a general solution given implicitly by choosing two arbitrary functions of one
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variable f �c� and g�c� and constraining them to satisfy the linear relation

xf �c� � yg�c� � c � constant: �4�
An inhomogeneous form of the Bateman equation, the so-called two-dimensional
Born^Infeld equation, is equivalent to the equation describing minimal surfaces,
and has been solved by Bateman himself, [1] and Barbasov and Chernikov [2]
Further properties and generalisations of the real Bateman equation can be found
in [3, 4]. The general solution to the complex Bateman equation (1), on the other
hand, is given, again implicitly, by identifying two arbitrary functions of three
variables, F �f; x1; x2� which depends upon �f; x1; x2� and G�f; y1; y2� depending
upon �f; y1; y2� and solving the resulting equality

F �f; x1; x2� � G�f; y1; y2�: �5�
implicitly for f�x1; x2; y1; y2�. This assertion may be readily veri¢ed. This solution
encompasses the above solution to the real Bateman equation by the choice of
the arbitrary functions F ; G as

F � x1f �f� � y1g�f�; G � ÿx2f �f� ÿ y2g�f� � c: �7�

It is the purpose of this Letter to explain how this result may be deduced, with an
eye to further generalisation. At this point we insert a caveat; this analysis is carried
out in the spirit of many investigations in mathematical physics, of being a little
cavalier about rigorous questions of differentiability of the functions involved.
We assume that the functions with which we deal are twice differentiable, though
we are well aware that the real Bateman equation admits solutions of shock wave
type, where differentiability at one or more points fails.

2. Proof

The complex Bateman equation (1) is the eliminant of three linearly dependent
equations which may be written as

a1
@f
@y1
� a2

@f
@y2
� 0;

@f
@x1
ÿ @a

1

@x1

@f
@y1
ÿ @a

2

@x1

@f
@y2
� 0;

@f
@x2
ÿ @a

1

@x2

@f
@y1
ÿ @a

2

@x2

@f
@y2
� 0:

�7�

Here a1; a2 are functions of the variables �x1; x2; y1; y2�. The linear equations
whose eliminant gives (1) are obtained from the ¢rst equation of (7) together with
the second plus the derivative of the ¢rst with respect to x1 and the third plus
the x2 derivative of the ¢rst. These equations admit an obvious generalisation to
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any number of pairs xi; yj. Clearly,
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Cross differentiation shows that ��@f=@y2�a2�ÿ1 is a function of �f; y1; y2� and,
hence, we may write
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where K is an arbitrary function of �f; y1; y2�. Further implications of these
equations are as follows:
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where K 0 denotes the partial derivative of K with respect to f. As a consequence, 9 a
function U�f; y1; y2� such that
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Similarly, we can introduce a second function V �f; x1; x2� such that
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The integrability condition for those two equations, obtained by eliminating the
mixed �x1; y1� derivatives of f is automatically satis¢ed. If U�f; y1; y2� is written
in the form

U � �@=@y1�G�f; y1; y2��@=@y2�G�f; y1; y2� �14�

for some function G�f; y1; y2�, where f is regarded as a parameter the partial
derivatives with respect to y1 and y2 act on the last two arguments of G , then this
is simply a ¢rst order differential equation forG, which is in principle solvable. How-
ever the partial derivatives in (14) may be replaced by total derivatives when f is now
regarded as a function of �x1; x2; y1; y2� since
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using (12). This equation implies that G is a function of f, together with the
additional variables in the problem, i.e. x1; x2. So we may write

G�f; y1; y2� � F �f; x1; x2� �16�
for some function F , which is the result announced.

By the same token,

V � �d=dx1�F �f; x1; x2��d=dx2�F �f; x1; x2� : �17�

3. Conclusions

We have shown that what we have called the complex Bateman equation,
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may be solved completely in terms of two arbitrary functions F �f; y1; y2� and
G�f; x1; x2� which are constrained to be equal. The ¢rst-order equations (12) and
(13) both separately imply the complex Bateman equation. We expect that the exten-
sion of these results to higher dimensions will proceed along similar lines to that for
the real Bateman equation [5, 6]. We hope to return to the question of the solution
of the complex generalisation in arbitrary dimensions in the near future.

Note Added in Proof.

A similar result, without proof, can be found in T. Chaundy: The Differential
Calculus, Oxford Univ. Press, 1935, p. 328.
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