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Supersymmetric conical defects: Towards a string theoretic description of black hole formation
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Conical defects, or point particles, in AdS3 are one of the simplest nontrivial gravitating systems, and are
particularly interesting because black holes can form from their collision. We embed the BPS conical defects
of three dimensions into theN54b supergravity in six dimensions, which arises from the IIB string theory
compactified on K3. The required Kaluza-Klein reduction of the six dimensional theory on a sphere is analyzed
in detail, including the relation to the Chern-Simons supergravities in three dimensions. We show that the six
dimensional spaces obtained by embedding the 3D conical defects arise in the near-horizon limit of rotating
black strings. Various properties of these solutions are analyzed and we propose a representation of our defects
in the CFT dual to asymptotically AdS33S3 spaces. Our work is intended as a first step towards analyzing
colliding defects that form black holes.
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I. INTRODUCTION

Twenty-five years after Hawking showed that black ho
emit thermal radiation@1#, the apparent loss of quantum m
chanical unitarity in the presence of a black hole remains
outstanding problem for theoretical physics. We expect t
this ‘‘information puzzle,’’ which represents a fundamen
tension between general relativity and quantum mechan
should either be erased or explained in a quantum theor
gravity. In recent years string theory has explained mic
scopically the huge degeneracy required to account for
entropy of certain extremal black holes. However, there
been no insight into why this degeneracy of states is rela
to something geometric such as the area of a horizon. M
fundamentally, the information puzzle remains exac
that—a puzzle.

This paper is the first in a series investigating the bla
hole information puzzle in the context of string theory.
general relativity, the simplest context for black hole form
tion is gravity in three dimensions where there are no lo
dynamics. In the presence of a negative cosmological c
stant, 3D gravity possesses black hole solutions@2#. There is
also a family of conical defects, the so-called point partic
@3#. These solutions interpolate between the vacuum solu
(AdS3 with massM521 in conventional units! and the
black hole spectrum which starts atM50. Exact solutions of
3D gravity are known in which the collision of conical de
fects forms a black hole@4#. We would like to use these
simple classical processes to study the formation of hig
dimensional black holes in string theory. To this end,
must first embed the conical defects supersymmetrically
higher dimensional gravity arising from string theory. Pr
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serving supersymmetry is important because the contro
quantization of black holes and solitons in string theory u
ally requires supersymmetry. The presence of the nega
cosmological constant in three dimensions suggests
there should be a dual description of such spaces in term
a two-dimensional conformal field theory@5#. Our goal is to
find such a dual picture and describe in it the process
black hole formation from collision of conical defects. In@6#
it was shown that the 3D conical defects and their collisio
can be detected in correlation functions of the dual C
Here we are interested in the direct description of the defe
as objects in the dual.1

Type IIB supergravity compactified on K3 yields the ch
ral N54b supergravity in six dimensions, coupled to 2
tensor multiplets. This theory has classical solutions with
geometry of AdS33S3. In Sec. II we will construct super
symmetric solutions where the sphere is fibered over Ad3

so that a minimum length circuit around the AdS3 base leads
to a rotation of the sphere around an axis. Since AdS3 is
simply connected, the fiber must break down at a po
Upon dimensional reduction to the base this produces su
symmetric conical defects in three dimensions. In fact,
identical objects have been obtained previously as solut
to extended 211 supergravity in the Chern-Simons formu
lation @8,9#. The U(1) Wilson lines used in these constru
tions to obtain a Bogomol’nyi-Prasad-Sommerfield~BPS!
solution arise in our case from the Kaluza-Klein gauge fi
associated with the fibration. Our Kaluza-Klein ansatz
reducing the action and equations of motion of 6D gravity
the 3D base does not yield precisely a Chern-Simons the
Nevertheless, the dimensionally reduced system admits s
tions with vanishing field strength, for which the analysis

1It would also be interesting to make contact with the investig
tions of spherical shells in@7#.
©2001 The American Physical Society11-1
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VIJAY BALASUBRAMANIAN et al. PHYSICAL REVIEW D 64 064011
supersymmetry remains unchanged—the holonomy of K
ing spinors under the spin connection is canceled by
holonomy under the gauge connection. Various details
sphere compactifications of 6D,N54b supergravity are re-
viewed in the main text and the Appendixes.2

It is well known that a horospheric patch of the AdS3
3S3 geometry can be obtained as a near-horizon limit of
black string soliton of 6D supergravity@12#. Compactifying
the extremal string solution on a circle yields the black ho
of five dimensional string theory whose states were coun
in the classic paper@13#.3 The near-horizon limit of these
solutions yields the BTZ black holes times S3 @12#. In Sec.
III we show that the fibered S3 solutions described abov
arise as the near-horizon geometries of an extremal limi
spinning 6-dimensional strings compactified on a circle.
terestingly, when the angular momentum is suitably chos
global AdS33S3 is recovered as a solution. We discuss va
ous properties of the solution, including the nature of
conical singularity and potential Gregory-Laflamme ins
bilities in the approach to extremality.

The near-horizon limit of the six dimensional black strin
is also a decoupling limit for the worldvolume conform
field theory~CFT! description of the soliton. Following the
reasoning of@5# we conclude that the BPS conical defec
described above should enjoy a non-perturbative dual
scription in the worldvolume CFT of the black string—i.e.,
deformation of the orbifold sigma model (K3)N/SN @15#.
When reduced to the AdS base, the fibered geometries
pearing in our solutions carry a U~1! charge measured by th
Wilson line holonomy. Within the AdS-CFT duality, thi
spacetime U~1! charge translates into anR charge of the dua
system. In Sec. IV, we propose that the conical defects
described in the dual as an ensemble of the chiral prima
carrying the sameR charge. In subsequent papers we w
test this proposal and then use it to analyze the space
scattering of conical defects.

II. CONICAL DEFECTS FROM KALUZA-KLEIN
REDUCTION

In this section, we obtain the supersymmetric conical
fects in 3D via Kaluza-Klein reduction of the six
dimensionalN54b supergravity. Defects in three dimen
sions that involve just the metric and gauge fields with
Chern-Simons action have been obtained previously@8#. We
will construct a Kaluza-Klein ansatz for six dimension
gravity which reproduces these defects upon dimensiona
duction.

We begin by reviewing the structure of the 3D conic
defects. The action with a negative cosmological constan

2Sphere compactifications have been extensively studied in
literature. See@10# for a review, and the recent work@11# for refer-
ences.

3The AdS3 and Bañados-Teitelboim-Zanelli~BTZ! geometries can
also be related to the near-horizon limit of extremal four dime
sional black holes@14#, by constructing the black holes as the ne
horizon limit of intersecting 5-branes in M theory.
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2

1

8pG3
E

]M
A2hS u1

1

l D , ~1!

whereu is the trace of the extrinsic curvature of the boun
ary. The boundary termA2hu renders the equations of mo
tion well-defined, leading to the solutions

ds252S r 2

l 2 2M3Ddt21S r 2

l 2 2M3D 21

dr21r 2df2, ~2!

wheref;f12p. M3521 is the vacuum, global anti–d
Sitter space (AdS3). The boundary termA2h/ l renders the
action finite for any solution that approaches the vacu
sufficiently rapidly at infinity@16#. The mass of these solu
tions can then be computed following@16,17# to be M
5M3/8G3. The M3>0 solutions are the non-rotating BT
black holes@2# while the spacetimes in the range21,M3
<0 are conical defects@3#. To display the defect, letg2[

2M3 and rescale the coordinates:t̂[tg, r̂[r /g, and f̂
5fg. Then

ds252S 11
r̂ 2

l 2 D d t̂21S 11
r̂ 2

l 2 D 21

dr̂21 r̂ 2df̂2, ~3!

wheref̂;f̂12pg, manifestly exhibiting a deficit angle o

df̂52p~12g!. ~4!

In these coordinates the mass measured with respect to t
lations in t̂ is M52A2M3/8G3.

We are looking for an embedding of these solutions in
N54b chiral supergravity in six dimensions@18#, coupled to
tensor multiplets. The theory has self-dual tensor fields, s
has solutions where three directions are spontaneously c
pactified on S3; the vacuum for this sector is AdS3, and the
spectrum of fluctuations around this vacuum solution h
been computed@19–21#. We seek a supersymmetric solutio
where AdS3 is replaced by a conical defect.

In extended three dimensional supergravity, the con
defects can be made supersymmetric@8#. These BPS defects
achieve supersymmetry by canceling the holonomy
spinors under the spin connection by the holonomy unde
Wilson line of a flat gauge field appended to the solutio
Thus, we will consider a Kaluza-Klein ansatz which involv
non-trivial Kaluza-Klein gauge fields~leading to a fiberedS3

in the 6D geometry! and the three dimensional metric, sinc
these were the only fields present in the extended th
dimensional supergravities.

Famously, three-dimensional gravity can be written a
sum two SL(2,R) Chern-Simons theories. The sphere redu
tion of six-dimensional,N54b gravity has symmetries ap
propriate to the SU(1,1u 2)3SU(1,1u 2) Chern-Simons su-
pergravity ~see @22,23,21,24,25,9# and references therein!.
We will show that the three-dimensional equations of mot
obtained from our Kaluza-Klein ansatz contain the~bosonic!
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SUPERSYMMETRIC CONICAL EFFECTS: TOWARDS A . . . PHYSICAL REVIEW D64 064011
solutions of this theory. However, the six-dimensional act
does not reduce to Chern-Simons in three dimensions
fact, the equations of motion obtained from our ansatz
not obtainable from a three-dimensional action; we wo
have to include some non-trivial scalars in our general an
to obtain a consistent truncation to a three-dimensional
tion. That is, while our ansatz shows that we can const
solutions of the six-dimensional theory using all the so
tions of the SU(1,1u 2)3SU(1,1u 2) supergravity, asking tha
the ansatz solve the six-dimensional equations does no
general give the equations of motion of a three-dimensio
theory.

The minimalN54b theory contains a gravitoneM
A , four

left-handed gravitinicMr , and five antisymmetric tenso
fields BMN

i . The latter transform under the vector represe
tation of Spin(5). We adopt a notation where curved spac
time indices areM ,N50, . . . ,5 for thefull six-dimensional
geometry;m,n50, . . . ,2 in the AdSbase;m,n51, . . . ,3 on
the sphere. The flat tangent space indices are:A,B
50, . . . ,5, which parametrize six-dimensional@SO(1,5)#
tangent vectors;a,b50, . . . ,2, which index AdS3 @SO
(1,2)# tangent vector indices;a,b51, . . . ,3, indexing S3

@SO(3)# tangent vectors. The Kaluza-Klein gauge symme
arising from the isometries of S3 is SO(4)5SU(2)3SU(2).
In our conventions,I ,J51, . . . ,6 index SO(4), whilei , j
51, . . . ,3 index SU(2), as doi 8, j 8. For Spin(5), i , j
51, . . . ,5 labels the vector representation, whiler ,s
51, . . . ,4labels the spinors.

We will not discuss the field content of the tensor mu
plets to which the minimalN54b theory is coupled in de-
tail. The only piece of information that we need in the r
mainder is that tensor multiplets contain two-form fields w
anti-self-dual three-form field strengths.

A. Kaluza-Klein reduction reexamined

Considerable work has been carried out on the topic
sphere compactifications~see the review@10# and the recent
works @11# for further references!. The discussion below
should serve as a review in a simplified setting.

The metric.A general compactification of six-dimension
gravity on a three dimensional compact space takes the f

ds25gmndxmdxn1gmnDxmDxn, ~5!

Dxm5dxm2Am
I KI

mdxm. ~6!

The Kaluza-Klein gauge fieldsAm
I are associated with th

Killing vectors KI
m of the compact space.~Note that the in-

dicesI can be raised and lowered by the metricd IJ .)
We choosegmn to be the round metric onS3. Thus, we do

not include any scalars in our ansatz; as stated earlier, th
motivated by the absence of scalar fields in the 3D Che
Simons supergravities with which we seek to make cont
Then there are six Killing vectors arising from the SO(
isometry group, and it is manifest that the metric is invaria
under SO(4) gauge transformations:
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dxm5e IKI
m , ~7!

dxm50, ~8!

dAm
I 5]me I1 f JK

IAm
J eK. ~9!

Here f JK
I are the SO(4) structure constants, expressed

terms of the Killing vectors as

f IJ
KKK

m5KI
n]nKJ

m2KJ
n]nKI

m . ~10!

The SO(4) gauge invariance of Eq.~5! follows from the
transformations ofgmn andDxm:

dDxm5e I]nKI
mDxn, ~11!

dgmn[e IKI
r] rgmn

52grne I]mKI
r2gmre

I]nKI
r . ~12!

Observe thatDxm transforms under a local gauge transfo
mation in the same way asdxm under a global gauge
transformation—D is like a covariant exterior derivative.

The 3-form.We must have a non-zero 3-form to satis
the equations of motion. We will consider turning on just o
of the five three-form fieldsHMNP

i . We require an SO(4)
gauge invariant ansatz for this 3-form field. Let

V~xm!emnrdxm`dxn`dxr , W~xm!emnrdxm`dxn`dxr

~13!

be the volume forms on S3 and on the non-compact factor i
Eq. ~5! respectively. In terms of these forms, the si
dimensional equations of motion have an AdS33S3 solution
of the form~5! with vanishing Kaluza-Klein gauge fields an
a 3-form background

H5
1

l
@W~xm!emnrdxm`dxn`dxr

1V~xm!emnrdxm`dxn`dxr #, ~14!

where l is the radius of the S3. This cannot be quite righ
when the gauge fields are turned on, because it is not ga
invariant. A candidate gauge invariant generalization is

H5
1

l
@W~xm!emnrdxm`dxn`dxr

1V~xm!emnrDxm`Dxn`Dxr #. ~15!

Since the S3 volume form is SO(4) invariant,
]m„KI

mV(xm)…50, ~15! is gauge invariant. However, w
should find a proposal for the 2-form potentialBMN , rather
than the field strengthH, which is only possible ifdH50.
The exterior derivative of Eq.~15! is computed using

dDxm52FIKI
m2Am

I ]nKI
mDxn`dxm, ~16!

whereFI5 1
2 Fmn

I dxm`dxn. We obtain
1-3
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dH52
3

l
VemnrKI

mFI`Dxn`Dxr , ~17!

using the SO(4) invariance of the S3 volume form and the
fact that one cannot anti-symmetrize over more than th
indices.

When the gauge field is flat~which is typically our inter-
est! dH50, as desired. Nevertheless, it is worth seekin
more generally valid ansatz. We wish to add a contribution
H that cancels the term on the right hand side of Eq.~17!. To
find this, it is helpful to consider the 2-formv I

5VemnrKI
mdxn`dxr which appears as part of Eq.~17!. In

terms ofV, the volume form on S3, this 2-form can also be
written as ıKI

V. It is a standard fact thatdıKI
V1ıKI

dV

5LKI
V. Since the volume form is SO(4) invariant, and a

nihilated byd, it follows that v is closed. Therefore, sinc
we are on the three sphere there must be globally well
fined one-formNIr dxr such thatd(NIr dxr)5v. Assembling
these facts, a candidate Kaluza-Klein ansatz for a clo
3-form is

HKK5H1
3

l
FI`NIr Dxr . ~18!

The 1-formsNIr dxr for S3 are related to the Killing one
forms and are derived explicitly in Appendix B. The choi
of NIr given there satisfy the relation

KJ
m]mNIr 1NIt] rKJ

t 5 f JI
KNKr . ~19!

Using this relation it can be checked thatHKK is still gauge
invariant, and that

d~FINIr Dxr !5VemnrKI
mFI`Dxn`Dxr . ~20!

Combining this with Eq.~17! shows thatHKK is a closed
form, as desired. Thus, we have a consistent SO(4) invar
ansatz for Kaluza-Klein reduction of six dimensional grav
on a sphere, with gauge field vacuum expectation val
~VEVs!.

Notice that the three-formHKK is not self-dual. Therefore
this ansatz cannot be given for the minimalN54b theory,
but we need at least one tensor multiplet as well. The s
dual part ofHKK then lives in the gravity multiplet, the anti
self-dual part lives in the tensor multiplet. Together, one s
dual and one anti-self-dual tensor combine into
unconstrained two-form field. We can think of such a tw
form field as originating in either the Neveu-Schwarz~NS!
or Ramond-Ramond~RR! two-form in type IIB string theory
in ten dimensions. In particular, for the equations of mot
we can use the equations of motion of string theory, rat
than the more complicated ones ofN54b supergravity.

Equations of motion. Using the results collected in@10#
and the above remarks, it is now a straightforward,
lengthy, exercise to compute the six-dimensional equati
of motion for our Kaluza-Klein ansatz. As in@10#, it is easier
to work out the equations of motion using the vielbein fo
malism. It is convenient to display the SO(4)5SU(2)
3SU(2) gauge symmetry inherited from isometries of t
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sphere explicitly by picking a basis of Killing vectors suc

that the left (FL
i , i51,2,3! and right (FR

i 8 , i’ 5 1,2,3! SU(2)
field strengths are

Fab
I 5FLab

I I 51,2,3 ~21!

5FRab
I 23 I 54,5,6. ~22!

Such a basis is explicitly constructed in Appendix B. In sim
plifying the equations of motion, the following identities a
useful. First, one can show that

KI
mgmnKJ

n1
1

l 2 NImgmnNJn5
l 2

2
d IJ . ~23!

Second, there is a simple map from SO(4) to itself, that a
as 11 on SU(2)L and as21 on SU(2)R , which we will
denote byAI

J . In other words, it sendsKI
m to AI

JKJ
m . Then we

have

gmnKI
n5

1

l
AI

JNJm . ~24!

Then, if we take the metricgmn and the Kaluza-Klein gauge
fields Am

I to only depend on the coordinatesxm of the three-
dimensional non-compact space, the ansatz will satisfy
the equations of motion of the six-dimensional theory if t
metric and gauge field satisfy the following thre
dimensional equations :

Rab1
2

l 2 dab2
1

2
d IJFag

I FJ
b

g50, ~25!

D* F (L)1F (L)1g~D* F (R)2F (R)!g2150, ~26!

tr~Fbg
(L)g]mg21!tr~F (R)bgg21]ng!50 ~27!

tr~F (L)2gF(R)g21!250. ~28!

Here, we used a group elementgPSU(2) to parametrize the
S3, and SU(2)L,R correspond to the left and right actions o
the three-sphere. The last equation of motion~28! has its
origin in the dilaton equation of motion. It is clear that th
equations of motion are gauge invariant, and that any s
tion to three dimensional cosmological gravity with fl
gauge fields solves these equations. These are the solu
of the bosonic part of the SU(1,1u 2)3SU(1,1u 2) Chern-
Simons supergravity, and include the conical defects:

ds252S r 2

l 2 2M3Ddt21S r 2

l 2 2M3D 21

dr21r 2df2,

~29!

FL
i 50; FR

i 850. ~30!

However, although Eqs.~25!–~28! allow F (L)5F (R)50 they
do not obviouslyimply this. If they did, we would have
found a consistent truncation of the six-dimensional the
to three-dimensional Chern-Simons theory. Notice that
first two equations of motion~25! and ~26! can naturally be
1-4
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obtained from a three-dimensional theory consisting of
Einstein-Hilbert term, a Yang-Mills term and a Cher
Simons term. The other two equations~27! and ~28! do not
have such a clear interpretation. It has been shown in@11#
that consistent Kaluza-Klein reductions with general SO
gauge fields can be achieved by also turning on scalar fi
that parametrize the shape of the compact manifold.

Thus, although theSU(1,1u2)3SU(1,1u2) Chern-Simons
supergravity in 3 dimensions has the symmetries of the
dimensional theory reduced on a sphere, our ansatz doe
produce this theory. The Chern-Simons formulation of Ad3
supergravity has been an important tool in investigations
the AdS-CFT correspondence~see, e.g.,@21,9,25# amongst
many other references!. While many of these works relied
primarily on symmetries, it remains desirable to explain p
cisely how and whether the six-dimensional,N54b gravity
reduces to the three-dimensionalSU(1,1u2)3SU(1,1u2)
theory. Once we include scalars, we can obtain consis
truncations to a three-dimensional action. Although th
theories have more than just a Chern-Simons term, at
energies they can be approximated by a Chern-Sim
theory—theF2 terms in the action can be ignored at lo
energy. A more precise argument is given in@26#, where is it
shown that wave functions in the Yang-Mills Chern-Simo
theory can be decomposed in a natural way in a Yang-M
piece and a Chern-Simons piece.

We should also comment on the relation between
Kaluza-Klein ansatz and the results in Sec. 7 of@19#, where
a Chern-Simons like structure is found for the field equatio
for a certain set of gauge fields. The computation in@19#
differs from ours in several ways. First of all, the gau
fields appearing in the three form and the metric of th
Kaluza-Klein ansatz are different. Thus, the dimensiona
reduced theory has two different ‘‘gauge fields,’’ but on
one gauge invariance. Secondly, they only consider the s
dual three-form, whereas our KK ansatz contains both a s
dual and an anti-self-dual three-forms. In particular, E
~152! in @19# depends explicitly on the gauge fields, and is
consequence of the self-duality equation for the three-fo
In our case we do not impose such a self-duality relation,
as a consequence, we do not find a field equation of the f
~152!. The field equation~27! is not obtained in@19#, because
they only consider the linearized system.

The results of@19# were extended in@27# where not only
quadratic but also cubic couplings in the six-dimensio
theory were considered. It was found that, to that order, th
exists a gauge field whose field equation becomes the Ch
Simons field equation and that massive fields can be con
tently put to zero. The gauge field in question is a line
combination of the gauge fields appearing in the metric
in a self-dual two-form. If we were to insist that our thre
form is self-dual, we would also find the Chern-Simons fie
equation, and in this sense the results agree with each o

Summary.We have found an SO(4) invariant Kaluz
Klein ansatz for the S3 compactification of six dimensiona
supergravity, involving just the KK gauge fields and no sc
lars. Upon dimensional reduction, however, we do not fi
equations of motion that could arise from a three dim
sional effective action. In any case, ifF50, our ansatz for
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the metric andHKK provide solutions to the 6D equations o
motion. The effective 3-dimensional equations are solved
any solution to three dimensional cosmological gravity w
a flat gauge field. This spectrum of solutions includes
supersymmetric conical defects we are interested in. Be
we will show how the gauge fields are chosen to make
solutions supersymmetric.

B. Supersymmetry

Having found an appropriate Kaluza-Klein ansatz, we
vestigate the supersymmetry of the solutions incorpora
conical defects. By examining the Killing spinor equation
with a flat KK gauge field, we recognize the effective 3
equations as the Killing spinor equations of theSU(1,1u2)
3SU(1,1u2) Chern-Simons supergravity. This allows us
use the work of@8,9# to choose a Wilson line for which the
3D conical defects lift to supersymmetric solutions of t
six-dimensional theory.

1. 6D Killing spinor equations

First, the 10D type IIB supergravity has 32 supersymm
tries. Half of them are broken by the reduction on K3, so
are left with 16 supersymmetries in six dimensions. The
sulting theory is the N54b supergravity in six dimensions
As long as we consider flat gauge fields, the three-form
self-dual, and we can ignore the tensor multiplets. N54b
supergravity is a chiral theory, with four chiral, symplecti
Majorana supercharges~labeled byr 51, . . . 4),each having
four real components. Following Romans@18#, the N54b
algebra can be viewed as an extension of anN52 algebra.
The N52 algebra is generated by a doublet of chiral spin
rial charges, and it has an USp(2)5SU(2) R-symmetry. The
charges are doublets under the SU(2). TheN54b algebra
can be viewed as an extension ofN52 to N54, where one
takes two copies of theN52 charges of the same chirality
The resulting algebra has an USp(4)5Spin(5) R-symmetry,
and the four supersymmetry parameterse r transform in the
fundamental representation of Spin(5).

Spin(5) is represented by the 434 Gamma matricesG i :

$Gk,G l%5dkl, k,l 51, . . . ,5. ~31!

G5 has two 11 eigenvalues, and two21 eigenvalues.
Hence, by taking suitable linear combinations of the sup
symmetry parameterse r , we can organize things so that

~G5!rses5H 1e r for r 51,3

2e r for r 52,4.
~32!

The 6D Killing spinor equation is

DMe r2
1

4
HMNP

k GNP~Gk!rses50. ~33!

In our solutions only one of the five three form fields
turned on, and by U-duality, we can chooseHMNP

k ;dk5.
When the field strengthsFI vanish, the gauge invariant defi
nition of H in Eq. ~18! reduces to Eq.~15!. For theM5m
1-5
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components of the Killing spinor equation, the relevant co
ponents of the three form field are thus

Habg
5 5 l 21eabg ; Habc

5 5 l 21eabc ;

Hmab
5 52 l 21KI

mAm
I em

c eabc . ~34!

G5 can be dropped from the Killing spinor equation with t
help of Eq.~32!. For the purposes of Kaluza-Klein reductio
we also decompose the SO(1,5) gamma matricesGA as di-
rect products of SO(3) and SO(1,2) matrices (ga andga) as
follows:

Ga5s1
^ 1^ ga; Ga5s2

^ ga
^ 1, ~35!

g052 is2 ; g15s1 ; g25s3;

ga5sa, a51,2,3. ~36!

Then, for example, we getGab51^ 1^ eabdgd ; and Gab

51^ i eabcgc^ 1.
Note that the 6D gamma matrices are 8x8, but the ch

spinors in 6D have 4 components. Chiral spinorsC (6) sat-
isfy

C (6)5
1

2
~16G7!C ~37!

where G75G0G1
•••G55s3^ 1^ 1. We let the N54b

spinors be of positive chirality (C (1)). Then, in the Killing
spinor equation~33!, all the supersymmetry parameterse r
are of the form

e r5S « r

0 D , ~38!

where « r is a doublet of two-component spinors. We c
additionally impose a symplectic Majorana condition
these spinors@18#. It then follows, as is shown in detail in
Appendix A, that« r can be written as an SU(2) doublet
complex conjugate two-component spinors:

« r5S « r
(2)

« r
(2)* D . ~39!

Consider first theM5m internal component of the Killing
spinor equation:

S Dm7
1

4
HmNP

5 GNPD e r50. ~40!

The upper signs and lower signs (2 and 1) correspond to
r 51,3 andr 52,4 respectively. This split will relate to th
SU(2)L and SU(2)R sectors. We assume that the Killin
spinor is in a zero mode on the sphere, in accord with
Kaluza-Klein approach. That is,e r is independent of the
sphere coordinates, so that
06401
-

al

r

Dme r5S ]m1
1

4
v̂m

ABGABD e r5
1

4
v̂m

ABGABe r

5
i

4
eabcvm

ab1^ gc
^ 1e r . ~41!

The three-form contribution is

7
1

4
HmNP

5 GNP57
1

4
Hmnp

5 Gnp

57
i

4l
em

a eabce
bcd1^ sd^ 1

57
i

2l
em

a 1^ sa^ 1. ~42!

Thus, the internal Killing spinor equation is

i

4 S eabcvm
bc7

2

l
emaD ~1^ sa

^ 1!e r50. ~43!

Now, gmn is by assumption the metric of a round thre
sphere. We can show by explicit calculation, using the ba
for S3 in Appendix B, that

eabcvbc5
2

l
ea ~44!

when we use the basisea5(2/l )La , and

eabcvbc52
2

l
ea ~45!

when we use the basisea52(2/l )Ra . Thus, the internal
Killing spinor equation can be trivially satisfied. This is a
we might have expected; since our Kaluza-Klein ans
leaves the form of the metricgmn fixed, the internal Killing
spinor equation is always the same, and we know it is sa
fied in the AdS33S3 vacuum.

Consider now theM5m component of the 6D Killing
spinor equation:

S Dm7
1

4
HmNP

5 GNPD e r5S Dm7
1

2l
ema~1^ 1^ ga!

6
i

2l
Am

I KI
m~1^ sm^ 1! D e r50.

~46!

As before, the upper signs and lower signs correspondr
51,3 andr 52,4 respectively. The gauge covariant deriv
tive is @18#

Dme r5]me r1
1

4
v̂m

ABGABe ~47!

v̂m
ABGAB5vm

abGab2Am
I ¹aKIbGab. ~48!
1-6
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Using the definition of the gamma matrices, the last term
Eq. ~48! becomes

Am
I ¹aKIbGab5AI¹aKIbi eabc~1^ sc^ 1!, ~49!

¹aKIb5
1

l 2
eabcNI

c , ~50!

where we have used the relation between the Lorentz c
riant derivative ofK and the components of a one-formN
~see Appendix B!. Folding these facts into the last term
Eq. ~47! yields the Killing spinor equation~46! as

S ]m1^ 11
1

4
eabdvm

ab1^ gd1
i

2l
Am

I S 2
1

l
NI

c7KI
cDsc^ 1

6
1

2l
ema1^ gaD « r50, ~51!

where we used Eq.~38! for the chiral spinors. Now, accord
ing to Appendix B, the combinationsl 21Nc

I 6Kc
I are projec-

tors to the left and rightSU(2) sectors,

Lc
I 52

1

l
Nc

I 1Kc
I 5H ldc

I for I 51,2,3

0 for I 54,5,6,
~52!

Rc
I 52

1

l
Nc

I 2Kc
I 5H 0 for I 51,2,3

ldc
I 23 for I 54,5,6.

~53!

Then, the two Killing spinor equations labeled byr 51,3 (r
52,4) give the SU(2)L @SU(2)R# sector equations:

S ]m1^ 11
1

4
eabdvm

ab1^ gd1
i

2
Am

c sc^ 1

2
1

2l
ema1^ gaD « r50 ~54!

for r 51,3 and

S ]m1^ 11
1

4
eabdvm

ab1^ gd1
i

2
A8m

c sc^ 1

1
1

2l
ema1^ gaD « r850 ~55!

for r 52,4. Because of the doublet structure~39!, each spinor
« r has four real degrees of freedom. Since we have
equations in the SU(2)L sector and two in the SU(2)R sector,
in total we have 818516 supersymmetry parameters,
agreement with the 16 supersymmetries of the 6D the
From the three dimensional point of view of the AdS3 base
of our fibered compactification, this is theN5(4,4) super-
symmetry, sinceN counts the number of supercharges, wh
in 3D are real two-component spinors. Below, we will u
the results of@8,9# to choose a Kaluza-Klein Wilson line fo
our 6D solutions that makes them supersymmetric.
06401
f

a-

o

y.

2. SU(1,1z2)ÃSU(1,1z2) supergravity

We now compare the three-dimensional spinor equati
~54!, ~55! to the Killing spinor equations for the three
dimensionalSU(1,1u2)3SU(1,1u2) supergravity. The latter
is described by the action@24,25#

S5
1

16pGE d3xFeR1
2

l 2
e1 i«mnrc̄mrDncrr

2 l«mnr TrS Am]nAr1
2

3
AmAnArD1 i«mnrc̄mr8 Dn8crr8

1 l«mnr TrS Am8 ]nAr81
2

3
Am8 An8Ar8D G , ~56!

where em
a is the dreibein,Am and Am8 are theSU(2)L and

SU(2)R gauge fields

Am5Am
a isa

2
, Am8 5A8m

a isa

2
, ~57!

andcmr (cmr8 ) with r 51,2 are theSU(2)L @SU(2)R# dou-
blet two-component spinors of Appendix A. The covaria
derivatives are

Dm5]m1
1

4
vmabgab1Am2

1

2l
emaga ~58!

Dm8 5]m1
1

4
vmabgab1Am8 1

1

2l
emaga.

~59!

Recall that gab5(1/2)@ga ,gb#5«abdgd . Recall that in
three spacetime dimensions there are two inequivalent t
dimensional irreducible representations for theg-matrices (g
and2g) ~see@22,28#!. The two sectors in the action~56! are
related to the two inequivalent representations. Theref
the two covariant derivativesD differ by a minus sign in the
g-matrices.

The supersymmetry transformation of the spinors giv
the Killing spinor equations

dcmr5Dme r50; dcmr8 5Dm8 e r850. ~60!

One can readily see that the equations~60! are identical to
Eqs.~54!, ~55!. The solution of these equations for the poi
particle spacetimes was already considered in the contex
theSU(1,1u2)3SU(1,1u2) supergravity in@9#. However,@9#
presents a rather brief discussion of the actual embeddin
the solutions of@8#, leaving out many issues that are releva
to us. We therefore give a complete discussion of the solu
of Eqs. ~54!, ~55!, using the results of@8#, in the next two
subsections.

3. Conical defects as BPS solutions in (2,0) supergravity

We have reduced the problem of finding the Killin
spinors in 6D supergravity to solving Eqs.~54!, ~55! in 211
dimensions. Then the task has been made much easier,
1-7
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a related problem has already been solved in@8#. We only
need a minor generalization of the solutions of@8# to con-
struct solutions for our equations. In this and the followi
section we will show in detail how to do the embedding.
particular, we are interested in keeping track of the num
of supersymmetries that are preserved as the conical de
parameter increases from 0 to its extreme value.

Extended AdS3 supergravity theories were first con
structed based on theOsp(pu2,R) ^ OSp(qu2,R) super-
groups@22#, and are referred to as (p,q) supergravities. The
number of supercharges isN5p1q, and each of them is a
two-component real spinor. The action also containsO(p)
3O(q) gauge fields. Izquierdo and Townsend@8# embedded
the 3D conical defects into~2,0! supergravity and investi
gated their supersymmetry. In@8#, the two-component rea
spinors have been combined into a single complex spino
the O(2) gauge group has been interpreted as aU(1). Then
there is a single complex vector-spinor gravitino field, with
supersymmetry transformation parametrized by a sin
complex two-component spinor parameter. The correspo
ing Killing spinor equation is

Dme50 ~61!

with the covariant derivative4

Dm5]m1
1

4
eabdvm

abgd1
i

l
Am2

1

2l
emaga. ~62!

Izquierdo and Townsend findtwo Killing spinors ~out of
the maximum of four, counting the real degrees of freedo!
for conical defects with Wilson lines. The three-dimension
metric we are interested in is~2! with M352g2. TheU(1)
gauge potential producing to the Wilson line is

A52
l

2
~g1n!df, ~63!

wheren is an integer related to the periodicity of the Killin
spinors. If g52n, the gauge field is zero. If, in addition
g561 we recover a global adS3 metric. The casen50, 0
,ugu,1 corresponds to the point mass spacetimes in wh
we are interested. These have charge

Q5
1

2p l R A52
g

2
, ~64!

so thatM524Q2. The deficit angle isDf52p(12ugu), as
we saw at the beginning of this section. The originr 50 is a
conical singularity and is excised from the spacetime.

The Killing spinor solution is@8#

4In converting from the (122) signature of @8# to our
(211) signature, we have replacedga by 2 iga. Note that@8#
uses a different notation, with 1/2l 5m.
06401
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cit

so

le
d-

l

h

e5einf/21 igt/2l@k2Af 1g2k1Af 2g#

3H F12
1

f
~ igg01Af 22g2g1!G

2 ib2g2F11
1

f
~ igg01Af 22g2g1!G J z0 , ~65!

wherek6 are arbitrary constants,

b25
k1Af 1g1k2Af 2g

k2Af 1g2k1Af 2g
, ~66!

andz0 is a constant spinor. It satisfies a projection conditi
Pz05z0 with the projection matrix

P5
21

~k1
2 1k2

2 !
@ i ~k2

2 2k1
2 !g022k1k2g1#. ~67!

For fixed k6 , the projection removes two of the four re
spinor degrees of freedom, so the space of Killing spinore
has two real dimensions. Note that Izquierdo and Towns
find Killing spinors for arbitraryg,n. Apparently this leads
to BPS solutions of arbitrarily negative mass. We will com
ment briefly on their meaning in Sec. III.

The Killing spinors may be singular atr 50. Near the
origin, e behaves as

e;r s/2einf/2e0 ~68!

wheree0 is some constant spinor ands depends ong,n. If s
is a positive integer,e will be regular at the origin. Ifs50,
the spinor will be regular ifunu51, but otherwise it is sin-
gular. Fors,0 the spinor is singular.

Whenn50, 0,ugu,1, corresponding to the conical de
fects, s50 in Eq. ~68! but n50, the Killing spinors are
periodic, and, since we are working in a polar frame, singu
at the origin. However, the origin is in any case a singu
point, and removed from the spacetime. That is to say,
spacetime has noncontractible loops soQÞ0 is possible.
There are then two Killing spinors.

Let us consider the case of global AdS3 in greater detail.
AdS3 in global coordinates with zero gauge fields is o
tained wheng52n561. In this case, the origin become
regular. The corresponding Killing spinors haves50 and
are regular at the origin, as required. They are antiperiodi
f, as expected since the space is now contractible. We
two Killing spinors with g52n51, and two withg52n
521. Since both these choices give the AdS3 geometry, we
see it has four Killing spinors, that is, it preserves the f
supersymmetry of (2,0) supergravity.

What is the relation between global AdS3 and the conical
defects with Wilson lines? There are two limits of the po
particles. The limitn5g50 corresponds to theM5J5Q
50 black hole vacuum, and it has two Killing spinors. O
can move away from this limit in either theg.0 direction or
1-8
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the g,0 direction. The limitg561, n50 corresponds to
AdS3 with non-zero gauge fields of chargeQ57 1

2 . Now
note that the integern can be changed by a large gau
transformation@8# ~from the six-dimensional point of view
this corresponds to a coordinate transformation onS3; see
Sec. III for details!. In Sec. IV, we will see that such larg
gauge transformations correspond to a spectral flow in
boundary CFT. Forg561, we can make a gauge transfo
mation to maken571; this turns the periodic spinors ass
ciated with the point particle geometries into the antiperio
spinors associated with AdS3. Again, AdS3 has twice as
many supersymmetries, because there are two ways to r
the AdS3 limit.

4. Embedding into 6D NÄ4b supergravity

It is quite simple to promote Izquierdo’s and Townsen
solutions for (2,0) Killing spinors to solutions of the Killing
spinor Eqs.~54!, ~55!. To relate the Killing spinor equation
~61! to ~54!, we replace theU(1) gauge potential by a
SU(2)L gauge potential,

1

l
Am

U(1)→ 1

2
Am

SU(2),csc , ~69!

and the spinor by theSU(2)L doublet of spinors,

e→e r5S « r

« r*
D . ~70!

Recall that the labelr 51,3 is needed, since Eq.~54! contains
two identical Killing spinor equations. TheU(1) Wilson line
is embedded into theSU(2) by

1

l
Af

U(1)52
g

2
→1

2
Af

SU(2),3s352
g

2
s3 . ~71!

Thus theSU(2)L gauge field has a non-zero componentAf
3 ,

Af
3 52g. ~72!

Then the solutions to the Killing spinor equations~54! are
the twoSU(2)L doublet (« r ,« r* )T, where« r is the solution
~65! and« r* is its complex conjugate. Note that the compl
conjugate structure is consistent with thes3 having opposite
sign diagonal entries. Note also that the number of Killi
spinors is doubled in each sector, because of the labelr.

Similar manipulations are done on theSU(2)R sector.
However, there is a subtlety when theL andR sector Killing
spinor equations are combined. The two sectors each h
their ownSU(2) gauge fieldsA,A8 and Killing spinor equa-
tions ~54!, ~55!. For the charged point mass spacetimes,
two background gauge fields need not be equal. In gene
06401
e

c

ch

ve

e
l,

Af
3 52gÞAf8

352g8. ~73!

For the point masses, the maximum supersymmetry is
tained by settingA56A8. The point mass and zero mas
black hole spacetimes then have four Killing spinors in ea
sector, and the pure AdS3 background without a Wilson line
has the maximum, eight, in each sector. Thus, as in the (
supergravity, the point masses break half of the supersym
try.

In summary, the supersymmetric solutions are given b
three-dimensional metric

ds252S r 2

l 2 1g2Ddt21S r 2

l 2 1g2D 21

dr21r 2df2 ~74!

and gauge fields

Af
3 56Af

3852g. ~75!

This gives a six-dimensional metric by the Kaluza-Klein a
satz~5!, which satisfies the six-dimensional equations of m
tion and preserves half the supersymmetry. In the next s
tion, we will discuss how this metric arises in the nea
horizon limit of the rotating black string.

III. CONICAL DEFECTS FROM THE SPINNING BLACK
STRING

In the previous section, we saw how the thre
dimensional solutions in which we are interested arose
spontaneous compactification of the six-dimensionalN
54b theory. Interest in the six-dimensional theory is oft
focused on its black string solutions, so we would like to s
if we can relate the point particles to these black strings. T
presence of non-trivial Kaluza-Klein gauge fields in the s
persymmetric point particle solutions suggests we sho
consider a rotating black string, as the gauge field arises f
off-diagonal components of the higher-dimensional me
andB-field, which we would associate with rotation.

The solution describing a non-extremal spinning bla
string in six dimensions is@29,30#5

5Notice that in@29#, there is also a nontrivial three-form field i
the solution. We expect that this three-form reduces, in the n
horizon limit, to our KK ansatz for the three-form, but we have n
checked this explicitly.
1-9
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ds6
25

1

AH1H2
F2S 12

2m fD
r 2 Dd t̃21dỹ21H1H2f D

21 r 4

~r 21 l 1
2!~r 21 l 2

2!22mr2 dr2

2
4m fD

r 2 coshd1 coshd2~ l 2 cos2udc1 l 1 sin2udf!d t̃

2
4m fD

r 2 sinhd1 sinhd2~ l 1 cos2udc1 l 2 sin2udf!dỹX~r 21 l 2
2!H1H21~ l 1

22 l 2
2!cos2uS 2m fD

r 2 D 2

sinh2d1 sinh2d2C
3cos2udc2X~r 21 l 1

2!H1H21~ l 2
22 l 1

2!sin2uS 2m fD
r 2 D 2

sinh2d1 sinh2d2C
3sin2udf2

2m fD
r 2 ~ l 2 cos2udc1 l 1 sin2udf!21H1H2r 2f D

21du2G , ~76!
r-

r

rdi-

the
where

Hi511
2m fD sinh2d i

r 2 ~77!

for i 51,2,

r 2

f D
5r 21 l 1

2 cos2u1 l 2
2 sin2 u, ~78!

and t̃ and ỹ are boosted coordinates,

t̃ 5t coshd02y sinhd0 , ỹ5y coshd02t sinhd0 .
~79!

For this metric, the asymptotic charges are

M5m(
i 50

2

cosh 2d i , ~80!

Qi5m sinh 2d i ; i 50,1,2, ~81!

JL,R5m~ l 17 l 2!S )
i 50

2

coshd i6)
i 50

2

sinhd i D . ~82!

A. Near-horizon limit

Cvetičand Larsen@30# showed that this metric has a nea
horizon limit of the form BTZ3S3. To reach this limit, we
takea8→0 while holding

r

a8
,

m

a82
,

l 1,2

a8
,

Q1,2

a8
, and d0 ~83!

fixed. The resulting metric~after removing an overall facto
of a8) can be written as

ds6
252N2dt21N22dr21r2~dw2Nfdt!21 l 2dṼ3

2 ,
~84!

dṼ3
25du21cos2udc̃21sin2udf̃2 ~85!
06401
where

N25
r2

l 2 2M31
16G3

2J3
2

r2,
~86!

Nf5
4G3J3

r2 , ~87!

and there is a non-trivial transformation between the coo
nates (u,f̃,c̃) on the near-horizonS3 and the asymptotic
coordinates,

df̃5df2
Ry

l 2 ~ l 2 coshd02 l 1 sinhd0!dw

2
Ry

l 3 ~ l 1 coshd02 l 2 sinhd0!dt

dc̃5dc2
Ry

l 2 ~ l 1 coshd02 l 2 sinhd0!dw

2
Ry

l 3 ~ l 2 coshd02 l 1 sinhd0!dt. ~88!

The parameters of this near-horizon metric are related to
parameters of the full metric by

M35
Ry

2

l 4 @~2m2 l 1
22 l 2

2!cosh2d012l 1l 2 sinh2d0#, ~89!

8G3J35
Ry

2

l 3 @~2m2 l 1
22 l 2

2!sinh2d012l 1l 2 cosh2d0#,

~90!

and l 5(Q1Q2)1/4. The BTZ coordinates are given by

t5
t l

Ry
, w5

y

Ry
, ~91!
1-10
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and

r25
Ry

2

l 2 @r 21~2m2 l 1
22 l 2

2!sinh2d012l 1l 2sinhd0 coshd0#.

~92!

The near-horizon metric looks like the direct product o
rotating BTZ metric and anS3. However, in the original
spacetime, we identifiedw;w12p at fixed c,f, which is
not in general the same asw;w12p at fixedc̃,f̃. Thus, the
coordinate transformation~88! is not globally well-defined;
that is, there are still off-diagonal terms in the near-horiz
metric, which give rise to gauge fields in the thre
dimensional solution.@The part of the transformation~88!
involving t is well-defined, ast is not identified.#

It is convenient to trade thel 1,2 for parametersa1,2 which
are related to the strength of the Kaluza-Klein gauge fiel

a15 l 1coshd02 l 2sinhd0 , a25 l 2coshd02 l 1sinhd0 .
~93!

Then we can write

f̃5f2
Ry

l 2 a2w2
Ry

l 3 a1t, c̃5c2
Ry

l 2 a1w2
Ry

l 3 a2t,

~94!

and the relations between the near-horizon and full me
parameters become

8GJ35
Ry

2

l 3 ~2m sinh2d012a1a2! ~95!

and

M35
Ry

2

l 4 ~2m cosh2d02a1
22a2

2!. ~96!

It is more convenient to keep somel 2 dependence inr, and
write it as

r25
Ry

2

l
~r 212m sinh2d01 l 2

22a2
2!. ~97!

To extract the Kaluza-Klein gauge fields, we need to wr
the metric on the 3-sphere in the coordinates used in Sec
This coordinate transformation is given in Appendix B. T
result is

A35
Ry

l 2 ~a12a2!dw, A3852
Ry

l 2 ~a11a2!dw, ~98!

where the indices 3, 38 refer toSU(2)L andSU(2)R respec-
tively. The near-horizon limit of the spinning black strin
thus gives a three-dimensional metric of BTZ form coup
to gauge fields. Furthermore, the BTZ massM3 ~96! can be
negative for suitable choices of the parameters~in particular,
it is possible to makeM3 negative whilem>0).

We can now choose the parameters so that we recove
supersymmetric point particle solutions of the preceding s
06401
n
-

ic

e
II.

he
c-

tion. For simplicity, we have only considered non-rotati
conical defects, so we requireJ350. Since we seek a supe
symmetric solution, it is reasonable to setm50. ThenJ3
50 implies a1a250; without loss of generality, takea2
50. Note that for this choice of parameters, all depende
on d0 disappears from the metric. The mass and gauge fi
are now

M352
Ry

2

l 4 a1
2[2g2 ~99!

and

A352A385
Ry

l 2 a1dw5gdf. ~100!

Therefore, we recover the conical defects of the previo
section.

The near-horizon limit of strings with physically reaso
able choices for the parameters can thus give rise to p
particle spacetimes, with negative values forM3. Remark-
ably, this shows thatglobal AdS3 appears as the near-horizo
limit of a suitable compactified black string.6 To explore the
consequences of this, it will be useful to also conside
family of non-extremal solutions with the same paramete
A convenient choice is to taked050, a250 ~which is
equivalent tod050, l 250). In this case,J350 and M3

5Ry
2(2m2a1

2)/ l 4.

B. The full metric

Having seen that point particles can arise in the ne
horizon limit of spinning black strings, we would like to b
able to say something about the geometry of the full str
solution. The near-horizon limit is also a near-extreme lim
of the full black string. The extremal limit involved is7

m→0, Q1,2 and d0 fixed. ~101!

Initially, we will leave the value ofa2 unspecified. In this
limit,

M5Q11Q2 , ~102!

JL,R5
AQ1Q2

2
~ l 17 l 2!~coshd06sinhd0!

5
AQ1Q2

2
~a17a2!. ~103!

The coordinate transformationr̄25r 21 l 2
22a2

2 results in an
extremal metric in the extremal metric of the form

6The Wilson line that appears in this limit of our solutions can
removed by a coordinate transformation from the 6D point of vie

7Note that this impliesQ0→0, and is hence not the same as t
limit m→0 with Q0,1,2 fixed that is usually considered in the con
text of studies of extremal black strings@31#.
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ds6
25

1

AH1H2
F2dt21dy21H1H2gD

21 r̄4

~ r̄21a1
2!~ r̄21a2

2!
dr̄2

2
2AQ1Q2gD

r̄2
@cos2udc~a2dt1a1dy!1sin2udf~a1dt1a2dy!#

1X~ r̄21a2
2!H1H21~a1

22a2
2!cos2uS gD

r̄2 D 2

Q1Q2Ccos2udc2

1X~ r̄21a1
2!H1H21~a2

22a1
2!sin2uS gD

r̄2 D 2

Q1Q2Csin2udf21H1H2r̄2gD
21du2G , ~104!
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Hi511
gDQi

r̄2
~105!

for i 51,2, and

r̄2

gD
5 r̄21a1

2cos2u1a2
2sin2u. ~106!

The metric is now independent ofd0. That is, when we take
the extremal limit withd0 fixed, we find that it becomes jus
a coordinate freedom in the limit. This is presumably a fo
of the usual restoration of boost-invariance at extrema
Thus, the fact that the near-horizon extremal metric did
depend on this parameter is a property of the extremal lim
not the near-horizon limit. If we takea250, we find that
JL5JR .

We can also consider the non-extremal metric withd0
50, l 250 ~corresponding to the simple family of non
extremal generalizations we considered in the previous
tion!. The form of the metric is not substantially simplifie
relative to Eq.~5!, so we will not write it out again here. W
merely note that this metric has a single horizon atr 252m
2 l 1

2, of area

A58p3mRycoshd1coshd2A2m2 l 1
2. ~107!

In the near-horizon limit, this reduces to 2p lAM334p2l 3,
which we recognize as the product of the area of the B
black hole horizon and the volume of theS3, as expected.

C. Properties of the solution: Instabilities and singularities

From the three-dimensional point of view, there is a co
cal singularity atr50, for both the non-rotating BTZ black
holes and for the point particle spacetimes. In the full s
dimensional solution, we need to check the nature of
singularity. The curvature invariants are everywhere finite
there is no curvature singularity. Consider a small neighb
hood of the pointr50, u50 in a constant time slice. Th
metric near this point can be approximated by
06401
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ds2'
dr2

g2 1r2dw21du21df21u2~dc1gdw!2.

~108!

This suggests a further coordinate transformation

r5gRcosu,u5Rsinu, ~109!

which brings the metric to the form

ds2'dR21R2@du21g2cos2udw21sin2u~dc1gdw!2#.
~110!

Thus, the area of a surface ate proper distance from the
pointr50,u50 is e3g2p2. The difference between this are
and the standard S3 areae32p2 indicates that there is a con
cal defect at this point. Note that the choices of parame
for which we get negativeM3, and hence a point particle
solution, are precisely those for which the full six
dimensional solution does not have an event horizon. He
this is a naked conical singularity.

For a given value ofa1, we can obtain point particle so
lutions with all values ofM3 by varying Ry . There is no
obvious bound associated with the valueM3521 corre-
sponding to pure AdS space. It was already noted by
quierdo and Townsend in@8# that there exist supersymmetr
solutions to 3D gravity for arbitrarily negative values ofM3.
These solutions are all singular, and the singularities wh
occur for M3,21 are not essentially different from thos
which occur forM3.21. From a three-dimensional point o
view, one simply asserts that while the singular solutio
with M3.21 are physically relevant, as they can arise fro
the collapse of matter, those withM3,21 are physically
irrelevant. We similarly expect that only the solutions wi
M3.21 will have a physical interpretation in the dual CF
as AdS space corresponds to the NS vacuum of the CFT,
we do not expect to find excitations with lower energy. It
therefore surprising that the six-dimensional string me
makes no distinction betweenM3,21 andM3.21. It is
clear that it does not, as the nature of the singularity in
six-dimensional solution is independent of the value ofRy .

However, we should still ask whether this solution
stable for all values ofRy . In @32#, it was argued the BTZ
1-12
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3S3 solution ~for all masses! would be stable against loca
ization on S3 so long as global AdS3 did not appear in the
spectrum of the compactified string. Here we have arg
that for certain parameters, the rotating, compactified st
does include global AdS3. Therefore, it is doubly worthwhile
to consider the question of instabilities for near-extremal
lutions with angular momentum.8

In fact, the full asymptotically flat rotating black strin
solution has a more familiar instability: localization on th
circle (y) along which the string is compactified. Such
instability typically sets in when the entropy of the localiz
solution is greater than that of the extended one@33#. Since
the present solution carries a charge, a simple model for
localized solution is the extreme black string carrying t
same charge, along with a six-dimensional Schwarzsc
black hole carrying the energy above extremality of t
original solution. Consider, for definiteness, the non-extrem
solutions discussed above, withd050, l 250. From Eq.
~80!, M2Mext'mRy for near-extremal solutions, so the e
tropy of the Schwarzschild black hole in the candidate loc
ized solution is

SBH;~mRy!4/3. ~111!

Thus, forRy.Rcrit , we expect the solution to be unstab
whereRcrit is given bySBS5SBH . That is,

Rcrit
2/3 ;

Q1Q2~2m2 l 1
2!

m8/3
~112!

for near-extremal solutions. Thus, as we approach extrem
ity, Rcrit may grow, but it will eventually decline and reac
zero atm5 l 1

2/2. For fixedRy , all the near-extremal solution
with m small enough are unstable to localization.9 This in-
stability sets in at a finite distance from extremality; so
will always encounter it before reaching the instability
localization on S3 that is suggested by the physics of t
near-horizon limit.

There is hence anRy-dependent instability. Does this a
low us to exclude the undesirable singularities~those with
M3,21)? We have argued for this instability by compari
the entropy of a near-extreme string to that of the extre
string plus a localized black hole. Thus we haveassumed
that the extreme string, which corresponds to a supers
metric point particle solutions, is stable, and we cannot
this approach to argue that the extremal solutions are
stable. The assumption of stability of the extremal solutio
is consistent, since, as we approach extremality, the ent
gain in the localization~111! is going to zero. Furthermore

8It was argued in@32# that such a localization instability shoul
not occur for the full asymptotically flat black string solutions, as
would break spherical symmetry. In our case, the spherical sym
try is already broken by the rotation; so it is not obvious that t
argument applies.

9This is quite different from the usual behavior near extremal
for a non-rotating black string,Rcrit→` as m→0, as we can see
from Eq. ~112! with l 150.
06401
d
g

-

he

ld

al

l-

l-

e

-
e
n-
s
py

there is no lower-energy system than the extreme string
carries the same angular momentum and charges. Toge
with experience in other examples, this suggests the extr
string is stable for all values ofRy , and hence instabilities do
not serve to rule out the cases corresponding toM3,21.

IV. A PROPOSAL FOR A DUAL DESCRIPTION

In @9#, an interpretation of the point mass geometries
terms of spectral flow operators was given. Here, we prop
a somewhat different model in terms of density matrices
the RR sector of the boundary CFT. It may seem surpris
to propose that a gravitational system without a horizon, a
hence no Bekenstein-Hawking entropy, would be descri
by a density matrix. However, the classical formulas on
register a sufficiently large degeneracy. The ensemble of
persymmetric states that we are proposing contains fe
states than the number that enter the ensemble describin
M50 black hole. As is well known, the latter system h
vanishing entropy in the semiclassical limit. Below, w
briefly summarize the main idea of our proposal. Details a
various tests will be presented in a future publication@34#.

All geometries we have considered are either singula
have a horizon. Once we remove the singular region, we
left with a space with topology R23S1. This is true even for
pure AdS3 with nonzeroSU(2) Wilson lines. The singularity
in those cases is not a curvature singularity, but one wh
theSU(2) gauge fields are ill-defined. The only exception
pure AdS3 without Wilson lines, whose topology is that o
R3. We will first ignore pure AdS3, but as we will see a bit
later it fits in quite naturally.

On a space with topology R23S1, there are two topologi-
cal choices for the spin bundle, corresponding to perio
and anti-periodic boundary conditions along the S1. By peri-
odic and anti-periodic we refer to spinors expressed in te
of a Cartesian frame on the boundary cylinder, which cor
spond to a radial frame in the AdS geometry. Thus, perio
boundary conditions correspond to the RR sector, a
periodic boundary conditions to the NS sector. The propo
dual description of the point mass geometries will be va
assuming periodic boundary conditions, but as we will s
one can derive an equivalent description using anti-perio
boundary conditions.

It may be confusing that we impose periodic bounda
conditions on the spinor and fermion fields, because if
use the field equations to parallel transport a spinor along
circle, we can pick up arbitrary phases, depending on
choice of point mass geometry, and also on the choice
SU(2) Wilson lines. These phases are the holonomies of
flat SL(2) andSU(2) connections that define the geomet
and Wilson lines, but they are still connections on the sa
topological spinor bundle. In other words, given a bund
with a given topology, there are still many flat connectio
on that bundle, which are parametrized by its holonomies
our case we choose the~periodic! spinor bundle, and view
the gauge fields as connections on this bundle. Whether t
exist global covariantly constant sections of the spin
bundle is a question that does depend crucially on
choices of flat connections, and is precisely the ques

e-
s

:
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VIJAY BALASUBRAMANIAN et al. PHYSICAL REVIEW D 64 064011
whose answer tells us whether or not a given solution p
serves some supersymmetries.

The near horizon geometries in Sec. III, that include
BTZ and spinning point particle solutions, depend on fi
quantities, namelyl 5(Q1Q2)1/4, M3 , J3 , A3, A38. In order
to give the dual conformal field theory description, we defi

c5
3l

2G3
~113!

l 05
lM 318G3J3

16G3
~114!

l̄ 05
lM 32G3J3

16G3
~115!

j 05
c

12
A3 ~116!

j̄ 05
c

12
A38. ~117!

Our proposal is that the geometry corresponds in the bou
ary theory to a density matrix of~equally weighted! states in
the RR sector with quantum numbers

J05 j 0 ~118!

J̄05 j̄ 0 ~119!

L05 l 01
c

24
1

6~ j 0!2

c
~120!

L̄05 l̄ 01
c

24
1

6~ j̄ 0!2

c
. ~121!

The quadratic terms inL0 and L̄0 may appear surprising
but there are several ways to justify them. First of all, in t
way l 0 and l̄ 0 are spectral flow invariants, and the asympto
density of RR states with the quantum numbers~118!–~121!
is a function ofl 0 , l̄ 0 only. This is in nice agreement with th
fact that the area of the horizon and therefore the entrop
BTZ black holes also depends onl 0 , l̄ 0 only.

The quadratic terms in Eqs.~120! and~121! are also natu-
ral if we use the relation between the Hamiltonian reduct
of SU(1,1u2) current algebra and the boundary supercon
mal algebra@35,23,36,21,37#. The stress tensor obtained
this Hamiltonian reduction procedure contains the Sugaw
stress tensor of theSU(2),SU(1,1u2) current algebra, and
this extra contribution yields the quadratic terms in~120!,
~121!.

Spectral flow in the boundary theory corresponds in
bulk to the following procedure. In the bulk, we can remo
part of theSU(2) Wilson lines by a singular field redefin
tion. Namely, if a field c(x) has chargeq under the
U(1),SU(2) subgroup, we can introduce new fields
06401
-

e

e

d-

of

n
r-

ra

e

c̃~x!5PexpS qjE
x0

x

A•dxDc~x! ~122!

and at the same time replace the gauge field by

Ã~x!5~12j!A~x!. ~123!

This is a~singular! gauge transformation and does not affe
the physics. The only consequence of this transformatio
that it gives twisted boundary conditions to all fields charg
under theU(1). If we compute the new quantum numbe
according to Eqs.~118!–~121!, we find

J085J0~12j! ~124!

L085L02
12

c
jJ0

21
6

c
j2J0

2 ~125!

which is precisely the behavior of these quantum numb
under spectral flow with parameterh5(12/c)j j 0 @38#. In
other words, we can set up the AdS-CFT corresponde
with arbitrary twisted boundary conditions. The twiste
boundary conditions in the bulk match the twisted bound
conditions of the CFT, and the relations~118!–~121! are
valid independently of the twist. Spectral flow corresponds
a field redefinition both in the bulk and in the bounda
theory, and does not affect the physics. For other discuss
of the role of spectral flow, see@39,40,9,37#.

We can now understand how pure AdS arises in this p
ture. We start with pure AdS with a flat gauge field wi
holonomy21 in the fundamental representation. Accordi
to the above proposal, this corresponds to states in the
sector withL05c/24 andJ05c/12. If we remove the gauge
field completely by a field redefinition, this changes t
boundary conditions of the fermions, and they become a
periodic instead of periodic. Therefore, the field redefiniti
brings us from the R to the NS sector. In addition, the qu
tum numbers after the field redefinition becomeL05J050.
We see that pure AdS with anti-periodic boundary conditio
~the only boundary conditions that are well-defined on p
AdS! corresponds to the vacuum in the NS sector, as
pected.

As a final check of our proposal, we will rederive th
results of Izquierdo and Townsend@8# regarding the super
symmetries in point mass geometries with non-trivial gau
fields turned on. Consider again the point mass geome
with M352g2, andJ350, and only look at the left moving
sector. The equation forL0 reads

L05~12g2!
c

24
1

c

24
~A3!2 ~126!

where A is the value of theU(1)L gauge field. The two
choices of spin bundle give two inequivalent situations. If w
take periodic boundary conditions for the fermions, we fin
state with

J05
c

12
A3, L05~12g2!

c

24
1

c

24
~A3!2 ~127!
1-14
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in the RR sector. If we start with anti-periodic bounda
conditions for the fermions we find a state with quantu
numbers~127!, but now in the NS sector. Using the spect
flow procedure outlined above, this can be mapped to a s
in the RR sector with

J05
c

12
~A311!, L05~12g2!

c

24
1

c

24
~A311!2.

~128!

There are also spectral flows that map the RR sector to it
and these are labeled by an integern. Applying these spectra
flows to Eq.~127! we obtain states in the RR sector with

J05
c

12
~A312n!, L05~12g2!

c

24
1

c

24
~A312n!2

~129!

and from Eq.~128! we obtain states with

J05
c

12
~A312n11!,

L05~12g2!
c

24
1

c

24
~A312n11!2. ~130!

The quantum numbers in Eqs.~129! and ~130! can be sum-
marized by the equations

J05
c

12
~A31n!, L05~12g2!

c

24
1

c

24
~A31n!2

~131!

wheren is an arbitrary integer. In the RR sector, supersy
metry is preserved for RR ground states withL05c/24 only.
Thus, we need that

A356g1n ~132!

for some integern. This is precisely the same condition a
found in @8#; see Eqs.~63! and ~71!.

V. SUMMARY AND DISCUSSION

We have embedded the 3D BPS conical defects int
higher dimensional supergravity arising from string theo
The defects in three dimensions provide particularly sim
laboratories for the AdS-CFT correspondence. They are
amples of systems that are neither perturbations of the
vacuum, nor semiclassical thermal states like black ho
Understanding the detailed representation of such objec
a dual CFT is bound to be instructive. Furthermore, the co
cal defects which we have constructed in six dimensions
be collided to yield the~near horizon limit! of the classic 5D
black holes whose entropy was explained by Strominger
Vafa @13#.

To recap, we have given a detailed analysis of the Kalu
Klein reduction of theN54b chiral supergravity in six di-
mensions coupled to tensor multiplets. Our KK ansatz gi
solutions to the 6D equations of motion which correspo
from the dimensionally reduced point of view to 3D conic
06401
l
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e
x-
S
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in
i-
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d
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s
d
l

defects with Wilson lines. Supersymmetry is preserved b
judicious choice of the gauge potential. From the 6D point
view, our solutions are spheres fibered over an AdS3 base,
and the conical defect arises at a point where the fibra
breaks down. Although we thereby embed all the solutions
the 3D Chern-Simons supergravities into the six dimensio
theory, our ansatz does not in general produce a consis
truncation to a Chern-Simons theory.~Solutions withF50
are admitted, but the six dimensional equations of motion
not impose this.!10

Our solutions can also be understood as near-horizon
its of rotating string solutions in six dimensions compactifi
on a circle. Surprisingly, global AdS33S3 appears in one
corner of the parameter space. Although our solutions c
tain conical singularities, they remain interesting because
expect them to be resolved by string theory. In particular,
have a proposal for a non-singular dual description in a c
formal field theory. If our solutions are admissible, they a
pear to imply a Gregory-Laflamme instability for the nea
extremal rotating black strings.

We have suggested a concrete representation of our c
cal defects as ensembles of chiral primaries in a dual C
Subsequent articles will test our proposal.
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APPENDIX A: FROM 6D SYMPLECTIC MAJORANA
SPINORS TO 3D SPINORS

In this appendix, we discuss the symplectic Majora
condition on 6D chiral spinors. In particular, we show
detail how the 6D spinors can be chosen to be SU(2) d
blets of complex conjugate two-component spinors

« r5S « (2)r

« r
(2)* D . ~A1!

The 6D Killing spinor equation inN54b supergravity was

S DM7
1

4
HMNP

5 GNPD e r50, ~A2!

where the upper~lower! sign is for r 51,3 (r 52,4). The
supersymmetry parameterse r are positive chirality spinors

10While this paper was in the final stages of preparation we
came aware that related investigations have been conducte
Samir Mathur.
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e r5S « r

0 D . ~A3!

Each of the four (r 51, . . . ,4) spinors has four complex
components. That gives 32 real degrees of freedom, of w
we must remove half, since theN54b supergravity has only
16 supersymmetries. This can be done by imposing a re
condition on the chiral spinors. In 6D, the appropriate rea
condition is either the SU~2! or the symplectic Majorana
condition, depending on theR symmetry of the supersymme
try algebra@41#. It can be consistently imposed along wi
the chirality projection. Literature on the subject includ
@41,42,18,19,24#. Here we are mostly following@42#.

Reference@42# first considersN52 susy in 6D. There is
an SU~2! doublet of four-component complex spinors, sat
fying the SU~2!-Majorana condition

~ca
i !* [c̄ȧ i5e i j Bȧ

b
cb

j ~A4!

wherei , j 51,2 label the doublet anda,ȧ are spinor indices.
The matrixB must satisfy

BB* 5B* B521. ~A5!

One can see this by applying the SU~2!-Majorana condition
twice and remembering thate2152e12521.

For N54 supersymmetry, we have four complex fou
component spinors, transforming as a fundamental of
USp~4! R-symmetry group. The four-component spinors c
be understood as chiral 8-component complex spinors, w
4 components projected out by the chirality projection. N
the SU~2!-Majorana condition is promoted to a symplec
Majorana condition

C̄ r ȧ5V rsBȧ
b
Csb ~A6!

whereV rs is the symplectic metric of the USp~4! group, and
ȧ,b label the 8 components of the spinor. B is a 434 matrix
satisfying Eq.~A5!. The symplectic metric is

V5S 0 1

À1 0D . ~A7!

Let us take the spinorsC r to be the chiral 8-componen
spinorse r . Recall that we have chosen the spinorse r with
r 51,3 to have oppositeG5 eigenvalues fromr 52,4. In this
choice, we have ensured that the symplectic metric will
mix spinors with opposite eigenvalues.

For the supersymmetry parameters, the symplectic M
rana condition~A6! becomes

ē1
T5Be3 , ~A8!

and similarly forē2 ,e4. The left hand side of Eq.~A8! is
06401
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ē1
T5~e1

†G0!T

5S 0 1^ g0,T

1^ g0,T 0 D S «1*

0
D

5S 0

2~1^ g0!«1*
D , ~A9!

where in the last line we usedg0,T52g0 ~recall thatg05
2 is2).

To evaluate the right hand side of Eq.~A8!, we need the
matrix B. We can assume it to be real, and of the form

B5S B̂

B̂
D , ~A10!

where B̂ is real 434-matrix satisfyingB̂2521. A conve-
nient choice turns out to be

B̂5s1^ g0. ~A11!

The right hand side of Eq.~A8! becomes

Be35S 0

B̂«3
D . ~A12!

Thus Eq.~A8! reduces to the equation

2~1^ g0!«1* 5B̂«35~s1^ g0!«3 . ~A13!

Next, introduce the notation

« r5S x r

j r
D , r 51,3 ~A14!

where x r ,j r are 2-component complex spinors. Then E
~A13! is equivalent to

S 2g0x1*

2g0j1*
D 5S g0j3

g0x3
D . ~A15!

Thus the two 4-component spinors«1,3 are

«15S x1

j1
D ; «352S j1*

x1*
D . ~A16!

Out of the 8 complex degrees of freedom, only 4 rema
Since the Killing spinor equations are linear, we can ta
linear combinations of«1 ,«3:

«̃15«12«3

«̃35 i ~«11«3!. ~A17!

Then, the «̃ r are of the complex conjugate doublet for
~A1!. The corresponding 8-component spinors are
1-16
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ẽ r5S «̃ r

0
D . ~A18!

The same can be done to ther 52,4 spinors which had the
oppositeG5 eigenvalues. We can then drop the tildes, a
assume that in the Killing spinor calculation the 6D spino
are such that the resulting 3D spinors will be of the fo
~A1!.

APPENDIX B: THE 3-SPHERE

The 3-sphere of radiusl is explicitly described as

l 25x1
21x2

21x3
21x4

2 , ~B1!

ds25dx1
21dx2

21dx3
21dx4

2 . ~B2!

One solution to the constraint is

x15 l cosu, ~B3!

x25 l sinu cosf, ~B4!

x35 l sinu sinf cosc, ~B5!

x45 l sinu sinf sinc, ~B6!

which gives the metric

ds25 l 2~du21su
2df21su

2sf
2 dc2!. ~B7!

~We are using the notationsu[sinu andcu[cosu.! The gen-
erators of the SO(4) isometry group ofS3 are L j

i ;xi] j

2xj] i . We are actually interested in exposing the SU(
3SU(2) structure and so it is better to go to complex co
dinates. Letz15x11 ix2 z25x31 ix4. Then the sphere ca
also be written as

ds25dz1dz̄11dz2dz̄2; l 25z1z̄11z2z̄2 . ~B8!

Let us parametrize solutions to these equations as

z15 l cos~u/2!ei (f1c)/2, ~B9!

z25 l sin~u/2!ei (f2c)/2. ~B10!

~Note that exchangingf↔c complex conjugatesz2.! We
arrive at the S3 metric

ds25
l 2

4
@du21df21dc212cosudfdc#. ~B11!

1. SU„2…ÃSU„2…

In the complex coordinates, it is clear that there are t
SU(2) symmetries under which S3 is invariant:

S z1

z2
D→ULS z1

z2
D ; S z1

z̄2
D→URS z1

z̄2
D . ~B12!
06401
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Here ULPSU(2)L and URPSU(2)R . We go between these
two transformations by exchangingf↔c.

We can compute the action of SU(2)L explicitly. Write the
group elements asUL5e2u iTi in terms of generators

T152
i

2 S 0 1

1 0D ; T25
1

2 S 0 21

1 0 D ;

T352
i

2 S 1 0

0 21D . ~B13!

With a little labor one can show that the infinitesimal tran
formations are explicitly realized on (z1 ,z2) by the differen-
tial operators

L15cc]u1
sc

su
]f2sccotu]c , ~B14!

L252sc]u1
cc

su
]f2cccotu]c , ~B15!

L35]c . ~B16!

Since the exchange (f↔c) exchanges SU(2)L and SU(2)R ,
the SU(2)R transformations are explicitly realized by the di
ferential operators

R15cf]u1
sf

su
]c2sfcotu]f , ~B17!

R252sf]u1
cf

su
]c2cfcotu]f , ~B18!

R35]f . ~B19!

It is also easy to check explicitly that these operators o
the Lie algebra of SU(2)3SU(2):

@L i ,L j #5e i jkL k; @Ri 8 ,Rj 8#5e i 8 j 8k8Rk8; @L i ,Rj 8#50.
~B20!

The indicesi andi 8 on L i andRi 8 can be raised and lowere
freely.

2. Killing vectors and vielbeins

S3 has six Killing vectors, which can be taken to be t
generators of the SU(2)L and SU(2)R symmetries above
That is,

K I
m5L I

m I 51,2,3, ~B21!

5RI 23
m I 54,5,6. ~B22!

The corresponding one-forms have components

L1m5
l 2

4
~cc ,scsu ,0!, ~B23!
1-17
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L2m5
l 2

4
~2sc ,ccsu ,0!, ~B24!

L3m5
l 2

4
~0,cu,1!, ~B25!

R1m5
l 2

4
~cf ,0,sfsu!, ~B26!

R2m5
l 2

4
~2sf ,0,cfsu!, ~B27!

R3m5
l 2

4
~0,1,cu!. ~B28!

There are also two choices of vielbein for S3 constructed
from the SU(2)L and SU(2)R generators. A vielbein is de
fined by

em
a en

bdab5gmn , ~B29!

em
a en

bgmn5dab. ~B30!

The norm of the one-forms above is

L imL jngmn5d i j

l 2

4
; Ri 8mRj 8ngmn5d i 8 j 8

l 2

4
. ~B31!

Since the sphere is 3-dimensional, theL and R cannot of
course be mutually orthogonal as vectors. It is read
checked that

L imL jnd i j 5gmn

l 2

4
, ~B32!

and similarly for R. Thus, we can construct a vielbein b
identifying the group indexi with a tangent indexa and
introducing an appropriate normalization factor. The left a
right vielbeins defined in this manner are

eLam5
2

l
Lam; eRa8m52

2

l
Ra8m . ~B33!

3. Volumes

In these Euler angle coordinates, the volume of the sph
is

Vol5E
0

p

duE
0

2p

dfE
0

4p

dcAdetg

5E
0

p

duE
0

2p

dfE
0

4p

dcS l

2D 3

sinu5 l 32p2.

~B34!

Accordingly, the volume form for S3 is

S l

2D 3

sinudu`df`dc[Vemnrdxmdxndxr . ~B35!
06401
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4. Computing NIr and the SU„2… projectors

The discussion of the consistent ansatz for the three-f
involved a two-form

v5VemnrKI
mdxndxr , ~B36!

which is closed, and hence, on the sphere, an exact form
we can write

v5d~NIr dxr !5]nNIr dxn`dxr ~B37!

for someNIr . That is,NIr are defined as the solutions of

]nNIr 2] rNIn52VemnrKI
m . ~B38!

It is easy to show that a solution is11

I 51,2,3 ⇒NIm52 lK Im , ~B39!

I 54,5,6 ⇒NIm5 lK Im . ~B40!

The defining Eq.~B38! then implies

]nKIr 2] rKIn5
2V

l 2 emnrNI
m . ~B41!

We can rewrite this with tangent indices by contracting w
the vielbeinea

m , yielding

]aKIb2]bKIa5
2

l 2eabcNI
c . ~B42!

Taken together with the fact thatKI are Killing vectors, this
implies

¹aKIb5
1

l 2 eabcNI
c . ~B43!

We can construct the combinations:

RIr 52
NIr

l
2K Im; LIr 52

NIr

l
1K Im . ~B44!

Clearly,

RIr 50, I 51,2,3, ~B45!

522K Im522R(I 23)m, I 54,5,6, ~B46!

and

LIr 52K Im52L Im , I 51,2,3, ~B47!

50, I 51,2,3. ~B48!

Thus, these combinations act as projectors onto SU(2)L and
SU(2)R respectively. In the Killing spinor equations, the

11We can of course add any closed one-form toNIr and we will
still have a solution; we will always choose to use the above so
tion.
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projectors appear with flattangentindices, i.e.,LIa5LImea
m

andRIa5RImea
m whereea

m is a left or right vielbein. Recall-
ing the expressions for the vielbeins given in Eq.~B33!,

RIr 50, I 51,2,3, ~B49!

5 leR(I 23)m , I 54,5,6, ~B50!

and

LIr 5 leLIm , I 51,2,3, ~B51!

50, I 51,2,3. ~B52!
J.

J.

cl

A.

ys

06401
Since the SU(2)L and SU(2)R equations decouple, we can g
to a tangent frame usingeL andeR separately in each case
So, choosing the left and right tangent frames in each c
~call the indicesa anda8), we find

RIa850, I 51,2,3, ~B53!

5 ld (I 23)a8 , I 54,5,6, ~B54!

and

LIa5 ld Ia, I 51,2,3, ~B55!

50, I 51,2,3. ~B56!
fa,

F.

tum
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@36# M. Bañados, K. Bautier, O. Coussaert, M. Henneaux, and

Ortiz, Phys. Rev. D58, 085020~1998!.
@37# M. Henneaux, L. Maoz, and A. Schwimmer, Ann. Phys.~N.Y.!

282, 31 ~2000!.
@38# A. Schwimmer and N. Seiberg, Phys. Lett. B184, 191~1987!;

M. Yu, ibid. 196, 345 ~1987!.
@39# E. Martinec and V. Sahakian, Phys. Rev. D60, 064002~1999!.
@40# J. Cho and S. Nam, ‘‘AdS~3! black hole entropy and the spec

tral flow on the horizon,’’ hep-th/9903058.
@41# T. Kugo and P. Townsend, Nucl. Phys.B221, 357 ~1983!.
@42# P. S. Howe, G. Sierra, and P. K. Townsend, Nucl. Phys.B221,

331 ~1983!.
1-19


