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Curvature Calculations for Antitrees
David Cushing, Shiping Liu, Florentin Münch, and Norbert Peyerimhoff

Abstract

In this chapter we prove that antitrees with suitable growth properties are
examples of infinite graphs exhibiting strictly positive curvature in various con-
texts: in the normalized and non-normalized Bakry–Émery setting as well as in
the Ollivier–Ricci curvature case. We also show that these graphs do not have
global positive lower curvature bounds, which one would expect in view of
discrete analogues of the Bonnet–Myers theorem. The proofs in the different
settings require different techniques.

2.1 Introduction and Results

The main protagonists in this chapter are antitrees. While these exam-
ples had been studied already in 1988, they were given the name antitree
in talks by Radoslaw Wojciechowsi around 2010. A proper definition of
antitrees, in their most general form, appeared first in [19]. Like in the
case of a tree, the vertices of an antitree are partitioned in generations Vi ,
with the first generation V1 called its root set. While trees are connected
graphs with as few connections as possible between subsequent genera-
tions, antitrees have the maximal number of connections. More precisely,
antitrees are simple (i.e., no loops and no multiple edges), connected graphs
such that

(i) any root vertex x ∈ V1 is connected to all vertices in V2, and no vertices
in Vk , k ≥ 3,

(ii) any vertex x ∈ Vk , k ≥ 2, is connected to all vertices in Vk−1 and Vk+1,
and no vertices in Vl , |k − l| ≥ 2.
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Note that this definition allows for the possibility of edges between ver-
tices of the same generation. We will refer to such edges as spherical
edges. Edges between vertices of different generations are called radial
edges. Any radial or spherical edge incident to a vertex in V1 is called
radial or spherical root-edge, respectively. All other edges are called inner
edges.

Antitrees are particularly interesting examples with regard to stochastic
completeness. Section 2.2, provided by Radoslaw Wojciechowki, gives a more
in-depth look at the history of antitrees. In this chapter, we investigate cur-
vature properties of antitrees. Relations between curvature asymptotics and
stochastic completeness were investigated recently in [17] in the Bakry–Émery
setting and in [22] in the Ollivier–Ricci curvature setting.

For our curvature considerations, we consider only antitrees where the
induced subgraph of any one generation Vk is complete, i.e., any two ver-
tices in the same generation are neighbours. For any given finite or infinite
sequence (ak)1≤k≤N , N ∈ N ∪ {∞}, the corresponding unique such antitree
with |Vk | = ak for all 1 ≤ k ≤ N is denoted by AT ((ak)). Note that in the case
of a finite antitree, that is N <∞, (ii) has to be understood in the case k = N
that any vertex x ∈ VN is connected to all vertices in VN−1. Later in this intro-
duction, we will only present results for infinite antitrees, but, since curvature
is a local notion, we need only investigate curvatures of suitable finite antitrees
for the proofs.

Figure 2.1 The antitree AT ((2, 3, 5))
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Two particular curvature notions on graphs have been studied actively in
recent years:

● Bakry–Émery curvature taking values on the vertices and based on
Bochner’s formula with respect to a suitable graph Laplacian,

● Ollivier–Ricci curvature taking values on the edges and based on optimal
transport of lazy random walks.

Basic graph theoretical notions are introduced in Section 2.3.1 and precise
definitions of these curvature concepts are given in Sections 2.3.2 and 2.3.3,
respectively.

For both curvature notions there are graph theoretical analogues of the
fundamental Bonnet–Myers theorem for Riemannian manifolds with strictly
positive Ricci curvature bounded away from zero.

Let us first consider Bakry–Émery curvature. Generally, on a combinatorial
graph G = (V, E) with vertex set V and edge set E , the graph Laplacian on
functions f : V → R is of the form

� f (x) = 1

μ(x)

∑
y∼x

( f (y)− f (x)), (2.1.1)

with a vertex measure μ : V → (0,∞). In this chapter, we consider two
specific choices of vertex measures:

● μ ≡ 1, which we refer to as the non-normalized case,
● μ(x) = dx (the vertex degree of x ∈ V ), which we refer to as the normalized

case.

The corresponding discrete Bonnet–Myers theorems in both settings are as
follows.

Theorem 2.1.1 (see [21]) Let G = (V, E) be a connected graph satisfying
C D(K ,∞) for some K > 0 in the non-normalized case and dx ≤ D for all
x ∈ V and some finite D. Then G is a finite graph and, furthermore,

diam(G) ≤ 2D

K
.

Theorem 2.1.2 (see [21]) Let G = (V, E) be a connected graph satisfying
C D(K ,∞) for some K > 0 in the normalized case (possibly of unbounded
vertex degree). Then G is a finite graph and, furthermore,

diam(G) ≤ 2

K
.
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Ollivier–Ricci curvature depends upon an idleness parameter p ∈ [0, 1]
describing the laziness of the associated random walk. Here, the discrete
Bonnet–Myers theorem takes the following form.

Theorem 2.1.3 (see [23]) Let G = (V, E) be a connected graph satisfying
κp(x, y) ≥ K > 0 for all x ∼ y and a fixed idleness p ∈ [0, 1]. Then G is a
finite graph and, furthermore,

diam(G) ≤ 2(1− p)

K
. (2.1.2)

These results give rise to the following natural questions:

● Do there exist examples of infinite connected graphs with strictly positive
curvature? (That is, relaxing the condition of a uniform strictly positive
lower curvature bound.)

● In the non-normalized case, does there exist an infinite connected graphs
satisfying C D(K ,∞) for K > 0 of unbounded vertex degree?

This chapter provides a positive answer to the first question. In fact, we show
that antitrees AT ((ak))with suitable growth properties of the infinite sequence
(ak) have strictly positive curvature for all curvature notions mentioned above.
More precisely, we have the following in the Bakry–Émery curvature case.

Theorem 2.1.4 In both the normalized and non-normalized setting, the infinite
antitree AT ((k)) satisfies C D(Kx ,∞, x) for all vertices x with a family of
constants Kx > 0 depending only on the generation of x. Furthermore,

lim inf
k→∞, x∈Vk

Kx = 0.

Remark 2.1.5 In fact, the method of proof relies on some Maple calculations
which can be extended to also provide the following results (without going into
the details):

(i) Linear growth: The same curvature results hold true for the infinite
antitrees AT ((1+ (k − 1)t)) with arbitrary t ∈ N.

(ii) Exponential growth: The same curvature results hold true for the infinite
antitree AT ((2k−1)) in the normalized case and fail to satisfy C D(0,∞)
in the non-normalized case.

Due to Bakry–Émery curvature being a local property, in order to calcu-
late the curvatures KG,x (∞) of vertices x in the first two generations of
G = AT ((2k−1)) as defined later in (2.3.1), it is sufficient to consider the
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Figure 2.2 Normalized curvature KG,x (∞)
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Figure 2.3 Non-normalized curvature KG,x (∞)

graph presented in Figures 2.2 and 2.3 (spherical edges of 2-spheres around
a vertex do not contribute to the curvature, see [7]). These figures are in
agreement with the statements in Remark 2.1.5(ii).
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Now we consider Ollivier–Ricci curvature. Here our main result is the
following.

Theorem 2.1.6 Let G = AT ((ak)) be an infinite antitree with 1 = a1 and
ak+1 ≥ ak for all k ∈ N and x, y be neighbouring vertices in G.

● Radial root edges: If x ∈ V1 and y ∈ V2:

κp(x, y) =
⎧⎨⎩

a2−1
a2+a3

+ a2+2a3+1
a2+a−3 p, if p ∈

[
0, 1

a2+a3+1

]
,

a2+1
a2+a3

(1− p), if p ∈
[

1
a2+a3+1 , 1

]
.

● Radial edges: If x ∈ Vk and y ∈ Vk+1, k ≥ 2, p ∈ [0, 1]:

κp(x, y) =
(

2ak + ak+1 − 1

ak + ak+1 + ak+2 − 1
− 2ak−1 + ak − 1

ak−1 + ak + ak+1 − 1

)
(1− p).

● Spherical edges: If x, y ∈ Vk, x �= y, k ≥ 2:

κp(x, y) =
⎧⎨⎩

ak−1+ak+ak+1−2
ak−1+ak+ak+1−1 + ak−1+ak+ak+1

ak−1+ak+ak+1−1 p, if p ∈
[
0, 1

ak−1+ak+ak+1

]
,

ak−1+ak+ak+1
ak−1+ak+ak+1−1 (1− p), if p ∈

[
1

ak−1+ak+ak+1
, 1
]
.

Let us consider special cases.

Corollary 2.1.7 (Linear growth) Let G = AT ((1+(k−1)t)), t ∈ N arbitrary.
Then

κ0(x, y) =

⎧⎪⎪⎨⎪⎪⎩
t

3t+2 for x ∈ V1, y ∈ V2,
6t2

(3kt+2)(3kt+2−3t) for x ∈ Vk, y ∈ Vk+1,

1− 1
3kt+2−3t for x, y ∈ Vk, x �= y, k ≥ 2.

In particular, κ0 of radial edges decays asymptotically like 2
3k2 as k →∞.

Corollary 2.1.8 (Exponential growth) We have for G = AT ((rk−1), r ∈ N:

κ0(x, y) =

⎧⎪⎪⎨⎪⎪⎩
r−1

r(r+1) for x ∈ V1, y ∈ V2,
(r−1)2(r+1)rk−2

(rk+rk−1+rk−2−1)(rk+1+rk+rk−1−1)
for x ∈ Vk, y ∈ Vk+1,

1− 1
rk+rk−1+rk−2−1

for x, y ∈ Vk, x �= y, k ≥ 2.

In particular, κ0 of radial edges decays asymptotically like 1
rk as k →∞.

Remark 2.1.9 Note that for any finite sequence (ak)1≤k≤N , N ≥ 2, with 1 =
a1 and ak+1 ≥ ak for all 1 ≤ k ≤ N , we can find a large enough aN+1 ≥ aN

such that κ0(x, y) < 0 for x ∈ VN−1 and y ∈ VN .
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The chapter is organised as follows: We start with some historical comments
on antitrees in Section 2.2 which was provided by Radosław Wojciechowski.
Section 2.3 introduces the readers into Bakry–Émery curvature and Ollivier–
Ricci curvature. The following two Sections 2.4 and 2.5 present the concrete
curvature investigations in both settings. Appendices A, B, and C provide the
Maple code used for the results in Section 2.4.

2.2 A (Partial) History of Antitrees

To our knowledge, the first known appearance of an antitree is the case of
|Sr | = r + 1 in the article of Dodziuk and Karp [8]. They study the nor-
malized Laplacian � and give conditions for transience of the simple random
walk in terms of r�r where r is the distance to a vertex. It appears in [8,
Example 2.5] as a case of a transient graph with bottom of the spectrum 0
whose Green’s function decays like 1/r . The same antitree appears in the
article of Weber [24]. Weber extends the result of Dodziuk and Mathai [9]
concerning the stochastic completeness of the semigroup associated with the
non-normalized Laplacian �. Indeed, Dodziuk/Mathai prove stochastic com-
pleteness in the case of bounded vertex degree. Weber improves this result to
give stochastic completeness in the case of �r ≥ K for some constant K . The
antitree mentioned above is then given as an example of a graph whose vertex
degree is unbounded but which satisfies �r ≥ K (see [24, Figure 1, p. 156]).
The general case of antitrees with arbitrary spherical growth |Sr | = f (r)where
f is any natural number-valued function is considered in [25, Example 4.11].
There it is shown that antitrees are stochastically complete if and only if∑

r

∑r
k=0 f (k)

f (r) f (r + 1)
= ∞.

This is used to give a counter-example to a direct analogue to Grigor’yan’s
result for stochastic completeness of manifolds (see [13]). Indeed,
Grigor’yan’s result says that any stochastically incomplete manifold must
have super-exponential volume growth while the result above gives stochas-
tically incomplete graphs which have only polynomial volume growth when
the combinatorial graph metric is used. These examples give the smallest such
examples in the combinatorial graph metric by a result of Huang, Grigor’yan
and Masamune [12, Theorem 1.4], where the example (and name) of antitrees
also appears. This might be the first time in print that the name is used and
they refer to them as the ‘antitree of Wojciechowski’. A proper definition with
the name of antitree first appears in [19, Definition 6.3]. Here the result on
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stochastic completeness is generalized to all weakly spherically symmetric
graphs of which the antitrees are but an example. Furthermore, it is shown
that the non-normalized Laplacian � on any such stochastically incomplete
antitree has positive bottom of the spectrum (see [19, Corollary 6.6]). This
gives a counter-example to a direct analogue to a theorem of Brooks [5] which
states that the bottom of the spectrum of the Laplacian on any manifold with
sub-exponential volume growth is zero. This sparked an interest in applying
intrinsic metrics as defined by Frank, Lenz, and Wingert in [10] to study the
question involving volume growth on graphs of unbounded vertex degree. In
particular, the analogue to Grigor’yan’s theorem was first proven in [11] (see
also [18] for an analytic proof) while the analogue to Brooks’ theorem was
shown in [16]. Since then, antitrees appear in a variety of places. Their spec-
tral theory is thoroughly analysed by Breuer and Keller in [4]. Here it should
be noted that the spectrum consists mainly of eigenvalues with compactly sup-
ported eigenfunctions and a further spectral component which can be singular
continuous in certain cases. Antitrees are also used as a counterexample to a
conjecture presented by Golenia and Schumacher in [14] concerning the defi-
ciency indices of the adjacency matrix (see [15]). They are also used to show
the utility of the new bottom of the spectrum estimate for a Cheeger constant
involving intrinsic metrics in [1].

2.3 Definitions and Notations

2.3.1 Basic Graph Theoretical Notations

Let G = (V, E) be a locally finite connected simple combinatorial graph
(that is, no loops and no multiple edges) with vertex set V and edge set E .
For any x, y ∈ V we write x ∼ y if {x, y} ∈ E . The degree of a vertex
x ∈ V is denoted by dx . Let d : V × V → N ∪ {0} be the combinatorial
distance function, i.e., d(x, y) is the length of the shortest path from x to y.
For x ∈ V , the combinatorial spheres and balls of radius r ≥ 0 around x are
denoted by

Sr (x) = {y ∈ V | d(x, y) = r},
Br (x) = {y ∈ V | d(x, y) ≤ r},

respectively. The diameter of G is defined as

diam(G) = sup{d(x, y) | x, y ∈ V } ∈ N ∪ {0,∞}.
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2.3.2 Bakry–Émery Curvature

As mentioned before, this curvature notion is rooted on Bochner’s formula
using a Laplacian operator leading to the curvature-dimension inequality (CD-
inequality for short). This approach was pursued by Bakry–Émery [2] via
an elegant �-calculus and leads to a substitute of the lower Ricci curvature
bound of the underlying space for much more general settings. (Some further
information on the Bochner approach can be found, e.g., in [7, Remark 1.3].)

Recall definition (2.1.1) of the normalized (μ(x) = dx ) and non-normalized
Laplacian (μ ≡ 1) from the Introduction. Such a choice of Laplacian leads to
the following operator � for all f, g : V → R:

�( f, g)(x) = 1

2
(�( f g)− f�g − g� f )(x)

= 1

2μ(x)

∑
y∼x

( f (y)− f (x))(g(y)− g(x)).

For simplicity, we always write �( f ) := �( f, f ). Iterating �, we can define
another operator �2, given by

�2( f, g)(x) = 1

2
(��( f, g)− �( f,�g)− �(g,� f ))(x).

Again, we abbreviate �2( f ) = �2( f, f ). The Bakry–Émery curvature is
defined via these operators in the following way.

Definition 2.3.1 Let K ∈ R and N ∈ (0,∞].
(i) The pointwise curvature dimension condition C D(K , N , x) for x ∈ V is

defined by

�2( f )(x) ≥ K�( f )(x)+ 1

N
(� f )2(x), for any f : V → R.

(ii) The global curvature dimension condition C D(K , N ) holds if and only if
C D(K , N , x) holds for any x ∈ V .

(iii) For any x ∈ V , we define

KG,x (N ) := sup{K ∈ R | C D(K , N , x)}. (2.3.1)

In this chapter, we are only concerned with ∞-curvature, that is, N = ∞.
Following [7, Prop. 2.1], the condition C D(K ,∞, x) is equivalent to

�2(x) ≥ K�(x), (2.3.2)

where �2(x) and �(x) are symmetric matrices of the corresponding quadratic
forms evaluated at x ∈ V . Since only local information needs to be taken
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into account, they are of size |B2(x)| × |B2(x)| and |B1(x)| × |B1(x)|, respec-
tively, and to make sense of (2.3.2) the smaller size matrix must be padded
with 0 entries. For more information in the non-normalized case, see [7, Sec-
tions 2.1–2.3]. The entries of these matrices in the general weighted case are
explicitly given in [7, Section 12]. (Note that for the context of this chapter, the
edge weights w : E → [0,∞) take only values 0, 1 and reflect adjacency of
vertices and the vertex measure μ : V → (0,∞) will only correspond to the
normalized and non-normalized cases.)

The main tool to prove strictly positive curvature is [7, Corollary 2.7], that
is, the following properties are equivalent:

● �2(x) is positive semi-definite with one-dimensional kernel,
● KG,x (∞) > 0.

[7, Corollary 2.7] covers only the non-normalized case, but one can easily
check that the equivalence holds also in the setting of general vertex measures.

2.3.3 Ollivier–Ricci Curvature

As mentioned before, Ollivier–Ricci curvature is based on optimal trans-
port. Ollivier–Ricci curvature was introduced in [23]. A fundamental con-
cept in optimal transport is the Wasserstein distance between probability
measures.

Definition 2.3.2 Let G = (V, E) be a locally finite graph. Let μ1, μ2 be two
probability measures on V . The Wasserstein distance W1(μ1, μ2) between μ1

and μ2 is defined as

W1(μ1, μ2) = inf
π

∑
y∈V

∑
x∈V

d(x, y)π(x, y), (2.3.3)

where the infimum runs over all transportation plans π : V × V → [0, 1]
satisfying

μ1(x) =
∑
y∈V

π(x, y), μ2(y) =
∑
x∈V

π(x, y).

The transportation plan π moves a mass distribution given by μ1 into a mass
distribution given by μ2, and W1(μ1, μ2) is a measure for the minimal effort
which is required for such a transition.

If π attains the infimum in (2.3.3) we call it an optimal transport plan
transporting μ1 to μ2.
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We define the following probability distributions μx for any x ∈ V, p ∈
[0, 1]:

μ
p
x (z) =

⎧⎪⎪⎨⎪⎪⎩
p, if z = x ,
1−p
dx
, if z ∼ x ,

0, otherwise.

Definition 2.3.3 The p-Ollivier–Ricci curvature on an edge x ∼ y in G =
(V, E) is

κp(x, y) = 1−W1(μ
p
x , μ

p
y ),

where p ∈ [0, 1] is called the idleness.
The Ollivier–Ricci curvature introduced by Lin–Lu–Yau in [20] is defined

as

κL LY (x, y) = lim
p→1

κp(x, y)

1− p
.

A fundamental concept in the optimal transport theory and vital to our work
is Kantorovich duality. First we recall the notion of 1-Lipschitz functions and
then state Kantorovich duality.

Definition 2.3.4 Let G = (V, E) be a locally finite graph, φ : V → R. We
say that φ is 1-Lipschitz if

|φ(x)− φ(y)| ≤ d(x, y)

for all x, y ∈ V . Let 1–Lip denote the set of all 1–Lipschitz functions.

Note that, by triangle inequality, φ is 1-Lipschitz iff |φ(x) − φ(y)| ≤ 1 for
all pairs x ∼ y.

Theorem 2.3.5 (Kantorovich duality) Let G = (V, E) be a locally finite
graph. Let μ1, μ2 be two probability measures on V . Then

W1(μ1, μ2) = sup
φ:V→R

φ∈1–Lip

∑
x∈V

φ(x)(μ1(x)− μ2(x)).

If φ ∈ 1-Lip attains the supremum we call it an optimal Kantorovich
potential transporting μ1 to μ2.

The following result on some properties of p �→ κp(x, y) for x ∼ y and its
consequences was useful in our curvature considerations.

Theorem 2.3.6 (see [3]) Let G = (V, E) be a locally finite graph. Let x, y ∈
V with x ∼ y. Then the function p �→ κp(x, y) is concave and piecewise
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linear over [0, 1] with at most 3 linear parts. Furthermore κp(x, y) is linear
on the intervals[

0,
1

lcm(dx , dy)+ 1

]
and

[
1

max(dx , dy)+ 1
, 1

]
.

Thus, if we have the further condition dx = dy, then κp(x, y) has at most two
linear parts.

2.4 Bakry–Émery Curvature of Antitrees

Let us first introduce some notation and a useful general fact (Lemma 2.4.1).
The identity matrix of size d is denoted by Idd and the all-zero and all-one
matrix of size d1 × d2 is denoted by 0d1,d2 and Jd1,d2 , respectively. Moreover,
if d1 = d2, we use the notation Jd1 = Jd1,d1 , and if d2 = 1, we use the notation
1d1 for the all-one column vector of size d1. Moreover, the standard base of
column vectors in RN is denoted by e1, . . . , eN .

Lemma 2.4.1 Let d1, . . . , dr ∈ N and A = (Ai j )1≤i, j≤r be a symmetric
matrix, where the Ai j are block matrices of size di × d j with A ji = A�i j .
Assume that there exist constants αi , βi ∈ R and γi j = γ j i ∈ R such that, for
1 ≤ i, j ≤ r , j �= i ,

Aii = αi Iddi + βi Jdi

and

Ai j = γi j Jdi ,d j .

Let Ared = (ai j )1≤i, j≤r be the r × r-matrix given by ai j = 1�di
Ai j 1d j , i.e., for

i �= j ,

aii = αi di + βi d
2
i ,

ai j = γi j di d j .

For any vector w = (w1, . . . , wr )
� ∈ Rr let

ŵ := (w11�d1
, . . . , wr 1�dr

)� ∈ Rd

with d =∑r
j=1 d j . Then we have the following two facts:

(a) For every di ≥ 2, the (di − 1)-dimensional space

Ei =
⎧⎨⎩

di∑
j=1

c j e j+d |
di∑

j=1

c j = 0

⎫⎬⎭
with d =∑i−1

j=1 d j consists of eigenvectors to the eigenvalue αi .
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(b) For any w ∈ Rr , the corresponding vector ŵ is orthogonal to all spaces
Ei in (a) and we have

ŵ�A ŵ = w�Aredw.

Proof. Choose a vector û = (u1, . . . , ur )
� ∈ Rd with u j ∈ Rd j for 1 ≤ j ≤ r .

Then we have

Au =
⎛⎝ r∑

j=1

A1 j u j , . . . ,

r∑
j=1

Ar j u j

⎞⎠� .
Assume now that u j = (c j1, . . . , c jd j )

� ∈ Rd j satisfies

d j∑
k=1

c jk = 0 for all 1 ≤ j ≤ r . (2.4.1)

This implies that Jdi ,d j u j = 0 for all 1 ≤ i, j ≤ r and, therefore,

r∑
j=1

Ai j u j = Aii ui = αi ui ,

which proves (a).
For the proof of (b), we assume that w ∈ Rr and ŵ ∈ Rd are related as
described in the lemma. It is then easy to see that ŵ is orthogonal to any vec-
tor u with components satisfying (2.4.1) and, therefore, to all eigenspaces Ei .
Moreover, we have

ŵ�Aŵ =
r∑

i, j=1

(
wi 1�di

)
Ai j
(
w j 1d j

) = r∑
i, j=1

wiw j ai j = w�Aredw.

This finishes the proof of (b).

Now we start with our Bakry–Émery curvature considerations for antitrees.
Due to localness of the Bakry–Émery curvature notion, we only need to
consider KG,x (∞) for

(i) a vertex x ∈ V3 in the finite antitree AT ((a, b, c, d, e)),
(ii) a vertex x ∈ V2 in the finite antitree AT ((b, c, d, e)), and

(iii) a vertex x ∈ V1 in the finite antitree AT ((c, d, e)).

The relevant results are given in the following theorems.

Theorem 2.4.2 Let x ∈ V3 be a vertex of the finite antitree G =
AT ((a, b, c, d, e)). If

a = n, b = n + 1, c = n + 2, d = n + 3, and e = n + 4,
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we have in both the normalized and non-normalized case:

KG,x (∞) > 0. (2.4.2)

Proof. In this proof, we will keep the values a, b, c, d, e general as long
as possible and only specify them towards the end of the proof. Let G =
AT ((a, b, c, d, e)), 1 ≤ a ≤ b < c ≤ d ≤ e and x ∈ V3. To cover
simultaneously both the normalized and non-normalized setting, we choose

ε− = μ(x)

μ(y−)
− 1, ε+ = μ(x)

μ(y+)
− 1,

where y− ∈ V2 and y+ ∈ V4. (Note that μ(z) depends only the generation of
z.) Using the results in [7, Section 12], a tedious but straightforward calculation
shows the following: The matrix A = 4μ(x)2�2(x) is of the following block
structure A = (Ai j )1≤i, j≤6 where the blocks correspond to an ordering of
B2(x) into the vertex sets {x}, V3\{x}, V4, V2, V5, V1:

A11 = dx (dx + 3)+ 3bε− + 3dε+,
A12 = (−(dx + 3)+ bε− + dε+)J1,c−1,

A13 = (−(dx + 3+ e)− (2+ c + e)ε+)J1,d ,

A14 = (−(dx + 3+ a)− (2+ a + c)ε−)J1,b,

A15 = (d + dε+)J1,e,

A16 = (b + bε−)J1,a,

A22 = (3(dx + 1)+ bε− + dε+)Idc−1 − 2Jc−1,

A23 = −(2+ 2ε+)Jc−1,d ,

A24 = −(2+ 2ε−)Jc−1,b,

A25 = 0c−1,e,

A26 = 0c−1,a,

A33 = (−b + 3c + 3d + 3e + (3c + 4d + 3e)ε+)Idd − (2+ 4ε+)Jd ,

A34 = 2Jd,b,

A35 = −(2+ 2ε+)Jd,e,

A36 = 0d,a,

A44 = (3a + 3b + 3c − d + (3a + 4b + 3c)ε−)Idb − (2+ 4ε−)Jb,

A45 = 0b,e,

A46 = −(2+ 2ε−)Jb,a,

A55 = (d + dε+)Ide,

A56 = 0e,a,

A66 = (b + bε−)Ida .
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Let Ared be the corresponding reduced symmetric 6 × 6 matrix Ared =
(ai j )1≤i, j≤6, as defined in Lemma 2.4.1.

Recalling the equivalence at the end of Section 2.3.2, KG,x (∞) > 0 is
equivalent to A being positive semi-definite and having one-dimensional ker-
nel. Lemma 2.4.1 provides the following eigenvalues and multiplicities of
A.

● Since ε−, ε+ > −1 and dx = b + c + d − 1,

α2 = 3(dx + 1+bε− + dε+) > 0

is a positive eigenvalue of multiplicity c − 2 ≥ 0.
● Note that in both normalized and non-normalized case we have ε+ ≥

b+c+d−1
c+d+e−1 − 1 and

α3 = −b + 3c + 3d + 3e + (3c + 4d + 3e)ε+ ≥
≥ −b − d + 3c + 4d + 3e

c + d + e − 1
(b + c + d − 1) > 0

is a positive eigenvalue of multiplicity d − 1 ≥ 1.
● Note that in both normalized and non-normalized case we have ε− ≥ 0 and

α4 = 3a + 3b + 3c − d + (3a + 4b + 3c)ε− ≥ 3a + 3b + 3c − d > 0

if d < 3(a + b + c). This eigenvalue has multiplicity b − 1 ≥ 0.
● Since ε−, ε+ > −1,

α5 = d + dε+ > 0 and α6 = b + bε− > 0

are both positive eigenvalues of multiplicities e − 1 ≥ 1 and a − 1 ≥ 0,
respectively.

Moreover, it is easily checked that A1a+b+c+d+e = 0. The orthogonal
complement of the direct sum of the corresponding eigenspaces Ei and
R1a+b+c+d+e is 5-dimensional and given by Ŵ = {ŵ | w ∈ W }, where
(d1, d2, d3, d4, d5, d6) = (1, c − 1, d, b, e, a) and

W := {w ∈ R6,

6∑
i=1

wi di = 0}.

Under the assumption d < 3(a + b + c), KG,x (∞) > 0 is then equivalent to
A|Ŵ being positive definite, which is equivalent to

ŵ�A ŵ = w�Aredw > 0 for all w ∈ W\{0}. (2.4.3)
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Now we choose (a, b, c, d, e) = (n, n + 1, n + 2, n + 3, n + 4), n ∈ N. Then
we have d < 3(a + b + c) and we consider the characteristic polynomial of
Ared, which is of the form

χn(t) = det(tId6−Ared) = t6−p5(n)t
5+p4(n)t

4−p3(n)t
3+p2(n)t

2−p1(n)t,

where pi (n) are polynomials in the variable n. (We do not have a constant term
since R · 16 lies in the kernel of Ared.) A Maple calculation shows that all the
pi (n) are strictly positive for any value of n ∈ N (see Appendix A for more
details). This shows that we have χn(t) > 0 for all t < 0, so Ared is positive
semi-definite. Since p1(n) > 0, Ared has a one-dimensional kernel R · 16.

Now we can show (2.4.3): Let w0 = 16, w1, . . . , w5 ∈ R6 be a basis of
eigenvectors of Ared, i.e., Aredw j = λ jw j with λ j > 0 for j ∈ {1, . . . , 5}.
Any vector w ∈ W\{0} is of the form w = ∑5

j=0 c jw j with some c j0 �= 0,
j0 ∈ {1, . . . , 5}, since w0 �∈ W . This implies

w�Aredw =
5∑

j=1

λ j c
2
j ≥ λ j0c2

j0 > 0.

Theorem 2.4.3 Let x ∈ V2 be a vertex of the finite antitree G =
AT ((b, c, d, e)). If (c, d, e) = (1, 2, 3), we have in both the normalized and
non-normalized case:

KG,x (∞) > 0.

Proof. We consider again the matrix A = 4μ(x)2�2(x) and choose right from
the beginning (b, c, d, e) = (1, 2, 3, 4). It can be checked that this time the
matrix A is of the form A = (Ai j )1≤i, j≤5 with Ai j as in the previous proof
and a = 0. As in the previous proof, we conclude that A has eigenvalues
α3 = 27 + 30ε+ > 0 of multiplicity 2 and α5 = 1 + ε+ > 0 of multiplicity
3 and that A110 = 0. In this case, Ared is a symmetric 5 × 5 matrix and its
characteristic polynomial of Ared is (see Maple calculations in Appendix B)

χ(t) = det(tId5 − Ared) = t5 − 471

4
t4 + 118743

32
t3 − 593811

16
t2 + 3082725

64
t

in the normalized case and

χ(t) = t5 − 132t4 + 3684t3 − 25632t2 + 8640t

in the non-normalized case. The same arguments as in the previous proof
show that A is positive semi-definite with one-dimensional kernel, that is,
KG,x (∞) > 0.
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Theorem 2.4.4 Let x ∈ V1 be a vertex of the finite antitree G = AT (c, d, e).
If (c, d, e) = (1, 2, 3), we have in both the normalized and non-normalized
case:

KG,x (∞) > 0.

Proof. As in the previous proof, we consider the matrix A = 4μ(x)2�2(x)
and choose (c, d, e) = (1, 2, 3). This time A is of the form A = (Ai j )i, j∈I

with I = {1, 3, 4} and Ai j as in the proof of Theorem 2.4.2 with a = b = 0.
As before, we conclude that A has a simple eigenvalue α3 = 18 + 20ε+ > 0
and a double eigenvalue α5 = 2 + 2ε+ > 0 and A16 = 0. Ared is now a
symmetric 3×3 matrix with characteristic polynomial (see Maple calculations
in Appendix B)

χ(t) = t3 − 112

5
t2 + 144

5
t

in the normalized case and

χ(t) = t3 − 44t2 + 72t

in the non-normalized case. Similarly as before, this implies that A is positive
semi-definite with one-dimensional kernel, that is, KG,x (∞) > 0.

Remark 2.4.5 Alternatively, Theorem 2.4.4 could be proved, in the non-
normalized case, by employing the fact that the root of AT ((1, 2, 3)) is S1-out
regular. For the definition of this notion and the corresponding curvature
calculation, see [7, Definition 1.5 and Theorem 5.7].

The above theorems imply that the infinite antitree AT ((k)) has strictly pos-
itive Bakry–Émery curvature in all vertices. We finally prove that there is no
uniform positive lower curvature bound.

Theorem 2.4.6 Let G = AT ((k)) be the infinite antitree with vertex set V =⋃∞
k=1 Vk. Then we have both in the normalized and normalized setting

inf
x∈V

KG,x (∞) = 0.

Proof. Let us first consider the normalized setting. If we had infx∈V KG,x (∞) =
K > 0, then the discrete Bonnet–Myers theorem (Theorem 2.1.2 of the Intro-
duction) would imply that G has bounded diameter, which is a contradiction.
This argument does not work in the non-normalized setting. Let us now show
in the non-normalized setting that

lim
n→∞,x∈Vn

KG,x (∞) = 0.
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For δ > 0, let A(δ, n) = 4(�2(x) − δ�(x)) for an arbitrary vertex x ∈ Vn+2,
n ∈ N, with respect to the vertex order

B2(x) = {x} � (Vn+2\{x}) � Vn+3 � Vn+1 � Vn+4 � Vn .

The entries of 2�(x) in the non-normalized setting are given in [7, (2.2)], and
using this information, we see that that matrix A(δ, n) is of the following block
structure A(δ, n) = (Ai j (δ, n))1≤i, j≤6:

A11(δ, n) = (3n + 5)(3n + 8)− (6n + 10)δ,

A12(δ, n) = (−3n − 8+ 2δ)J1,n+1,

A13(δ, n) = (−4n − 12+ 2δ)J1,n+3,

A14(δ, n) = (−4n − 8+ 2δ)J1,n+1,

A15(δ, n) = (n + 3)J1,n+4,

A16(δ, n) = (n + 1)J1,n,

A22(δ, n) = (9n + 18− 2δ)Idn+1 − 2Jn+1,

A23(δ, n) = −2Jn+1,n+3,

A24(δ, n) = −2Jn+1,n+1,

A25(δ, n) = 0n+1,n+4,

A26(δ, n) = 0n+1,n,

A33(δ, n) = (8n + 26− 2δ)Idn+3 − 2Jn+3,

A34(δ, n) = 2Jn+3,n+1,

A35(δ, n) = −2Jn+3,n+4,

A36(δ, n) = 0n+3,n,

A44(δ, n) = (8n + 6− 2δ)Idn+1 − 2Jn+1,

A45(δ, n) = 0n+1,n+4,

A46(δ, n) = −2Jn+1,n,

A55(δ, n) = (n + 3)Idn+4,

A56(δ, n) = 0n+4,n,

A66(δ, n) = (n + 1)Idn .

Let δ > 0. Let λ j (δ, n), j ∈ {1, . . . , 5} be the eigenvalues of the 6× 6 matrix
A(δ, n)red . The characteristic polynomial of A(δ, n)red is of the form

χδ,n(t) = t6 − p5(δ, n)t
5 + p4(δ, n)t

4 − p3(δ, n)t
3 + p2(δ, n)t

2 − p1(δ, n)t,

with polynomials p1, p2, . . . , p5, and a Maple calculation shows that

p1(δ, n) = −240δn9 + q8(δ)n
8 + · · · + q1(δ)n + q0(δ), (2.4.4)



Curvature Calculations for Antitrees 39

with polynomials q0, q1, . . . , q8 (see Appendix C). By Vieta’s formulas, we
have

p1(δ, n) =
⎛⎝ 5∏

j=1

λ j (δ, n)

⎞⎠ ,
where λ j (δ, n), j = 1, . . . , 5 are the eigenvalues (in ascending order) of
A(δ, n)red restricted to the orthogonal complement to the eigenvector 16. We
conclude from (2.4.4) that there exists k0 > 0 with p1(δ, n) < 0 for all n ≥ n0,
i.e., λ1(δ, n) < 0. Applying Lemma 2.4.1, we conclude

(w̃)�A(δ, n)w̃ = w�A(δ, n)redw = λ1(δ, n)‖w‖2 < 0.

This implies that KG,x (∞) ∈ (0, δ) for every x ∈ Vn+2 with n ≥ n0.

2.5 Ollivier–Ricci Curvature of Antitrees

In this section, we calculate Ollivier–Ricci curvature for all idleness p ∈ [0, 1]
and the Lin–Lu–Yau curvature of all types of edges in antitrees.

Theorem 2.5.1 (Radial root-edges of an antitree) Let 1 ≤ a ≤ b ≤ c, {x, y}
a radial root edge of the antitree AT ((a, b, c)), that is, x ∈ V1, y ∈ V2. Then
we have:

(a) If a = 1,

κp(x, y) =
{

b−1
b+c + b+2c+1

b+c p if p ∈ [0, 1
b+c+1 ],

b+1
b+c (1− p), if p ∈ [ 1

b+c+1 , 1].
Therefore,

κL LY (x, y) = b + 1

b + c
.

(b) If a ≥ 3 or (a = 2 and b < c),
κp(x, y) = 1

(a+b−1)(a+b+c−1)⎧⎨⎩((a + b − 1)2 − c(a − 1))+ c(b + 2a − 2)p if p ∈ [0, 1
a+b+c ],

((a + b)(a + b − 1)− c(a − 1))(1− p), if p ∈ [ 1
a+b+c , 1].

Therefore,

κL LY (x, y) = (a + b)(a + b − 1)− c(a − 1)

(a + b − 1)(a + b + c − 1)
.
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(c) If a = 2, b = c,

κp(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b

2b+1 + 3b+2
2b+1 p if p ∈ [0, 1

(2b+1)(b+1)1 ],
b2+b+1

(2b+1)(b+1) + b2+2b
(2b+1)(b+1) p, if p ∈ [ 1

(2b+1)(b+1)+1 ,
1

2(b+1) ],
b2+2b+2
(2b+1)(b+1) (1− p), if p ∈ [ 1

2(b+1) , 1].
Therefore,

κL LY (x, y) = b2 + 2b + 2

(2b + 1)(b + 1)
.

Proof. (a) Consider the following graph

y′

v

zx′

with associated probability measures μp
1 , μ

p
2 , defined as

μ
p
1 (x
′) = p, μp

1 (y
′) = 1

b
(1− p), μp

1 (v) =
b − 1

b
(1− p), μp

1 (z) = 0,

μ
p
2 (x
′) = 1

b + c
(1− p), μp

2 (y
′) = p, μp

2 (v) =
b − 1

b + c
(1− p),

μ
p
2 (z) =

c

b + c
(1− p).

One can verify that, due to the high connectivity of AT ((a, b, c)),we have
W1(μ

p
x , μ

p
y ) = W1(μ

p
1 , μ

p
2 ), where x ′ represents the root x , y′ represents

the vertex y, the vertex v represents all neighbours of y in V2, and the
vertex z represents all vertices in V3.

Note that μp
1 (x
′) < μp

2 (x
′) if and only if p < 1

b+c+1 .We will distinguish
the cases.

Case p < 1
b+c+1 :

Note that

μ
p
1 (x
′) < μp

2 (x
′), μp

1 (z) < μ
p
2 (z),

μ
p
1 (y
′) > μp

2 (y
′), μp

1 (w) > μ
p
2 (w).

Thus when transporting μp
1 to μp

2 the only vertices that gain mass are x ′
and z. Note further all this mass can be transported over a distance of 1.
Thus
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W1(μ
p
x , μ

p
y ) = W1(μ

p
1 , μ

p
2 )

≤ μp
2 (x
′)+ μp

2 (z)− μp
1 (x
′)− μp

1 (z)

= c + 1

b + c
− b + 2c + 1

b + c
p.

We verify that this is in fact equality by constructing the following φ ∈
1−Lip,

φ(x ′) = 0, φ(y′) = 1, φ(w) = 1, φ(z) = 0.

Then, by Theorem 2.3.5,

W1(μ
p
x , μ

p
y ) = W1(μ

p
1 , μ

p
2 ) ≥

∑
v

φ(v)(μ
p
1 (v)− μp

2 (v))

= c + 1

b + c
− b + 2c + 1

b + c
p.

Therefore,

W1(μ
p
x , μ

p
y ) = c + 1

b + c
− b + 2c + 1

b + c
p.

and

κp(x, y) = b − 1

b + c
+ b + 2c + 1

b + c
p, (2.5.1)

for p ∈ [0, 1
b+c+1 ). By continuity of p �→ κp(x, y) this also holds for

p = 1
b+c+1 .

Case p ≥ 1
b+c+1 :

By [3, Theorem 4.4], κp(x, y) = b+c+1
b+c κ 1

b+c+1
(1− p) for p ∈ [ 1

b+c+1 , 1].
Thus

κp(x, y) =
⎧⎨⎩

b−1
b+c + b+2c+1

b+c p if p ∈ [0, 1
b+c+1 ],

b+c+1
b+c κ 1

b+c+1
(1− p), if p ∈ [ 1

b+c+1 , 1].

Therefore it only remains to show that b+c+1
b+c κ 1

b+c+1
= b+1

b+c .

We have, using (2.5.1),

b + c + 1

b + c
κ 1

b+c+1
= b + c + 1

b + c

(
b − 1

b + c
+ b + 2c + 1

b + c

1

b + c + 1

)
= b + 1

b + c
.
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(b) Similar to above we consider the simplified graph representing
AT ((a, b, c)),

y′

vu

zx′

with associated probability measures μp
1 , μ

p
2 , defined as

μ
p
1 (x
′) = p, μp

1 (y
′) = 1

a + b − 1
(1− p), μp

1 (u) =
a − 1

a + b − 1
(1− p),

μ
p
1 (v) =

b − 1

a + b − 1
(1− p), μp

1 (z) = 0,

μ
p
2 (x
′)= 1

a + b + c − 1
(1− p), μp

2 (y
′)= p, μp

2 (u)=
a − 1

a + b + c − 1
(1− p),

μ
p
2 (v) =

b − 1

a + b + c − 1
(1− p), μp

2 (z) =
c

a + b + c − 1
(1− p).

Again, one can verify that, due to the high connectivity of AT ((a, b, c)),
we have W1(μ

p
x , μ

p
y ) = W1(μ

p
1 , μ

p
2 ), where x ′ represents the root x , y′

represents the vertex y, the vertex u represents all neighbours of x in V1,

the vertex v represents all neighbours of y in V2, and the vertex z repre-
sents all vertices in V3.

Let p ∈ (0, 1
a+b+c ). One can check that

μ
p
1 (x
′) < μp

2 (x
′), μp

1 (z) < μ
p
2 (z),

μ
p
1 (y
′) > μp

2 (y
′), μp

1 (u) > μ
p
2 (u), μ

p
1 (v) > μ

p
2 (v).

Thus the vertices x ′ and z must gain mass and the vertices u, v, and y must
lose mass. We now show that some mass must be transported from u to z.
Suppose that no mass is moved from u to v. Then the mass available to
move from v and y′ will be sufficient when moved to z. Therefore

μ
p
1 (y
′)+ μp

1 (v)− μp
2 (y
′)− μp

2 (v) ≥ μp
2 (z)− μp

1 (z).

Substituting in the values of the measures and rearranging gives p ≤
a+b+c−ac−1

(a+b)(a+b−1)+bc ≤ 0, a contradiction. Therefore some mass must be trans-
ported from u to z over a distance of 2 and all other mass can be transported
over a distance of 1.
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Thus,

W1(μ
p
x , μ

p
y ) = W1(μ

p
1 , μ

p
2 )

≤ (μp
2 (x)−μp

1 (x))+ 2(μp
1 (u)−μp

2 (u)−(μp
2 (x)− μp

1 (x)))

+ (μp
1 (y
′)+ μp

1 (v)− μp
2 (y
′)− μp

2 (v))

= (1− p)

(
a − 1

a + b − 1
+ c + 1− a

a + b + c − 1

)
.

We verify that this is in fact equality by constructing the following φ ∈
1-Lip,

φ(x ′) = 0, φ(y′) = 0, φ(u) = 1, φ(v) = 0, φ(z) = −1.

Therefore,

κp(x, y) = 1− (1− p)

(
a − 1

a + b − 1
+ c + 1− a

a + b + c − 1

)
= ((a + b − 1)2 − c(a − 1))+ (bc + 2c(a − 1))p

(a + b − 1)(a + b + c − 1)
,

for p ∈ (0, 1
a+b+c ).

As before, by [3, Theorem 4.4], κp(x, y) = a+b+c
a+b+c−1κ 1

a+b+c
(1 − p) for

p ∈ [ 1
a+b+c , 1]. Therefore,

a + b + c

a + b + c − 1
κ 1

a+b+c
= (a + b)(a + b − 1)− c(a − 1)

(a + b − 1)(a + b + c − 1)
,

thus completing the proof.
(c) As in part (b) we consider the simplified graph representing AT ((a, b, c)),

y′

vu

zx′

with the same associated probability measures μp
1 , μ

p
2 , defined as

μ
p
1 (x
′) = p, μp

1 (y
′) = 1

a + b − 1
(1− p), μp

1 (u) =
a − 1

a + b − 1
(1− p),

μ
p
1 (v) =

b − 1

a + b − 1
(1− p), μp

1 (z) = 0,
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μ
p
2 (x
′) = 1

a + b + c − 1
(1− p), μp

2 (y
′) = p,

μ
p
2 (u) =

a − 1

a + b + c − 1
(1− p),

μ
p
2 (v) =

b − 1

a + b + c − 1
(1− p), μp

2 (z) =
c

a + b + c − 1
(1− p).

Again, one can verify that, due to the high connectivity of AT ((a, b, c)),
we have W1(μ

p
x , μ

p
y ) = W1(μ

p
1 , μ

p
2 ), where x ′ represents the root x , y′

represents the vertex y, the vertex u represents all neighbours of x in V1,

the vertex v represents all neighbours of y in V2, and the vertex z represents
all vertices in V3.

We will distinguish the cases.

Case p ∈ (0, 1
(2b+1)(b+1)1 ) :

One can check that

μ
p
1 (x
′) < μp

2 (x
′), μp

1 (z) < μ
p
2 (z),

μ
p
1 (y
′) > μp

2 (y
′), μp

1 (u) > μ
p
2 (u), μ

p
1 (v) > μ

p
2 (v),

and

μ
p
1 (y
′)+ μp

1 (v)− μp
2 (y
′)− μp

2 (v) ≥ μp
2 (z)− μp

1 (z).

Thus the vertices x ′ and z must gain mass and the vertices u, v, and y must
lose mass and it is possible for all mass to be moved over a distance of 1.

Thus,

W1(μ
p
x , μ

p
y ) = W1(μ

p
1 , μ

p
2 )

≤ μp
2 (x
′)+ μp

2 (z)− μp
1 (x
′)− μp

1 (z)

= b + 1

2b + 1
− 3b + 2

2b + 1
p.

We verify that this is in fact equality by constructing the following φ ∈
1−Lip,

φ(x ′) = −1, φ(y′) = 0, φ(u) = 0, φ(v) = 0, φ(z) = −1.

Therefore,

κp(x, y) = b

2b + 1
+ 3b + 2

2b + 1
p.
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Case p ∈ ( 1
(2b+1)(b+1)+1 ,

1
2(b+1) ) :

One can check that we still have

μ
p
1 (x
′) < μp

2 (x
′), μp

1 (z) < μ
p
2 (z),

μ
p
1 (y
′) > μp

2 (y
′), μp

1 (u) > μ
p
2 (u), μ

p
1 (v) > μ

p
2 (v)

However we now have

μ
p
1 (y
′)+ μp

1 (v)− μp
2 (y
′)− μp

2 (v) ≤ μp
2 (z)− μp

1 (z).

Thus, as in part (b), some mass must be transported from u to z over a
distance of 2 and all other mass can be transported over a distance of 1.

Therefore,

W1(μ
p
x , μ

p
y ) =W1(μ

p
1 , μ

p
2 )

≤ (μp
2 (x)−μp

1 (x))+ 2(μp
1 (u)−μp

2 (u)− (μp
2 (x)−μp

1 (x)))

+ (μp
1 (y
′)+ μp

1 (v)− μp
2 (y
′)− μp

2 (v))

= (1− p)

(
1

b + 1
+ b − 1

2b + 1

)
.

We verify that this is in fact equality by constructing the following φ ∈
1−Lip,

φ(x ′) = 0, φ(y′) = 0, φ(u) = 1, φ(v) = 0, φ(z) = −1.

Therefore,

κp(x, y) = b2 + b + 1

(2b + 1)(b + 1)
+ b2 + 2b

(2b + 1)(b + 1)
p.

Case p ∈ ( 1
2(b+1) , 1): As before, by [3, Theorem 4.4], κp(x, y) =

2(b+1)
2b+1 κ 1

2(b+1)
(1− p) for p ∈ [ 1

2(b+1) , 1]. Thus

2(b + 1)

2b + 1
κ 1

2(b+1)
= b2 + 2b + 2

(2b + 1)(b + 1)
,

thus completing the proof.

Theorem 2.5.2 (Inner radial edges of an antitree) Let 1 ≤ a ≤ b ≤ c ≤ d,
{x, y} an inner radial edge of the antitree AT ((a, b, c, d)), that is x ∈ V2, y ∈
V3. Then we have:

κp(x, y) =
(

2b + c − 1

b + c + d − 1
− 2a + b − 1

a + b + c − 1

)
(1− p).
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Proof. We first calculate κ0(x, y).We consider the simplified graph represent-
ing AT ((a, b, c, d)),

y′

vu

zx′w

with the associated probability measures μ1, μ2, defined as

μ1(x
′) = 0, μ1(y

′) = 1

a + b + c − 1
, μ1(w) = a

a + b + c − 1
,

μ1(u) = b − 1

a + b + c − 1
, μ1(v) = c − 1

a + b + c − 1
, μ1(z) = 0,

μ2(x
′) = 1

b + c + d − 1
, μ2(y

′) = 0, μ2(w) = 0,

μ2(u) = b − 1

b + c + d − 1
, μ2(v) = c − 1

b + c + d − 1
, μ2(z) = d

b + c + d − 1
.

Again, one can verify that, due to the high connectivity of AT ((a, b, c, d)),
we have W1(μ

0
x , μ

0
y) = W1(μ1, μ2), where x ′ represents the vertex x , y′ rep-

resents the vertex y, the vertex w represents all the vertices in V1, the vertex u
represents all neighbours of x in V2, the vertex v represents all neighbours of
y in V3, and the vertex z represents all vertices in V4.

Observe that

μ1(x
′) < μ2(x

′), μ1(z) < μ2(z), μ1(u) < μ2(u), μ1(v) < μ2(v),

μ1(y
′) > μ2(y

′), μ1(w) > μ2(w).

Therefore the only vertices that gain mass are x ′ and z.Now,μ1(w)−μ2(w) =
a

a+b+c−1 ≥ 1
b+c+d−1 = μ2(x ′)−μ1(x ′), and so it is possible for x ′ to receive

all of its needed mass from w. If we do this plan and send all other surplus
mass to the vertex z we obtain

W1(μ
p
x , μ

p
y ) =W1(μ

p
1 , μ

p
2 )

≤ (μ2(x
′)− μ1(x

′))+ 3(μ1(w)− [μ2(x
′)

− μ1(x
′)] − μ2(w))+ 2(μ1(u)− μ2(u))

+ (μ1(v)− μ2(v))+ (μ1(y
′)− μ2(y

′))

= 3a + 2b + c − 2

a + b + c − 1
− 2b + c − 1

b + c + d − 1
.
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We verify that this is in fact equality by constructing the following φ ∈ 1−Lip,

φ(w) = 3, φ(x ′) = 2, φ(u) = 2, φ(y′) = 1, φ(v) = 1, φ(z) = 0.

Thus,

κ0(x, y) = 2b + c − 1

b + c + d − 1
− 2a + b − 1

a + b + c − 1
.

Observe that φ(x ′) − φ(y′) = 1 and thus, by [3, Lemma 4.2], we have that
p �→ κp(x, y) is linear. Since κ1(x, y) = 0, this gives

κp(x, y)

(
2b + c − 1

b + c + d − 1
− 2a + b − 1

a + b + c − 1

)
(1− p)

Theorem 2.5.3 (Spherical root edges of an antitree) Let 2 ≤ a ≤ b, {x, y} a
spherical root edge of the antitree AT ((a, b)), that is x, y ∈ V1. Then

κp(x, y) =
⎧⎨⎩

a+b−2
a+b−1 + a+b

a+b−1 p if p ∈ [0, 1
a+b ],

a+b
a+b−1 (1− p), if p ∈ [ 1

a+b , 1].
Proof. Since dx = dy, by [3, Theorem 5.3], we have

κp(x, y) ={
((a + b − 1)κL LY (x, y)− (a + b)κ0(x, y))p + κ0(x, y), if p ∈ [0, 1

a+b ],
(1− p)κL LY (x, y), if p ∈ [ 1

a+b , 1].
Therefore we will calculate κp(x, y) for p = 0 and p = 1

a+b .

Observe that μ0
x (y) = 1

a+b−1 and 0 otherwise, and μ0
y(x) = 1

a+b−1 and 0
otherwise. Thus we have

W1(μ
0
x , μ

0
y) =

1

a + b − 1
,

and so

κ0(x, y) = a + b − 2

a + b − 1
.

Note that

μ
1

a+b
x ≡ μ

1
a+b
y ,

so

κL LY (x, y) = a + b

a + b − 1
κ 1

a+b
(x, y) = a + b

a + b − 1
.

Substituting these values into the above formula completes the proof.
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Theorem 2.5.4 (Spherical inner edges of an antitree) Let 1 ≤ a ≤ b ≤ c,
{x, y} a spherical inner edge of the antitree AT ((a, b, c)), that is x, y ∈ V2.

Then

κp(x, y) =
⎧⎨⎩

a+b+c−2
a+b+c−1 + a+b+c

a+b+c−1 p if p ∈ [0, 1
a+b+c ],

a+b+c
a+b+c−1 (1− p), if p ∈ [ 1

a+b+c , 1].
Proof. The proofs follows in the same way as in the proof of Theorem 2.5.3.
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Appendices

A Maple Calculations for Theorem 2.4.2

In the normalized case, the Maple code to construct the matrix Ared =
4μ2

x�2,red(x) for x ∈ V3 ∼= Kc of AT ((a, b, c, d, e)) is the following:

Figure 2.4 Maple construction of Ared in the normalized case

For the generation of the coefficients of the characteristic polynomial χn(t)
of Ared for a = n, b = n + 1, c = n + 2, d = n + 3, e = n + 4, see
Figure 2.5. Note that there are no negative coefficients in the polynomials
p1(n), p2(n), p3(n), p4(n), and p5(n).

The only modification of the above code in the non-normalized case is
to set the variables eminus and eplus equal to 0. The coefficients of
χn(t) for a = n, b = n + 1, c = n + 2, d = n + 3, e = n + 4 are
given in Figure 2.6. Again, all coefficients of p j (n), j = 1, 2, 3, 4, 5, are
non-negative.
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Figure 2.5 Coefficients of χn(t) = det(tId6 − Ared), normalized case

Figure 2.6 Coefficients of χn(t) = det(tId6 − Ared), non-normalized case

B Maple Calculations for Theorems 2.4.3 and 2.4.4

For the Maple calculations needed for the proofs of these theorems, the code of
Figure 2.4 is used again, followed by the code in Figure 2.7 (in the normalized
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Figure 2.7 Calculation of χ(t) = det(tId − Ared) for Theorems 2.4.3 and 2.4.4,
normalized case

case). The reduced matrices Ared are here of dimension 5 and 3, respectively,
and they can be extracted from the original 6 × 6 matrix as sub-matrices
with specific choices for a, b, c, d, e. The crucial observation here is that the
coefficients of the respective characteristic polynomials of degree 5 and 3 are
alternating, guaranteeing that all non-zero roots are strictly positive. As before,
the non-normalized case is treated analogously with the small modification to
set the variables eminus and eplus equal to 0. This leads again to char-
acteristic polynomials with alternating coefficients, given in the proofs of the
theorems as

χ(t) = t5 − 132t4 + 3684t3 − 25632t2 + 8640t

and

χ(t) = t3 − 44t2 + 72t.
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C Maple Calculations for Theorem 2.4.6

Using the information about (Ai j (δ, n)) in the proof of Theorem 2.4.6, the
Maple code to calculate the relevant polynomial p1(δ, n) is given in Figure 2.8.

Figure 2.8 Calculation of p1(δ, n) in the proof of Theorem 2.4.6
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