Using program schemes to logically capture polynomial-time on certain classes of structures

Iain A. Stewart*, Department of Computer Science, University of Durham, Durham DH1 3LE, U.K.

Abstract

We continue the study of the expressive power of certain classes of program schemes on finite structures, in relation to more mainstream logics studied in finite model theory and to computational complexity. We show that there exists a program scheme, whose constructs are assignments and while-loops with quantifier-free tests and which has access to a stack, that can accept a \mathbf{P}-complete problem, the deterministic path system problem, even in the absence of non-determinism so long as problem instances are presented in a functional style. (Our proof leans heavily on Cook's proof that the classes of formal languages accepted by deterministic and non-deterministic logspace auxiliary pushdown machines coincide). However, whilst our result is of independent interest, as it leads to a deterministic model of computation capturing \mathbf{P} whose non-deterministic variant also captures \mathbf{P}, we then show how our constructed program scheme can be used to build a successor relation in certain classes of structures, namely: the class of strongly-connected locally-ordered digraphs; the class of connected planar embeddings; and the class of triangulations, with the consequence that on these classes of graphs, (a fragment of) path system logic (with no built-in relations) captures exactly the polynomial-time solvable problems.

1 Introduction

One of the central open problems in finite model theory is whether there is a logic for capturing the complexity class \mathbf{P} (polynomial-time); that is, whether there is a logic such that the class of problems definable in this logic coincides with the class of polynomial-time solvable problems. Of course, one has to be precise about what one means by a 'logic' (the generally accepted definition is given in, for example, [9]) but one sensible property that any logic should have is that it should have a recursive syntax; that is, the well-formed formulae of any logic should be recursively enumerable.

[^0]This property immediately rules out all existing 'logical' characterisations of \mathbf{P} based around 'logics' with built-in relations, such as inflationary fixed-point logic with a built-in successor relation [4] and path system logic with a built-in successor relation [12]. (Throughout, for convenience, we try to use [4] as our main reference text for definitions and results in finite model theory and descriptive complexity, and the reader is referred to this text for more details on the proper attribution of results.)

Working on the assumption that there is a logic capturing \mathbf{P}, one can approach this central problem in two directions. One can try and develop more and more expressive logics (but where the expressibility stays within polynomial-time) and hope that eventually a logic capturing \mathbf{P} will emerge; or one can consider existing logics, such as inflationary fixed-point logic and path system logic (in the absence of built-in relations) and try to capture \mathbf{P} on certain classes of finite structures, in the hope that eventually such characterisations will show exactly what has to be added to one of these logics (and still retain the property of being a logic) so as to capture \mathbf{P}. Of course, it may be the case that there does not exist a logic capturing \mathbf{P} (with the consequence that $\mathbf{P} \neq \mathbf{N P}$). If this is so then it is clearly worthwhile to discover on which classes of finite structures and for which logics \mathbf{P} can be logically captured. It is essentially with this question that we are concerned here.

Existing results regarding capturing \mathbf{P} on restricted classes of structures are all concerned with inflationary fixed-point logic. In particular: Immerman and Lander [8] proved that inflationary fixed-point logic with counting (that is, where there is an additional universe of numbers and a total ordering on this universe) captures \mathbf{P} on the class of trees; and Grohe [6] and Grohe and Mariño [7] proved that this same logic does likewise on the class of planar graphs and the class of graphs of bounded treewidth, respectively. Grohe [6] also proved that inflationary fixed-point logic (without counting) captures \mathbf{P} on the class of 3 -connected planar graphs. In this paper, we show that a fragment of path system logic, which itself is a proper fragment of inflationary fixed-point logic (even on the class of trees) suffices to capture \mathbf{P} on the following classes of structures: strongly-connected locally-ordered digraphs; connected planar embeddings; and triangulations. The class of triangulations (that is, the class of planar graphs having a planar embedding whose faces, including the outer face, are all cycles of length 3) forms a (significant) proper sub-class of the class of 3 -connected planar graphs, and so one might interpret our result as a strengthening of Grohe's result for this class of graphs (we do not as yet know whether it is the case that path system logic captures \mathbf{P} on the class of 3 -connected planar graphs).

Our results, mentioned in the preceding paragraph, are applications of another result in this paper concerning program schemes. Program schemes are essentially a model of computation that is amenable to logical analysis yet is closer to the general notion of a program than a logical formula is. They were extensively studied in the seventies, without much regard being paid to an analysis of resources, before a closer complexity analysis was undertaken in, mainly, the eighties. There are connections between program schemes and logics of programs, especially dynamic logic. Program schemes have since been further developed to work on finite structures, mindful of advances in finite model theory (see, for example, $[1,13,14]$ for more details). One
appealing characteristic of program schemes is that they form a model of computation for computing on unordered data.

Our main result involving program schemes is that there is a deterministic program scheme ρ, whose constructs are assignments and while-loops with quantifier-free tests and which has access to a stack, that accepts a \mathbf{P}-complete problem, the deterministic path system problem, if the instances of this problem are presented as finite structures over a signature consisting of a binary function symbol and two constant symbols. Our proof is very close in essence to Cook's proof [2] that the classes of formal languages accepted by deterministic and non-deterministic logspace auxiliary pushdown machines coincide (it is, however, much more rigorously presented than Cook's proof). Whilst our result is of independent interest, as it leads to a deterministic model of computation capturing \mathbf{P} whose non-deterministic variant also captures \mathbf{P}, the actual program scheme ρ, above, allied with results from [1] linking similar program schemes with path system logic, enables us to canonically build a successor relation in any graph from one of the classes mentioned above. Thus, we can logically capture \mathbf{P} on these classes of graphs.

In the next section, we give the basic definitions pertaining to finite model theory and program schemes, before proving in Section 3 that we can solve the deterministic path system problem in the manner described above. Our applications are detailed in Section 4, and we present our conclusions in Section 5.

2 Preliminaries

Ordinarily, a signature σ is a tuple $\left\langle R_{1}, \ldots, R_{r}, C_{1}, \ldots, C_{c}\right\rangle$, where each R_{i} is a relation symbol, of arity a_{i}, and each C_{j} is a constant symbol. However, we sometimes allow our signatures to also contain function symbols. When we do, we explicitly denote that this is the case by referring to the signature as σ^{\prime}; that is, we use a superscript ' to denote signatures which might contain function symbols. Consequently, definitions, theorems and the like might apply only to signatures σ not involving function symbols or they might apply to signatures σ^{\prime} where function symbols are allowed (though not necessarily present). For example, first-order logic over some signature $\sigma, \mathrm{FO}(\sigma)$, consists of those formulae built from atomic formulae over σ using $\wedge, \vee, \neg, \forall$ and \exists; and $\mathrm{FO}=\cup\{\mathrm{FO}(\sigma): \sigma$ is some signature $\}$. Thus, according to our notation, we have defined $\mathrm{FO}(\sigma)$ and FO only for signatures not containing function symbols. Of course, first-order logic can be defined over signatures containing function symbols; however, our definition suffices for our needs. The same can be said of other subsequent definitions.

A finite structure \mathcal{A} over the signature σ, or σ-structure, consists of a finite universe or domain $|\mathcal{A}|$ together with a relation R_{i} of arity a_{i}, for every relation symbol R_{i} of σ, of arity a_{i}, and a constant $C_{j} \in|\mathcal{A}|$ for every constant symbol C_{j} (by an abuse of notation, we do not distinguish between constants or relations and constant or relation symbols). If \mathcal{A} is a finite σ^{\prime}-structure, for some signature σ^{\prime} (possibly containing function symbols, note) then in addition to the above, for every function symbol F_{i} of arity b_{i}, there is a total function $F_{i}:|\mathcal{A}|^{b_{i}} \rightarrow|\mathcal{A}|$.

A finite structure \mathcal{A} whose domain consists of n distinct elements has size n, and we denote the size of \mathcal{A} by $|\mathcal{A}|$ also (this does not cause confusion). We only ever consider finite structures of size at least 2, and the set of all finite structures over the signature σ^{\prime} of size at least 2 is denoted $\operatorname{STRUCT}\left(\sigma^{\prime}\right)$. A problem over some signature σ^{\prime} consists of a subset of $\operatorname{STRUCT}\left(\sigma^{\prime}\right)$ that is closed under isomorphism; that is, if \mathcal{A} is in the problem then so is every isomorphic copy of \mathcal{A}. Throughout, all our structures are finite.

We are now in a position to consider the class of problems defined by the sentences of FO: we denote this class of problems by FO also, and do likewise for other logics. It is widely acknowledged that, as a means for defining problems, first-order logic leaves a lot to be desired especially when we have in mind developing a relationship between computational complexity and logical definability. In particular, every firstorder definable problem can be accepted by a logspace deterministic Turing machine yet there are problems in \mathbf{L} (logspace) which can not be defined in first-order logic (one such being the problem consisting of all those structures over the empty signature that have even size). Consequently, we now illustrate one way of increasing the expressibility of FO: we augment FO with a uniform or vectorized sequence of Lindström quantifiers, or operator for short (the reader is referred to [4] for a fuller exposition on the limitations of FO and on a number of different methods, including this one, for increasing the expressibility of FO).

Our illustration uses an operator derived from a problem whose underlying instances can be regarded as path systems. A path system consists of a finite set of vertices and a finite set of rules, each of the form (x, y, z), where x, y and z are (not necessarily distinct) vertices. There is a unique distinguished vertex called the source and a unique distinguished vertex called the sink. The set of accessible vertices in any path system is built as follows. Initially, the source is deemed to be accessible and new vertices are shown to be accessible by applying the rules via: if x and y are accessible (with possibly $x=y)$ and there is a rule (x, y, z) then z becomes accessible. The path system problem consists of all those path systems for which the sink is accessible from the source, and it was the first problem to be shown to be complete for \mathbf{P} via logspace reductions [2].

We encode the path system problem as a problem over the signature σ_{3} which consists of the relation symbol R of arity 3 and the constant symbols source and sink. A σ_{3}-structure \mathcal{P} can be thought of as a path system where the vertices of the path system are given by $|\mathcal{P}|$, the source is given by source, the sink is given by sink and the rules of the path system are given by $\{(x, y, z): R(x, y, z)$ holds in $\mathcal{P}\}$. Hence, we define the problem PS as

$$
\begin{aligned}
\left\{\mathcal{P} \in \operatorname{STRUCT}\left(\sigma_{3}\right):\right. & \text { the vertex sink is accessible from the vertex } \\
& \text { source in the path system } \mathcal{P}\} .
\end{aligned}
$$

Let us return to increasing the expressibility of FO. Corresponding to the problem PS is an operator of the same name. The logic $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$, or path system logic, is the closure of FO under the usual first-order connectives and quantifiers and also the operator PS, with PS applied as follows.

Given a formula $\varphi(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in(\pm \mathrm{PS})^{*}[\mathrm{FO}]$ over the signature σ, where the variables of the k-tuples \mathbf{x}, \mathbf{y} and \mathbf{z}, for some $k \geq 1$, are all distinct and free in φ, the formula Φ defined as $\operatorname{PS}[\lambda \mathbf{x}, \mathbf{y}, \mathbf{z} \varphi](\mathbf{u}, \mathbf{v})$, where \mathbf{u} and \mathbf{v} are k-tuples of (not necessarily distinct) constant symbols and variables, is also a formula of $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$, with the free variables of Φ being those variables in \mathbf{u} and \mathbf{v} together with the free variables of φ different from those in the tuples \mathbf{x}, \mathbf{y} and \mathbf{z}. If Φ is a sentence then it is interpreted in a structure $\mathcal{A} \in \operatorname{STRUCT}(\sigma)$ as follows. We build a path system with vertex set $|\mathcal{A}|^{k}$ and set of rules

$$
\left\{(\mathbf{a}, \mathbf{b}, \mathbf{c}) \in|\mathcal{A}|^{k} \times|\mathcal{A}|^{k} \times|\mathcal{A}|^{k}: \varphi(\mathbf{a}, \mathbf{b}, \mathbf{c}) \text { holds in } \mathcal{A}\right\}
$$

and say that $\mathcal{A} \models \Phi$ if, and only if, the sink \mathbf{v} is accessible in this path system from the source \mathbf{u} (the semantics can easily be extended to arbitrary formulae of $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$: see, for example, [4] for a more detailed semantic definition of operators such as PS). Note that $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$ defines a class of problems over signatures not containing function symbols. Note also that there is nothing special about the problem PS: any problem can be converted into an operator and used to extend first-order logic. Syntactically, such logics are very similar although their semantics depend on the operator in hand.

It is indeed the case that we have increased expressibility as we can define problems in $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$ which can not be defined in FO (a simple Ehrenfeucht-Fraïssé game shows that PS is not definable in FO: see [4] for more on such games). In the presence of a built-in successor relation, we can obtain a precise complexity-theoretic characterisation of the problems definable in $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$. We say that we have a built-in successor relation if no matter over which signature we happen to be working, there is always a binary relation symbol succ and two constant symbols 0 and max available such that this relation symbol succ is always interpreted as a successor relation, of the form $\left\{\left(a_{0}, a_{1}\right),\left(a_{1}, a_{2}\right), \ldots,\left(a_{n-2}, a_{n-1}\right)\right\}$, in a structure of size n, where all the a_{i} 's are distinct and $a_{0}=0$ and $a_{n-1}=\max$. Note that whether a structure satisfies a sentence in which the relation symbol succ or the constant symbols 0 or max appear might depend upon the particular successor relation chosen as the interpretation for succ. Consequently, we only consider those sentences of $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$ with a built-in successor relation which define problems as being well-formed; that is, those sentences for which satisfaction is independent of the particular interpretation chosen for succ. We denote the logic $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$ with a built-in successor relation by $(\pm \mathrm{PS})^{*}\left[\mathrm{FO}_{s}\right]$. As to whether $(\pm \mathrm{PS})^{*}\left[\mathrm{FO}_{s}\right]$ should really be called a logic is highly debatable (for example, it is undecidable as to whether a sentence of $(\pm \mathrm{PS})^{*}\left[\mathrm{FO}_{s}\right]$ is order-invariant, i.e., satisfies the property we want as regards succ, and so this 'logic' does not have a recursive syntax), and the reader is referred to [4] and [9] for a detailed discussion of this and related points.

Theorem 1 [12] A problem over the signature σ is in \mathbf{P} if, and only if, it can be defined in $(\pm P S)^{*}\left[F O_{s}\right]$. Moreover, any problem in $(\pm P S)^{*}\left[F O_{s}\right]$ can be defined by a sentence of the form:

$$
P S[\lambda \mathbf{x}, \mathbf{y}, \mathbf{z} \varphi(\mathbf{x}, \mathbf{y}, \mathbf{z})](\mathbf{0}, \mathbf{m a x}),
$$

where: $|\mathbf{x}|=|\mathbf{y}|=|\mathbf{z}|=k$, for some $k \geq 1 ; \mathbf{0}$ (resp. $\mathbf{m a x}$) is the constant symbol 0 (resp. max) repeated k times; and φ is a quantifier-free formula of $F O_{s}$.

Our notation for $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$ is such that \pm denotes the fact that applications of the operator PS can appear within the scope of negation signs and * denotes the fact that we are allowed to nest applications of PS as many times as we like. The fragment $(\pm \mathrm{PS})^{k}[\mathrm{FO}]$, for some $k \geq 1$, is obtained by allowing at most k nestings of applications of PS, and the fragment $\mathrm{PS}^{k}[\mathrm{FO}]$ is obtained by further disallowing any application of PS to appear within the scope of a negation sign. Hence, by Theorem $1, \mathbf{P}=\mathrm{PS}^{1}\left[\mathrm{FO}_{s}\right]$.

The class of problems $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$ is also intimately related with the class of problems accepted by certain program schemes which have access to a stack. A program scheme $\rho \in \operatorname{NPSS}(1)$ involves a finite set $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ of variables, for some $k \geq 1$, and is over a signature σ^{\prime}. It consists of a finite sequence of instructions where each instruction, apart from the first and the last, is one of the following:

- an assignment instruction of the form ' $x_{i}:=y$ ', where $i \in\{1,2, \ldots, k\}$ and where y is a variable from $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, a constant symbol of σ^{\prime} or one of the special constant symbols 0 and max which do not appear in any signature;
- an assignment instruction of the form ' $x_{i}:=F\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ ', where: $i \in\{1,2$, $\ldots, k\}$; each y_{j} is a variable from $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, a constant symbol of σ^{\prime} or one of the special constant symbols 0 and max; and F is a function symbol of σ^{\prime} of arity m;
- a guess instruction of the form 'GUESS x_{i} ', where $i \in\{1,2, \ldots, k\}$;
- a while instruction of the form 'WHILE t DO $\alpha_{1} ; \alpha_{2} ; \ldots ; \alpha_{q}$ OD', where t is a quantifier-free formula of $\mathrm{FO}(\sigma \cup\{0, \max \})$, with σ the signature σ^{\prime} minus any function symbols, whose free variables are from $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and where each of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}$ is another instruction of a form given here (note that there may be nested while instructions); or
- a stack instruction of the form ' $x_{i}:=\mathrm{POP}$ ' or 'PUSH x_{i} ', where $i \in\{1,2, \ldots, k\}$.

The first instruction of ρ is ' $\operatorname{INPUT}\left(x_{1}, x_{2}, \ldots, x_{l}\right)$ ' and the last instruction is ' $\operatorname{OUTPUT}\left(x_{1}, x_{2}, \ldots, x_{l}\right)$ ', for some l where $1 \leq l \leq k$. The variables $x_{1}, x_{2}, \ldots, x_{l}$ are the input-output variables of ρ, the variables $x_{l+1}, x_{l+2}, \ldots, x_{k}$ are the free variables of ρ and, further, any free variable of ρ never appears on the left-hand side of an assignment instruction, in a POP instruction nor in a guess instruction. Essentially, free variables appear in ρ as if they were constant symbols.

A program scheme $\rho \in \operatorname{NPSS}(1)$ over σ^{\prime} with s free variables, say, takes a σ^{\prime} structure \mathcal{A} and s additional values from $|\mathcal{A}|$, one for each free variable of ρ, as input; that is, an expansion \mathcal{A}^{\prime} of \mathcal{A} by adjoining s additional constants. The program scheme ρ computes on \mathcal{A}^{\prime} in the obvious way except that the POP and PUSH instructions provide access to a stack and:

- execution of the instruction 'GUESS x_{i} ' non-deterministically assigns an element of $|\mathcal{A}|$ to the variable x_{i};
- when the instruction 'PUSH x_{i} ' is encountered in some program scheme, the value of the variable x_{i} is placed on the top of the stack (so increasing the height of the stack by 1) but so that x_{i} retains its value, and when the instruction ' $x_{i}:=$ POP' is encountered, the value on the top of the stack is removed (so decreasing the height of the stack by 1) and the variable x_{i} assumes this value (if the stack is empty when the instruction ' $x_{i}:=\mathrm{POP}$ ' is encountered then the computation halts);
- the constants 0 and max are interpreted as two arbitrary but distinct elements of $|\mathcal{A}|$; and
- initially, every input-output variable is assumed to have the value 0 .

Note that throughout a computation of ρ, the value of any free variable does not change. The expansion \mathcal{A}^{\prime} of the structure \mathcal{A} is accepted by ρ, and we write $\mathcal{A}^{\prime} \models \rho$, if, and only if, there exists a computation of ρ on this expansion such that the output-instruction is reached with all input-output variables having the value max. (We can easily build the usual 'if' and 'if-then-else' instructions using while instructions: see, for example, [11]. Henceforth, we shall assume that these instructions are at our disposal.)

We want the sets of structures accepted by our program schemes to be problems, i.e., closed under isomorphism, and so we only ever consider program schemes ρ where a structure is accepted by ρ when 0 and max are given two distinct values from the universe of the structure if, and only if, it is accepted no matter which pair of distinct values is chosen for 0 and max. Let us reiterate: when we say that ρ is a program scheme of NPSS(1) we mean that ρ accepts a problem and the acceptance of any input structure does not depend upon the pair of distinct values we give to 0 and max. This is analogous to how we build a successor relation into a logic. Indeed, we can build a successor relation into our program schemes of $\operatorname{NPSS}(1)$, so as to obtain the class of program schemes $\operatorname{NPSS}_{s}(1)$, or alternatively we can build two constants into our logics. As with our logics, we write $\operatorname{NPSS}(1)$ and $\operatorname{NPSS}_{s}(1)$ to also denote the class of problems accepted by the program schemes of $\operatorname{NPSS}(1)$ and $\operatorname{NPSS}_{s}(1)$, respectively. The reader is referred to [1] for more details on program schemes such as those of NPSS(1) and for some illustrative examples.

Theorem 2 [1]
(a) A problem over some signature σ is in NPSS(1) if, and only if, it can be defined by a sentence of $(\pm P S)^{*}[F O]$ with two built-in constants, of the form:

$$
P S[\lambda \mathbf{x}, \mathbf{y}, \mathbf{z} \varphi(\mathbf{x}, \mathbf{y}, \mathbf{z})](\mathbf{0}, \mathbf{m a x}),
$$

where: $|\mathbf{x}|=|\mathbf{y}|=|\mathbf{z}|=k$, for some $k \geq 1 ; \mathbf{0}$ (resp. $\mathbf{m a x}$) is the constant symbol 0 (resp. max) repeated k times; and φ is quantifier-free first-order.
(b) A problem over some signature σ is in \mathbf{P} if, and only if, it can be accepted by a program scheme of $N P S S_{s}(1)$.

It was also proven in [1] that the class of problems defined by the sentences of $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$ with two built-in constants is identical to the class of problems accepted by a (proper infinite) hierarchy of classes of program schemes, the first level of which is $\operatorname{NPSS}(1)$ (hence our notation).

3 Deterministic path systems

Theorem 2 provides yet another characterisation of the complexity class P. However, this characterisation is different in flavour from most characterisations of \mathbf{P} in that it equates \mathbf{P} with the class of problems accepted by a 'non-deterministic' model of computation; namely the program schemes of $\operatorname{NPSS}_{s}(1)$. One question which immediately arises is: 'What can we say about the problems accepted by those program schemes of $\operatorname{NPSS}_{s}(1)$ in which the guess instruction does not appear?' The immediate response to this question is that without the ability to guess, no program scheme of $\operatorname{NPSS}_{s}(1)$ can accept any 'non-trivial' problem. However, by representing our built-in successor relation in a functional style we can make this question meaningful. Instead of having a built-in successor relation, let us assume that there is a built-in successor function and assignment instructions of the form ' $x_{i}:=\operatorname{succ}\left(x_{j}\right)$ ' (of course, we still have 0 and \max denoting the least and greatest elements of the ordering, respectively). Clearly, whether we have a built-in successor relation or a built-in successor function does not alter the class of problems accepted by the program schemes of $\operatorname{NPSS}_{s}(1)$.

Denote the class of program schemes of NPSS(1) in which the guess instruction does not appear by $\operatorname{DPSS}(1)$, with $\mathrm{DPSS}_{s}(1)$ defined likewise. Note that it makes no sense to consider program schemes of DPSS(1) over signatures involving only relation and constant symbols; as again no 'non-trivial' problems can be accepted by such program schemes. However, if the underlying signature σ^{\prime} contains function symbols then we have assignment instructions of the form ' $x_{i}:=F\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{b}}\right)$ ', for every function symbol F of σ^{\prime} of arity b. In such a situation, it does make sense to examine the class of problems accepted by the program schemes of $\operatorname{DPSS}(1)$.

In this section ${ }^{1}$, we examine the classes of program schemes $\operatorname{DPSS}(1)$ and $\operatorname{DPSS}_{s}(1)$. In the subsequent section, we shall use results obtained in this section to give logical characterisations of \mathbf{P} on certain classes of structures (where by 'logical' we mean not involving any sort of built-in relations; more precisely, 'logical' in the sense laid out in [4] and [9]).

We begin by defining a deterministic path system. A deterministic path system is a path system such that for every pair of vertices x and y (where possibly $x=y$), there is exactly one vertex z such that either (x, y, z) or (y, x, z) is a rule (this vertex z might be identical to either x or y). So, in a deterministic path system there is at most one new vertex which can be deduced as accessible from the known accessibility of any two vertices. The deterministic path system problem consists of all those deterministic path systems for which the sink is accessible from the source. Define the signature

[^1]$\sigma_{3}^{\prime}=\langle F$, source, sink \rangle, where F is a binary function symbol and source and sink are constant symbols. A σ_{3}^{\prime}-structure \mathcal{P} encodes a deterministic path system in a similar way to a σ_{3}-structure encoding a path system except that:

- there is a rule (x, y, z) if $F(x, y)=z=F(y, x)$ and $z \neq$ source (where possibly $z=x$ or $z=y$); and
- there is a rule (x, y, source) otherwise.

The problem DetPS is defined as:

$$
\begin{aligned}
\left\{\mathcal{P} \in \operatorname{STRUCT}\left(\sigma_{3}^{\prime}\right):\right. & \text { the vertex sink is accessible from the vertex } \\
& \text { source in the deterministic path system } \mathcal{P}\} .
\end{aligned}
$$

Intuitively, to decide whether a σ_{3}-structure is not in PS or whether a σ_{3}^{\prime}-structure is not in DetPS, we need to know that at some point in the process of building the set of accessible vertices, every pair of accessed vertices, i.e., those vertices that have so far been shown to be accessible, has been checked so that no new vertices can be shown to be accessible from these accessed vertices, and that the sink has so far not been accessed. Hence, it appears to be necessary to dynamically build a set of accessed vertices and to keep a record of those pairs of accessed vertices which have already been checked. Later on in this section, we show that we can actually do this for deterministic path systems with a program scheme of $\operatorname{DPSS}(1)$ over σ_{3}^{\prime}. We derive this program scheme by developing an algorithm (to be called DFSearch) to solve the deterministic path system problem and then by showing that this algorithm can be implemented in DPSS(1).

3.1 An informal algorithm

Consider the following (informally presented) algorithm, DFSearch, which takes a deterministic path system as input. In this algorithm, the order in which the vertices are accessed plays a critical role. During an execution of DFSearch on some input, at any time there is always exactly one accessed vertex which is described as active. An accessed vertex is the active vertex when it is the one currently being checked with each of the accessed vertices in turn in order to see whether a new vertex can be shown to be accessible (initially, source is the only accessed vertex, hence it is the active vertex). The main feature of this algorithm is that as soon as a new vertex, say x, is accessed, it becomes the active vertex and is checked with each accessed vertex in turn (including itself), not in any random order but in the order in which these vertices were accessed until: either a new vertex is accessed, say y, and y becomes the active vertex and we stop checking pairs involving x and start checking pairs involving y; or until x has been checked with all the vertices that were accessed before it, including itself. In the latter case, our new active vertex is taken to be the vertex z which was active at the time that x was accessed, and the next pair involving z is checked, after the pair which accessed x.

Example 3 Consider the following illustrative example (in our example, we do not stop if we show the sink to be accessible but continue to generate other accessible vertices: in fact, we do not even specify a sink). Suppose that our deterministic program scheme is such that the set of rules can be described according to Fig. 1 where the source is u (and where, for clarity, an ϵ denotes that the vertex made accessible by the corresponding pair is one of the vertices of the pair or u).

	u	v	w	x	y
u	w	ε	y	ε	ε
v	ε	ε	y	ε	w
w	y	y	x	ε	v
x	ε	ε	ε	ε	w
y	ε	w	v	w	w

Figure 1. A deterministic path system.
Our algorithm begins with u active and checks the pair $\{u, u\}$; with the result that w is shown to be accessible. Hence, the vertices so far shown to be accessible are, in order, u and w, with w now active.

According to our algorithm, we next check the pair $\{w, u\}$ which shows y to be accessible. Hence, the vertices so far shown to be accessible are, in order, u, w and y, with y now active.

According to our algorithm, we next check the pair $\{y, u\}$, which yields no new accessible vertex, and so we check the pair $\{y, w\}$, which shows v to be accessible. Hence, the vertices so far shown to be accessible are, in order, u, w, y and v, with v now active.

According to our algorithm, we next check the pairs $\{v, u\},\{v, w\},\{v, y\}$ and $\{v, v\}$, yielding no new accessible vertex; thus, we make y active (since it was active when v was shown to be accessible) and resume checking pairs involving y (and vertices accessed before y) starting from the pair $\{y, y\}$. This pair yields no new accessible vertex and so we make w active (since w was active when y was shown to be accessible) and resume checking pairs involving w (and vertices accessed before y) starting from the pair $\{w, w\}$, which shows x to be accessible. Hence, the vertices so far shown to be accessible are, in order, u, w, y, v and x, with x now active.

According to our algorithm, we next check the pairs $\{x, u\},\{x, w\},\{x, y\},\{x, v\}$ and $\{x, x\}$, yielding no new accessible vertex. Thus, w becomes active. But all pairs involving w (and vertices accessed before w) have been checked, so u becomes active. However, all pairs involving u have been checked, so the algorithm halts.

Note that in this case, all accessible vertices are indeed shown to be accessible by our algorithm; and if we repeated the algorithm on our input then the vertices would be shown to be accessible in exactly the same order.

Our algorithm DFSearch can be looked upon as a sort of depth-first search in a deterministic path system; hence its name. However, the analogy is not exact as the 'depth-first search' is not given an a priori ordering of the elements upon which the search is performed (as is usually the case in a depth-first search in a graph): it computes the visit-order for itself as it progresses.

A less informal description of the algorithm than that above is given in Fig. 2. Throughout, we use x_{0} to denote source. Also: we write $(x, y) \mapsto z$ to denote the fact that z is the unique vertex such that there is a rule (x, y, z) or (y, x, z) and z is different from x, y and x_{0}; and we write $(x, y) \mapsto \epsilon$ to denote the fact that is the unique vertex z such that there is a rule (x, y, z) or (y, x, z) is such that z is identical to one of x, y and x_{0}. If $(x, y) \mapsto z$ is used to show that z is accessible, given that x and y have already been shown to be accessible, then we say that x and y access z and that $(x, y) \mapsto z$ is applied to access z : in such a case, the vertex x will always be the active vertex. Also, given x and z, if x and y access z, for some y, then we say that (the active vertex) x accesses z.

```
suppose that }\mp@subsup{x}{0}{},\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{i}{}\mathrm{ have been accessed so far and }\mp@subsup{x}{i}{}\mathrm{ is active;
check the ordered pairs ( }\mp@subsup{x}{i}{},\mp@subsup{x}{0}{}),(\mp@subsup{x}{i}{},\mp@subsup{x}{1}{}),\ldots\mathrm{ in turn;
IF ( }\mp@subsup{x}{i}{},\mp@subsup{x}{j}{\prime})\mapsto\mp@subsup{x}{i+1}{}\mathrm{ where }\mp@subsup{x}{i+1}{}\mathrm{ is a vertex not yet accessed THEN
    IF }\mp@subsup{x}{i+1}{}=\operatorname{sink}\mathrm{ THEN
        ACCEPT;
    ELSE
        add }\mp@subsup{x}{i+1}{}\mathrm{ to our list of vertices accessed so far;
        make }\mp@subsup{x}{i+1}{}\mathrm{ the active vertex and repeat from line 2 (with }\mp@subsup{x}{i+1}{
        replacing }\mp@subsup{x}{i}{}\mathrm{ ) and starting with the pair ( }\mp@subsup{x}{i+1}{},\mp@subsup{x}{0}{}\mathrm{ );
    FI
ELSE
    it must be the case that each pair ( }\mp@subsup{x}{i}{},\mp@subsup{x}{j}{})\mathrm{ , for all j 
    been checked and nothing new has been shown to be accessible;
    find the pair ( }\mp@subsup{x}{\mp@subsup{i}{1}{}}{},\mp@subsup{x}{\mp@subsup{j}{1}{}}{}\mathrm{ ) such that ( }\mp@subsup{x}{\mp@subsup{i}{1}{}}{},\mp@subsup{x}{\mp@subsup{j}{1}{}}{})\mapsto\mp@subsup{x}{i}{}\mathrm{ was applied to
    access }\mp@subsup{x}{i}{}\mathrm{ ;
    make }\mp@subsup{x}{\mp@subsup{i}{1}{}}{}\mathrm{ active;
    IF }\mp@subsup{x}{\mp@subsup{i}{1}{}}{}=\mp@subsup{x}{0}{}\mathrm{ THEN
        REJECT;
    ELSE
        repeat from line 2 starting from the pair ( }\mp@subsup{x}{\mp@subsup{i}{1}{}}{},\mp@subsup{x}{\mp@subsup{j}{1}{}+1}{})\mathrm{ ;
        FI
    FI
```

Figure 2. A less informal description of our algorithm DFSearch.

3.2 Proving our algorithm correct

Henceforth, we equate the algorithm DFSearch with the description in Fig. 2. The following lemmas are used to prove that DFSearch solves the deterministic path system
problem. In these lemmas, we write: x_{i} to denote that it is the i th vertex to be accessed during an execution of DFSearch; and AccessedSet to denote the set of vertices shown to be accessible by the algorithm DFSearch (AccessedSet can be regarded as being dynamically constructed, starting off as $\left\{x_{0}\right\}$ and ending up as the set of vertices shown to be accessible by DFSearch).

The following lemma proves that if we place the vertices accessed by the algorithm DFSearch in a line in the order they are accessed and we draw, above the line, a directed arc from vertex x to vertex y if vertex x accesses vertex y then no two arcs cross.

Lemma 4 Consider an execution of DFSearch so that the algorithm terminates with AccessedSet $=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$. Suppose that x_{i} accesses x_{i+r}, for some i such that $0 \leq i \leq k-2$ and for some $r \geq 2$. Then it is not the case that x_{i-t} accesses x_{i+s}, for any s and t such that $0<s<r$ and $0<t \leq i$.

Proof Since x_{i} accesses x_{i+r}, let x_{u} be the paired vertex such that $\left(x_{i}, x_{u}\right) \mapsto x_{i+r}$ is applied to access x_{i+r}. Assume that the statement in the lemma is false and let s be the minimal such s for which some x_{i-t} accesses x_{i+s}. Note that when x_{i} is accessed, it becomes the active vertex and the pairs $\left(x_{i}, x_{0}\right),\left(x_{i}, x_{1}\right), \ldots$ are checked in turn until either $\left(x_{i}, x_{j}\right) \mapsto x_{i+1}$ is applied to access x_{i+1}, for some j, or $\left(x_{i}, x_{i}\right)$ has been checked and $\left(x_{i}, x_{i}\right)$ accesses nothing. Since x_{i} accesses x_{i+r}, we must have that x_{i} accesses x_{i+1}, and so $s \geq 2$. In fact, by hypothesis, every x_{p} for which $i<p<i+s$ is accessed by some x_{q} for which $i \leq q<p$. Putting $s_{0}=i+(s-1)>i, x_{s_{0}}$ is accessed by some $x_{s_{1}}$ such that $i \leq s_{1}<s_{0} ; x_{s_{1}}$ is accessed by some $x_{s_{2}}$ such that $i \leq s_{2}<s_{1}$; and so on until $x_{s_{v}}$, for some $v \geq 0$, is accessed by x_{i}.

When $x_{s_{0}}\left(=x_{i+(s-1)}\right)$ is accessed, it becomes active. As x_{i-t} accesses $x_{i+s}, x_{s_{0}}$ accesses no vertices, and $x_{s_{1}}$ becomes active. Again, as x_{i-t} accesses $x_{i+s}, x_{s_{1}}$ accesses no vertices, and $x_{s_{2}}$ becomes active; and so on until x_{i} becomes active. Note that the pair $\left(x_{i}, x_{u}\right)$ has not yet been checked as otherwise the element x_{i+s} would have been accessed. Hence, $x_{i} \mapsto x_{i+s}$ is applied to access x_{i+s} which yields a contradiction.

As soon as x_{i} is accessed, DFSearch starts to check the pairs $\left(x_{i}, x_{0}\right),\left(x_{i}, x_{1}\right), \ldots$, $\left(x_{i}, x_{i}\right)$ in turn. If at some time t during the execution of DFSearch, all the pairs have been checked then we say that x_{i} is fully checked at time t. Note that once a vertex becomes fully checked, it stays fully checked.

Lemma 5 Consider an execution of DFSearch so that the algorithm terminates with AccessedSet $=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$. Suppose that x_{i} accesses x_{i+r} where $r \geq 1$. Then at the time that x_{i+r} is accessed, all the vertices x_{p} with $i<p<i+r$ are fully checked.

Proof We may assume that $r>1$. We give a proof using induction, where our induction hypothesis $\mathrm{IH}(j)$ is as follows: 'At the time that x_{i} accesses x_{i+r}, all the vertices x_{p} with $i<j \leq p<i+r$ are fully checked'.

The base case of our induction is when $j=i+r-1$. Since it is not the case that x_{i+r-1} accesses x_{i+r}, it must be the case that x_{i+r-1} does not access any new
vertices and hence becomes fully checked before x_{i+r} is accessed. Thus, the induction hypothesis holds for the base case.

Suppose that $\operatorname{IH}(j+1)$ holds, where $j \neq i$. The vertex x_{j} is accessed before x_{i+r}. Either x_{j} does not access a new vertex or x_{j} accesses x_{j+1}. If the former is true then we are done since x_{j} is fully checked before x_{i+r} is accessed. If the latter is true then x_{j} accesses at least one new vertex. Let x_{s} be any vertex such that x_{j} accesses x_{s}. By Lemma 4, $s<i+r$ and, by hypothesis, x_{s} is fully checked before x_{i+r} is accessed. When x_{s} is fully checked, DFSearch resumes checking the vertex that accessed x_{s}; that is, x_{j}. Let x_{q} be the last vertex such that x_{j} accesses x_{q}. Since x_{j} does not access any more new vertices, DFSearch continues checking x_{j} until it is fully checked; and at this point x_{i+r} is still to be accessed. Hence the result follows by induction.

We can now obtain the following corollary.
Corollary 6 Consider an execution of DFSearch. Suppose that at time t, AccessedSet $=\left\{x_{0}, x_{1}, \ldots, x_{i+r}\right\}$ and the vertex x_{i} is active, where $r \geq 1$. Then at time t, all vertices x_{p} with $i<p \leq i+r$ are fully checked.

Proof Suppose that x_{j} accesses x_{i+r}. When x_{i+r} is accessed, it becomes active; and as x_{i} is active at time t, x_{i+r} accesses no new vertices before becoming fully checked. At this time (when x_{i+r} is fully checked, which is before time t), by Lemma 5, the vertices of $\left\{x_{p}: j<p \leq i+r\right\}$ are fully checked. If $j \leq i$ then we are done.

Suppose that $i<j$. After x_{i+r} becomes fully checked, x_{j} becomes active. As x_{i} is active at (the later) time t, x_{j} becomes fully checked. Suppose that $x_{j_{1}}$ accesses x_{j}. By Lemma 5, when x_{j} is accessed, which is before time t, the vertices of $\left\{x_{p}: j_{1}<p<j\right\}$ are fully checked. If $j_{1} \leq i$ then we are done.

Continuing as above, we obtain that there exists some $x_{j_{k}}$ such that: $x_{j_{k}}$ accesses $x_{j_{k-1}}$; the vertices of $\left\{x_{p}: j_{k}<p \leq i+r\right\}$ are fully checked at some time not later than time t; and $j_{k} \leq i$. Hence, the result follows.

Now we can prove the correctness of our algorithm.
Proposition 7 The algorithm DFSearch solves the deterministic path system problem.
Proof Consider the execution of DFSearch with some deterministic path system as input. Initially, DFSearch starts with AccessedSet consisting only of the source, and if any more vertices are added then they must have been accessed by vertices which have already been placed in AccessedSet. Hence, AccessedSet only contains vertices which are accessible from the source. Suppose that DFSearch accepts its input. Then the sink is accessed from vertices in AccessedSet, and so the input is a deterministic path system in which the sink is accessible from the source.

Conversely, suppose that DFSearch rejects its input and that AccessedSet $=\left\{x_{0}\right.$, $\left.x_{1}, \ldots, x_{k}\right\}$ on termination. For termination to occur, either $k=0$ or x_{0} must have become active again. If $k=0$ then clearly the input is a deterministic path system in which the sink is not accessible from the source; so assume that x_{0} becomes active
again. By Corollary 6, at the time that x_{0} becomes active again, all the vertices of $\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ are fully checked. Hence, AccessedSet consists of all those vertices which can be shown to be accessible from the source, and the sink is not in AccessedSet; that is, the input is a deterministic path system in which the sink is not accessible from the source.

3.3 Implementing our algorithm

Now that we have developed the algorithm DFSearch to solve the deterministic path system problem, let us reconsider the demands on any $\operatorname{DPSS}(1)$ program scheme which might implement DFSearch. Firstly, it will need to build a set of accessed vertices, AccessedSet, and then retrieve vertices from the set in the order in which they were inserted; and it must do this where the only additional storage is the stack. Secondly, it will need to check whether a vertex is already in the set AccessedSet. Thirdly, for any accessed vertex it should be able to ascertain the pair from which this vertex was accessed. As we shall see, it is non-trivial to implement DFSearch in DPSS(1).

However, we now describe such an implementation of the algorithm DFSearch; that is, a program scheme $\rho_{0} \in \operatorname{DPSS}(1)$ over σ_{3}^{\prime} which solves the problem DetPS. The structure of our program scheme ρ_{0} is that it consists of the instruction 'PUSH $x_{0}{ }^{\prime}$ followed by one while-loop which loops until the input structure is either accepted or rejected. Changes are made to the stack (starting from an empty stack) during each while-loop iteration such that for any iteration, the changes to the stack are determined by the top (at most) two stack elements, and these changes only involve the top two stack elements with possibly one extra element being pushed onto the stack. Consequently, we describe the program scheme ρ_{0} using the table in Fig. 3 (the notation, and underlying encoding, used in Fig. 3 is explained shortly). The 'preloop' column shows the top two stack elements, where c is the height of the stack; and the 'post-loop' column shows how the stack changes during one iteration, given the 'pre-loop' conditions. So, our program scheme essentially repeatedly applies the operations specified in each row depending upon the current conditions, as defined in the 'condition' column.

We give each row in the table in Fig. 3 a number. Let i be a row in our table and let β be a stack configuration (that is, the contents of the stack) which satisfies the 'pre-loop' condition of row i. We say that β satisfies row i or that row i holds for β. In addition, if ρ_{0} is such that, prior to an iteration of the while-loop, β satisfies row i then any changes made to β in this iteration are said to be by or via row i, and we say that row i is applied. Note that the rows in the table in 3 are mutually exclusive, i.e., any stack configuration can only satisfy at most one rule; and every possible combination of a pair of stack items is considered in the table.

We now give a definition of the stack items that are introduced in Fig. 3. Note that in the actual program scheme ρ_{0} a suitable encoding scheme is used so as to realise the different types of stack item below. Let the input to our program scheme be the σ_{3}^{\prime}-structure \mathcal{P}. We have stack items of the following types:
(i) p, where $p \in|\mathcal{P}|$;
(ii) $\langle p, q, r\rangle$, where $p, q, r \in|\mathcal{P}|$; and
(iii) $[p]$, where $p \in|\mathcal{P}|$.

	Top 2 items on stack pre-loop		Top 3 items on stack post-loop			Condition satisfied by stack pre-loop
Row	$c-1$	c	$c-1$	c	$c+1$	
1						
1.1	--	item	--	item	x_{0}	only one item
2						
2.1	p	q	$\begin{gathered} \hline \text { ACCEPT } \\ \langle p, q, r\rangle \\ {[p]} \\ \text { REJECT } \end{gathered}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{aligned} & (p, q) \mapsto \sin k \\ & (p, q) \mapsto r \wedge r \neq \sin k \\ & (p, p) \mapsto \epsilon \wedge p \neq x_{0} \\ & \left(x_{0}, x_{0}\right) \mapsto \epsilon \end{aligned}$
2.2	p	q				
2.3	p	p				
2.4	x_{0}	x_{0}				
2.5	p	q	p	$\begin{gathered} q \\ \text { item } \end{gathered}$		$\begin{aligned} & (p, q) \mapsto \epsilon \wedge p \neq q \\ & \text { item not of type }(i) \end{aligned}$
2.6	p	item	p			
3						
3.1	$\langle p, q, r\rangle$	$\begin{gathered} \langle p, q, r\rangle \\ \left\langle p^{\prime}, q^{\prime}, r\right\rangle \\ \left\langle p^{\prime}, q^{\prime}, r\right\rangle \end{gathered}$	$\begin{gathered} r \\ p \\ {[p]} \end{gathered}$	$\begin{gathered} -- \\ q \\ -- \end{gathered}$	x_{0}	$\begin{aligned} & \left(p \neq p^{\prime} \vee q \neq q^{\prime}\right) \wedge p \neq q \\ & \left(p \neq p^{\prime} \vee p \neq q^{\prime}\right) \end{aligned}$
3.2	$\langle p, q, r\rangle$					
3.3	$\langle p, p, r\rangle$					
3.4	$\langle p, q, r\rangle$	item	$\langle p, q, r\rangle$	item	x_{0}	item $\neq\left\langle p^{\prime}, q^{\prime}, r\right\rangle, \forall p^{\prime}, q^{\prime}$
4						
4.1	[r]	$\langle p, q, r\rangle$		- \quad -	x_{0}	$\begin{aligned} & p \neq q \\ & p \neq x_{0} \end{aligned}$
4.2	$[r]$	$\langle p, p, r\rangle$				
4.3	[r]	$\left\langle x_{0}, x_{0}, r\right\rangle$				
4.4	[r]	item	${ }_{\text {c }}[r]$	item	x_{0}	item $\neq\langle p, q, r\rangle, \forall p, q$

Figure 3. The program scheme ρ_{0}.
As an example of an encoding scheme alluded to above, we might encode the stack item: $p \in|\mathcal{P}|$ as the 6 stack items u, u, u, p, p, p, for some fixed $u \in|\mathcal{P}| ;\langle p, q, r\rangle$, where $p, q, r \in|\mathcal{P}|$, as the 6 stack items u, v, v, p, q, r, for some fixed $u, v \in|\mathcal{P}|$ such that $u \neq v$; and $[p]$, where $p \in|\mathcal{P}|$, as the 6 stack items u, v, u, p, p, p, for some fixed $u, v \in|\mathcal{P}|$ such that $u \neq v$. Consequently, popping an 'item' from the stack, for example, really means popping 6 elements, $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ and u_{6}, from the stack and ascertaining, using u_{1}, u_{2} and u_{3}, the type of the encoded item, with u_{4}, u_{5} and u_{6} yielding the parameters of the item.

Having described our program scheme $\rho_{0} \in \operatorname{DPSS}(1)$ (it is clear that the above description can be implemented in $\operatorname{DPSS}(1)$), let us now set about proving that it is an implementation of the algorithm DFSearch.

Some definitions are in order so that we might reason about stacks. Consider the computation of ρ_{0} given some σ_{3}^{\prime}-structure \mathcal{P} as input. A stack configuration simply consists of the contents of the stack at some particular point in the computation. If the stack configuration $\beta=(\beta(1), \beta(2), \ldots, \beta(m)$) (with $\beta(m)$ the top item) then
$h t(\beta)=m$ and the element at position i, for $1 \leq i \leq h t(\beta)$, is $\beta(i)$ (the height of the empty stack configuration is 0). The stack trace of ρ on input \mathcal{P} is the sequence of stack configurations in the order in which they occur when the flow of control of the execution of ρ_{0} on input \mathcal{P} is frozen immediately before executing the while-loop and then immediately after every iteration of the while-loop (and so the first non-empty stack configuration of any stack trace is $\left(x_{0}\right)$). That is, we do not consider the stack manipulations performed during an iteration of the while-loop, but focus on the stack only immediately after the iteration. Note that it is conceivable that a stack trace might be infinite; that is, ρ_{0} might not halt on input \mathcal{P}. In fact, this is never the case but until we have proved this assertion, we must assume that infinite stack traces are possible. The i th stack configuration in the stack trace Σ is Σ_{i}, and the indices of the stack configurations yield a notion of time; that is, we say that the stack configuration Σ_{i} is the configuration at time i. If $i<j$ then we say that Σ_{i} evolves to Σ_{j}. If α and β are stack configurations of heights i and j, respectively, then we denote the stack configuration $(\alpha(1), \alpha(2), \ldots, \alpha(i), \beta(1), \beta(2), \ldots, \beta(j))$ by $\alpha+\beta$; and if x is some stack item then we denote the stack configuration $(x, \alpha(1), \alpha(2), \ldots, \alpha(i))$ by $x+\alpha$.

Before proving that the program scheme ρ_{0} simulates our algorithm DFSearch, we give an example which illustrates the design of and the philosophy behind the program scheme ρ_{0} (in relation to the algorithm DFSearch).

Example 8 Consider the deterministic path system \mathcal{P} described in Fig. 4, whose source we take as the vertex u. We shall consider the execution of the program scheme ρ_{0} on \mathcal{P}. To get the most from our example, we shall not specify a sink in our program scheme but simply let the program scheme run until the input is rejected (if there is no sink then it can never be shown to be accessible).

	u	v	w	y
u	w	ε	y	ε
v	ε	ε	ε	ε
w	y	ε	v	ε
y	ε	ε	ε	ε

Figure 4. A deterministic path system.
We portray the execution of ρ_{0} on \mathcal{P} in Fig. 5. In this figure, we depict the stack trace of the execution. Each stack configuration is represented as a column of elements and the row applied in order to alter the stack at any configuration is denoted as a superscript to the symbol \rightarrow. Some stack configurations are given a breakpoint number (written below the stack) which we shall use below in our description of the execution.

Initially, u is the only vertex so far shown to be accessible; and this is signalled by the stack configuration initially consisting solely of the item u.

							u		
u				u		u		$\langle u, u, w\rangle$	
u	2.2	$\langle u, u, w\rangle$	2.6	$\langle u, u, w\rangle$	3.4	$\langle u, u, w\rangle$	2.2	$\langle u, u, w\rangle$	3.1
y	\rightarrow								

8

u									
u	2.2		3.1	w	2.2				
w	\rightarrow	\ldots	\rightarrow	w	\rightarrow	$\langle w, w, v\rangle$	\rightarrow	$\langle w, w, v\rangle$	\rightarrow

u								
u	2.2		2.2	$\langle w, w, v\rangle$	3.1		1.1	u
2.5								
$\langle w, w, v\rangle$	\rightarrow	\ldots	\rightarrow	$\langle w, w, v\rangle$	\rightarrow	v	\rightarrow	v

$\left.\begin{array}{|ccccccccc|}\hline u & & & & & & & & \\ u & 2.2 & & 3.1 & v & 2.3 & & 1.1 & u \\ v & \rightarrow & \ldots & \rightarrow & v & \rightarrow & {[v]} & \rightarrow & {[v]}\end{array}\right) \rightarrow 4$
$\left.\begin{array}{|ccccccccc|}\hline u & & & & & & & & \\ u & 2.2 & & 2.2 & \langle w, w, v\rangle & 4.2 & & 1.1 & u \\ {[v]} & \rightarrow & \ldots & \rightarrow & {[v]} & \rightarrow & {[w]} & \rightarrow & {[w]}\end{array}\right) \rightarrow 4$
12

$$
\begin{array}{|ccccc}
\begin{array}{cccc}
u & & & \\
u & 2.2 & \langle u, u, w\rangle & 4.3 \\
{[w]} & \rightarrow & {[w]} & \rightarrow \\
\text { halt } \\
13
\end{array} \text { hw }
\end{array}
$$

Figure 5. The stack trace of ρ_{0}.

The computation begins so that the stack configuration evolves until it consists of one item, the item $\langle u, u, w\rangle$ (at breakpoint 1): this comes about because ($u, u) \mapsto w$. Essentially, this configuration is interpreted as 'it may be the case that w is the next vertex to be shown to be accessible (but we must confirm this)'. The stack configuration now evolves so that the whole computation, from the start, is repeated 'above' the item $\langle u, u, w\rangle$ which remains at the bottom of the stack.

This evolution continues until a stack configuration of the form $(\langle u, u, w\rangle,\langle-,-, w\rangle)$ comes about (such a circumstance is at breakpoint 2). Generally: if the two items are different then w must have already been shown to be accessible; otherwise, they are the same and w has not so far been shown to be accessible. At breakpoint 2 , the latter case holds and so w is made accessible, an event which is signalled by the stack configuration consisting solely of the item w.

The stack configuration now evolves so that the whole computation is repeated above the item w, until a previously accessed vertex is reached. This happens at breakpoint 3 when the stack configuration is (w, u). As $(w, u) \mapsto y$, the stack evolves so that it consists solely of the item $\langle w, u, y\rangle$ which signals that 'it may be the case that y is the next vertex to be shown to be accessible'. The stack configuration now evolves so that the whole computation is repeated above the item $\langle w, u, y\rangle$ until a stack configuration of the form $(\langle w, u, y\rangle,\langle-,-, y\rangle)$ comes about. This happens at breakpoint 4 when the configuration is $(\langle w, u, y\rangle,\langle w, u, y\rangle)$, which signals that y has not previously been shown to be accessible. The vertex y is now made accessible.

The stack configuration now evolves so that the whole computation is repeated above the item y, until a previously accessed vertex is reached: this happens at breakpoint 5. In this case, $(y, u) \mapsto \epsilon$ and so we continue the repetition, again until a previously accessed vertex is reached (at breakpoint 6). Just as before, ($y, w) \mapsto \epsilon$, and so we yet again continue the repetition. We eventually reach the stack configuration (y, y) (at breakpoint 7). As $(y, y) \mapsto \epsilon$, the stack configuration evolves into ([y]) which is interpreted as 'all pairs of the form $(y,-)$, where the second component ranges over previously accessed vertices, have been checked and no potentially new accessible vertices obtained'. The computation now evolves so that the whole computation is repeated above the item $[y]$ until a stack configuration of the form $([y],\langle-,-, y\rangle)$ comes about. This happens at breakpoint 8 when the stack configuration is $([y],\langle w, u, y\rangle)$. This signals that the pair of vertices which accessed y was (w, u).

The stack configuration now evolves into (w, u, u), as if it were the case that $(w, u) \mapsto \epsilon$. Of course, in reality $(w, u) \mapsto y$ but, given that ρ_{0} is intended to simulate the algorithm DFSearch, we wish ρ_{0} to search for the vertex accessed after the vertex u, and then pair this vertex with the vertex w. This means repeating the computation above w, from the stack configuration (w, u, u), until the next vertex accessed is obtained. The next vertex accessed after vertex u is vertex w and the stack configuration evolves into (w, w) (at breakpoint 9). As $(w, w) \mapsto v$, the stack configuration now evolves into $(\langle w, w, v\rangle)$ (with the interpretation similar to that above). As v has previously not been shown to be accessible, the stack configuration evolves into $(\langle w, w, v\rangle,\langle w, w, v\rangle)$ (at breakpoint 10) and then to (v).

As $(v, u) \mapsto \epsilon,(v, w) \mapsto \epsilon,(v, y) \mapsto \epsilon$ and $(v, v) \mapsto \epsilon$, the whole computation is
repeated above v until the stack configuration evolves to (v, v) (at breakpoint 11); and then to $([v])$. The whole computation is then repeated above $[v]$ in order to ascertain the pair of vertices which accessed v : this comes about at breakpoint 12 when the stack configuration is ($[v],\langle w, w, v\rangle$). The stack configuration now evolves into ($[w]$) and the whole computation is then repeated above $[w]$ in order to ascertain the pair of vertices which accessed w : this comes about at breakpoint 13 when the stack configuration is $([w],\langle u, u, w\rangle)$. The execution now halts. Note that this execution is indeed a simulation of the algorithm DFSearch.

The following lemmas will be used to show that DFSearch can be implemented as a program scheme of $\operatorname{DPSS}(1)$.

Lemma 9 Let \mathcal{P} be a σ_{3}^{\prime}-structure and let Σ be the stack trace of ρ_{0} on input \mathcal{P}. Suppose that $\Sigma_{i}=(\iota)$, for some $i>1$ and for some stack item $\iota \neq x_{0}$. Then there exists k such that $i<k$ and:

- $\Sigma_{i+j}=\Sigma_{i}+\Sigma_{j}$, for all $j \in\{1,2, \ldots, k-i\} ;$
- $h t\left(\Sigma_{k}\right)=2 ;$ and
- Σ_{k} evolves to Σ_{k+1} by one of the rows 2.1-2.4, 3.1-3.3 and 4.1-4.3.

Proof We have that $\Sigma_{1}=\left(x_{0}\right)$ and $\Sigma_{2}=\left(x_{0}, x_{0}\right)$, and, by Fig. $3, \Sigma_{i+1}=\left(\iota, x_{0}\right)$ and $\Sigma_{i+2}=\left(\iota, x_{0}, x_{0}\right)$. The application of any row is only dependent upon the top two stack items and only alters the (at most) top two stack items (although a further item might be pushed onto the stack or the height of the stack might be lessened by 1). Let m be the least m such that $m>1$ and $h t\left(\Sigma_{m}\right)=1$ (we know that such an m exists as $h t\left(\Sigma_{i}\right)=1$). Then $\Sigma_{i+1}=\iota+\Sigma_{1}, \Sigma_{i+2}=\iota+\Sigma_{2}, \ldots, \Sigma_{i+m}=\iota+\Sigma_{m}$.

If Σ_{i+m} evolves to Σ_{i+m+1} by one of the rows 2.5, 2.6, 3.4 and 4.4 then, by Fig. 3, $\Sigma_{i+m+1}=\iota+\Sigma_{m+1}$ with $h t\left(\Sigma_{i+m+1}\right)=3$. Thus, we may assume that Σ_{i} evolves to $\Sigma_{k}=(\iota$, item $)$ where $\Sigma_{i+j}=\Sigma_{i}+\Sigma_{j}$, for all $j \in\{1,2, \ldots, k-i\}$, and Σ_{k} satisfies one of rows $2.1-2.4,3.1-3.3$ and $4.1-4.3$. The result follows.

Lemma 10 Let \mathcal{P} be a σ_{3}^{\prime}-structure and let Σ be the stack trace of ρ_{0} on input \mathcal{P}. Fix $i \geq 1$ and define:

$$
T(i)=\left\{t: 1 \leq t \leq i \text { and } \Sigma_{t}=(p), \text { for some } p \in|\mathcal{P}|\right\},
$$

with $T(i)$ ordered as $t_{0}<t_{1}<\ldots<t_{k}$, for some $k \geq 0$. Suppose that $\Sigma_{t_{j}}=\left(x_{j}\right)$, for all $j=0,1, \ldots, k$, and that at time i, AccessedSet $=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$. Suppose further that $\Sigma_{i}=\left(x_{l}, x_{m}, x_{0}\right)$, for some $l, m \in\{0,1, \ldots, k\}$ where $m<l$. Then Σ_{i} evolves to Σ_{s} where:

- $\Sigma_{i+j}=x_{l}+\Sigma_{\left(t_{m}+1\right)+j}$, for all $j=1,2, \ldots, s-i$; and
- $\Sigma_{s}=\left(x_{l}, x_{m+1}\right)$.

Proof We have that $\Sigma_{t_{m}}=\left(x_{m}\right)$ and $\Sigma_{t_{m}+1}=\left(x_{m}, x_{0}\right)$, and so $\Sigma_{i}=x_{l}+\Sigma_{t_{m}+1}$. By Table 3, the application of any row is only dependent upon the top two stack items and only alters the (at most) top two stack items (although a further item might be pushed onto the stack or the height of the stack might be lessened by 1). Consequently, $\Sigma_{i+1}=x_{l}+\Sigma_{\left(t_{m}+1\right)+1}, \Sigma_{i+2}=x_{l}+\Sigma_{\left(t_{m}+1\right)+2}, \ldots, \Sigma_{i+t}=x_{l}+\Sigma_{\left(t_{m}+1\right)+t}$, for some t such that $h t\left(\Sigma_{\left(t_{m}+1\right)+t}\right)=1$ (we know that such a t exists as $m<l$ and $t_{m}<t_{m+1}<i$).

If Σ_{i+t} evolves to Σ_{i+t+1} by row 2.6 then $\Sigma_{i+t+1}=x_{l}+\Sigma_{\left(t_{m}+1\right)+t+1}$ and we can continue as above (as $h t\left(\Sigma_{i+t+1}\right)=3$). Hence, Σ_{i} evolves to Σ_{s} where $\Sigma_{i+j}=x_{l}+$ $\Sigma_{\left(t_{m}+1\right)+j}$, for all $j=1,2, \ldots, s-i$, and $\Sigma_{s}=\left(x_{l}, x_{m+1}\right)$.

Lemma 11 Let \mathcal{P} be a σ_{3}^{\prime}-structure and let Σ be the stack trace of ρ_{0} on input \mathcal{P}. Let i be such that $\Sigma_{i}=(\langle p, q, r\rangle)$, for some $p, q, r \in|\mathcal{P}|$. Then there exists k such that $i<k$ and:

- $\Sigma_{i+j}=\Sigma_{i}+\Sigma_{j}$, for every $j=1,2, \ldots, k-i$; and
- $\Sigma_{k}=\left(\langle p, q, r\rangle,\left\langle p^{\prime}, q^{\prime}, r\right\rangle\right)$, for some $p^{\prime}, q^{\prime} \in|\mathcal{P}|$.

Proof By Lemma $9, \Sigma_{i}$ evolves by repeating the computation of ρ_{0} on input \mathcal{P} 'above' $\langle p, q, r\rangle$ until the stack height is 2 and one of the rows $2.1-2.4,3.1-3.3$ and $4.1-4.3$ is to be applied; that is, in this case, one of the rows $3.1-3.3$. The result follows.

Now for our proof that the program scheme ρ_{0} implements the algorithm DFSearch.
Theorem 12 For every σ_{3}^{\prime}-structure \mathcal{P}, the algorithm DFSearch accepts the deterministic path system encoded by \mathcal{P} if, and only if, $\mathcal{P} \models \rho_{0}$. Hence, the program scheme ρ_{0} accepts the problem DetPS.

Proof Suppose that on input (the deterministic path system encoded by) \mathcal{P}, the algorithm DFSearch halts with AccessedSet $=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$, for some $k \geq 0$, and that these vertices have been shown to be accessible in the order given. There are numerous distinguished events in the computation of DFSearch on input \mathcal{P}, namely: the events when the different vertices are shown to be accessible (line 7 of Fig. 2); the events when pairs of accessible vertices are checked to see whether a new vertex might be accessed (line 2 of Fig. 2); and the events when the search is embarked upon for the pair of vertices that was used to show that a vertex is accessible (line 14 of Fig. 2). These events are all distinct and have associated with them time-stamps denoting when they occur. Let these (finitely-many distinct) time-stamps be ordered as:

$$
t_{1}<t_{2}<t_{3}<\ldots
$$

(obviously: t_{1} is the time-stamp when x_{0} is assumed to be accessible; t_{2} is the timestamp associated with the event when the pair $\left(x_{0}, x_{0}\right)$ is checked; t_{3} is the time-stamp associated with the event when x_{1} is shown to be accessible, unless $k=0$; and so on).

In order to prove our theorem we shall proceed by induction. Let Σ be the stack trace of ρ_{0} on input \mathcal{P}. Our induction hypothesis $\operatorname{IH}(i)$ is as follows: 'There exist non-zero natural numbers $s_{1}<s_{2}<\ldots<s_{i}$ such that for each $j \in\{1,2, \ldots, i\}$:

- if t_{j} is the time-stamp associated with the event when x_{l} is shown to be accessible then $\Sigma_{s_{j}}=\left(x_{l}\right)$;
- if t_{j} is the time-stamp associated with the event when the pair $\left(x_{l}, x_{m}\right)$ is checked to see whether a new vertex might be accessed then $\Sigma_{s_{j}}=\left(x_{l}, x_{m}\right)$;
- if t_{j} is the time-stamp associated with the event when a search is embarked upon for the pair $\left(x_{l_{1}}, x_{m_{1}}\right)$ that was used to show that x_{l} is accessible then $\Sigma_{s_{j}}=\left(\left[x_{l}\right]\right)$; and
- if s is such that $1 \leq s \leq s_{i}$ but $s \notin\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$ then $\Sigma_{s} \neq(y), \Sigma_{s} \neq(y, z)$ and $\Sigma_{s} \neq([y])$, for any $y, z \in|\mathcal{P}| . '$

The base cases of the induction, when $i=1$ and $i=2$, are immediate simply by following the first few steps of the computation of ρ_{0} on input \mathcal{P}.

Suppose that the induction hypothesis $\mathrm{IH}(i)$ holds, for some $i \geq 1$. There are three possibilities:
(1) $\Sigma_{s_{i}}=\left(x_{l}\right)$, for some l;
(2) $\Sigma_{s_{i}}=\left(x_{l}, x_{m}\right)$, for some l and m; and
(3) $\Sigma_{s_{i}}=\left(\left[x_{l}\right]\right)$, for some l.

Case (1) $\Sigma_{s_{i}}=\left(x_{l}\right)$.
The next event in the computation of DFSearch on input \mathcal{P} is when the pair $\left(x_{l}, x_{0}\right)$ is checked to see whether some new vertex might be accessed. As $\Sigma_{s_{i}+1}=\left(x_{l}, x_{0}\right)$, $\mathrm{IH}(i+1)$ holds.
Case (2) $\Sigma_{s_{i}}=\left(x_{l}, x_{m}\right)$.
There are four possibilities as regards the next event in the computation of DFSearch on input \mathcal{P} :
(a) ($\left.x_{l}, x_{m}\right) \mapsto$ sink, and so DFSearch goes on to accept;
(b) $\left(x_{l}, x_{m}\right) \mapsto y \neq \operatorname{sink}$ where y has not yet been accessed, and so the next event is when y is shown to be accessible;
(c) $l>m$ and it is not the case that $\left(x_{l}, x_{m}\right) \mapsto y$ for some y that has not yet been accessed, and so the next event is when the pair $\left(x_{l}, x_{m+1}\right)$ is checked to see whether a new vertex might be accessed; and
(d) $l=m$ and it is not the case that $\left(x_{l}, x_{m}\right) \mapsto y$ for some y that has not yet been accessed, and so either $x_{l}=x_{m}=0$ and DFSearch goes on to reject or the next event is when a search is embarked upon for the pair $\left(x_{l_{1}}, x_{m_{1}}\right)$ that accessed x_{l}.

Case $(2 a)\left(x_{l}, x_{m}\right) \mapsto \operatorname{sink}$.
In this case, DFSearch accepts \mathcal{P} and ρ_{0} accepts \mathcal{P}.
Case $(2 b)\left(x_{l}, x_{m}\right) \mapsto y$ where y has not yet been accessed.
We have that $\Sigma_{s_{i}+1}=\left(\left\langle x_{l}, x_{m}, y\right\rangle\right)$. Suppose that $\Sigma_{j}=(\langle p, q, y\rangle)$, for some $j<s_{i}$ and for some $p, q \in|\mathcal{P}|$; and let j be the minimal such j. By Lemma 11 and Fig. $3, \Sigma_{j}$ evolves to $\Sigma_{s}=(y)$, for some $s<s_{i}$. This yields a contradiction (as y has not yet been accessed). Hence, by Lemma $11, \Sigma_{s_{i}+1}$ evolves to $\left(\left\langle x_{l}, x_{m}, y\right\rangle,\left\langle x_{l}, x_{m}, y\right\rangle\right)$ so that all intermediate stack configurations do not correspond to any distinguished events; and then $\left(\left\langle x_{l}, x_{m}, y\right\rangle,\left\langle x_{l}, x_{m}, y\right\rangle\right)$ evolves to (y) by applying row 3.1. Consequently, $\operatorname{IH}(i+1)$ holds.
Case $(2 c) l>m$ and it is not the case that $\left(x_{l}, x_{m}\right) \mapsto y$ for some y that has not yet been accessed.
In this case, t_{i+1} is the time-stamp associated with the event of checking the pair $\left(x_{l}, x_{m+1}\right)$. There are two possibilities: either $\left(x_{l}, x_{m}\right) \mapsto \epsilon$ or $\left(x_{l}, x_{m}\right) \mapsto x_{r}$, for some $x_{r} \in$ AccessedSet (that is, the current version of AccessedSet).

If $\left(x_{l}, x_{m}\right) \mapsto \epsilon$ then $\Sigma_{s_{i}+1}=\left(x_{l}, x_{m}, x_{0}\right)$, which, by Lemma 10 , evolves to the stack configuration $\left(x_{l}, x_{m+1}\right)$ such that no intermediate stack configuration corresponds to a distinguished event; and so $\mathrm{IH}(i+1)$ holds.

If $\left(x_{l}, x_{m}\right) \mapsto x_{r}$ where $x_{r} \in$ AccessedSet then $\Sigma_{s_{i}+1}=\left(\left\langle x_{l}, x_{m}, x_{r}\right\rangle\right)$. As x_{r} is in AccessedSet, by the induction hypothesis, $\Sigma_{s_{j}}=\left(x_{r}\right)$, for some $j \leq i$; and consequently (by consulting Fig. 3) $\Sigma_{s_{j}-1}=\left(\left\langle p, q, x_{r}\right\rangle,\left\langle p, q, x_{r}\right\rangle\right)$, for some $p, q \in|\mathcal{P}|$. Let $s<s_{j}-1$ be the minimal s such that $\Sigma_{s}=\left(\left\langle p, q, x_{r}\right\rangle\right)$, for some $p, q \in|\mathcal{P}|$ (such an s exists by Fig. 3). By Lemma 11, $\Sigma_{s_{i}+1}$ evolves to the stack configuration $\left(\left\langle x_{l}, x_{m}, x_{r}\right\rangle,\left\langle p, q, x_{r}\right\rangle\right)$ so that no intermediate stack configuration corresponds to a distinguished event. Note that $\Sigma_{s-1}=(p, q)$, and so, by $\operatorname{IH}(i)$, we have that $(p, q) \neq\left(x_{l}, x_{m}\right)$. Hence, the stack configuration $\left(\left\langle x_{l}, x_{m}, x_{r}\right\rangle,\left\langle p, q, x_{r}\right\rangle\right)$ evolves to $\left(x_{l}, x_{m}, x_{0}\right)$ by applying row 3.2 , which in turn, by Lemma 10, evolves to the stack configuration $\left(x_{l}, x_{m+1}\right)$ such that no intermediate stack configuration corresponds to a distinguished event. Thus, $\operatorname{IH}(i+1)$ holds.

Case $(2 d) l=m$ and it is not the case that $\left(x_{l}, x_{m}\right) \mapsto y$ for some y that has not yet been accessed.
If $l=m=0$ then $D F$ Search rejects \mathcal{P} and ρ_{0} rejects \mathcal{P}. Assume that $l=m \neq 0$. The next event in the computation of DFSearch on input \mathcal{P} is the event where the search for the pair $\left(x_{l_{1}}, x_{m_{1}}\right)$ which was used to access x_{l} is embarked upon.

If $\left(x_{l}, x_{l}\right) \mapsto \epsilon$ then $\Sigma_{s_{i}+1}=\left(\left[x_{l}\right]\right)$ and $\mathrm{IH}(i+1)$ holds.
If $\left(x_{l}, x_{l}\right) \mapsto x_{r}$ and $x_{r} \in$ AccessedSet then we proceed as we did in Case $(2 c)$ whence $\Sigma_{s_{i}}$ evolves to the stack configuration $\left(\left\langle x_{l}, x_{l}, x_{r}\right\rangle,\left\langle p, q, x_{r}\right\rangle\right)$ (where $(p, q) \neq$ $\left.\left(x_{l}, x_{l}\right)\right)$ so that no intermediate stack configuration corresponds to a distinguished event. Row 3.3 is now applied so that the stack configuration becomes $\left(\left[x_{l}\right]\right)$. Hence, $\mathrm{IH}(i+1)$ holds.

Case (3) $\Sigma_{s_{i}}=\left(\left[x_{l}\right]\right)$.
$\overline{\text { Suppose }}$ that the pair $\left(x_{l_{1}}, x_{m_{1}}\right)$ accessed x_{l} (note that $\left.l \neq 0\right)$. There are three possibilities for the next event in the computation of DFSearch on input \mathcal{P} :
(a) if $m_{1}<l_{1}$ then the pair $\left(x_{l_{1}}, x_{m_{1}+1}\right)$ is checked to see whether a new vertex might be accessed;
(b) if $m_{1}=l_{1} \neq 0$ then the search for the pair $\left(x_{l_{2}}, x_{m_{2}}\right)$ which accessed $x_{l_{1}}$ is embarked upon; and
(c) if $m_{1}=l_{1}=0$ then the input is rejected.

By the induction hypothesis, there is a time-stamp t_{j}, for some $j<i$, when the pair $\left(x_{l_{1}}, x_{m_{1}}\right)$ was checked and $\Sigma_{s_{j}}=\left(x_{l_{1}}, x_{m_{1}}\right)$. Consequently, $\Sigma_{s_{j}+1}=\left(\left\langle x_{l_{1}}, x_{m_{1}}, x_{l}\right\rangle\right)$. Suppose that $\Sigma_{s}=\left(\left\langle p, q, x_{l}\right\rangle\right)$, for some $s<s_{j}+1$ and for some $p, q \in|\mathcal{P}|$ where $(p, q) \neq\left(x_{l}, x_{m}\right)$. Let s be the minimal such s. By Lemma 11 and Fig. 3, Σ_{s} evolves to $\Sigma_{s^{\prime}}=\left(x_{l}\right)$ for some $s^{\prime}<s_{j}$. This yields a contradiction as x_{l} would have already been accessed when the pair $\left(x_{l_{1}}, x_{m_{1}}\right)$ was later checked (remember, we are assuming that $\left(x_{l_{1}}, x_{m_{1}}\right)$ accesses $\left.x_{l}\right)$. Hence, by Lemma 9 and Fig. 3, $\Sigma_{s_{i}}$ evolves to the stack configuration $\left(\left[x_{l}\right],\left\langle x_{l_{1}}, x_{m_{1}}, x_{l}\right\rangle\right)$ so that no intermediate stack configuration corresponds to a distinguished event.
Case (3a) $m_{1}<l_{1}$.
The stack configuration $\left(\left[x_{l}\right],\left\langle x_{l_{1}}, x_{m_{1}}, x_{l}\right\rangle\right)$ evolves to ($x_{l_{1}}, x_{m_{1}}, x_{0}$) which, by Lemma 10, evolves to ($x_{l_{1}}, x_{m_{1}+1}$) so that no intermediate stack configuration corresponds to a distinguished event. Hence, $\mathrm{IH}(i+1)$ holds.
Case (3b) $m_{1}=l_{1} \neq 0$.
The stack configuration $\left(\left[x_{l}\right],\left\langle x_{l_{1}}, x_{m_{1}}, x_{l}\right\rangle\right)$ evolves to $\left(\left[x_{l_{1}}\right]\right)$ by row 4.2 , and so $\operatorname{IH}(i+1)$ holds.
Case (3b) $m_{1}=l_{1}=0$.
The computation of ρ_{0}, from the stack configuration $\left(\left[x_{l}\right],\left\langle x_{l_{1}}, x_{m_{1}}, x_{l}\right\rangle\right)$, leads to a rejection of the input.

Thus, by induction, the program scheme ρ_{0} simulates the algorithm DFSearch, and the result follows by Proposition 7.

The reader will have no doubt noted the similarities between the proof of Theorem 12 and the proof of the main theorem in [2]. Cook uses a similar technique to simulate the computation of a polynomial-time deterministic Turing machine as a computation of a log-space deterministic auxiliary pushdown machine. However, note that we provide a much more formal proof of our simulation than Cook does for his.

We can now use Theorem 12 to show that removing non-deterministic guessing from the program schemes of $\operatorname{NPSS}_{s}(1)$ does not diminish the class of problems so captured.

Corollary 13 Let Ω be a problem over the signature σ. The following are equivalent:

- $\Omega \in \mathbf{P}$;
- $\Omega \in \operatorname{NPSS}_{s}(1)$;
- $\Omega \in \operatorname{DPSS}_{s}(1)$; and
- $\Omega \in(\pm P S)^{*}\left[F O_{s}\right]$.

Proof Let \mathcal{P} be a σ_{3}-structure, i.e., a path system, of size n. We shall build a σ_{3}^{\prime}-structure \mathcal{P}^{\prime}, i.e., a deterministic path system, such that $\mathcal{P} \in \mathrm{PS}$ if, and only if, $\mathcal{P}^{\prime} \in \operatorname{DetPS}$. In order that we define a σ_{3}^{\prime}-structure, our path system \mathcal{P}^{\prime} will be such that: for every two vertices $x, y \in\left|\mathcal{P}^{\prime}\right|$, there is exactly one $z \in\left|\mathcal{P}^{\prime}\right|$ for which (x, y, z) is a rule; and, furthermore, (x, y, z) is a rule if, and only if, (y, x, z) is a rule.

Our path system \mathcal{P}^{\prime} has vertex set $|\mathcal{P}|^{3}$ and we partition this vertex set into the disjoint union:

$$
\left|\mathcal{P}^{\prime}\right|=\bigcup_{u \in|\mathcal{P}|} Q_{u}
$$

where for every $u \in|\mathcal{P}|, Q_{u}=\{(u, v, w): v, w \in|\mathcal{P}|\}$. We define the set of rules of \mathcal{P}^{\prime} in three batches. The first two batches describe rules for which the first two components belong to the same Q_{u}; and the third batch describes rules for which the first two components belong to different sets Q_{u} and Q_{v}.
Batch 1

$$
\begin{array}{r}
\{((u, 0,0),(u, v, w),(u, v, \operatorname{succ}(w))),((u, v, w),(u, 0,0),(u, v, \operatorname{succ}(w))) \\
: u, v, w \in|\mathcal{P}|, w \neq \max \} \\
\cup\{((u, 0,0),(u, v, \max),(u, \operatorname{succ}(v), 0)),((u, 0,0),(u, v, \max),(u, \operatorname{succ}(v), 0)) \\
: u, v \in|\mathcal{P}|, v \neq \max \} \\
\cup\{((u, 0,0),(u, \max , \max),(u, 0,0)),((u, \max , \max),(u, 0,0),(u, 0,0))\}
\end{array}
$$

The rules in Batch 1 are essentially such that for any $u \in|\mathcal{P}|$, if $(u, 0,0)$ is made accessible in \mathcal{P}^{\prime} then so is every vertex of Q_{u}.
Batch 2

$$
\begin{aligned}
& \{((u, u, w),(u, u, w),(w, 0,0)): u, w \in|\mathcal{P}|,(u, w) \neq(0,0), R(u, u, w) \text { holds in } \mathcal{P}\} \\
& \quad \cup\{((u, u, w),(u, u, w),(0,0,0)) \\
& \quad: u, w \in|\mathcal{P}|,(u, w) \neq(0,0), R(u, u, w) \text { does not hold in } \mathcal{P}\} \\
& \cup\left\{\left((u, v, w),\left(u, v^{\prime}, w^{\prime}\right),(0,0,0)\right),\left(\left(u, v^{\prime}, w^{\prime}\right),(u, v, w),(0,0,0)\right)\right. \\
& \left.\quad: u, v, w, v^{\prime}, w^{\prime} \in|\mathcal{P}|,(v, w) \neq(0,0) \neq\left(v^{\prime}, w^{\prime}\right), \neg\left(w=w^{\prime} \text { and } v=u=v^{\prime}\right)\right\}
\end{aligned}
$$

The rules in Batch 2 complete the definition for rules whose first 2 components are in the same set Q_{u}. They are mostly redundant (in that they are there so that \mathcal{P}^{\prime} has the property described in the first paragraph of this proof) except that if $R(u, u, w)$ holds in \mathcal{P} and $(u, 0,0)$ is accessible then so is $(w, 0,0)$ (see the comment subsequent to the definition of the rules in Batch 1).
Batch 3

$$
\begin{aligned}
& \{((u, v, w),(v, u, w),(w, 0,0)),((v, u, w),(u, w, w),(w, 0,0)) \\
& \quad: u, v, w \in|\mathcal{P}|, u \neq v, R(u, v, w) \text { holds in } \mathcal{P}\} \\
& \quad \cup\{(((u, v, w),(v, u, w),(\text { source }, 0,0)),((v, u, w),(u, w, w),(\text { source }, 0,0))
\end{aligned}
$$

$$
\begin{aligned}
& : u, v, w \in|\mathcal{P}|, u \neq v, R(u, v, w) \text { does not hold in } \mathcal{P}\} \\
& \cup\left\{\left((u, v, w),\left(u^{\prime}, v^{\prime}, w^{\prime}\right),(0,0,0)\right)\right. \\
& \left.: u, v, w, u^{\prime}, v^{\prime}, w^{\prime} \in|\mathcal{P}|, u \neq u^{\prime}, \neg\left((u, v)=\left(u^{\prime}, v^{\prime}\right) \text { and } w=w^{\prime}\right)\right\}
\end{aligned}
$$

The rules in Batch 3 essentially ensure that if $(u, 0,0)$ and $(v, 0,0)$ are accessible in \mathcal{P}^{\prime}, where $u \neq v$, and $R(u, v, w)$ or $R(v, u, w)$ holds in \mathcal{P} then $(w, 0,0)$ is accessible in \mathcal{P}^{\prime} (some rules are redundant in terms of making new vertices accessible in \mathcal{P}^{\prime}).

The source of the path system \mathcal{P} is the vertex (source, 0,0) and the sink is the vertex $(\sin k, 0,0)$.

A simple induction, with the vertices of $\{(u, 0,0): u \in|\mathcal{P}|\} \subseteq\left|\mathcal{P}^{\prime}\right|$ corresponding to the vertices of \mathcal{P}, yields that the sink is accessible in the path system \mathcal{P} if, and only if, the sink is accessible in the path system \mathcal{P}^{\prime}. Moreover, this is true independently of which particular successor function is chosen.

What is more, we can actually describe the deterministic path system \mathcal{P}^{\prime} in terms of \mathcal{P} using a quantifier-free formula of FO_{s}. That is, there is a quantifier-free formula $\psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathrm{FO}_{s}$, where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right), \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)$ and $\mathbf{z}=\left(z_{1}, z_{2}, z_{3}\right)$, such that for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in\left|\mathcal{P}^{\prime}\right|, F(\mathbf{u}, \mathbf{v})=\mathbf{w}$ in \mathcal{P}^{\prime} if, and only if, $\psi(\mathbf{u}, \mathbf{v}, \mathbf{w})$ holds in \mathcal{P}. In fact, given variables $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}$ and y_{3}, we can write a portion of ' $\mathrm{DPSS}_{s}(1)$ code' which gives the variables z_{1}, z_{2} and z_{3} the value $F\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)$. Consequently, we can clearly amend the program scheme ρ_{0} of $\operatorname{DPSS}(1)$ so that it becomes a program scheme ρ_{1} of $\operatorname{DPSS}_{s}(1)$ over σ_{3} and accepts the problem PS. (In doing so, we essentially replace single variables with 3 -tuples of variables and the built-in successor function with the lexicographic successor function on 3-tuples obtained using succ. Such constructions are common-place in the literature.)

Let Ω be some problem in \mathbf{P} over the signature σ. By Theorem 1, there exists a quantifier-free formula $\varphi(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathrm{FO}_{s}$, where $|\mathbf{x}|=|\mathbf{y}|=|\mathbf{z}|=k$, for some $k \geq 1$, such that for every σ-structure \mathcal{A} : the path system with vertex set $|\mathcal{A}|^{k}$, with rules $\left\{(\mathbf{u}, \mathbf{v}, \mathbf{w}): \mathbf{u}, \mathbf{v}, \mathbf{w} \in|\mathcal{A}|^{k}, \varphi(\mathbf{u}, \mathbf{v}, \mathbf{w})\right.$ holds in $\left.\mathcal{A}\right\}$, with source $(0,0,0)$ and with sink (max, max, \max) is such that the sink is accessible from the source if, and only if, $\mathcal{A} \in \Omega$. By amending the program scheme ρ_{1}, in the same way that we amended the program scheme ρ_{0} to obtain ρ_{1}, we can obtain a program scheme $\rho_{2} \in \operatorname{DPSS}_{s}(1)$ which accepts Ω. The result follows by Theorems 1 and 2 .

Notice what Corollary 13 actually says: it says that the deterministic model of computation $\operatorname{DPSS}_{s}(1)$ captures exactly the complexity class \mathbf{P}, and that the nondeterministic extension of this model, $\mathrm{NPSS}_{s}(1)$, captures \mathbf{P} too. This result can be interpreted as a 'logical reformulation' of Cook's result, mentioned earlier, regarding deterministic and non-deterministic logspace auxiliary pushdown machines.

4 Building an ordering

A different interpretation can be placed on the proof, in the last section, that DetPS can be solved by the program scheme ρ_{0} of $\operatorname{DPSS}(1)$. By a simple modification of ρ_{0} so that it does not accept if the sink is shown to be accessible but simply continues
exhibiting new accessible vertices, we can build a canonical ordering of the accessible vertices in any determinstic path system. If we know a priori that our deterministic path system is such that every vertex is accessible from the source then we can build a canonical ordering of the vertices whose minimal element is the source.

In more detail, let \mathcal{P} be a σ_{3}-structure with the property that for every $x, y \in|\mathcal{P}|$ (where possibly $x=y$), there exists exactly one z such that either $R(x, y, z)$ or $R(y, x, z)$ holds. That is, \mathcal{P} encodes a deterministic path system. By the proof of Theorem 12, there is clearly a program scheme $\rho_{3} \in \operatorname{NPSS}(1)$ over $\sigma_{3} \cup\{C, D\}$, where C and D are two new constant symbols, such that on input \mathcal{P} :

- if C and D are accessible and C comes immediately before D in the canonical ordering of accessible vertices of \mathcal{P} then every terminating computation of ρ_{3} on input \mathcal{P} signifies this fact and there is at least one terminating computation; and
- if either one of C and D is not accessible or C does not come immediately before D in the canonical ordering of accessible vertices of \mathcal{P} then every terminating computation of ρ_{3} on input \mathcal{P} signifies this fact and there is at least one terminating computation.

This observation can be used to show that on certain classes of structures, any problem solvable in polynomial-time can be defined by a sentence of $(\pm \mathrm{PS})^{*}[\mathrm{FO}]$ (in fact, in a fragment of this logic).

First, we require some definitions. Let Γ be a class of σ-structures that is closed under isomorphism. By a problem involving structures from Γ we mean an isomorphismclosed subset of Γ. For any problem Ω involving structures over Γ, we say that a sentence Ψ of some logic defines Ω if for every structure $\mathcal{A} \in \Gamma$:

$$
\mathcal{A} \in \Omega \text { if, and only if, } \mathcal{A} \models \Psi \text {. }
$$

Note that we say nothing about which structures of $\operatorname{STRUCT}(\sigma) \backslash \Gamma$ satisfy Ψ. There is an analogous definition for a program scheme to accept some problem involving structures from Γ; or for a Turing machine to accept some problem involving structures from Γ. Consequently, when we talk of, for example, a $\operatorname{logic} \mathcal{L}$ on a class of structures Γ we mean the class of problems involving structures from Γ definable in \mathcal{L}.

We begin by examining problems involving strongly-connected locally-ordered digraphs. Let \mathcal{G} be a σ_{3}-structure with the following property: for every $x \in|\mathcal{G}|$, the set of pairs $N(x)=\{(y, z): R(x, y, z)$ holds in $\mathcal{G}\}$ is of the form $\{(x, x)\}$ or
$\left\{\left(x, y_{1}\right),\left(y_{1}, y_{2}\right), \ldots,\left(y_{k}, x\right): k \geq 1\right.$ and the y_{i} 's are distinct and different from $\left.x\right\}$.
The structure \mathcal{G} can be considered to be a digraph with vertex set $|\mathcal{G}|$ where x has no neighbours, if $N(x)=\{(x, x)\}$, and where the neighbours of x are ordered as $y_{1}, y_{2}, \ldots, y_{k}$, otherwise. Such structures are called locally-ordered digraphs. A locallyordered digraph is strongly-connected if there is a path from any vertex to any other vertex in the underlying digraph.

Theorem 14 Any problem involving strongly-connected locally-ordered digraphs that can be solved in polynomial-time can be accepted by a program scheme of NPSS(1) and can also be defined by a sentence of $P S^{1}[F O]$ with two built-in constants, of the form:

$$
P S[\lambda \mathbf{x}, \mathbf{y}, \mathbf{z} \psi](\mathbf{0}, \mathbf{m a x}),
$$

where: $|\mathbf{x}|=|\mathbf{y}|=|\mathbf{z}|=k$, for some $k \geq 1 ; \mathbf{0}$ (resp. $\mathbf{m a x}$) is the constant symbol 0 (resp. max) repeated k times; and φ is a quantifier-free formula of FO. Consequently, on the class of strongly-connected locally-ordered digraphs, $\mathbf{P}=P S^{1}[F O]=\operatorname{NPSS}(1)$, even when there are no built-in constants in $P S^{1}[F O]$.

Proof Let \mathcal{G} be a strongly-connected locally-ordered digraph. Define $\psi\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}, \mathbf{z}^{\prime}\right)$, where $\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}\right), \mathbf{y}^{\prime}=\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$ and $\mathbf{z}^{\prime}=\left(z_{1}^{\prime}, z_{2}^{\prime}\right)$, as:

$$
\left(x_{1}^{\prime}=y_{1}^{\prime} \wedge x_{2}^{\prime}=y_{2}^{\prime} \wedge x_{1}^{\prime}=z_{1}^{\prime} \neq z_{2}^{\prime} \wedge R\left(x_{1}^{\prime}, y_{1}^{\prime}, z_{2}^{\prime}\right)\right) \vee\left(x_{1}^{\prime}=x_{2}^{\prime}=y_{1}^{\prime} \neq y_{2}^{\prime}=z_{1}^{\prime}=z_{2}^{\prime}\right) .
$$

The vertices of the path system $\mathcal{P}_{\mathcal{G}}$ obtained by interpreting the formula ψ in \mathcal{G} are $|\mathcal{G}|^{2}$ and the rules are as follows:

- $((u, v),(u, v),(u, w))$ if $u \neq w$ and $R(u, v, w)$ holds in \mathcal{G}; and
- $((u, u),(u, v),(v, v))$ if $u \neq v$.

For every pair of vertices of $\mathcal{P}_{\mathcal{G}}$, there is at most one rule which can be applied; and also every vertex of the form (u, u) or (u, v), where v is a neighbour of u in \mathcal{G}, is accessible no matter which vertex (of the form $\left(u^{\prime}, v^{\prime}\right)$, where $u^{\prime}=v^{\prime}$ or v^{\prime} is a neighbour of u^{\prime}) we choose for the source.

We might be inclined to think that by amending the program scheme ρ_{3}, defined at the beginning of this section (in a style similar to as in the proof of Corollary 13 so that vertices are replaced by pairs of elements and ψ defines the rules), we can obtain a canonical ordering of the vertices of $\mathcal{P}_{\mathcal{G}}$ (starting at any vertex we care to choose). However, the program scheme ρ_{3} takes as input σ_{3}^{\prime}-structures and such structures encode deterministic path systems; that is, path systems where there is exactly one rule of the form (u, v, w) or (v, u, w) for every pair of vertices $\{u, v\}$. More to the point, given two vertices u and v, ρ_{3} has to ascertain whether there is a rule (u, v, w) with $u \neq w \neq v$. Actually, by considering the proofs of the results in the previous section, ρ_{3} need only be able to ascertain whether there is a rule (u, v, w), with $u \neq w \neq v$, for accessible vertices u and v. Such a predicate can easily be checked (in $\operatorname{NPSS}(1)$) when the path system is deterministic: we simply guess the unique vertex w, check to see whether there is a rule (u, v, w) or (v, u, w) and whether w is different from both u and v. However, when given $\mathcal{P}_{\mathcal{G}}$ as input, this can not be done as for some pairs of vertices $(\mathbf{u}, \mathbf{v}) \in\left|\mathcal{P}_{\mathcal{G}}\right|$, there is no vertex $\mathbf{w} \in\left|\mathcal{P}_{\mathcal{G}}\right|$ for which $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is a rule.

Hence, let us add the following rules to our path system $\mathcal{P}_{\mathcal{G}}$. Choose some $s \in\left|\mathcal{P}_{\mathcal{G}}\right|$ so that (s, s) is the source of $\mathcal{P}_{\mathcal{G}}$ and add the rules:

- $\left((u, v),\left(u, v^{\prime}\right),(s, s)\right)$ if $v^{\prime} \neq u \neq v$ and $v \neq v^{\prime}$; and
- $\left((u, v),\left(u^{\prime}, v^{\prime}\right),(s, s)\right)$ if $u \neq u^{\prime}$.

These are essentially 'dummy rules' (involving accessible vertices) but their presence allows us to apply the results of the previous section, as these new rules can be defined by conjunctions of atomic and negated atomic formulae. The consequence is that we can obtain a program scheme $\rho_{4} \in \operatorname{NPSS}(1)$ which canonically orders the accessible vertices of $\mathcal{P}_{\mathcal{G}}$, starting from the vertex (s, s) (in ρ_{4} we begin by guessing s and leave s fixed throughout). We can now use this ordering of the accessible vertices $\mathcal{P}_{\mathcal{G}}$ to obtain an ordering of the vertices of \mathcal{G}. Our encoding scheme is such that a vertex u of \mathcal{G} is identified with the vertex (u, u) of $\mathcal{P}_{\mathcal{G}}$. Hence, in a computation of ρ_{4} on \mathcal{G}, we can always remember the last vertex of $\mathcal{P}_{\mathcal{G}}$ of the form (u, u) that was shown to be accessible. Thus, to know whether u comes immediately before v in the canonical ordering of \mathcal{G}, we simply need to know whether (u, u) comes before (v, v) in the canonical ordering of the accessible vertices of $\left|\mathcal{P}_{\mathcal{G}}\right|$, so that no vertex of the form (w, w) is such that $(u, u)<(w, w)<(v, v)$ in this canonical ordering; and this is what ρ_{4} tells us.

Let Ω be any problem involving strongly-connected locally-ordered digraphs that is solvable in polynomial-time. By Theorem $2, \Omega$ can be accepted by a program scheme of $\operatorname{NPSS}_{s}(1)$. By replacing tests to see whether $\operatorname{succ}(x, y)$ or $\neg \operatorname{succ}(x, y)$ holds with the code ρ_{4}, with 0 chosen as the source and max chosen as the last element in our canonical ordering, we obtain a program scheme of $\operatorname{NPSS}(1)$ that accepts Ω. By Theorem $2, \Omega$ can be defined by a sentence $\Psi \in \mathrm{PS}^{1}[\mathrm{FO}]$ as required. Hence, on the class of stronglyconnected locally-ordered digraphs, $\mathbf{P}=\mathrm{PS}^{1}[\mathrm{FO}]$, even in the absence of two built-in constants as we can replace Ψ by:
$\exists 0 \exists \max$ (' \max is the last element in the canonical ordering starting at $0 ' \wedge \Psi)$
(here, we are treating 0 and max as two new variables).
Theorem 14 should be compared with a result of Etessami and Immerman [5] on strongly-connected locally-ordered digraphs. Their notion of a locally-ordered digraph, which they call a one-way locally ordered graph, is the same as ours, i.e., a σ_{3}-structure with identical restrictions on R, except that in addition they have at their disposal another universe $\{0,1, \ldots, n-1\}$, in a σ_{3}-structure of size n, and a built-in total ordering on this universe; that is, their structures are two-sorted. Immerman had previously proven that transitive closure logic (see [4] for more details) with a built-in successor relation defines the class of problems solvable in non-deterministic logspace; that is, the complexity class NL. The inclusion of this second universe (or 'counting on the side') meant that Immerman and Etessami could prove that on the class of stronglyconnected one-way locally ordered graphs, NL consists of those problems definable in transitive closure logic (without a built-in successor relation). Looking at transitive closure logic on Etessami and Immerman's one-way locally ordered graphs is a way of removing the built-in successor relation but retaining a weaker notion of ordering. Our result shows that if we dispense with 'counting on the side' in one-way locally ordered graphs, i.e., we consider our locally-ordered digraphs, then whilst we do not show that transitive closure logic captures NL on this class of structures, we do show that path system logic captures \mathbf{P} on the class of such digraphs.

We have another remark concerning Theorem 14. Probably the most commonly occurring locally-ordered digraph is the planar graph when it comes with a plane embedding; that is, for every vertex of the graph, the neighbours are listed in clockwise order. Consequently, Theorem 14 holds for the class of connected planar embeddings. But what if we are just given a connected planar graph without an embedding? That is, we are given a structure \mathcal{G} over the signature $\sigma_{2}=\langle E\rangle$, where E is a binary relation symbol, and consider \mathcal{G} as an undirected graph with vertex set $|\mathcal{G}|$ and with edges $\{(u, v): u, v \in|\mathcal{G}|, E(u, v)$ or $E(v, u)$ holds $\}$. Can we obtain a result similar to Theorem 14 on the class of planar graphs; or at least on a significant sub-class of planar graphs?

A planar graph \mathcal{G} is a triangulation if there is a plane embedding of \mathcal{G} such that every face is a cycle of length 3 (in particular, triangulations are connected). A graph is 3 -connected if no matter which 2 vertices and their incident edges are removed, the graph remains connected. By [10], for example, a triangulation is 3-connected; and by [3], for example, every 3 -connected planar graph has a unique plane embedding up to topological isomorphism. Hence, we can talk about the unique set of faces of a triangulation.

Theorem 15 Any problem involving triangulations that can be solved in polynomialtime can be defined by a sentence of $(\pm P S)^{2}[F O]$ with two built-in constants. Consequently, on the class of triangulations, $\mathbf{P}=(\pm P S)^{2}[F O]$ (even in the absence of two built-in constants).

Proof Let \mathcal{G} be a σ_{2}-structure encoding a triangulation. Let $\mathcal{P}_{\mathcal{G}}$ be a path system with vertex set $|\mathcal{G}|^{4} \times\{X, Y, Z\}$. Fix $c_{0}, c_{1}, c_{2} \in|\mathcal{G}|$ for which $\left(c_{0}, c_{1}, c_{2}\right)$ forms a face in \mathcal{G}. The path system $\mathcal{P}_{\mathcal{G}}$ has rules:
(a) $(X,(u, v, w, u),(v, w, u, v))$ and $((u, v, w, u), X,(v, w, u, v))$, for all $u, v, w \in|\mathcal{G}|$ for which (u, v, w) forms a face in \mathcal{G};
(b) $(Y,(u, v, w, u),(u, w, v, u))$ and $((u, v, w, u), Y,(u, w, v, u))$, for all $u, v, w \in|\mathcal{G}|$ for which (u, v, w) forms a face in \mathcal{G};
(c) $\left(Z,(u, v, w, u),\left(u, v, w^{\prime}, u\right)\right)$ and $\left((u, v, w, u), Z,\left(u, v, w^{\prime}, u\right)\right)$, for all $u, v, w, w^{\prime} \in$ $|\mathcal{G}|$ for which (u, v, w) and $\left(u, v, w^{\prime}\right)$ form distinct faces in \mathcal{G};
(d) $((u, v, w, u),(u, v, w, u),(u, u, u, u))$, for all $u, v, w \in|\mathcal{G}|$ for which (u, v, w) forms a face in \mathcal{G};
(e) $\left((u, v, w, u),\left(u^{\prime}, v^{\prime}, w^{\prime}, u^{\prime}\right), X\right)$, for all $u, v, w, u^{\prime}, v^{\prime}, w^{\prime} \in|\mathcal{G}|$ for which (u, v, w) and $\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$ form distinct faces in \mathcal{G} and where $(u, v, w, u) \neq\left(u^{\prime}, v^{\prime}, w^{\prime}, u^{\prime}\right)$;
(f) $((u, u, u, u), t, X)$ and $(t,(u, u, u, u), X)$, for all $u \in|\mathcal{G}|$ and $t \in\left|\mathcal{P}_{\mathcal{G}}\right|$; and
(g) $(X, X, Y),(Y, Y, Z),\left(Z, Z,\left(c_{0}, c_{1}, c_{2}, c_{0}\right)\right)$ and (s, t, X), for all $s, t \in\{X, Y, Z\}$ for which $s \neq t$.

The source of the path system $\mathcal{P}_{\mathcal{G}}$ is the vertex X. The vertices of $|\mathcal{G}|^{4}$ of the form (u, v, w, u), where (u, v, w) forms a face in \mathcal{G}, can be viewed as rooted partial orientations of the faces of \mathcal{G}, via: the vertex (u, v, w, u) is the path $u \rightarrow v \rightarrow w$ of length 2 partially encompassing the face (u, v, w). The rules are such that they allow us to show that every vertex of the form (u, v, w, u), where (u, v, w) forms a face in \mathcal{G}, is accessible: with the rules involving X and Y and Z used to generate all 'rooted 2-paths' around a face; and the rules involving Z used to 'flip' across neighbouring faces. Moreover, all vertices of the form (u, u, u, u), where $u \in|\mathcal{G}|$, are accessible too.

The path system $\mathcal{P}_{\mathcal{G}}$ can easily be defined in terms of \mathcal{G} using a formula of $\mathrm{PS}^{1}[\mathrm{FO}]$ (to check that (u, v, w) is a face in \mathcal{G}, we need to check that for every $u^{\prime}, v^{\prime} \in|\mathcal{G}| \backslash$ $\{u, v, w\}$, there is a path in \mathcal{G} from u^{\prime} to v^{\prime} avoiding u, v and w : this can be verified with a formula of $\left.\mathrm{PS}^{1}[\mathrm{FO}]\right)$. Additionally, the path system obtained from $\mathcal{P}_{\mathcal{G}}$ by restricting to the vertices of $\{(u, v, w, u): u, v, w \in|\mathcal{G}|,(u, v, w)$ forms a face in $\mathcal{G}\} \cup\{(u, u, u, u)$: $u \in|\mathcal{G}|\} \cup\{X, Y, Z\}$ is deterministic.

We can amend the program scheme ρ_{3} (defined at the beginning of this section), as in the proof of Theorem 14, so that we obtain a program scheme ρ_{5} which yields a canonical ordering of the accessible vertices of $\mathcal{P}_{\mathcal{G}}$. However, this program scheme ρ_{5} is not in $\operatorname{NPSS}(1)$ as the tests in while-loops are allowed to be formulae of PS^{1} [FO]. We can now use this ordering to obtain a canonical ordering of the vertices of \mathcal{G}. In a computation of ρ_{5} on \mathcal{G}, we can remember the last vertex of $\mathcal{P}_{\mathcal{G}}$ of the form (u, u, u, u) that was shown to be accessible. This yields a canonical ordering of the vertices of \mathcal{G}. Hence, as in the proof of Theorem 14, any polynomial-time solvable problem involving triangulations can be accepted by a program scheme of NPSS(1) with tests from $\mathrm{PS}^{1}[\mathrm{FO}]$; and so, by Theorem 2, by a sentence of $(\pm \mathrm{PS})^{2}[\mathrm{FO}]$. The rider in the statement of the result follows as in the proof of Theorem 14.

Theorem 15 should be compared with a recent result of Grohe [6] who proved that any polynomial-time solvable problem involving 3 -connected planar graphs can be defined by a sentence of inflationary fixed-point logic. As was remarked in [1], path system logic is a proper fragment of inflationary fixed-point logic (in fact, there are problems involving trees which are definable in inflationary fixed-point logic but not in path system logic): however, it is not known whether this is the case on the class of 3 -connected planar graphs. Theorem 15 shows that on the class of triangulations, a proper sub-class of the class of 3-connected planar graphs, inflationary fixed point logic and (the fragment $(\pm \mathrm{PS})^{2}[\mathrm{FO}]$ of $)$ path system logic are equally expressive: they express exactly the polynomial-time properties of such graphs.

We end with a remark for those readers acquainted with the hierarchy of program schemes NPSS defined in [1]. An immediate corollary of the proof of Theorem 15 is that on the class of triangulations, this hierarchy collapses to its second level, $\operatorname{NPSS}(2)$, and any polynomial-time solvable problem on the class of triangulations can be defined by a program scheme of $\operatorname{NPSS}(2)$.

5 Conclusions

In this paper we have essentially developed a new technique for building logically definable successor relations in certain classes of structures. Our technique is established by considering the relationship between certain program schemes with access to a stack and path system logic; and it enables us to (sometimes) build successor relations definable in path system logic as opposed to (the more expressive) inflationary fixed-point logic, as is usually the case in the literature.

Our analysis has resulted in a model of computation which takes arbitrary finite structures as inputs and which captures \mathbf{P}, but whose non-deterministic version has the same computational power as its deterministic version. It is interesting to note that this equivalence of models comes about essentially because there is a quantifier-free firstorder translation (in the parlance of [4]) from the problem PS to the problem detPS. Whilst this translation is not particularly difficult to establish, it is the association of the problem PS and detPS with the classes of program schemes NPSS(1) and $\operatorname{DPSS}(1)$ wherein the non-trivial aspects of the equivalence result lie. Another interesting aspect of this equivalence result is that although a program scheme ρ of, for example, $\operatorname{NPSS}_{s}(1)$ can solve any given problem of \mathbf{P}, the computation of ρ need not itself be a polynomialtime computation. This point is worthy of further consideration.

There are numerous other obvious directions for further research. For example, it would be interesting to find other (natural) classes of structures over which path system logic captures \mathbf{P} (such a contender has already been mentioned: the class of 3 -connected graphs). A slightly more involved question might be: can we find a class of structures over which path system logic captures \mathbf{P}, but so that $(\pm \mathrm{PS})^{i}[\mathrm{FO}]$ captures \mathbf{P}, for some i, whereas within $(\pm \mathrm{PS})^{i}[\mathrm{FO}]$ there is a proper hierarchy $(\pm \mathrm{PS})^{1}[\mathrm{FO}] \subset$ $(\pm \mathrm{PS})^{2}[\mathrm{FO}] \subset \ldots$ A first step in this direction would be to prove that on the class of triangulations, there are polynomial-time solvable problems that are not definable in $(\pm \mathrm{PS})^{1}[\mathrm{FO}]$.

References

[1] A.A. Arratia-Quesada, S.R. Chauhan and I.A. Stewart, Hierarchies in classes of program schemes, Journal of Logic and Computation 9 (1999) 915-957.
[2] S.A. Cook, Characterization of pushdown machines in terms of time-bounded computers, Journal of the Association for Computing Machinery 18 (1971) 4-18.
[3] R. Diestel, Graph Theory, Springer-Verlag (1997).
[4] H.D. Ebbinghaus and J. Flum, Finite Model Theory, Springer-Verlag (1995).
[5] K. Etessami and N. Immerman, Reachability and the power of local ordering, Theoretical Computer Science 148 (1995) 261-279.
[6] M. Grohe, Fixed-point logics on planar graphs, Proceedings 13th Annual IEEE Symposium on Logic in Computer Science (1998) 6-15.
[7] M. Grohe and J. Mariño, Definability and descriptive complexity on databases of bounded tree-width, Proceedings of 7th International Conference on Database Theory, Lecture Notes in Computer Science 1540, Springer-Verlag, Berlin (1999) 70-82.
[8] N. Immerman and E. Lander, Describing graphs: a first-order approach to graph canonization, in: Complexity theory retrospective (ed. A. Selman), Springer-Verlag (1990) 59-81.
[9] M. Otto, Bounded Variable Logics and Counting, Lecture Notes in Logic Volume 9, Springer-Verlag (1997).
[10] T.L. Saaty and P.C. Kainen, The Four-Colour Problem, McGraw-Hill International (1977).
[11] I.A. Stewart, Logical and schematic characterization of complexity classes, Acta Informatica 30 (1993) 61-87.
[12] I.A. Stewart, Logical description of monotone NP problems, Journal of Logic and Computation 4 (1994) 337-357.
[13] I.A. Stewart, Program schemes, queues, the recursive spectrum and zero-one laws, Proceedings of 7 th Annual International Computing and Combinatorics Conference (COCOON 2001) (ed. J. Wang), Lecture Notes in Computer Science 2108, Springer-Verlag, Berlin (2001) 39-48.
[14] I.A. Stewart, Program schemes, arrays, Lindström quantifiers and zero-one laws, Theoretical Computer Science 275 (2002) 283-310.

[^0]: *Most of this research was completed whilst the author was at the University of Leicester. Supported by EPSRC Grant GR/K 96564.

[^1]: ${ }^{1}$ All results in this section were proven in collaboration with S.R. Chauhan: they are included here with her permission.

