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Abstract

We continue the study of the expressive power of certain classes of program schemes on fi-
nite structures, in relation to more mainstream logics studied in finite model theory and to
computational complexity. We show that there exists a program scheme, whose constructs
are assignments and while-loops with quantifier-free tests and which has access to a stack,
that can accept a P-complete problem, the deterministic path system problem, even in the
absence of non-determinism so long as problem instances are presented in a functional style.
(Our proof leans heavily on Cook’s proof that the classes of formal languages accepted by
deterministic and non-deterministic logspace auxiliary pushdown machines coincide). How-
ever, whilst our result is of independent interest, as it leads to a deterministic model of
computation capturing P whose non-deterministic variant also captures P, we then show
how our constructed program scheme can be used to build a successor relation in certain
classes of structures, namely: the class of strongly-connected locally-ordered digraphs; the
class of connected planar embeddings; and the class of triangulations, with the consequence
that on these classes of graphs, (a fragment of) path system logic (with no built-in relations)
captures exactly the polynomial-time solvable problems.

1 Introduction

One of the central open problems in finite model theory is whether there is a logic
for capturing the complexity class P (polynomial-time); that is, whether there is a
logic such that the class of problems definable in this logic coincides with the class
of polynomial-time solvable problems. Of course, one has to be precise about what
one means by a ‘logic’ (the generally accepted definition is given in, for example, [9])
but one sensible property that any logic should have is that it should have a recursive
syntax; that is, the well-formed formulae of any logic should be recursively enumerable.

∗Most of this research was completed whilst the author was at the University of Leicester. Sup-
ported by EPSRC Grant GR/K 96564.
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This property immediately rules out all existing ‘logical’ characterisations of P based
around ‘logics’ with built-in relations, such as inflationary fixed-point logic with a
built-in successor relation [4] and path system logic with a built-in successor relation
[12]. (Throughout, for convenience, we try to use [4] as our main reference text for
definitions and results in finite model theory and descriptive complexity, and the reader
is referred to this text for more details on the proper attribution of results.)

Working on the assumption that there is a logic capturing P, one can approach this
central problem in two directions. One can try and develop more and more expres-
sive logics (but where the expressibility stays within polynomial-time) and hope that
eventually a logic capturing P will emerge; or one can consider existing logics, such as
inflationary fixed-point logic and path system logic (in the absence of built-in relations)
and try to capture P on certain classes of finite structures, in the hope that eventually
such characterisations will show exactly what has to be added to one of these logics
(and still retain the property of being a logic) so as to capture P. Of course, it may
be the case that there does not exist a logic capturing P (with the consequence that
P �= NP). If this is so then it is clearly worthwhile to discover on which classes of
finite structures and for which logics P can be logically captured. It is essentially with
this question that we are concerned here.

Existing results regarding capturing P on restricted classes of structures are all
concerned with inflationary fixed-point logic. In particular: Immerman and Lander
[8] proved that inflationary fixed-point logic with counting (that is, where there is an
additional universe of numbers and a total ordering on this universe) captures P on
the class of trees; and Grohe [6] and Grohe and Mariño [7] proved that this same logic
does likewise on the class of planar graphs and the class of graphs of bounded tree-
width, respectively. Grohe [6] also proved that inflationary fixed-point logic (without
counting) captures P on the class of 3-connected planar graphs. In this paper, we show
that a fragment of path system logic, which itself is a proper fragment of inflationary
fixed-point logic (even on the class of trees) suffices to capture P on the following
classes of structures: strongly-connected locally-ordered digraphs; connected planar
embeddings; and triangulations. The class of triangulations (that is, the class of planar
graphs having a planar embedding whose faces, including the outer face, are all cycles
of length 3) forms a (significant) proper sub-class of the class of 3-connected planar
graphs, and so one might interpret our result as a strengthening of Grohe’s result for
this class of graphs (we do not as yet know whether it is the case that path system
logic captures P on the class of 3-connected planar graphs).

Our results, mentioned in the preceding paragraph, are applications of another
result in this paper concerning program schemes. Program schemes are essentially a
model of computation that is amenable to logical analysis yet is closer to the general
notion of a program than a logical formula is. They were extensively studied in the
seventies, without much regard being paid to an analysis of resources, before a closer
complexity analysis was undertaken in, mainly, the eighties. There are connections
between program schemes and logics of programs, especially dynamic logic. Program
schemes have since been further developed to work on finite structures, mindful of
advances in finite model theory (see, for example, [1, 13, 14] for more details). One
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appealing characteristic of program schemes is that they form a model of computation
for computing on unordered data.

Our main result involving program schemes is that there is a deterministic program
scheme ρ, whose constructs are assignments and while-loops with quantifier-free tests
and which has access to a stack, that accepts a P-complete problem, the deterministic
path system problem, if the instances of this problem are presented as finite structures
over a signature consisting of a binary function symbol and two constant symbols. Our
proof is very close in essence to Cook’s proof [2] that the classes of formal languages
accepted by deterministic and non-deterministic logspace auxiliary pushdown machines
coincide (it is, however, much more rigorously presented than Cook’s proof). Whilst
our result is of independent interest, as it leads to a deterministic model of computa-
tion capturing P whose non-deterministic variant also captures P, the actual program
scheme ρ, above, allied with results from [1] linking similar program schemes with path
system logic, enables us to canonically build a successor relation in any graph from one
of the classes mentioned above. Thus, we can logically capture P on these classes of
graphs.

In the next section, we give the basic definitions pertaining to finite model theory
and program schemes, before proving in Section 3 that we can solve the deterministic
path system problem in the manner described above. Our applications are detailed in
Section 4, and we present our conclusions in Section 5.

2 Preliminaries

Ordinarily, a signature σ is a tuple 〈R1, . . . , Rr, C1, . . . , Cc〉, where each Ri is a relation
symbol, of arity ai, and each Cj is a constant symbol. However, we sometimes allow
our signatures to also contain function symbols. When we do, we explicitly denote
that this is the case by referring to the signature as σ′; that is, we use a superscript ′

to denote signatures which might contain function symbols. Consequently, definitions,
theorems and the like might apply only to signatures σ not involving function symbols
or they might apply to signatures σ′ where function symbols are allowed (though not
necessarily present). For example, first-order logic over some signature σ, FO(σ),
consists of those formulae built from atomic formulae over σ using ∧, ∨, ¬, ∀ and
∃; and FO = ∪{FO(σ) : σ is some signature}. Thus, according to our notation, we
have defined FO(σ) and FO only for signatures not containing function symbols. Of
course, first-order logic can be defined over signatures containing function symbols;
however, our definition suffices for our needs. The same can be said of other subsequent
definitions.

A finite structure A over the signature σ, or σ-structure, consists of a finite universe
or domain |A| together with a relation Ri of arity ai, for every relation symbol Ri of
σ, of arity ai, and a constant Cj ∈ |A| for every constant symbol Cj (by an abuse of
notation, we do not distinguish between constants or relations and constant or relation
symbols). If A is a finite σ′-structure, for some signature σ′ (possibly containing
function symbols, note) then in addition to the above, for every function symbol Fi of
arity bi, there is a total function Fi : |A|bi → |A|.
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A finite structure A whose domain consists of n distinct elements has size n, and
we denote the size of A by |A| also (this does not cause confusion). We only ever
consider finite structures of size at least 2, and the set of all finite structures over the
signature σ′ of size at least 2 is denoted STRUCT(σ′). A problem over some signature
σ′ consists of a subset of STRUCT(σ′) that is closed under isomorphism; that is, if A
is in the problem then so is every isomorphic copy of A. Throughout, all our structures
are finite.

We are now in a position to consider the class of problems defined by the sentences
of FO: we denote this class of problems by FO also, and do likewise for other logics.
It is widely acknowledged that, as a means for defining problems, first-order logic
leaves a lot to be desired especially when we have in mind developing a relationship
between computational complexity and logical definability. In particular, every first-
order definable problem can be accepted by a logspace deterministic Turing machine yet
there are problems in L (logspace) which can not be defined in first-order logic (one such
being the problem consisting of all those structures over the empty signature that have
even size). Consequently, we now illustrate one way of increasing the expressibility of
FO: we augment FO with a uniform or vectorized sequence of Lindström quantifiers, or
operator for short (the reader is referred to [4] for a fuller exposition on the limitations
of FO and on a number of different methods, including this one, for increasing the
expressibility of FO).

Our illustration uses an operator derived from a problem whose underlying instances
can be regarded as path systems. A path system consists of a finite set of vertices and
a finite set of rules , each of the form (x, y, z), where x, y and z are (not necessarily
distinct) vertices. There is a unique distinguished vertex called the source and a unique
distinguished vertex called the sink . The set of accessible vertices in any path system
is built as follows. Initially, the source is deemed to be accessible and new vertices are
shown to be accessible by applying the rules via: if x and y are accessible (with possibly
x = y) and there is a rule (x, y, z) then z becomes accessible. The path system problem
consists of all those path systems for which the sink is accessible from the source, and
it was the first problem to be shown to be complete for P via logspace reductions [2].

We encode the path system problem as a problem over the signature σ3 which
consists of the relation symbol R of arity 3 and the constant symbols source and sink.
A σ3-structure P can be thought of as a path system where the vertices of the path
system are given by |P|, the source is given by source, the sink is given by sink and
the rules of the path system are given by {(x, y, z) : R(x, y, z) holds in P}. Hence, we
define the problem PS as

{P ∈ STRUCT(σ3) : the vertex sink is accessible from the vertex

source in the path system P}.

Let us return to increasing the expressibility of FO. Corresponding to the problem
PS is an operator of the same name. The logic (±PS)∗[FO], or path system logic, is
the closure of FO under the usual first-order connectives and quantifiers and also the
operator PS, with PS applied as follows.

4



Given a formula ϕ(x,y, z) ∈ (±PS)∗[FO] over the signature σ, where the variables
of the k-tuples x, y and z, for some k ≥ 1, are all distinct and free in ϕ, the formula Φ
defined as PS[λx,y, zϕ](u,v), where u and v are k-tuples of (not necessarily distinct)
constant symbols and variables, is also a formula of (±PS)∗[FO], with the free variables
of Φ being those variables in u and v together with the free variables of ϕ different from
those in the tuples x, y and z. If Φ is a sentence then it is interpreted in a structure
A ∈ STRUCT(σ) as follows. We build a path system with vertex set |A|k and set of
rules

{(a,b, c) ∈ |A|k × |A|k × |A|k : ϕ(a,b, c) holds in A},
and say that A |= Φ if, and only if, the sink v is accessible in this path system
from the source u (the semantics can easily be extended to arbitrary formulae of
(±PS)∗[FO]: see, for example, [4] for a more detailed semantic definition of operators
such as PS). Note that (±PS)∗[FO] defines a class of problems over signatures not
containing function symbols. Note also that there is nothing special about the problem
PS: any problem can be converted into an operator and used to extend first-order
logic. Syntactically, such logics are very similar although their semantics depend on
the operator in hand.

It is indeed the case that we have increased expressibility as we can define problems
in (±PS)∗[FO] which can not be defined in FO (a simple Ehrenfeucht-Fräıssé game
shows that PS is not definable in FO: see [4] for more on such games). In the presence
of a built-in successor relation, we can obtain a precise complexity-theoretic charac-
terisation of the problems definable in (±PS)∗[FO]. We say that we have a built-in
successor relation if no matter over which signature we happen to be working, there is
always a binary relation symbol succ and two constant symbols 0 and max available
such that this relation symbol succ is always interpreted as a successor relation, of
the form {(a0, a1), (a1, a2), . . . , (an−2, an−1)}, in a structure of size n, where all the ai’s
are distinct and a0 = 0 and an−1 = max. Note that whether a structure satisfies a
sentence in which the relation symbol succ or the constant symbols 0 or max appear
might depend upon the particular successor relation chosen as the interpretation for
succ. Consequently, we only consider those sentences of (±PS)∗[FO] with a built-in
successor relation which define problems as being well-formed; that is, those sentences
for which satisfaction is independent of the particular interpretation chosen for succ.
We denote the logic (±PS)∗[FO] with a built-in successor relation by (±PS)∗[FOs].
As to whether (±PS)∗[FOs] should really be called a logic is highly debatable (for ex-
ample, it is undecidable as to whether a sentence of (±PS)∗[FOs] is order-invariant ,
i.e., satisfies the property we want as regards succ, and so this ‘logic’ does not have a
recursive syntax), and the reader is referred to [4] and [9] for a detailed discussion of
this and related points.

Theorem 1 [12] A problem over the signature σ is in P if, and only if, it can be
defined in (±PS )∗[FOs]. Moreover, any problem in (±PS )∗[FOs] can be defined by a
sentence of the form:

PS [λx,y, zϕ(x,y, z)](0,max),
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where: |x| = |y| = |z| = k, for some k ≥ 1; 0 (resp. max) is the constant symbol 0
(resp. max) repeated k times ; and ϕ is a quantifier-free formula of FOs.

Our notation for (±PS)∗[FO] is such that ± denotes the fact that applications of
the operator PS can appear within the scope of negation signs and ∗ denotes the fact
that we are allowed to nest applications of PS as many times as we like. The fragment
(±PS)k[FO], for some k ≥ 1, is obtained by allowing at most k nestings of applications
of PS, and the fragment PSk[FO] is obtained by further disallowing any application of
PS to appear within the scope of a negation sign. Hence, by Theorem 1, P = PS1[FOs].

The class of problems (±PS)∗[FO] is also intimately related with the class of prob-
lems accepted by certain program schemes which have access to a stack. A program
scheme ρ ∈ NPSS(1) involves a finite set {x1, x2, . . . , xk} of variables , for some k ≥ 1,
and is over a signature σ′. It consists of a finite sequence of instructions where each
instruction, apart from the first and the last, is one of the following:

• an assignment instruction of the form ‘xi := y’, where i ∈ {1, 2, . . . , k} and where
y is a variable from {x1, x2, . . . , xk}, a constant symbol of σ′ or one of the special
constant symbols 0 and max which do not appear in any signature;

• an assignment instruction of the form ‘xi := F (y1, y2, . . . , ym)’, where: i ∈ {1, 2,
. . . , k}; each yj is a variable from {x1, x2, . . . , xk}, a constant symbol of σ′ or one
of the special constant symbols 0 and max; and F is a function symbol of σ′ of
arity m;

• a guess instruction of the form ‘GUESS xi’, where i ∈ {1, 2, . . . , k};
• a while instruction of the form ‘WHILE t DO α1;α2; . . . ;αq OD’, where t is a

quantifier-free formula of FO(σ ∪ {0,max}), with σ the signature σ′ minus any
function symbols, whose free variables are from {x1, x2, . . . , xk} and where each
of α1, α2, . . . , αq is another instruction of a form given here (note that there may
be nested while instructions); or

• a stack instruction of the form ‘xi := POP’ or ‘PUSH xi’, where i ∈ {1, 2, . . . , k}.
The first instruction of ρ is ‘INPUT(x1, x2, . . . , xl)’ and the last instruction is
‘OUTPUT(x1, x2, . . . , xl)’, for some l where 1 ≤ l ≤ k. The variables x1, x2, . . . , xl

are the input-output variables of ρ, the variables xl+1, xl+2, . . . , xk are the free variables
of ρ and, further, any free variable of ρ never appears on the left-hand side of an as-
signment instruction, in a POP instruction nor in a guess instruction. Essentially, free
variables appear in ρ as if they were constant symbols.

A program scheme ρ ∈ NPSS(1) over σ′ with s free variables, say, takes a σ′-
structure A and s additional values from |A|, one for each free variable of ρ, as input;
that is, an expansion A′ of A by adjoining s additional constants. The program scheme
ρ computes on A′ in the obvious way except that the POP and PUSH instructions
provide access to a stack and:

• execution of the instruction ‘GUESS xi’ non-deterministically assigns an element
of |A| to the variable xi;
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• when the instruction ‘PUSH xi’ is encountered in some program scheme, the
value of the variable xi is placed on the top of the stack (so increasing the height
of the stack by 1) but so that xi retains its value, and when the instruction ‘xi :=
POP’ is encountered, the value on the top of the stack is removed (so decreasing
the height of the stack by 1) and the variable xi assumes this value (if the stack
is empty when the instruction ‘xi := POP’ is encountered then the computation
halts);

• the constants 0 and max are interpreted as two arbitrary but distinct elements
of |A|; and

• initially, every input-output variable is assumed to have the value 0.

Note that throughout a computation of ρ, the value of any free variable does not change.
The expansion A′ of the structure A is accepted by ρ, and we write A′ |= ρ, if, and only
if, there exists a computation of ρ on this expansion such that the output-instruction
is reached with all input-output variables having the value max. (We can easily build
the usual ‘if’ and ‘if-then-else’ instructions using while instructions: see, for example,
[11]. Henceforth, we shall assume that these instructions are at our disposal.)

We want the sets of structures accepted by our program schemes to be problems,
i.e., closed under isomorphism, and so we only ever consider program schemes ρ where
a structure is accepted by ρ when 0 and max are given two distinct values from the
universe of the structure if, and only if, it is accepted no matter which pair of distinct
values is chosen for 0 and max. Let us reiterate: when we say that ρ is a program
scheme of NPSS(1) we mean that ρ accepts a problem and the acceptance of any input
structure does not depend upon the pair of distinct values we give to 0 and max. This
is analogous to how we build a successor relation into a logic. Indeed, we can build
a successor relation into our program schemes of NPSS(1), so as to obtain the class
of program schemes NPSSs(1), or alternatively we can build two constants into our
logics. As with our logics, we write NPSS(1) and NPSSs(1) to also denote the class
of problems accepted by the program schemes of NPSS(1) and NPSSs(1), respectively.
The reader is referred to [1] for more details on program schemes such as those of
NPSS(1) and for some illustrative examples.

Theorem 2 [1]

(a) A problem over some signature σ is in NPSS (1) if, and only if, it can be defined
by a sentence of (±PS )∗[FO ] with two built-in constants, of the form:

PS [λx,y, zϕ(x,y, z)](0,max),

where: |x| = |y| = |z| = k, for some k ≥ 1; 0 (resp. max) is the constant symbol
0 (resp. max) repeated k times ; and ϕ is quantifier-free first-order.

(b) A problem over some signature σ is in P if, and only if, it can be accepted by a
program scheme of NPSS s(1).
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It was also proven in [1] that the class of problems defined by the sentences of
(±PS)∗[FO] with two built-in constants is identical to the class of problems accepted
by a (proper infinite) hierarchy of classes of program schemes, the first level of which
is NPSS(1) (hence our notation).

3 Deterministic path systems

Theorem 2 provides yet another characterisation of the complexity class P. However,
this characterisation is different in flavour from most characterisations of P in that it
equates P with the class of problems accepted by a ‘non-deterministic’ model of com-
putation; namely the program schemes of NPSSs(1). One question which immediately
arises is: ‘What can we say about the problems accepted by those program schemes of
NPSSs(1) in which the guess instruction does not appear?’ The immediate response
to this question is that without the ability to guess, no program scheme of NPSSs(1)
can accept any ‘non-trivial’ problem. However, by representing our built-in successor
relation in a functional style we can make this question meaningful. Instead of having
a built-in successor relation, let us assume that there is a built-in successor function
and assignment instructions of the form ‘xi := succ(xj)’ (of course, we still have 0 and
max denoting the least and greatest elements of the ordering, respectively). Clearly,
whether we have a built-in successor relation or a built-in successor function does not
alter the class of problems accepted by the program schemes of NPSSs(1).

Denote the class of program schemes of NPSS(1) in which the guess instruction does
not appear by DPSS(1), with DPSSs(1) defined likewise. Note that it makes no sense
to consider program schemes of DPSS(1) over signatures involving only relation and
constant symbols; as again no ‘non-trivial’ problems can be accepted by such program
schemes. However, if the underlying signature σ′ contains function symbols then we
have assignment instructions of the form ‘xi := F (xj1 , xj2 , . . . , xjb

)’, for every function
symbol F of σ′ of arity b. In such a situation, it does make sense to examine the class
of problems accepted by the program schemes of DPSS(1).

In this section1, we examine the classes of program schemes DPSS(1) and DPSSs(1).
In the subsequent section, we shall use results obtained in this section to give logical
characterisations of P on certain classes of structures (where by ‘logical’ we mean not
involving any sort of built-in relations; more precisely, ‘logical’ in the sense laid out in
[4] and [9]).

We begin by defining a deterministic path system. A deterministic path system is
a path system such that for every pair of vertices x and y (where possibly x = y),
there is exactly one vertex z such that either (x, y, z) or (y, x, z) is a rule (this vertex z
might be identical to either x or y). So, in a deterministic path system there is at most
one new vertex which can be deduced as accessible from the known accessibility of any
two vertices. The deterministic path system problem consists of all those deterministic
path systems for which the sink is accessible from the source. Define the signature

1All results in this section were proven in collaboration with S.R. Chauhan: they are included here
with her permission.
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σ′
3 = 〈F, source, sink〉, where F is a binary function symbol and source and sink are

constant symbols. A σ′
3-structure P encodes a deterministic path system in a similar

way to a σ3-structure encoding a path system except that:

• there is a rule (x, y, z) if F (x, y) = z = F (y, x) and z �= source (where possibly
z = x or z = y); and

• there is a rule (x, y, source) otherwise.

The problem DetPS is defined as:

{P ∈ STRUCT(σ′
3) : the vertex sink is accessible from the vertex

source in the deterministic path system P}.

Intuitively, to decide whether a σ3-structure is not in PS or whether a σ′
3-structure

is not in DetPS, we need to know that at some point in the process of building the
set of accessible vertices, every pair of accessed vertices, i.e., those vertices that have
so far been shown to be accessible, has been checked so that no new vertices can
be shown to be accessible from these accessed vertices, and that the sink has so far
not been accessed. Hence, it appears to be necessary to dynamically build a set of
accessed vertices and to keep a record of those pairs of accessed vertices which have
already been checked. Later on in this section, we show that we can actually do this
for deterministic path systems with a program scheme of DPSS(1) over σ′

3. We derive
this program scheme by developing an algorithm (to be called DFSearch) to solve the
deterministic path system problem and then by showing that this algorithm can be
implemented in DPSS(1).

3.1 An informal algorithm

Consider the following (informally presented) algorithm, DFSearch, which takes a de-
terministic path system as input. In this algorithm, the order in which the vertices
are accessed plays a critical role. During an execution of DFSearch on some input, at
any time there is always exactly one accessed vertex which is described as active. An
accessed vertex is the active vertex when it is the one currently being checked with
each of the accessed vertices in turn in order to see whether a new vertex can be shown
to be accessible (initially, source is the only accessed vertex, hence it is the active
vertex). The main feature of this algorithm is that as soon as a new vertex, say x, is
accessed, it becomes the active vertex and is checked with each accessed vertex in turn
(including itself), not in any random order but in the order in which these vertices were
accessed until: either a new vertex is accessed, say y, and y becomes the active vertex
and we stop checking pairs involving x and start checking pairs involving y; or until x
has been checked with all the vertices that were accessed before it, including itself. In
the latter case, our new active vertex is taken to be the vertex z which was active at
the time that x was accessed, and the next pair involving z is checked, after the pair
which accessed x.
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Example 3 Consider the following illustrative example (in our example, we do not
stop if we show the sink to be accessible but continue to generate other accessible
vertices: in fact, we do not even specify a sink). Suppose that our deterministic
program scheme is such that the set of rules can be described according to Fig. 1 where
the source is u (and where, for clarity, an ε denotes that the vertex made accessible by
the corresponding pair is one of the vertices of the pair or u).

u xwv y

u w

v

w

x

y

y

y v

v

ε

x

w

w

w

y

y

ε

ε ε ε ε

ε

ε ε ε

εε

w

w

Figure 1. A deterministic path system.

Our algorithm begins with u active and checks the pair {u, u}; with the result that
w is shown to be accessible. Hence, the vertices so far shown to be accessible are, in
order, u and w, with w now active.

According to our algorithm, we next check the pair {w, u} which shows y to be
accessible. Hence, the vertices so far shown to be accessible are, in order, u, w and y,
with y now active.

According to our algorithm, we next check the pair {y, u}, which yields no new
accessible vertex, and so we check the pair {y, w}, which shows v to be accessible.
Hence, the vertices so far shown to be accessible are, in order, u, w, y and v, with v
now active.

According to our algorithm, we next check the pairs {v, u}, {v, w}, {v, y} and {v, v},
yielding no new accessible vertex; thus, we make y active (since it was active when v was
shown to be accessible) and resume checking pairs involving y (and vertices accessed
before y) starting from the pair {y, y}. This pair yields no new accessible vertex and
so we make w active (since w was active when y was shown to be accessible) and
resume checking pairs involving w (and vertices accessed before y) starting from the
pair {w,w}, which shows x to be accessible. Hence, the vertices so far shown to be
accessible are, in order, u, w, y, v and x, with x now active.

According to our algorithm, we next check the pairs {x, u}, {x,w}, {x, y}, {x, v}
and {x, x}, yielding no new accessible vertex. Thus, w becomes active. But all pairs
involving w (and vertices accessed before w) have been checked, so u becomes active.
However, all pairs involving u have been checked, so the algorithm halts.

Note that in this case, all accessible vertices are indeed shown to be accessible by
our algorithm; and if we repeated the algorithm on our input then the vertices would
be shown to be accessible in exactly the same order.
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Our algorithm DFSearch can be looked upon as a sort of depth-first search in
a deterministic path system; hence its name. However, the analogy is not exact as
the ‘depth-first search’ is not given an a priori ordering of the elements upon which
the search is performed (as is usually the case in a depth-first search in a graph): it
computes the visit-order for itself as it progresses.

A less informal description of the algorithm than that above is given in Fig. 2.
Throughout, we use x0 to denote source. Also: we write (x, y) �→ z to denote the fact
that z is the unique vertex such that there is a rule (x, y, z) or (y, x, z) and z is different
from x, y and x0; and we write (x, y) �→ ε to denote the fact that is the unique vertex z
such that there is a rule (x, y, z) or (y, x, z) is such that z is identical to one of x, y and
x0. If (x, y) �→ z is used to show that z is accessible, given that x and y have already
been shown to be accessible, then we say that x and y access z and that (x, y) �→ z is
applied to access z: in such a case, the vertex x will always be the active vertex. Also,
given x and z, if x and y access z, for some y, then we say that (the active vertex) x
accesses z.

1 suppose that x0, x1, . . . , xi have been accessed so far and xi is active;

2 check the ordered pairs (xi, x0), (xi, x1), . . . in turn;

3 IF (xi, xj) �→ xi+1 where xi+1 is a vertex not yet accessed THEN

4 IF xi+1 = sink THEN

5 ACCEPT;

6 ELSE

7 add xi+1 to our list of vertices accessed so far;

8 make xi+1 the active vertex and repeat from line 2 (with xi+1

9 replacing xi) and starting with the pair (xi+1, x0);
10 FI

11 ELSE

12 it must be the case that each pair (xi, xj), for all j ≤ i, has

13 been checked and nothing new has been shown to be accessible;

14 find the pair (xi1 , xj1) such that (xi1 , xj1) �→ xi was applied to

15 access xi;

16 make xi1 active;

17 IF xi1 = x0 THEN

18 REJECT;

19 ELSE

20 repeat from line 2 starting from the pair (xi1 , xj1+1);
21 FI

22 FI

Figure 2. A less informal description of our algorithm DFSearch.

3.2 Proving our algorithm correct

Henceforth, we equate the algorithm DFSearch with the description in Fig. 2. The
following lemmas are used to prove that DFSearch solves the deterministic path system
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problem. In these lemmas, we write: xi to denote that it is the ith vertex to be accessed
during an execution of DFSearch; and AccessedSet to denote the set of vertices shown
to be accessible by the algorithm DFSearch (AccessedSet can be regarded as being
dynamically constructed, starting off as {x0} and ending up as the set of vertices
shown to be accessible by DFSearch).

The following lemma proves that if we place the vertices accessed by the algorithm
DFSearch in a line in the order they are accessed and we draw, above the line, a
directed arc from vertex x to vertex y if vertex x accesses vertex y then no two arcs
cross.

Lemma 4 Consider an execution of DFSearch so that the algorithm terminates with
AccessedSet = {x0, x1, . . . , xk}. Suppose that xi accesses xi+r, for some i such that
0 ≤ i ≤ k − 2 and for some r ≥ 2. Then it is not the case that xi−t accesses xi+s, for
any s and t such that 0 < s < r and 0 < t ≤ i.

Proof Since xi accesses xi+r, let xu be the paired vertex such that (xi, xu) �→ xi+r is
applied to access xi+r. Assume that the statement in the lemma is false and let s be
the minimal such s for which some xi−t accesses xi+s. Note that when xi is accessed,
it becomes the active vertex and the pairs (xi, x0), (xi, x1), . . . are checked in turn until
either (xi, xj) �→ xi+1 is applied to access xi+1, for some j, or (xi, xi) has been checked
and (xi, xi) accesses nothing. Since xi accesses xi+r, we must have that xi accesses
xi+1, and so s ≥ 2. In fact, by hypothesis, every xp for which i < p < i+ s is accessed
by some xq for which i ≤ q < p. Putting s0 = i+ (s− 1) > i, xs0 is accessed by some
xs1 such that i ≤ s1 < s0; xs1 is accessed by some xs2 such that i ≤ s2 < s1; and so on
until xsv , for some v ≥ 0, is accessed by xi.

When xs0(= xi+(s−1)) is accessed, it becomes active. As xi−t accesses xi+s, xs0

accesses no vertices, and xs1 becomes active. Again, as xi−t accesses xi+s, xs1 accesses
no vertices, and xs2 becomes active; and so on until xi becomes active. Note that the
pair (xi, xu) has not yet been checked as otherwise the element xi+s would have been
accessed. Hence, xi �→ xi+s is applied to access xi+s which yields a contradiction.

As soon as xi is accessed, DFSearch starts to check the pairs (xi, x0), (xi, x1), . . . ,
(xi, xi) in turn. If at some time t during the execution of DFSearch, all the pairs have
been checked then we say that xi is fully checked at time t. Note that once a vertex
becomes fully checked, it stays fully checked.

Lemma 5 Consider an execution of DFSearch so that the algorithm terminates with
AccessedSet = {x0, x1, . . . , xk}. Suppose that xi accesses xi+r where r ≥ 1. Then at
the time that xi+r is accessed, all the vertices xp with i < p < i+ r are fully checked.

Proof We may assume that r > 1. We give a proof using induction, where our
induction hypothesis IH(j) is as follows: ‘At the time that xi accesses xi+r, all the
vertices xp with i < j ≤ p < i+ r are fully checked’.

The base case of our induction is when j = i + r − 1. Since it is not the case
that xi+r−1 accesses xi+r, it must be the case that xi+r−1 does not access any new
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vertices and hence becomes fully checked before xi+r is accessed. Thus, the induction
hypothesis holds for the base case.

Suppose that IH(j + 1) holds, where j �= i. The vertex xj is accessed before xi+r.
Either xj does not access a new vertex or xj accesses xj+1. If the former is true then
we are done since xj is fully checked before xi+r is accessed. If the latter is true then
xj accesses at least one new vertex. Let xs be any vertex such that xj accesses xs.
By Lemma 4, s < i+ r and, by hypothesis, xs is fully checked before xi+r is accessed.
When xs is fully checked, DFSearch resumes checking the vertex that accessed xs; that
is, xj. Let xq be the last vertex such that xj accesses xq. Since xj does not access any
more new vertices, DFSearch continues checking xj until it is fully checked; and at this
point xi+r is still to be accessed. Hence the result follows by induction.

We can now obtain the following corollary.

Corollary 6 Consider an execution of DFSearch. Suppose that at time t, AccessedSet
= {x0, x1, . . . , xi+r} and the vertex xi is active, where r ≥ 1. Then at time t, all vertices
xp with i < p ≤ i+ r are fully checked.

Proof Suppose that xj accesses xi+r. When xi+r is accessed, it becomes active; and
as xi is active at time t, xi+r accesses no new vertices before becoming fully checked.
At this time (when xi+r is fully checked, which is before time t), by Lemma 5, the
vertices of {xp : j < p ≤ i+ r} are fully checked. If j ≤ i then we are done.

Suppose that i < j. After xi+r becomes fully checked, xj becomes active. As xi is
active at (the later) time t, xj becomes fully checked. Suppose that xj1 accesses xj. By
Lemma 5, when xj is accessed, which is before time t, the vertices of {xp : j1 < p < j}
are fully checked. If j1 ≤ i then we are done.

Continuing as above, we obtain that there exists some xjk
such that: xjk

accesses
xjk−1

; the vertices of {xp : jk < p ≤ i+ r} are fully checked at some time not later than
time t; and jk ≤ i. Hence, the result follows.

Now we can prove the correctness of our algorithm.

Proposition 7 The algorithm DFSearch solves the deterministic path system problem.

Proof Consider the execution of DFSearch with some deterministic path system as
input. Initially, DFSearch starts with AccessedSet consisting only of the source, and
if any more vertices are added then they must have been accessed by vertices which
have already been placed in AccessedSet. Hence, AccessedSet only contains vertices
which are accessible from the source. Suppose that DFSearch accepts its input. Then
the sink is accessed from vertices in AccessedSet, and so the input is a deterministic
path system in which the sink is accessible from the source.

Conversely, suppose that DFSearch rejects its input and that AccessedSet = {x0,
x1, . . . , xk} on termination. For termination to occur, either k = 0 or x0 must have
become active again. If k = 0 then clearly the input is a deterministic path system
in which the sink is not accessible from the source; so assume that x0 becomes active
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again. By Corollary 6, at the time that x0 becomes active again, all the vertices
of {x0, x1, . . . , xk} are fully checked. Hence, AccessedSet consists of all those vertices
which can be shown to be accessible from the source, and the sink is not in AccessedSet;
that is, the input is a deterministic path system in which the sink is not accessible from
the source.

3.3 Implementing our algorithm

Now that we have developed the algorithm DFSearch to solve the deterministic path
system problem, let us reconsider the demands on any DPSS(1) program scheme which
might implement DFSearch. Firstly, it will need to build a set of accessed vertices,
AccessedSet , and then retrieve vertices from the set in the order in which they were
inserted; and it must do this where the only additional storage is the stack. Secondly,
it will need to check whether a vertex is already in the set AccessedSet. Thirdly, for
any accessed vertex it should be able to ascertain the pair from which this vertex was
accessed. As we shall see, it is non-trivial to implement DFSearch in DPSS(1).

However, we now describe such an implementation of the algorithm DFSearch;
that is, a program scheme ρ0 ∈ DPSS(1) over σ′

3 which solves the problem DetPS.
The structure of our program scheme ρ0 is that it consists of the instruction ‘PUSH
x0’ followed by one while-loop which loops until the input structure is either accepted
or rejected. Changes are made to the stack (starting from an empty stack) during
each while-loop iteration such that for any iteration, the changes to the stack are
determined by the top (at most) two stack elements, and these changes only involve
the top two stack elements with possibly one extra element being pushed onto the
stack. Consequently, we describe the program scheme ρ0 using the table in Fig. 3 (the
notation, and underlying encoding, used in Fig. 3 is explained shortly). The ‘pre-
loop’ column shows the top two stack elements, where c is the height of the stack;
and the ‘post-loop’ column shows how the stack changes during one iteration, given
the ‘pre-loop’ conditions. So, our program scheme essentially repeatedly applies the
operations specified in each row depending upon the current conditions, as defined in
the ‘condition’ column.

We give each row in the table in Fig. 3 a number. Let i be a row in our table and
let β be a stack configuration (that is, the contents of the stack) which satisfies the
‘pre-loop’ condition of row i. We say that β satisfies row i or that row i holds for β. In
addition, if ρ0 is such that, prior to an iteration of the while-loop, β satisfies row i then
any changes made to β in this iteration are said to be by or via row i, and we say that
row i is applied . Note that the rows in the table in 3 are mutually exclusive, i.e., any
stack configuration can only satisfy at most one rule; and every possible combination
of a pair of stack items is considered in the table.

We now give a definition of the stack items that are introduced in Fig. 3. Note that
in the actual program scheme ρ0 a suitable encoding scheme is used so as to realise
the different types of stack item below. Let the input to our program scheme be the
σ′

3-structure P . We have stack items of the following types:

(i) p, where p ∈ |P|;
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(ii) 〈p, q, r〉, where p, q, r ∈ |P|; and

(iii) [p], where p ∈ |P|.

Top 2 items on stack Top 3 items on stack Condition satisfied
pre-loop post-loop by stack pre-loop

Row c− 1 c c− 1 c c+ 1
1
1.1 −− item −− item x0 only one item
2
2.1 p q ACCEPT (p, q) �→ sink
2.2 p q 〈p, q, r〉 −− −− (p, q) �→ r ∧ r �= sink
2.3 p p [p] −− −− (p, p) �→ ε ∧ p �= x0

2.4 x0 x0 REJECT (x0, x0) �→ ε
2.5 p q p q x0 (p, q) �→ ε ∧ p �= q
2.6 p item p item x0 item not of type (i)
3
3.1 〈p, q, r〉 〈p, q, r〉 r −− −−
3.2 〈p, q, r〉 〈p′, q′, r〉 p q x0 (p �= p′ ∨ q �= q′) ∧ p �= q
3.3 〈p, p, r〉 〈p′, q′, r〉 [p] −− −− (p �= p′ ∨ p �= q′)
3.4 〈p, q, r〉 item 〈p, q, r〉 item x0 item �= 〈p′, q′, r〉,∀p′, q′
4
4.1 [r] 〈p, q, r〉 p q x0 p �= q
4.2 [r] 〈p, p, r〉 [p] −− −− p �= x0

4.3 [r] 〈x0, x0, r〉 REJECT
4.4 [r] item [r] item x0 item �= 〈p, q, r〉,∀p, q

Figure 3. The program scheme ρ0.

As an example of an encoding scheme alluded to above, we might encode the stack
item: p ∈ |P| as the 6 stack items u, u, u, p, p, p, for some fixed u ∈ |P|; 〈p, q, r〉, where
p, q, r ∈ |P|, as the 6 stack items u, v, v, p, q, r, for some fixed u, v ∈ |P| such that u �= v;
and [p], where p ∈ |P|, as the 6 stack items u, v, u, p, p, p, for some fixed u, v ∈ |P| such
that u �= v. Consequently, popping an ‘item’ from the stack, for example, really means
popping 6 elements, u1, u2, u3, u4, u5 and u6, from the stack and ascertaining, using
u1, u2 and u3, the type of the encoded item, with u4, u5 and u6 yielding the parameters
of the item.

Having described our program scheme ρ0 ∈ DPSS(1) (it is clear that the above
description can be implemented in DPSS(1)), let us now set about proving that it is
an implementation of the algorithm DFSearch.

Some definitions are in order so that we might reason about stacks. Consider the
computation of ρ0 given some σ′

3-structure P as input. A stack configuration simply
consists of the contents of the stack at some particular point in the computation.
If the stack configuration β = (β(1), β(2), . . . , β(m)) (with β(m) the top item) then
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ht(β) = m and the element at position i, for 1 ≤ i ≤ ht(β), is β(i) (the height of the
empty stack configuration is 0). The stack trace of ρ on input P is the sequence of
stack configurations in the order in which they occur when the flow of control of the
execution of ρ0 on input P is frozen immediately before executing the while-loop and
then immediately after every iteration of the while-loop (and so the first non-empty
stack configuration of any stack trace is (x0)). That is, we do not consider the stack
manipulations performed during an iteration of the while-loop, but focus on the stack
only immediately after the iteration. Note that it is conceivable that a stack trace
might be infinite; that is, ρ0 might not halt on input P . In fact, this is never the case
but until we have proved this assertion, we must assume that infinite stack traces are
possible. The ith stack configuration in the stack trace Σ is Σi, and the indices of the
stack configurations yield a notion of time; that is, we say that the stack configuration
Σi is the configuration at time i. If i < j then we say that Σi evolves to Σj. If α and
β are stack configurations of heights i and j, respectively, then we denote the stack
configuration (α(1), α(2), . . . , α(i), β(1), β(2), . . . , β(j)) by α+β; and if x is some stack
item then we denote the stack configuration (x, α(1), α(2), . . . , α(i)) by x+ α.

Before proving that the program scheme ρ0 simulates our algorithm DFSearch, we
give an example which illustrates the design of and the philosophy behind the program
scheme ρ0 (in relation to the algorithm DFSearch).

Example 8 Consider the deterministic path system P described in Fig. 4, whose
source we take as the vertex u. We shall consider the execution of the program scheme
ρ0 on P . To get the most from our example, we shall not specify a sink in our program
scheme but simply let the program scheme run until the input is rejected (if there is
no sink then it can never be shown to be accessible).

u ywv

u w

v

w

y

y

y

ε

v

ε

ε

ε ε ε ε

ε

ε ε ε

ε

Figure 4. A deterministic path system.

We portray the execution of ρ0 on P in Fig. 5. In this figure, we depict the stack
trace of the execution. Each stack configuration is represented as a column of elements
and the row applied in order to alter the stack at any configuration is denoted as a
superscript to the symbol →. Some stack configurations are given a breakpoint number
(written below the stack) which we shall use below in our description of the execution.

Initially, u is the only vertex so far shown to be accessible; and this is signalled by
the stack configuration initially consisting solely of the item u.
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u

1.1 u 2.2 1.1 u 3.4 u 2.2

u → u → 〈u, u, w〉 → 〈u, u, w〉 → 〈u, u, w〉 →
1

〈u, u, w〉 3.1 1.1 u 2.2 1.1 u 3.4

〈u, u, w〉 → w → w → 〈w, u, y〉 → 〈w, u, y〉 →
2 3

u
u u u 〈u, u, w〉
u 2.2 〈u, u, w〉 3.4 〈u, u, w〉 3.4 〈u, u, w〉 2.2 〈u, u, w〉 3.1

〈w, u, y〉 → 〈w, u, y〉 → 〈w, u, y〉 → 〈w, u, y〉 → 〈w, u, y〉 →

u
w 3.4 w 2.2 〈w, u, y〉 3.1 1.1 u 2.5

〈w, u, y〉 → 〈w, u, y〉 → 〈w, u, y〉 → y → y →
4 5

u
u u u 〈u, u, w〉
u 2.2 〈u, u, w〉 2.6 〈u, u, w〉 3.4 〈u, u, w〉 2.2 〈u, u, w〉 3.1

y → y → y → y → y →

u
w 2.5 w 2.2 3.1 y 2.3 1.1

y → y → . . . → y → [y] →
6 7

u
u 4.4 u 2.2 〈u, u, w〉 4.4 2.2 〈w, u, y〉 4.1

[y] → [y] → [y] → . . . → [y] →
8

u
u 2.2 3.1 w 2.2 1.1 u 3.4

w → . . . → w → 〈w,w, v〉 → 〈w,w, v〉 →
9

u
u 2.2 2.2 〈w,w, v〉 3.1 1.1 u 2.5

〈w,w, v〉 → . . . → 〈w,w, v〉 → v → v →
10

u
u 2.2 3.1 v 2.3 1.1 u 4.4

v → . . . → v → [v] → [v] →
11

u
u 2.2 2.2 〈w,w, v〉 4.2 1.1 u 4.4

[v] → . . . → [v] → [w] → [w] →
12

u
u 2.2 〈u, u, w〉 4.3

[w] → [w] → halt
13

Figure 5. The stack trace of ρ0.
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The computation begins so that the stack configuration evolves until it consists of
one item, the item 〈u, u, w〉 (at breakpoint 1): this comes about because (u, u) �→ w.
Essentially, this configuration is interpreted as ‘it may be the case that w is the next
vertex to be shown to be accessible (but we must confirm this)’. The stack configuration
now evolves so that the whole computation, from the start, is repeated ‘above’ the item
〈u, u, w〉 which remains at the bottom of the stack.

This evolution continues until a stack configuration of the form (〈u, u, w〉, 〈−,−, w〉)
comes about (such a circumstance is at breakpoint 2). Generally: if the two items are
different then w must have already been shown to be accessible; otherwise, they are
the same and w has not so far been shown to be accessible. At breakpoint 2, the
latter case holds and so w is made accessible, an event which is signalled by the stack
configuration consisting solely of the item w.

The stack configuration now evolves so that the whole computation is repeated
above the item w, until a previously accessed vertex is reached. This happens at
breakpoint 3 when the stack configuration is (w, u). As (w, u) �→ y, the stack evolves
so that it consists solely of the item 〈w, u, y〉 which signals that ‘it may be the case
that y is the next vertex to be shown to be accessible’. The stack configuration now
evolves so that the whole computation is repeated above the item 〈w, u, y〉 until a
stack configuration of the form (〈w, u, y〉, 〈−,−, y〉) comes about. This happens at
breakpoint 4 when the configuration is (〈w, u, y〉, 〈w, u, y〉), which signals that y has
not previously been shown to be accessible. The vertex y is now made accessible.

The stack configuration now evolves so that the whole computation is repeated
above the item y, until a previously accessed vertex is reached: this happens at break-
point 5. In this case, (y, u) �→ ε and so we continue the repetition, again until a
previously accessed vertex is reached (at breakpoint 6). Just as before, (y, w) �→ ε,
and so we yet again continue the repetition. We eventually reach the stack configura-
tion (y, y) (at breakpoint 7). As (y, y) �→ ε, the stack configuration evolves into ([y])
which is interpreted as ‘all pairs of the form (y,−), where the second component ranges
over previously accessed vertices, have been checked and no potentially new accessible
vertices obtained’. The computation now evolves so that the whole computation is re-
peated above the item [y] until a stack configuration of the form ([y], 〈−,−, y〉) comes
about. This happens at breakpoint 8 when the stack configuration is ([y], 〈w, u, y〉).
This signals that the pair of vertices which accessed y was (w, u).

The stack configuration now evolves into (w, u, u), as if it were the case that
(w, u) �→ ε. Of course, in reality (w, u) �→ y but, given that ρ0 is intended to sim-
ulate the algorithm DFSearch, we wish ρ0 to search for the vertex accessed after the
vertex u, and then pair this vertex with the vertex w. This means repeating the
computation above w, from the stack configuration (w, u, u), until the next vertex ac-
cessed is obtained. The next vertex accessed after vertex u is vertex w and the stack
configuration evolves into (w,w) (at breakpoint 9). As (w,w) �→ v, the stack configu-
ration now evolves into (〈w,w, v〉) (with the interpretation similar to that above). As
v has previously not been shown to be accessible, the stack configuration evolves into
(〈w,w, v〉, 〈w,w, v〉) (at breakpoint 10) and then to (v).

As (v, u) �→ ε, (v, w) �→ ε, (v, y) �→ ε and (v, v) �→ ε, the whole computation is
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repeated above v until the stack configuration evolves to (v, v) (at breakpoint 11); and
then to ([v]). The whole computation is then repeated above [v] in order to ascertain
the pair of vertices which accessed v: this comes about at breakpoint 12 when the stack
configuration is ([v], 〈w,w, v〉). The stack configuration now evolves into ([w]) and the
whole computation is then repeated above [w] in order to ascertain the pair of vertices
which accessed w: this comes about at breakpoint 13 when the stack configuration
is ([w], 〈u, u, w〉). The execution now halts. Note that this execution is indeed a
simulation of the algorithm DFSearch.

The following lemmas will be used to show that DFSearch can be implemented as
a program scheme of DPSS(1).

Lemma 9 Let P be a σ′
3-structure and let Σ be the stack trace of ρ0 on input P.

Suppose that Σi = (ι), for some i > 1 and for some stack item ι �= x0. Then there
exists k such that i < k and :

• Σi+j = Σi + Σj, for all j ∈ {1, 2, . . . , k − i};
• ht(Σk) = 2; and

• Σk evolves to Σk+1 by one of the rows 2.1 – 2.4, 3.1 – 3.3 and 4.1 – 4.3.

Proof We have that Σ1 = (x0) and Σ2 = (x0, x0), and, by Fig. 3, Σi+1 = (ι, x0) and
Σi+2 = (ι, x0, x0). The application of any row is only dependent upon the top two
stack items and only alters the (at most) top two stack items (although a further item
might be pushed onto the stack or the height of the stack might be lessened by 1). Let
m be the least m such that m > 1 and ht(Σm) = 1 (we know that such an m exists as
ht(Σi) = 1). Then Σi+1 = ι+ Σ1,Σi+2 = ι+ Σ2, . . . ,Σi+m = ι+ Σm.

If Σi+m evolves to Σi+m+1 by one of the rows 2.5, 2.6, 3.4 and 4.4 then, by Fig. 3,
Σi+m+1 = ι + Σm+1 with ht(Σi+m+1) = 3. Thus, we may assume that Σi evolves to
Σk = (ι, item) where Σi+j = Σi + Σj, for all j ∈ {1, 2, . . . , k − i}, and Σk satisfies one
of rows 2.1 – 2.4, 3.1 – 3.3 and 4.1 – 4.3. The result follows.

Lemma 10 Let P be a σ′
3-structure and let Σ be the stack trace of ρ0 on input P. Fix

i ≥ 1 and define:

T (i) = {t : 1 ≤ t ≤ i and Σt = (p), for some p ∈ |P|},

with T (i) ordered as t0 < t1 < . . . < tk, for some k ≥ 0. Suppose that Σtj = (xj), for
all j = 0, 1, . . . , k, and that at time i, AccessedSet = {x0, x1, . . . , xk}. Suppose further
that Σi = (xl, xm, x0), for some l,m ∈ {0, 1, . . . , k} where m < l. Then Σi evolves to
Σs where:

• Σi+j = xl + Σ(tm+1)+j, for all j = 1, 2, . . . , s− i; and

• Σs = (xl, xm+1).
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Proof We have that Σtm = (xm) and Σtm+1 = (xm, x0), and so Σi = xl + Σtm+1. By
Table 3, the application of any row is only dependent upon the top two stack items
and only alters the (at most) top two stack items (although a further item might be
pushed onto the stack or the height of the stack might be lessened by 1). Consequently,
Σi+1 = xl + Σ(tm+1)+1,Σi+2 = xl + Σ(tm+1)+2, . . . ,Σi+t = xl + Σ(tm+1)+t, for some t such
that ht(Σ(tm+1)+t) = 1 (we know that such a t exists as m < l and tm < tm+1 < i).

If Σi+t evolves to Σi+t+1 by row 2.6 then Σi+t+1 = xl + Σ(tm+1)+t+1 and we can
continue as above (as ht(Σi+t+1) = 3). Hence, Σi evolves to Σs where Σi+j = xl +
Σ(tm+1)+j, for all j = 1, 2, . . . , s− i, and Σs = (xl, xm+1).

Lemma 11 Let P be a σ′
3-structure and let Σ be the stack trace of ρ0 on input P. Let

i be such that Σi = (〈p, q, r〉), for some p, q, r ∈ |P|. Then there exists k such that
i < k and :

• Σi+j = Σi + Σj, for every j = 1, 2, . . . , k − i; and

• Σk = (〈p, q, r〉, 〈p′, q′, r〉), for some p′, q′ ∈ |P|.
Proof By Lemma 9, Σi evolves by repeating the computation of ρ0 on input P ‘above’
〈p, q, r〉 until the stack height is 2 and one of the rows 2.1 – 2.4, 3.1 – 3.3 and 4.1 – 4.3
is to be applied; that is, in this case, one of the rows 3.1 – 3.3. The result follows.

Now for our proof that the program scheme ρ0 implements the algorithm DFSearch.

Theorem 12 For every σ′
3-structure P, the algorithm DFSearch accepts the determin-

istic path system encoded by P if, and only if, P |= ρ0. Hence, the program scheme ρ0

accepts the problem DetPS.

Proof Suppose that on input (the deterministic path system encoded by) P , the
algorithm DFSearch halts with AccessedSet = {x0, x1, . . . , xk}, for some k ≥ 0, and
that these vertices have been shown to be accessible in the order given. There are
numerous distinguished events in the computation of DFSearch on input P , namely:
the events when the different vertices are shown to be accessible (line 7 of Fig. 2); the
events when pairs of accessible vertices are checked to see whether a new vertex might
be accessed (line 2 of Fig. 2); and the events when the search is embarked upon for
the pair of vertices that was used to show that a vertex is accessible (line 14 of Fig. 2).
These events are all distinct and have associated with them time-stamps denoting when
they occur. Let these (finitely-many distinct) time-stamps be ordered as:

t1 < t2 < t3 < . . .

(obviously: t1 is the time-stamp when x0 is assumed to be accessible; t2 is the time-
stamp associated with the event when the pair (x0, x0) is checked; t3 is the time-stamp
associated with the event when x1 is shown to be accessible, unless k = 0; and so on).

In order to prove our theorem we shall proceed by induction. Let Σ be the stack
trace of ρ0 on input P . Our induction hypothesis IH(i) is as follows: ‘There exist
non-zero natural numbers s1 < s2 < . . . < si such that for each j ∈ {1, 2, . . . , i}:
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• if tj is the time-stamp associated with the event when xl is shown to be accessible
then Σsj

= (xl);

• if tj is the time-stamp associated with the event when the pair (xl, xm) is checked
to see whether a new vertex might be accessed then Σsj

= (xl, xm);

• if tj is the time-stamp associated with the event when a search is embarked upon
for the pair (xl1 , xm1) that was used to show that xl is accessible then Σsj

= ([xl]);
and

• if s is such that 1 ≤ s ≤ si but s �∈ {s1, s2, . . . , si} then Σs �= (y), Σs �= (y, z) and
Σs �= ([y]), for any y, z ∈ |P|.’

The base cases of the induction, when i = 1 and i = 2, are immediate simply by
following the first few steps of the computation of ρ0 on input P .

Suppose that the induction hypothesis IH(i) holds, for some i ≥ 1. There are three
possibilities:

(1) Σsi
= (xl), for some l;

(2) Σsi
= (xl, xm), for some l and m; and

(3) Σsi
= ([xl]), for some l.

Case (1) Σsi
= (xl).

The next event in the computation of DFSearch on input P is when the pair (xl, x0)
is checked to see whether some new vertex might be accessed. As Σsi+1 = (xl, x0),
IH(i+ 1) holds.

Case (2) Σsi
= (xl, xm).

There are four possibilities as regards the next event in the computation of DFSearch
on input P :

(a) (xl, xm) �→ sink, and so DFSearch goes on to accept;

(b) (xl, xm) �→ y �= sink where y has not yet been accessed, and so the next event is
when y is shown to be accessible;

(c) l > m and it is not the case that (xl, xm) �→ y for some y that has not yet
been accessed, and so the next event is when the pair (xl, xm+1) is checked to see
whether a new vertex might be accessed; and

(d) l = m and it is not the case that (xl, xm) �→ y for some y that has not yet been
accessed, and so either xl = xm = 0 and DFSearch goes on to reject or the next
event is when a search is embarked upon for the pair (xl1 , xm1) that accessed xl.
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Case (2a) (xl, xm) �→ sink.

In this case, DFSearch accepts P and ρ0 accepts P .

Case (2b) (xl, xm) �→ y where y has not yet been accessed.

We have that Σsi+1 = (〈xl, xm, y〉). Suppose that Σj = (〈p, q, y〉), for some j < si and
for some p, q ∈ |P|; and let j be the minimal such j. By Lemma 11 and Fig. 3, Σj

evolves to Σs = (y), for some s < si. This yields a contradiction (as y has not yet been
accessed). Hence, by Lemma 11, Σsi+1 evolves to (〈xl, xm, y〉, 〈xl, xm, y〉) so that all
intermediate stack configurations do not correspond to any distinguished events; and
then (〈xl, xm, y〉, 〈xl, xm, y〉) evolves to (y) by applying row 3.1. Consequently, IH(i+1)
holds.

Case (2c) l > m and it is not the case that (xl, xm) �→ y for some y that has not yet
been accessed.

In this case, ti+1 is the time-stamp associated with the event of checking the pair
(xl, xm+1). There are two possibilities: either (xl, xm) �→ ε or (xl, xm) �→ xr, for some
xr ∈ AccessedSet (that is, the current version of AccessedSet).

If (xl, xm) �→ ε then Σsi+1 = (xl, xm, x0), which, by Lemma 10, evolves to the stack
configuration (xl, xm+1) such that no intermediate stack configuration corresponds to
a distinguished event; and so IH(i+ 1) holds.

If (xl, xm) �→ xr where xr ∈ AccessedSet then Σsi+1 = (〈xl, xm, xr〉). As xr is in
AccessedSet, by the induction hypothesis, Σsj

= (xr), for some j ≤ i; and consequently
(by consulting Fig. 3) Σsj−1 = (〈p, q, xr〉, 〈p, q, xr〉), for some p, q ∈ |P|. Let s < sj − 1
be the minimal s such that Σs = (〈p, q, xr〉), for some p, q ∈ |P| (such an s exists by
Fig. 3). By Lemma 11, Σsi+1 evolves to the stack configuration (〈xl, xm, xr〉, 〈p, q, xr〉)
so that no intermediate stack configuration corresponds to a distinguished event. Note
that Σs−1 = (p, q), and so, by IH(i), we have that (p, q) �= (xl, xm). Hence, the
stack configuration (〈xl, xm, xr〉, 〈p, q, xr〉) evolves to (xl, xm, x0) by applying row 3.2,
which in turn, by Lemma 10, evolves to the stack configuration (xl, xm+1) such that no
intermediate stack configuration corresponds to a distinguished event. Thus, IH(i+ 1)
holds.

Case (2d) l = m and it is not the case that (xl, xm) �→ y for some y that has not yet
been accessed.

If l = m = 0 then DFSearch rejects P and ρ0 rejects P . Assume that l = m �= 0. The
next event in the computation of DFSearch on input P is the event where the search
for the pair (xl1 , xm1) which was used to access xl is embarked upon.

If (xl, xl) �→ ε then Σsi+1 = ([xl]) and IH(i+ 1) holds.
If (xl, xl) �→ xr and xr ∈ AccessedSet then we proceed as we did in Case (2c)

whence Σsi
evolves to the stack configuration (〈xl, xl, xr〉, 〈p, q, xr〉) (where (p, q) �=

(xl, xl)) so that no intermediate stack configuration corresponds to a distinguished
event. Row 3.3 is now applied so that the stack configuration becomes ([xl]). Hence,
IH(i+ 1) holds.

Case (3) Σsi
= ([xl]).

Suppose that the pair (xl1 , xm1) accessed xl (note that l �= 0). There are three possi-
bilities for the next event in the computation of DFSearch on input P :
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(a) if m1 < l1 then the pair (xl1 , xm1+1) is checked to see whether a new vertex might
be accessed;

(b) if m1 = l1 �= 0 then the search for the pair (xl2 , xm2) which accessed xl1 is
embarked upon; and

(c) if m1 = l1 = 0 then the input is rejected.

By the induction hypothesis, there is a time-stamp tj, for some j < i, when the
pair (xl1 , xm1) was checked and Σsj

= (xl1 , xm1). Consequently, Σsj+1 = (〈xl1 , xm1 , xl〉).
Suppose that Σs = (〈p, q, xl〉), for some s < sj + 1 and for some p, q ∈ |P| where
(p, q) �= (xl, xm). Let s be the minimal such s. By Lemma 11 and Fig. 3, Σs evolves to
Σs′ = (xl) for some s′ < sj. This yields a contradiction as xl would have already been
accessed when the pair (xl1 , xm1) was later checked (remember, we are assuming that
(xl1 , xm1) accesses xl). Hence, by Lemma 9 and Fig. 3, Σsi

evolves to the stack config-
uration ([xl], 〈xl1 , xm1 , xl〉) so that no intermediate stack configuration corresponds to
a distinguished event.

Case (3a) m1 < l1.

The stack configuration ([xl], 〈xl1 , xm1 , xl〉) evolves to (xl1 , xm1 , x0) which, by Lemma
10, evolves to (xl1 , xm1+1) so that no intermediate stack configuration corresponds to
a distinguished event. Hence, IH(i+ 1) holds.

Case (3b) m1 = l1 �= 0.

The stack configuration ([xl], 〈xl1 , xm1 , xl〉) evolves to ([xl1 ]) by row 4.2, and so IH(i+1)
holds.

Case (3b) m1 = l1 = 0.

The computation of ρ0, from the stack configuration ([xl], 〈xl1 , xm1 , xl〉), leads to a
rejection of the input.

Thus, by induction, the program scheme ρ0 simulates the algorithm DFSearch, and
the result follows by Proposition 7.

The reader will have no doubt noted the similarities between the proof of Theo-
rem 12 and the proof of the main theorem in [2]. Cook uses a similar technique to
simulate the computation of a polynomial-time deterministic Turing machine as a com-
putation of a log-space deterministic auxiliary pushdown machine. However, note that
we provide a much more formal proof of our simulation than Cook does for his.

We can now use Theorem 12 to show that removing non-deterministic guessing from
the program schemes of NPSSs(1) does not diminish the class of problems so captured.

Corollary 13 Let Ω be a problem over the signature σ. The following are equivalent :

• Ω ∈ P;

• Ω ∈ NPSS s(1);

• Ω ∈ DPSS s(1); and
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• Ω ∈ (±PS )∗[FOs].

Proof Let P be a σ3-structure, i.e., a path system, of size n. We shall build a
σ′

3-structure P ′, i.e., a deterministic path system, such that P ∈ PS if, and only if,
P ′ ∈ DetPS. In order that we define a σ′

3-structure, our path system P ′ will be such
that: for every two vertices x, y ∈ |P ′|, there is exactly one z ∈ |P ′| for which (x, y, z)
is a rule; and, furthermore, (x, y, z) is a rule if, and only if, (y, x, z) is a rule.

Our path system P ′ has vertex set |P|3 and we partition this vertex set into the
disjoint union:

|P ′| =
⋃

u∈|P|
Qu,

where for every u ∈ |P|, Qu = {(u, v, w) : v, w ∈ |P|}. We define the set of rules
of P ′ in three batches. The first two batches describe rules for which the first two
components belong to the same Qu; and the third batch describes rules for which the
first two components belong to different sets Qu and Qv.

Batch 1

{((u, 0, 0), (u, v, w), (u, v, succ(w))), ((u, v, w), (u, 0, 0), (u, v, succ(w)))

: u, v, w ∈ |P|, w �= max}
∪{((u, 0, 0), (u, v,max), (u, succ(v), 0)), ((u, 0, 0), (u, v,max), (u, succ(v), 0))

: u, v ∈ |P|, v �= max}
∪{((u, 0, 0), (u,max,max), (u, 0, 0)), ((u,max,max), (u, 0, 0), (u, 0, 0))}

The rules in Batch 1 are essentially such that for any u ∈ |P|, if (u, 0, 0) is made
accessible in P ′ then so is every vertex of Qu.

Batch 2

{((u, u, w), (u, u, w), (w, 0, 0)) : u,w ∈ |P|, (u,w) �= (0, 0), R(u, u, w) holds in P}
∪{((u, u, w), (u, u, w), (0, 0, 0))

: u,w ∈ |P|, (u,w) �= (0, 0), R(u, u, w) does not hold in P}
∪{((u, v, w), (u, v′, w′), (0, 0, 0)), ((u, v′, w′), (u, v, w), (0, 0, 0))

: u, v, w, v′, w′ ∈ |P|, (v, w) �= (0, 0) �= (v′, w′),¬(w = w′ and v = u = v′)}
The rules in Batch 2 complete the definition for rules whose first 2 components are in
the same set Qu. They are mostly redundant (in that they are there so that P ′ has the
property described in the first paragraph of this proof) except that if R(u, u, w) holds
in P and (u, 0, 0) is accessible then so is (w, 0, 0) (see the comment subsequent to the
definition of the rules in Batch 1).

Batch 3

{((u, v, w), (v, u, w), (w, 0, 0)), ((v, u, w), (u,w,w), (w, 0, 0))

: u, v, w ∈ |P|, u �= v,R(u, v, w) holds in P}
∪{(((u, v, w), (v, u, w), (source, 0, 0)), ((v, u, w), (u,w,w), (source, 0, 0))
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: u, v, w ∈ |P|, u �= v,R(u, v, w) does not hold in P}
∪{((u, v, w), (u′, v′, w′), (0, 0, 0))

: u, v, w, u′, v′, w′ ∈ |P|, u �= u′,¬((u, v) = (u′, v′) and w = w′)}
The rules in Batch 3 essentially ensure that if (u, 0, 0) and (v, 0, 0) are accessible in P ′,
where u �= v, and R(u, v, w) or R(v, u, w) holds in P then (w, 0, 0) is accessible in P ′

(some rules are redundant in terms of making new vertices accessible in P ′).
The source of the path system P is the vertex (source, 0, 0) and the sink is the

vertex (sink, 0, 0).
A simple induction, with the vertices of {(u, 0, 0) : u ∈ |P|} ⊆ |P ′| corresponding

to the vertices of P , yields that the sink is accessible in the path system P if, and only
if, the sink is accessible in the path system P ′. Moreover, this is true independently of
which particular successor function is chosen.

What is more, we can actually describe the deterministic path system P ′ in terms
of P using a quantifier-free formula of FOs. That is, there is a quantifier-free formula
ψ(x,y, z) ∈ FOs, where x = (x1, x2, x3), y = (y1, y2, y3) and z = (z1, z2, z3), such that
for every u,v,w ∈ |P ′|, F (u,v) = w in P ′ if, and only if, ψ(u,v,w) holds in P . In
fact, given variables x1, x2, x3, y1, y2 and y3, we can write a portion of ‘DPSSs(1)
code’ which gives the variables z1, z2 and z3 the value F ((x1, x2, x3), (y1, y2, y3)). Con-
sequently, we can clearly amend the program scheme ρ0 of DPSS(1) so that it becomes
a program scheme ρ1 of DPSSs(1) over σ3 and accepts the problem PS. (In doing so,
we essentially replace single variables with 3-tuples of variables and the built-in succes-
sor function with the lexicographic successor function on 3-tuples obtained using succ.
Such constructions are common-place in the literature.)

Let Ω be some problem in P over the signature σ. By Theorem 1, there exists a
quantifier-free formula ϕ(x,y, z) ∈ FOs, where |x| = |y| = |z| = k, for some k ≥ 1,
such that for every σ-structure A: the path system with vertex set |A|k, with rules
{(u,v,w) : u,v,w ∈ |A|k, ϕ(u,v,w) holds in A}, with source (0, 0, 0) and with sink
(max,max,max) is such that the sink is accessible from the source if, and only if,
A ∈ Ω. By amending the program scheme ρ1, in the same way that we amended the
program scheme ρ0 to obtain ρ1, we can obtain a program scheme ρ2 ∈ DPSSs(1) which
accepts Ω. The result follows by Theorems 1 and 2.

Notice what Corollary 13 actually says: it says that the deterministic model of
computation DPSSs(1) captures exactly the complexity class P, and that the non-
deterministic extension of this model, NPSSs(1), captures P too. This result can be
interpreted as a ‘logical reformulation’ of Cook’s result, mentioned earlier, regarding
deterministic and non-deterministic logspace auxiliary pushdown machines.

4 Building an ordering

A different interpretation can be placed on the proof, in the last section, that DetPS
can be solved by the program scheme ρ0 of DPSS(1). By a simple modification of ρ0

so that it does not accept if the sink is shown to be accessible but simply continues
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exhibiting new accessible vertices, we can build a canonical ordering of the accessible
vertices in any determinstic path system. If we know a priori that our deterministic
path system is such that every vertex is accessible from the source then we can build
a canonical ordering of the vertices whose minimal element is the source.

In more detail, let P be a σ3-structure with the property that for every x, y ∈ |P|
(where possibly x = y), there exists exactly one z such that eitherR(x, y, z) orR(y, x, z)
holds. That is, P encodes a deterministic path system. By the proof of Theorem 12,
there is clearly a program scheme ρ3 ∈ NPSS(1) over σ3 ∪ {C,D}, where C and D are
two new constant symbols, such that on input P :

• if C and D are accessible and C comes immediately before D in the canonical
ordering of accessible vertices of P then every terminating computation of ρ3 on
input P signifies this fact and there is at least one terminating computation; and

• if either one of C and D is not accessible or C does not come immediately before
D in the canonical ordering of accessible vertices of P then every terminating
computation of ρ3 on input P signifies this fact and there is at least one termi-
nating computation.

This observation can be used to show that on certain classes of structures, any problem
solvable in polynomial-time can be defined by a sentence of (±PS)∗[FO] (in fact, in a
fragment of this logic).

First, we require some definitions. Let Γ be a class of σ-structures that is closed un-
der isomorphism. By a problem involving structures from Γ we mean an isomorphism-
closed subset of Γ. For any problem Ω involving structures over Γ, we say that a
sentence Ψ of some logic defines Ω if for every structure A ∈ Γ:

A ∈ Ω if, and only if, A |= Ψ.

Note that we say nothing about which structures of STRUCT(σ) \ Γ satisfy Ψ. There
is an analogous definition for a program scheme to accept some problem involving
structures from Γ; or for a Turing machine to accept some problem involving structures
from Γ. Consequently, when we talk of, for example, a logic L on a class of structures
Γ we mean the class of problems involving structures from Γ definable in L.

We begin by examining problems involving strongly-connected locally-ordered di-
graphs. Let G be a σ3-structure with the following property: for every x ∈ |G|, the set
of pairs N(x) = {(y, z) : R(x, y, z) holds in G} is of the form {(x, x)} or

{(x, y1), (y1, y2), . . . , (yk, x) : k ≥ 1 and the yi’s are distinct and different from x}.

The structure G can be considered to be a digraph with vertex set |G| where x has
no neighbours, if N(x) = {(x, x)}, and where the neighbours of x are ordered as
y1, y2, . . . , yk, otherwise. Such structures are called locally-ordered digraphs . A locally-
ordered digraph is strongly-connected if there is a path from any vertex to any other
vertex in the underlying digraph.
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Theorem 14 Any problem involving strongly-connected locally-ordered digraphs that
can be solved in polynomial-time can be accepted by a program scheme of NPSS (1) and
can also be defined by a sentence of PS 1[FO ] with two built-in constants, of the form:

PS [λx,y, zψ](0,max),

where: |x| = |y| = |z| = k, for some k ≥ 1; 0 (resp. max) is the constant symbol 0
(resp. max) repeated k times ; and ϕ is a quantifier-free formula of FO. Consequently,
on the class of strongly-connected locally-ordered digraphs, P = PS 1[FO ] = NPSS (1),
even when there are no built-in constants in PS 1[FO ].

Proof Let G be a strongly-connected locally-ordered digraph. Define ψ(x′,y′, z′),
where x′ = (x′1, x

′
2), y′ = (y′1, y

′
2) and z′ = (z′1, z

′
2), as:

(x′1 = y′1 ∧ x′2 = y′2 ∧ x′1 = z′1 �= z′2 ∧R(x′1, y
′
1, z

′
2)) ∨ (x′1 = x′2 = y′1 �= y′2 = z′1 = z′2).

The vertices of the path system PG obtained by interpreting the formula ψ in G are
|G|2 and the rules are as follows:

• ((u, v), (u, v), (u,w)) if u �= w and R(u, v, w) holds in G; and

• ((u, u), (u, v), (v, v)) if u �= v.

For every pair of vertices of PG, there is at most one rule which can be applied; and also
every vertex of the form (u, u) or (u, v), where v is a neighbour of u in G, is accessible
no matter which vertex (of the form (u′, v′), where u′ = v′ or v′ is a neighbour of u′)
we choose for the source.

We might be inclined to think that by amending the program scheme ρ3, defined
at the beginning of this section (in a style similar to as in the proof of Corollary 13 so
that vertices are replaced by pairs of elements and ψ defines the rules), we can obtain
a canonical ordering of the vertices of PG (starting at any vertex we care to choose).
However, the program scheme ρ3 takes as input σ′

3-structures and such structures
encode deterministic path systems; that is, path systems where there is exactly one
rule of the form (u, v, w) or (v, u, w) for every pair of vertices {u, v}. More to the point,
given two vertices u and v, ρ3 has to ascertain whether there is a rule (u, v, w) with
u �= w �= v. Actually, by considering the proofs of the results in the previous section,
ρ3 need only be able to ascertain whether there is a rule (u, v, w), with u �= w �= v,
for accessible vertices u and v. Such a predicate can easily be checked (in NPSS(1))
when the path system is deterministic: we simply guess the unique vertex w, check to
see whether there is a rule (u, v, w) or (v, u, w) and whether w is different from both
u and v. However, when given PG as input, this can not be done as for some pairs of
vertices (u,v) ∈ |PG|, there is no vertex w ∈ |PG| for which (u,v,w) is a rule.

Hence, let us add the following rules to our path system PG. Choose some s ∈ |PG|
so that (s, s) is the source of PG and add the rules:

• ((u, v), (u, v′), (s, s)) if v′ �= u �= v and v �= v′; and
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• ((u, v), (u′, v′), (s, s)) if u �= u′.

These are essentially ‘dummy rules’ (involving accessible vertices) but their presence
allows us to apply the results of the previous section, as these new rules can be defined
by conjunctions of atomic and negated atomic formulae. The consequence is that we
can obtain a program scheme ρ4 ∈ NPSS(1) which canonically orders the accessible
vertices of PG, starting from the vertex (s, s) (in ρ4 we begin by guessing s and leave s
fixed throughout). We can now use this ordering of the accessible vertices PG to obtain
an ordering of the vertices of G. Our encoding scheme is such that a vertex u of G is
identified with the vertex (u, u) of PG. Hence, in a computation of ρ4 on G, we can
always remember the last vertex of PG of the form (u, u) that was shown to be accessible.
Thus, to know whether u comes immediately before v in the canonical ordering of G,
we simply need to know whether (u, u) comes before (v, v) in the canonical ordering
of the accessible vertices of |PG|, so that no vertex of the form (w,w) is such that
(u, u) < (w,w) < (v, v) in this canonical ordering; and this is what ρ4 tells us.

Let Ω be any problem involving strongly-connected locally-ordered digraphs that is
solvable in polynomial-time. By Theorem 2, Ω can be accepted by a program scheme
of NPSSs(1). By replacing tests to see whether succ(x, y) or ¬succ(x, y) holds with the
code ρ4, with 0 chosen as the source andmax chosen as the last element in our canonical
ordering, we obtain a program scheme of NPSS(1) that accepts Ω. By Theorem 2, Ω
can be defined by a sentence Ψ ∈ PS1[FO] as required. Hence, on the class of strongly-
connected locally-ordered digraphs, P = PS1[FO], even in the absence of two built-in
constants as we can replace Ψ by:

∃0∃max(‘max is the last element in the canonical ordering starting at 0’ ∧ Ψ)

(here, we are treating 0 and max as two new variables).

Theorem 14 should be compared with a result of Etessami and Immerman [5] on
strongly-connected locally-ordered digraphs. Their notion of a locally-ordered digraph,
which they call a one-way locally ordered graph, is the same as ours, i.e., a σ3-structure
with identical restrictions on R, except that in addition they have at their disposal
another universe {0, 1, . . . , n − 1}, in a σ3-structure of size n, and a built-in total
ordering on this universe; that is, their structures are two-sorted. Immerman had
previously proven that transitive closure logic (see [4] for more details) with a built-in
successor relation defines the class of problems solvable in non-deterministic logspace;
that is, the complexity class NL. The inclusion of this second universe (or ‘counting on
the side’) meant that Immerman and Etessami could prove that on the class of strongly-
connected one-way locally ordered graphs, NL consists of those problems definable in
transitive closure logic (without a built-in successor relation). Looking at transitive
closure logic on Etessami and Immerman’s one-way locally ordered graphs is a way of
removing the built-in successor relation but retaining a weaker notion of ordering. Our
result shows that if we dispense with ‘counting on the side’ in one-way locally ordered
graphs, i.e., we consider our locally-ordered digraphs, then whilst we do not show that
transitive closure logic captures NL on this class of structures, we do show that path
system logic captures P on the class of such digraphs.
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We have another remark concerning Theorem 14. Probably the most commonly
occurring locally-ordered digraph is the planar graph when it comes with a plane
embedding; that is, for every vertex of the graph, the neighbours are listed in clockwise
order. Consequently, Theorem 14 holds for the class of connected planar embeddings.
But what if we are just given a connected planar graph without an embedding? That
is, we are given a structure G over the signature σ2 = 〈E〉, where E is a binary
relation symbol, and consider G as an undirected graph with vertex set |G| and with
edges {(u, v) : u, v ∈ |G|, E(u, v) or E(v, u) holds}. Can we obtain a result similar to
Theorem 14 on the class of planar graphs; or at least on a significant sub-class of planar
graphs?

A planar graph G is a triangulation if there is a plane embedding of G such that
every face is a cycle of length 3 (in particular, triangulations are connected). A graph
is 3-connected if no matter which 2 vertices and their incident edges are removed, the
graph remains connected. By [10], for example, a triangulation is 3-connected; and
by [3], for example, every 3-connected planar graph has a unique plane embedding up
to topological isomorphism. Hence, we can talk about the unique set of faces of a
triangulation.

Theorem 15 Any problem involving triangulations that can be solved in polynomial-
time can be defined by a sentence of (±PS )2[FO ] with two built-in constants. Conse-
quently, on the class of triangulations, P = (±PS )2[FO ] (even in the absence of two
built-in constants).

Proof Let G be a σ2-structure encoding a triangulation. Let PG be a path system
with vertex set |G|4 × {X,Y, Z}. Fix c0, c1, c2 ∈ |G| for which (c0, c1, c2) forms a face
in G. The path system PG has rules:

(a) (X, (u, v, w, u), (v, w, u, v)) and ((u, v, w, u), X, (v, w, u, v)), for all u, v, w ∈ |G|
for which (u, v, w) forms a face in G;

(b) (Y, (u, v, w, u), (u,w, v, u)) and ((u, v, w, u), Y, (u,w, v, u)), for all u, v, w ∈ |G| for
which (u, v, w) forms a face in G;

(c) (Z, (u, v, w, u), (u, v, w′, u)) and ((u, v, w, u), Z, (u, v, w′, u)), for all u, v, w, w′ ∈
|G| for which (u, v, w) and (u, v, w′) form distinct faces in G;

(d) ((u, v, w, u), (u, v, w, u), (u, u, u, u)), for all u, v, w ∈ |G| for which (u, v, w) forms
a face in G;

(e) ((u, v, w, u), (u′, v′, w′, u′), X), for all u, v, w, u′, v′, w′ ∈ |G| for which (u, v, w) and
(u′, v′, w′) form distinct faces in G and where (u, v, w, u) �= (u′, v′, w′, u′);

(f ) ((u, u, u, u), t, X) and (t, (u, u, u, u), X), for all u ∈ |G| and t ∈ |PG|; and

(g) (X,X, Y ), (Y, Y, Z), (Z,Z, (c0, c1, c2, c0)) and (s, t,X), for all s, t ∈ {X,Y, Z} for
which s �= t.
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The source of the path system PG is the vertex X. The vertices of |G|4 of the form
(u, v, w, u), where (u, v, w) forms a face in G, can be viewed as rooted partial orienta-
tions of the faces of G, via: the vertex (u, v, w, u) is the path u → v → w of length 2
partially encompassing the face (u, v, w). The rules are such that they allow us to show
that every vertex of the form (u, v, w, u), where (u, v, w) forms a face in G, is accessible:
with the rules involving X and Y and Z used to generate all ‘rooted 2-paths’ around
a face; and the rules involving Z used to ‘flip’ across neighbouring faces. Moreover, all
vertices of the form (u, u, u, u), where u ∈ |G|, are accessible too.

The path system PG can easily be defined in terms of G using a formula of PS1[FO]
(to check that (u, v, w) is a face in G, we need to check that for every u′, v′ ∈ |G| \
{u, v, w}, there is a path in G from u′ to v′ avoiding u, v and w: this can be verified with
a formula of PS1[FO]). Additionally, the path system obtained from PG by restricting
to the vertices of {(u, v, w, u) : u, v, w ∈ |G|, (u, v, w) forms a face in G} ∪ {(u, u, u, u) :
u ∈ |G|} ∪ {X,Y, Z} is deterministic.

We can amend the program scheme ρ3 (defined at the beginning of this section),
as in the proof of Theorem 14, so that we obtain a program scheme ρ5 which yields a
canonical ordering of the accessible vertices of PG. However, this program scheme ρ5

is not in NPSS(1) as the tests in while-loops are allowed to be formulae of PS1[FO].
We can now use this ordering to obtain a canonical ordering of the vertices of G.
In a computation of ρ5 on G, we can remember the last vertex of PG of the form
(u, u, u, u) that was shown to be accessible. This yields a canonical ordering of the
vertices of G. Hence, as in the proof of Theorem 14, any polynomial-time solvable
problem involving triangulations can be accepted by a program scheme of NPSS(1)
with tests from PS1[FO]; and so, by Theorem 2, by a sentence of (±PS)2[FO]. The
rider in the statement of the result follows as in the proof of Theorem 14.

Theorem 15 should be compared with a recent result of Grohe [6] who proved
that any polynomial-time solvable problem involving 3-connected planar graphs can
be defined by a sentence of inflationary fixed-point logic. As was remarked in [1], path
system logic is a proper fragment of inflationary fixed-point logic (in fact, there are
problems involving trees which are definable in inflationary fixed-point logic but not
in path system logic): however, it is not known whether this is the case on the class
of 3-connected planar graphs. Theorem 15 shows that on the class of triangulations,
a proper sub-class of the class of 3-connected planar graphs, inflationary fixed point
logic and (the fragment (±PS)2[FO] of) path system logic are equally expressive: they
express exactly the polynomial-time properties of such graphs.

We end with a remark for those readers acquainted with the hierarchy of program
schemes NPSS defined in [1]. An immediate corollary of the proof of Theorem 15 is
that on the class of triangulations, this hierarchy collapses to its second level, NPSS(2),
and any polynomial-time solvable problem on the class of triangulations can be defined
by a program scheme of NPSS(2).
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5 Conclusions

In this paper we have essentially developed a new technique for building logically de-
finable successor relations in certain classes of structures. Our technique is established
by considering the relationship between certain program schemes with access to a stack
and path system logic; and it enables us to (sometimes) build successor relations defin-
able in path system logic as opposed to (the more expressive) inflationary fixed-point
logic, as is usually the case in the literature.

Our analysis has resulted in a model of computation which takes arbitrary finite
structures as inputs and which captures P, but whose non-deterministic version has the
same computational power as its deterministic version. It is interesting to note that this
equivalence of models comes about essentially because there is a quantifier-free first-
order translation (in the parlance of [4]) from the problem PS to the problem detPS.
Whilst this translation is not particularly difficult to establish, it is the association of
the problem PS and detPS with the classes of program schemes NPSS(1) and DPSS(1)
wherein the non-trivial aspects of the equivalence result lie. Another interesting aspect
of this equivalence result is that although a program scheme ρ of, for example, NPSSs(1)
can solve any given problem of P, the computation of ρ need not itself be a polynomial-
time computation. This point is worthy of further consideration.

There are numerous other obvious directions for further research. For example,
it would be interesting to find other (natural) classes of structures over which path
system logic captures P (such a contender has already been mentioned: the class of
3-connected graphs). A slightly more involved question might be: can we find a class of
structures over which path system logic captures P, but so that (±PS)i[FO] captures
P, for some i, whereas within (±PS)i[FO] there is a proper hierarchy (±PS)1[FO] ⊂
(±PS)2[FO] ⊂ . . .? A first step in this direction would be to prove that on the class of
triangulations, there are polynomial-time solvable problems that are not definable in
(±PS)1[FO].
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