
Program schemes, arrays, Lindström

quantifiers and zero-one laws∗

Iain A. Stewart†,
Department of Mathematics and Computer Science,

University of Leicester, Leicester LE1 7RH, U.K.

June 21, 2001

Abstract

We characterize the class of problems accepted by a class of program schemes with arrays,

NPSA, as the class of problems defined by the sentences of a logic formed by extending first-

order logic with a particular uniform (or vectorized) sequence of Lindström quantifiers. A

simple extension of a known result thus enables us to prove that our logic, and consequently

our class of program schemes, has a zero-one law. However, we use another existing result to

show that there are problems definable in a basic fragment of our logic, and so also accepted

by basic program schemes, which are not definable in bounded-variable infinitary logic. As a

consequence, the class of problems NPSA is not contained in the class of problems defined by

the sentences of partial fixed-point logic even though in the presence of a built-in successor

relation, both NPSA and partial fixed-point logic capture the complexity class PSPACE.

1 Introduction

This paper is a continuation of the study of the classes of problems captured by
different classes of program schemes (in this study, the particular emphasis is on
a comparison with the classes of problems defined by the sentences of well-known
logics from finite model theory). Program schemes form a model of computation
that is amenable to logical analysis yet is closer to the general notion of a program
than a logical formula is. Program schemes were extensively studied in the seventies
(for example, see [3, 7, 16, 35]), without much regard being paid to an analysis of
resources, before a closer complexity analysis was undertaken in, mainly, the eighties
(for example, see [24, 26, 44]). There are connections between program schemes
and logics of programs, especially dynamic logic [9, 30]. One might also view many
query languages from database theory as classes of program schemes, although query
∗An extended abstract of this paper appeared in Proc. Computer Science Logic, Lecture Notes

in Computer Science Vol. 1683, Springer-Verlag (1999) 374–388.
†Supported by EPSRC Grants GR/K 96564 and GR/M 12933.

1

languages tend to operate on relations as opposed to individual elements (for example,
see the while language from [1, 4, 5] and the language BQL from [4, 33]).

One of the most basic classes of program schemes is that obtained by allowing as-
signments, while instructions with quantifier-free tests and non-determinism. In [6],
the relative expressibilities of this class of program schemes, NPS(1), in the presence
of a built-in successor, a built-in linear-order, a built-in multiplication, a built-in ad-
dition and combinations of such were completely classified. It was shown in [2] that
NPS, an extension of NPS(1) obtained by allowing universally quantified program
schemes to appear as tests in while instructions, is none other than transitive clo-
sure logic and that a computational analysis (as opposed to a model-theoretic, and in
particular a game-theoretic, analysis) of such program schemes yields proper infinite
hierarchies within NPS (and so within transitive closure logic). Also in [2], the class of
program schemes obtained from NPS by allowing additional access to a stack, NPSS,
was shown to be none other than path system logic (which had previously been shown
to be none other than stratified fixed point logic and stratified Datalog [28, 22]), and
again a computational analysis of the program schemes of NPSS was shown to yield
proper infinite hierarchies within NPSS (and so within path system logic). Subse-
quently, in [43], a detailed analysis of certain program schemes of NPSS yielded that
any polynomial-time problem involving strongly-connected locally-ordered digraphs,
connected planar embeddings or triangulations (that is, planar graphs embeddable
in the plane so that every face is a cycle of length 3) can be defined in (a proper
fragment of) path system logic (without any built-in relations).

The results mentioned above show that the study of program schemes is inti-
mately related with more mainstream logics from finite model theory. In [38], pro-
gram schemes allowing assignments, while instructions with quantifier-free tests, non-
determinism and access to arrays were studied but only in the presence of a built-in
successor relation (the class of problems accepted by such program schemes was shown
to be PSPACE). It is with these program schemes and their extensions, obtained by
allowing universally quantified program schemes to appear as tests in while instruc-
tions, that we are concerned in this paper but in the absence of any built-in relations;
that is, the class of program schemes NPSA. Our class of program schemes NPSA is
quite natural. It consists of the union of an infinite hierarchy of classes of program
schemes

NPSA(1) ⊆ NPSA(2) ⊆ NPSA(3) ⊆ . . .

The program schemes of NPSA(1) are built by allowing assignments, while instruc-
tions with quantifier-free tests, non-determinism and access to arrays (full details
follow later). The program schemes of NPSA(2) are built from program schemes of
NPSA(1) by universally quantifying free variables. The program schemes of NPSA(3)
are built as are the program schemes of NPSA(1) except that tests in while instruc-
tions can be program schemes of NPSA(2). The program schemes of NPSA(4) are
built from program schemes of NPSA(3) by universally quantifying free variables; and
so on.

What is crucial is our definition of the semantics. Consider, for example, a while
instruction in a program scheme ρ of NPSA(3) where the test is a program scheme
ρ′ of NPSA(2). In order to evaluate whether the test is true or not, the arrays from
ρ are not ‘passed over’ to the program scheme ρ′: the evaluation of ρ′ has no access
to the arrays of ρ. After evaluation of ρ′ has been completed, the computation of

2

the program scheme ρ resumes accordingly with its arrays having exactly the same
values as they had immediately prior to the evaluation of ρ′. It is essentially our
semantic definition that enables us to characterize the class of problems accepted by
the program schemes of NPSA as the class of problems defined by the sentences of
a logic (±Ω)∗[FO] formed by extending first-order logic with a particular uniform
(or vectorized) sequence of Lindström quantifiers (where this uniform sequence of
Lindström quantifiers corresponds to a PSPACE-complete problem Ω). Moreover,
we show that the logic (±Ω)∗[FO] has a zero-one law; but not because it is a fragment
of bounded-variable infinitary logic, as is so often the case in finite model theory, for
we show that there are problems definable in NPSA (in NPSA(1) even) which are not
definable in bounded-variable infinitary logic. Consequently, whilst both NPSA and
partial fixed-point logic capture the complexity class PSPACE in the presence of
a built-in successor relation, there are problems in NPSA which are not definable
in partial-fixed point logic. If our semantics were such as to allow for universal
quantification over arrays then we could simply guess a successor relation and hold our
guesses in an array, use universal quantification to verify that the guessed relation was
indeed a successor relation and subsequently use this guessed relation as our successor
relation throughout. Consequently, we would have captured PSPACE and not the
interesting logics (with zero-one laws but which are not fragments of bounded-variable
infinitary logic) encountered in this paper.

Section 2 includes our preliminary definitions (with [13] serving as our basic ref-
erence text for finite model theory). In Section 3, we establish complete problems for
NPSA(1) via quantifier-free first-order translations with 2 constants, and in Section
4, we use these completeness results to obtain our logical characterizations of NPSA.
We then use a result due to Stewart to show that NPSA(1) (and so NPSA) is not
contained in bounded-variable infinitary logic. In Section 5, we extend a result due
to Dawar and Grädel and hence show that our logics from the previous section, and
consequently NPSA, have a zero-one law. Finally, we present our conclusions and
directions for further research.

2 Preliminaries

2.1 Logic

Ordinarily, a signature σ is a tuple 〈R1, . . . , Rr, C1, . . . , Cc〉, where each Ri is a relation
symbol, of arity ai, and each Cj is a constant symbol. However, we sometimes consider
signatures in which there are no constant symbols; that is, relational signatures. First-
order logic over the signature σ, FO(σ), consists of those formulae built from atomic
formulae over σ using ∧, ∨, ¬, ∀ and ∃; and FO = ∪{FO(σ) : σ is some signature}.

A finite structure A over the signature σ, or σ-structure, consists of a finite uni-
verse or domain |A| together with a relation Ri of arity ai, for every relation symbol
Ri of σ, and a constant Cj ∈ |A|, for every constant symbol Cj (by an abuse of no-
tation, we do not distinguish between constants or relations and constant or relation
symbols). A finite structure A whose domain consists of n distinct elements has size
n, and we denote the size of A by |A| also (this does not cause confusion). We only
ever consider finite structures of size at least 2, and the set of all finite structures of
size at least 2 over the signature σ is denoted STRUCT(σ). A problem over some

3

signature σ consists of a subset of STRUCT(σ) that is closed under isomorphism;
that is, if A is in the problem then so is every isomorphic copy of A. Throughout, all
our structures are finite.

2.2 Lindström quantifiers

We are now in a position to consider the class of problems defined by the sentences
of FO: we denote this class of problems by FO also, and do likewise for other logics.
It is widely acknowledged that, as a means for defining problems, first-order logic
leaves a lot to be desired especially when we have in mind developing a relationship
between computational complexity and logical definability. In particular, every first-
order definable problem can be accepted by a logspace deterministic Turing machine
yet there are problems in the complexity class L (logspace) which can not be defined
in first-order logic (one such being the problem consisting of all those structures,
over any signature, that have even size). Consequently, we now illustrate one way
of increasing the expressibility of FO: we augment FO with a uniform or vectorized
sequence of Lindström quantifiers, or operator for short (the reader is referred to [13]
for a fuller exposition on the limitations of FO and on a number of different methods,
including this one, for increasing the expressibility of FO).

Our illustration uses an operator derived from a problem whose underlying in-
stances can be regarded as path systems. A path system consists of a finite set of
vertices and a finite set of rules, each of the form (x, y, z), where x, y and z are (not
necessarily distinct) vertices. There is a unique distinguished vertex called the source
and a unique distinguished vertex called the sink . The set of accessible vertices in
any path system is built as follows. Initially, the source is deemed to be accessible
and new vertices are shown to be accessible by applying the rules via: if x and y are
accessible (with possibly x = y) and there is a rule (x, y, z) then z becomes accessi-
ble. The path system problem consists of all those path systems for which the sink is
accessible from the source, and it was the first problem to be shown to be complete
for the complexity class P (polynomial-time) via logspace reductions [8].

We encode the path system problem as a problem over the signature σ3++ which
consists of the relation symbol R of arity 3 and the constant symbols source and
sink. A σ3++-structure P can be thought of as a path system where the vertices of
the path system are given by |P|, the source is given by source, the sink is given by
sink and the rules of the path system are given by {(x, y, z) : R(x, y, z) holds in P}.
Hence, we define the problem PS as

{P ∈ STRUCT(σ3++) : the vertex sink is accessible from the vertex
source in the path system P}.

Let us return to increasing the expressibility of FO. Corresponding to the problem
PS is an operator of the same name. The logic (±PS)∗[FO], or path system logic, is
the closure of FO under the usual first-order connectives and quantifiers and also the
operator PS, with PS applied as follows.

Given a formula ϕ(x,y, z) ∈ (±PS)∗[FO] over some signature σ, where the vari-
ables of the k-tuples x, y and z, for some k ≥ 1, are all distinct and free in ϕ, the
formula Φ defined as PS[λx,y, zϕ](u,v), where u and v are k-tuples of (not neces-
sarily distinct) constant symbols and variables, is also a formula of (±PS)∗[FO]. The

4

free variables of Φ are those variables in u and v together with the free variables of ϕ
different from those in the tuples x, y and z. If Φ is a sentence then it is interpreted
in a structure A ∈ STRUCT(σ) as follows. We build a path system with vertex set
|A|k and set of rules

{(a,b, c) ∈ |A|k × |A|k × |A|k : ϕ(a,b, c) holds in A},

and say that A |= Φ if, and only if, the sink v is accessible in this path system from the
source u (the semantics can easily be extended to arbitrary formulae of (±PS)∗[FO]:
see, for example, [13] for a more detailed semantic definition of operators such as
PS). Note that there is nothing special about the problem PS: any problem can be
converted into an operator and used to extend first-order logic. Syntactically, such
logics are very similar although their semantics depend on the operator in hand.

It is indeed the case that we have increased expressibility as we can define problems
in (±PS)∗[FO] which can not be defined in FO (a simple Ehrenfeucht-Fräıssé game
shows that PS is not definable in FO: see [13] for more on such games). In the
presence of a built-in successor relation, we can obtain a precise complexity-theoretic
characterisation of the problems definable in (±PS)∗[FO]. We say that we have a built-
in successor relation if no matter over which signature we happen to be working, there
is always a binary relation symbol succ and two constant symbols 0 and max available
such that this relation symbol succ is always interpreted as a successor relation, of the
form {(a0, a1), (a1, a2), . . . , (an−2, an−1)}, in a structure of size n, where all the ai’s
are distinct and a0 = 0 and an−1 = max. Note that whether a structure satisfies a
sentence, in which the relation symbol succ or the constant symbols 0 or max appear,
might depend upon the particular successor relation chosen as the interpretation for
succ. Consequently, we only consider those sentences of (±PS)∗[FO] with a built-in
successor relation that define problems as being well-formed; that is, those sentences
for which satisfaction is independent of the particular interpretation chosen for succ.
We denote the logic (±PS)∗[FO] with a built-in successor relation by (±PS)∗[FOs]
(and adopt a similar notation for other logics). As to whether (±PS)∗[FOs] should
really be called a logic is highly debatable (for example, it is undecidable as to whether
a sentence of (±PS)∗[FOs] is order-invariant , i.e., satisfies the property we want as
regards succ, and so this ‘logic’ does not have a recursive syntax) and the reader is
referred to [13] and [34] for a detailed discussion of this and related points. However,
it turns out that a problem is in the complexity class P if, and only if, it can be
defined by a sentence of (±PS)∗[FOs] [40].

Our notation for (±PS)∗[FO] is such that ± denotes the fact that applications
of the operator PS can appear within the scope of negation signs and ∗ denotes the
fact that we are allowed to nest applications of PS as many times as we like. The
fragment (±PS)k[FO], for some k ≥ 1, is obtained by allowing at most k nestings of
applications of PS, and the fragment PSk[FO] is obtained by further disallowing any
application of PS to appear within the scope of a negation sign.

In [40], it was shown that there is a very restricted normal form for sentences of
PS1[FOs]. This normal form is such that any problem in P = (±PS)∗[FOs] can be
defined by a sentence of PS1[FOs] of the form

PS[λx,y, zϕ(x,y, z)](0,max),

where: x, y and z are k-tuples of distinct variables, for some k ≥ 1; ϕ is a quantifier-

5

free formula of FOs; and 0 and max are k-tuples consisting of the constant symbols 0
and max repeated k times, respectively. (Note that in the absence of built-in relations,
the hierarchy

PS1[FO] ⊂ PS2[FO] ⊂ . . .

is proper [20].)
Saying that any problem in P can be described by a sentence of the above normal

form is equivalent to saying that there is a quantifier-free first-order translation with
successor from any problem in P to the problem PS; that is, PS is complete for P
via quantifier-free first-order translations with successor. The reader is referred to
[13] for more on logical translations where they go under the name of logical inter-
pretations. However, in [13] logical translations involving only relational signatures
are considered. If the target problem of a logical translation, PS above, is over a
signature containing constant symbols then we assume that such constant symbols
are specified by an appropriate tuple of other constant symbols (as is the case in
the normal form result above where the constant symbols source and sink of σ3++

are specified by the k-tuples 0 and max, respectively). Naturally, we have notions
such as a quantifier-free first-order translation (where succ and 0 and max are not
involved) and a quantifier-free first-order translation with 2 constants (where there
are two built-in constants, which are always interpreted differently, but no built-in
successor relation), and we can have logical translations involving formulae of other
logics, not just quantifier-free first-order formulae.

A number of extensions of FO using operators corresponding to some problem Ω
have been studied, as indeed has the whole notion of using such operators to extend
FO. For example: numerous complexity classes have been ‘captured’ by (fragments
of) logics of the form (±Ω)∗[FO] (sometimes in which there are built-in relations)
and a variety of problems have been shown to be complete for different complexity
classes via different logical translations (see, for example, the papers [19, 25, 36, 37]
and the references therein); proper infinite hierarchies have been established in logics
of the form (±Ω)∗[FO] (see, for example, [2, 20, 21]); logics of the form (±Ω)∗[FO]
have been shown to have zero-one laws [12] (we shall talk about zero-one laws for
such logics in more detail later); and it has been shown that if there is a logic for P
(where ‘logic’ is as in [13] and [34]) then there is a logic for P of the form (±Ω)∗[FO]
[11].

2.3 Program schemes

An alternative and more computational means for defining classes of problems is
to use program schemes. A program scheme ρ ∈ NPSA(1) involves a finite set
{x1, x2, . . . , xk} of variables, for some k ≥ 1, and is over a signature σ. It con-
sists of a finite sequence of instructions where each instruction, apart from the first
and the last, is one of the following:

• an assignment instruction of the form ‘xi := y’, where i ∈ {1, 2, . . . , k} and
where y is a variable from {x1, x2, . . . , xk}, a constant symbol of σ or one of the
special constant symbols 0 and max which do not appear in any signature;

• an assignment instruction of the form ‘xi := A[y1, y2, . . . , yd]’ or ‘A[y1, y2, . . . ,
yd] := y0’, for some i ∈ {1, 2, . . . , k}, where each yj is a variable from {x1, x2,

6

. . . , xk}, a constant symbol of σ or one of the special constant symbols 0 and
max which do not appear in any signature, and where A is an array symbol of
dimension d;

• a guess instruction of the form ‘GUESS xi’, where i ∈ {1, 2, . . . , k}; or

• a while instruction of the form ‘WHILE ϕ DO α1;α2; . . . ;αq OD’, where ϕ is
a quantifier-free formula of FO(σ ∪ {0,max}), whose free variables are from
{x1, x2, . . . , xk}, and where each of α1, α2, . . . , αq is another instruction of one
of the forms given here (note that there may be nested while instructions).

The first instruction of ρ is ‘INPUT(x1, x2, . . . , xl)’ and the last instruction is
‘OUTPUT(x1, x2, . . . , xl)’, for some l where 1 ≤ l ≤ k. The variables x1, x2, . . . , xl
are the input-output variables of ρ, the variables xl+1, xl+2, . . . , xk are the free vari-
ables of ρ and, further, any free variable of ρ never appears on the left-hand side of an
assignment instruction nor in a guess instruction. Essentially, free variables appear
in ρ as if they were constant symbols.

A program scheme ρ ∈ NPSA(1) over σ with s free variables, say, takes a σ-
structure A and s additional values from |A|, one for each free variable of ρ, as input;
that is, an expansion A′ of A by adjoining s additional constants. The program
scheme ρ computes on A′ in the obvious way except that:

• execution of the instruction ‘GUESS xi’ non-deterministically assigns an element
of |A| to the variable xi;

• the constants 0 and max are interpreted as two arbitrary but distinct elements
of |A|; and

• initially, every input-output variable and every array element is assumed to have
the value 0.

Note that throughout a computation of ρ, the value of any free variable does not
change. The expansion A′ of the structure A is accepted by ρ, and we write A′ |= ρ,
if, and only if, there exists a computation of ρ on this expansion such that the output-
instruction is reached with all input-output variables having the value max. (We can
easily build the usual ‘if’ and ‘if-then-else’ instructions using while instructions: see,
for example, [38]. Henceforth, we shall assume that these instructions are at our
disposal.)

We want the sets of structures accepted by our program schemes to be problems,
i.e., closed under isomorphism, and so we only ever consider program schemes ρ where
a structure is accepted by ρ when 0 and max are given two distinct values from the
universe of the structure if, and only if, it is accepted no matter which pair of distinct
values is chosen for 0 and max. Let us reiterate: when we say that ρ is a program
scheme of NPSA(1) we mean that ρ accepts a problem and the acceptance of any
input structure does not depend upon the pair of distinct values we give to 0 and
max. This is analogous to how we build a successor relation or 2 constant symbols
into a logic. Indeed, we can build a successor relation into our program schemes of
NPSA(1) so as to obtain the class of program schemes NPSAs(1). As with our logics,
we write NPSA(1) and NPSAs(1) to also denote the class of problems accepted by
the program schemes of NPSA(1) and NPSAs(1), respectively. It was proven in [38]

7

that a problem is in the complexity class PSPACE (polynomial-space) if, and only
if, it is in NPSAs(1).

Henceforth, we think of our program schemes as being written in the style of
a computer program. That is, each instruction is written on one line and while
instructions (and, similarly, if and if-then-else instructions) are split so that ‘WHILE
ϕ DO’ appears on one line, ‘α1’ appears on the next, ‘α2’ on the next, and so on (of
course, if any αi is a while, if or if-then-else instruction then it is split over a number of
lines in the same way). The instructions are labelled 1, 2, and so on, according to the
line they appear on. In particular, every instruction is considered to be an assignment,
a guess or a test. An instantaneous description (ID) of a program scheme on some
input consists of a value for each variable, the number of the instruction about to be
executed and values for all array elements. A partial ID consists of just a value for
each variable and the number of the instruction about to be executed. One step in a
program scheme computation is the execution of one instruction, which takes one ID
to another, and we say that a program scheme can move from one ID to another if
there exists a sequence of steps taking the former ID to the latter.

3 Complete problems

We begin by examining the class of problems NPSA(1) and we show that this class
has a complete problem via quantifier-free first-order translations with 2 constants.
This problem, which to our knowledge has not been studied before, is also shown to
be complete for PSPACE via quantifier-free first-order translations with successor.

Definition 1 Let the signature σTR = 〈E,P, T, C,D〉, where E is a binary relation
symbol, P and T are unary relation symbols and C and D are constant symbols.
We can envisage any σTR-structure A as a digraph (possibly with self-loops) whose
edge relation is E and with distinguished vertices C, the source, and D, the sink .
The relation P can be seen as providing a partition of the vertices and the relation
T a subset of the vertices upon which tokens are initially placed. All tokens are
indistinguishable and any vertex has upon it at most one token. Let us call a σTR-
structure A a token digraph.

Just as one can traverse a path in a digraph by moving along edges, so one can
traverse a path in a token digraph A. However, as to how edges can be traversed is
different from the usual notion. Consider an edge (u, v) ∈ E for which both u and
v are in P and such that a traveller is at vertex u (the traveller traverses a path of
edges in the digraph). The edge (u, v) can only be traversed by the traveller moving
as follows.

• The traveller moves from u via the edge (u, u′) to a vertex u′ not in P upon
which exactly one token resides;

• then from u′ via the edge (u′, v′) to a vertex v′ not in P upon which no token
resides, if v′ 6= u′, and at the same time taking the token previously at u′ to v′,
or by moving from u′ via the edge (u′, u′) (if it exists) to u′ (so that the token
remains at u′); and finally

• by moving from the vertex v′ or u′, whichever is the case, via the edge (v′, v)
or (u′, v) to v.

8

