

Upscaling ExaHyPE – on each and every core

Baojiu Li, Institute for Computational Cosmology, Durham University, DH1 3FE Durham
Holger Schulz, Department of Computer Science, Durham University, DH1 3FE Durham
Adam Tuft, Department of Computer Science, Durham University, DH1 3FE Durham
Tobias Weinzierl, Department of Computer Science, Durham University, DH1 3FE Durham
Han Zhang, Institute for Computational Cosmology, Durham University, DH1 3FE Durham

Abstract. We study a MPI+multithreaded PDE solver for hyperbolic partial differential
equations. Each thread per rank handles a subdomain of the computational domain
identified by a segment of a space-filling curve. The threads spawn additional tasks which
should be used to compensate for ill-balancing between the threads running in fork-join
mode. Our studies show that this tasks-over-BSP paradigm is not properly supported in some
OpenMP runtimes, leads to NUMA pollution and is vulnerable to tiny tasks. It also suffers
from many memory movements. Once we replace user data with smart pointers and hence
avoid unnecessary copying, we propose to add a NUMA-aware queuing system on top of
OpenMP, to batch multiple tasks into meta tasks which can spread out over idle cores. Many
of these techniques are fixes to current OpenMP runtime implementations and we expect
them to become unnecessary as the OpenMP runtimes evolve. The insights thus have
pathfinding character.

Keywords: Task-based programming, NUMA, task scheduling, OpenMP

Introduction. This work originates from observations from the ExCALIBUR/H2020 FET HPC
project ExaHyPE: ExaHyPE is an engine to solve hyperbolic equation systems given in first-
order formulation over dynamically adaptive Cartesian meshes (AMR). It offers multiple
numerical schemes ranging from low-order Finite Volume discretisations over Finite
Differences to Runge-Kutta Discontinous Galerkin and ADER-DG schemes. A key paradigm of
ExaHyPE is that users select the numerical scheme and guide the meshing, but do not
“control” the actual simulation flow. Instead, they inject domain-specific knowledge via few
callback routines, which basically set initial and boundary conditions, guide the AMR, and
realise the terms of the partial differential equation. How the mesh is distributed, re-
arranged, how computations are orchestrated and which compute kernel flavours are used
is hidden from users. ExaHyPE thus can serve a wide variety of communities. In return, it has
to be flexible with respect to different runtime characteristics. It is currently mainly used for
astrophysical challenges and for seismic problems.

ExaHyPE is built on top of Peano 4, an AMR solver framework. Peano uses a non-overlapping
domain decomposition guided by space-filling curves. The domain’s cells are cut into chunks
along the Peano space-filling curve and each chunk is assigned to one MPI rank. Using one
MPI rank per core is infeasible on machines like Archer due to their sheer core count. Within
each rank, we hence repeat the partitioning, such that we end up with a set of chunks per
rank which can be deployed to different threads. This approach works on systems with
relatively low numbers of cores. Yet, on machines like Archer, it quickly becomes infeasible
once again: We end up with 128 or more subpartitions per rank/node, and all of these
partitions have to synchronise and have to be balanced. This is challenging. Therefore,
Peano implements a technique called enclave tasking [1] on top of its MPI+OpenMP parallel

for (BSP) implementation: It identifies cells whose computations are not utterly time-critical
and can run in any order. This excludes cells along MPI boundaries, where any solution
update has to be sent out in a well-defined order, as well as cells along AMR boundaries
where expensive resolution transfer operators and mesh changes potentially require a lot of
expensive calculations, memory allocations, and synchronisation between various resolution
levels. All the other cells, aka enclaves, yield tasks which can be deployed to idle cores. We
end up with a producer-consumer pattern where some tasks per rank run through chunks of
the domain, execute time-critical computations directly, champion all subdomain boundary
exchange, and spawn all remaining work as separate tasks.

Runtime flaws in vanilla task implementation. While the “free” tasks should be used to
balance out ill-balancing on the rank, our work [1] demonstrates that such a scheme suffers
from three major drawbacks: (a) If threads are idle or become idle as they have finished
producing further tasks, they all poll the OpenMP queues for tiny enclave tasks. This leads to
massive scheduling overhead. (b) As tasks are produced on one thread and consumed by
another thread, we frequently run into NUMA issues. (c) OpenMP provides no guarantee
that spawned asks enter a task queue. Instead, the runtime might decide to postpone the
producing thread and to complete free tasks before. This typically happens for large task
counts and implies that the producer-consumer pattern is destroyed.

However, these runtime flaws are documented for the GNU runtime, whose OpenMP
runtime employs one global OpenMP task queue, whereas the LLVM runtime uses one task
queue per thread. As the AMD tools as well as the NVIDIA and Intel (oneAPI) toolchain use
LLVM nowadays, our project started from rerunning all experiments from [1] with LLVM.
Different to the GNU runtime, LLVM performs better for massive task counts (cmp results
here to data discussed in [1]). Supplementing the data decomposition with tasking pays off
for all problem sizes of interest, though we still encounter a stagnation for higher core
counts, where the performance gap between a sole data decomposition and a
decomposition plus tasking code close. The hybrid approach does not manage to roll its
runtime improvements of a factor of two over to high core counts. An introductory
performance analysis conducted under the umbrella of the eCSE project highlights, that the
baseline Peano/ExaHyPE implementation suffers from many memory movements. These
are, in line with previous publications around Peano, cache-oblivious, i.e. mainly hit the
caches. Yet, they still are expensive and lead to certain erratic runtime behaviour for some
core counts.

Solution architecture. Within the eCSE project, we first replaced all data copies of larger
data with copies of smart pointers. The actual data resides on the heap and we only pass
smart pointers between routines. Consequently, data movements are reduced though we
retain all memory semantics, i.e. all data is properly freed.

Next, we propose to add an additional, user-defined tasking layer on top of the actual
OpenMP runtime: Each thread manages its own local queue into which is enqueues its
tasks. This is a thread-local operation without any locks. If a thread has completed its work,
it first of all completes tasks from its own local queue. Once this queue is empty, it asks
companion producers to commit their completed tasks to a (logically) global queue and
continues to poll this queue for vacant tasks. Such a layered approach requires us to replace

the parallel for loops or taskloops for the task producers with bespoke production tasks
which in turn poll their queues.

Polling of a global queue still requires many locks
and can lead to congestion. We therefore refrain
from committing thread-local tasks directly to
OpenMP. Instead, we commit tasks into yet
another user-defined queue, which is a global
queue. Whenever a thread polls this queue, it
scans the tasks within the queue if they are of the
same type. If a poll encounters N tasks of the
same type, it removes all N tasks from the queue
in one rush and processes these tasks as one large
meta-task. This approach mirrors the batching
concept from linear algebra, where the same task
(matrix) is evaluated for multiple right-hand sides.
The bespoke batched compute kernels internally
are again rewritten such that they fork into native
OpenMP tasks such that they can occupy multiple

cores.

Performance data. We assess the impact of our work here through the CCZ4 Gauge Wave
test case. This standard test in computational astrophysics employs a first-order CCZ4
formulation in ExaHyPE 2, which features 59 unknowns pre degree of freedom. The same
equations/setup can be used to simulate rotating black hole mergers (left). All presented
data resembles data for the Euler equations [1,2,3]. For the tests, we employ a standard
Finite Volume solver scheme. All data here stem from a regular grid simulation (which still
suffers from imbalances if we cannot split up the mesh into equally sized parts) and features
a mesh with total=19,683 cells. We start with a setup where we host a 9x9x9 patch of Finite
Volumes per cell. This is the default.

We start with single node experiments
and make the code use one subdomain
per thread. Each OpenMP core
provided runs through a subdomain of
its own. All cores synchronise “their”
data after each step. This “plain”
approach scales yet suffers from a step
pattern for some core counts. These
represent situations where the grid
cannot be decomposed into partitions
of the same size straightforwardly. We
suffer from ill-balances as they would
arise for adaptive mesh setups, too. Switching to smart pointers, i.e. avoiding memory
movements, helps with higher core counts yet does not smooth out the scalability curve.

Once we add enclave tasking, we are consistently faster. However, performance is “lost” for

very high core counts. In this latter case, we deploy small domain partitions per core which
in turn means there are few enclave tasks. The introduction of smart pointers helps to
smooth out the runtime curve. Allowing the individual compute kernels to spread out over
multiple cores through additional internal tasking does not lead to a major performance
gain though is robustly marginally faster. Adding plain parallel for loops to the compute
kernels led to a deteriorating performance (not shown).

So far, all realisations have used plain OpenMP, i.e. we are not able to confirm the results
with the GNU runtime [1]. With our bespoke task scheduling layers, we study various
alternative scheduling schemes. We see that backfilling, i.e. the manual compensation of
fork-join ill-balances, yields the best performance [2].

Evaluation and outcomes. The work completed by the eCSE project has enabled ExaHyPE to
yield new insight in computational astrophysics [3]. The methodological improvements have
been published and presented on leading conferences of the field [2,4], and the OpenMP
“flaws” have been acknowledged and taken on board by colleagues of NVIDIA and the
OpenMP Architecture Review Board.

While the introduction of additional queue layers is relatively straightforward, we
acknowledge that we replicate queues which also do exist in LLVM’s OpenMP runtime, e.g.
This is a flaw of the current solution. A better solution would be an OpenMP interface,
where the code can explicitly control affinities and which queues to poll. Furthermore, it

would be appreciated if there were an
option to fuse/merge queues and to search
within task queues for particular tasks of the
same pattern. Finally, our approach had to
rewrite the core compute kernels for
batches of tasks such that they in turn yield
more tasks; before the eCSE project, the
kernels internally employed a plain parallel
for. This is due to the fact that OpenMP
tasks cannot internally use parallel fors, as a
task is always tied to one core. The proposal
to allow a single task to occupy multiple
threads has been rejected by the OpenMP

standard throughout the eCSE project (it had been on the agenda).

We end up with a code architecture which is implicitly NUMA aware, i.e. offers user-guided
NUMA-aware pinning of tasks to threads, and allows the parallel execution of tasks over
multiple cores/threads. However, it is not clear if OpenMP automatically leaves threads
unsubscribed if employing them would lead to cache thrashing. The work has been used as
baseline to study the offloading of batches (sets) of tasks to GPUs [4].

Acknowledgements

This work was funded under the embedded CSE programme of the ARCHER2 UK National
Supercomputing Service (http://www.archer2.ac.uk) under grant no ARCHER2-eCSE04-2.

Bibliography

[1] H. Schulz, G. Brito Gadeschi, O. Rudyy, T. Weinzierl: Task Inefficiency Patterns for a Wave
Equation Solver. In S. McIntosh-Smith, B. R. de Supinski, J. Klinkenberg: OpenMP: Enabling
Massive Node-Level Parallelism, Springer, pp. 111-124 (2021)
[2] B. Li, H. Schulz, T. Weinzierl, H. Zhang: Dynamic task fusion for a block-structured finite
volume solver over a dynamically adaptive mesh with local time stepping. ISC High
Performance 2022, LNCS 13289, pp. 153-173 (2022)
[3] H. Zhang, T. Weinzierl, H. Schulz, B. Li: Spherical accretion of collisional gas in modified
gravity I: self-similar solutions and a new cosmological hydrodynamical code. Monthly
Notices of the Royal Astronomical Society, 515(2), pp. 2464-2482 (2022)
[4] M. Wille, T. Weinzierl, G. Brito Gadeschi, M. Bader: Efficient GPU Offloading with
OpenMP for a Hyperbolic Finite Volume Solver on Dynamically Adaptive Meshes. ISC High
Performance 2023, LNCS (2023) – accepted

Appendix. Here is some technical information how to re-construct the results. All the code
is included in the standard Peano 4 repository.

git clone https://gitlab.lrz.de/hpcsoftware/Peano.git

While the code compiles with any recent C++17 compiler, we found that the best
performance on AMD EPYCs results from Intel’s oneAPI ipcx compiler. The AMD compiler
wrapper around LLVM did not yield that advantageous results. The present results all stem
from the following configure call:

./configure CC=icpx CXX=icpx CXXFLAGS=”-Ofast --std=c++20 -mtune=native -march=native -
fma -fomit-frame-pointer -fiopenmp -Wno-unknown-attributes” LDFLAGS=”-fiopenmp” --
with-multithreading=omp --enable-exahype --enable-loadbalancing --enable-
blockstructured

After a make of the core routines, the benchmarks used here can be found in

cd benchmarks/exahype2/ccz4/gauge-wave

This benchmark is a standard astrophysics benchmark which we use to assess all
performance statements. We “misuse” its convergence tests. The Python script

export PYTHONPATH=../../../../python/
python3 scalability-study.py -s fv-9

builds the whole benchmark executable.

