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Abstract. We study a MPI+multithreaded PDE solver for hyperbolic partial differential 
equations. Each thread per rank handles a subdomain of the computational domain 
identified by a segment of a space-filling curve. The threads spawn additional tasks which 
should be used to compensate for ill-balancing between the threads running in fork-join 
mode. Our studies show that this tasks-over-BSP paradigm is not properly supported in some 
OpenMP runtimes, leads to NUMA pollution and is vulnerable to tiny tasks. It also suffers 
from many memory movements. Once we replace user data with smart pointers and hence 
avoid unnecessary copying, we propose to add a NUMA-aware queuing system on top of 
OpenMP, to batch multiple tasks into meta tasks which can spread out over idle cores. Many 
of these techniques are fixes to current OpenMP runtime implementations and we expect 
them to become unnecessary as the OpenMP runtimes evolve. The insights thus have 
pathfinding character. 
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Introduction. This work originates from observations from the ExCALIBUR/H2020 FET HPC 
project ExaHyPE: ExaHyPE is an engine to solve hyperbolic equation systems given in first-
order formulation over dynamically adaptive Cartesian meshes (AMR). It offers multiple 
numerical schemes ranging from low-order Finite Volume discretisations over Finite 
Differences to Runge-Kutta Discontinous Galerkin and ADER-DG schemes. A key paradigm of 
ExaHyPE is that users select the numerical scheme and guide the meshing, but do not 
“control” the actual simulation flow. Instead, they inject domain-specific knowledge via few 
callback routines, which basically set initial and boundary conditions, guide the AMR, and 
realise the terms of the partial differential equation. How the mesh is distributed, re-
arranged, how computations are orchestrated and which compute kernel flavours are used 
is hidden from users. ExaHyPE thus can serve a wide variety of communities. In return, it has 
to be flexible with respect to different runtime characteristics. It is currently mainly used for 
astrophysical challenges and for seismic problems. 
 
ExaHyPE is built on top of Peano 4, an AMR solver framework. Peano uses a non-overlapping 
domain decomposition guided by space-filling curves. The domain’s cells are cut into chunks 
along the Peano space-filling curve and each chunk is assigned to one MPI rank. Using one 
MPI rank per core is infeasible on machines like Archer due to their sheer core count. Within 
each rank, we hence repeat the partitioning, such that we end up with a set of chunks per 
rank which can be deployed to different threads. This approach works on systems with 
relatively low numbers of cores. Yet, on machines like Archer, it quickly becomes infeasible 
once again: We end up with 128 or more subpartitions per rank/node, and all of these 
partitions have to synchronise and have to be balanced. This is challenging. Therefore, 
Peano implements a technique called enclave tasking [1] on top of its MPI+OpenMP parallel 



 

 

for (BSP) implementation: It identifies cells whose computations are not utterly time-critical 
and can run in any order. This excludes cells along MPI boundaries, where any solution 
update has to be sent out in a well-defined order, as well as cells along AMR boundaries 
where expensive resolution transfer operators and mesh changes potentially require a lot of 
expensive calculations, memory allocations, and synchronisation between various resolution 
levels. All the other cells, aka enclaves, yield tasks which can be deployed to idle cores. We 
end up with a producer-consumer pattern where some tasks per rank run through chunks of 
the domain, execute time-critical computations directly, champion all subdomain boundary 
exchange, and spawn all remaining work as separate tasks. 
 
Runtime flaws in vanilla task implementation. While the “free” tasks should be used to 
balance out ill-balancing on the rank, our work [1] demonstrates that such a scheme suffers 
from three major drawbacks: (a) If threads are idle or become idle as they have finished 
producing further tasks, they all poll the OpenMP queues for tiny enclave tasks. This leads to 
massive scheduling overhead. (b) As tasks are produced on one thread and consumed by 
another thread, we frequently run into NUMA issues. (c) OpenMP provides no guarantee 
that spawned asks enter a task queue. Instead, the runtime might decide to postpone the 
producing thread and to complete free tasks before. This typically happens for large task 
counts and implies that the producer-consumer pattern is destroyed. 
 
However, these runtime flaws are documented for the GNU runtime, whose OpenMP 
runtime employs one global OpenMP task queue, whereas the LLVM runtime uses one task 
queue per thread. As the AMD tools as well as the NVIDIA and Intel (oneAPI) toolchain use 
LLVM nowadays, our project started from rerunning all experiments from [1] with LLVM. 
Different to the GNU runtime, LLVM performs better for massive task counts (cmp results 
here to data discussed in [1]). Supplementing the data decomposition with tasking pays off 
for all problem sizes of interest, though we still encounter a stagnation for higher core 
counts, where the performance gap between a sole data decomposition and a 
decomposition plus tasking code close. The hybrid approach does not manage to roll its 
runtime improvements of a factor of two over to high core counts. An introductory 
performance analysis conducted under the umbrella of the eCSE project highlights, that the 
baseline Peano/ExaHyPE implementation suffers from many memory movements. These 
are, in line with previous publications around Peano, cache-oblivious, i.e. mainly hit the 
caches. Yet, they still are expensive and lead to certain erratic runtime behaviour for some 
core counts. 
 
Solution architecture. Within the eCSE project, we first replaced all data copies of larger 
data with copies of smart pointers. The actual data resides on the heap and we only pass 
smart pointers between routines. Consequently, data movements are reduced though we 
retain all memory semantics, i.e. all data is properly freed. 
 
Next, we propose to add an additional, user-defined tasking layer on top of the actual 
OpenMP runtime: Each thread manages its own local queue into which is enqueues its 
tasks. This is a thread-local operation without any locks. If a thread has completed its work, 
it first of all completes tasks from its own local queue. Once this queue is empty, it asks 
companion producers to commit their completed tasks to a (logically) global queue and 
continues to poll this queue for vacant tasks. Such a layered approach requires us to replace 



 

 

the parallel for loops or taskloops for the task producers with bespoke production tasks 
which in turn poll their queues. 
 

Polling of a global queue still requires many locks 
and can lead to congestion. We therefore refrain 
from committing thread-local tasks directly to 
OpenMP. Instead, we commit tasks into yet 
another user-defined queue, which is a global 
queue. Whenever a thread polls this queue, it 
scans the tasks within the queue if they are of the 
same type. If a poll encounters N tasks of the 
same type, it removes all N tasks from the queue 
in one rush and processes these tasks as one large 
meta-task. This approach mirrors the batching 
concept from linear algebra, where the same task 
(matrix) is evaluated for multiple right-hand sides. 
The bespoke batched compute kernels internally 
are again rewritten such that they fork into native 
OpenMP tasks such that they can occupy multiple 

cores. 
 
Performance data. We assess the impact of our work here through the CCZ4 Gauge Wave 
test case. This standard test in computational astrophysics employs a first-order CCZ4 
formulation in ExaHyPE 2, which features 59 unknowns pre degree of freedom. The same 
equations/setup can be used to simulate rotating black hole mergers (left). All presented 
data resembles data for the Euler equations [1,2,3]. For the tests, we employ a standard 
Finite Volume solver scheme. All data here stem from a regular grid simulation (which still 
suffers from imbalances if we cannot split up the mesh into equally sized parts) and features 
a mesh with total=19,683 cells. We start with a setup where we host a 9x9x9 patch of Finite 
Volumes per cell. This is the default. 
 
We start with single node experiments 
and make the code use one subdomain 
per thread. Each OpenMP core 
provided runs through a subdomain of 
its own. All cores synchronise “their” 
data after each step. This “plain” 
approach scales yet suffers from a step 
pattern for some core counts. These 
represent situations where the grid 
cannot be decomposed into partitions 
of the same size straightforwardly. We 
suffer from ill-balances as they would 
arise for adaptive mesh setups, too.  Switching to smart pointers, i.e. avoiding memory 
movements, helps with higher core counts yet does not smooth out the scalability curve. 
 
Once we add enclave tasking, we are consistently faster. However, performance is “lost” for 



 

 

very high core counts. In this latter case, we deploy small domain partitions per core which 
in turn means there are few enclave tasks. The introduction of smart pointers helps to 
smooth out the runtime curve. Allowing the individual compute kernels to spread out over 
multiple cores through additional internal tasking does not lead to a major performance 
gain though is robustly marginally faster. Adding plain parallel for loops to the compute 
kernels led to a deteriorating performance (not shown). 
 
So far, all realisations have used plain OpenMP, i.e. we are not able to confirm the results 
with the GNU runtime [1]. With our bespoke task scheduling layers, we study various 
alternative scheduling schemes. We see that backfilling, i.e. the manual compensation of 
fork-join ill-balances, yields the best performance [2]. 
 
Evaluation and outcomes. The work completed by the eCSE project has enabled ExaHyPE to 
yield new insight in computational astrophysics [3]. The methodological improvements have 
been published and presented on leading conferences of the field [2,4], and the OpenMP 
“flaws” have been acknowledged and taken on board by colleagues of NVIDIA and the 
OpenMP Architecture Review Board.  
 
While the introduction of additional queue layers is relatively straightforward, we 
acknowledge that we replicate queues which also do exist in LLVM’s OpenMP runtime, e.g. 
This is a flaw of the current solution. A better solution would be an OpenMP interface, 
where the code can explicitly control affinities and which queues to poll. Furthermore, it 

would be appreciated if there were an 
option to fuse/merge queues and to search 
within task queues for particular tasks of the 
same pattern. Finally, our approach had to 
rewrite the core compute kernels for 
batches of tasks such that they in turn yield 
more tasks; before the eCSE project, the 
kernels internally employed a plain parallel 
for. This is due to the fact that OpenMP 
tasks cannot internally use parallel fors, as a 
task is always tied to one core. The proposal 
to allow a single task to occupy multiple 
threads has been rejected by the OpenMP 

standard throughout the eCSE project (it had been on the agenda). 
 
We end up with a code architecture which is implicitly NUMA aware, i.e. offers user-guided 
NUMA-aware pinning of tasks to threads, and allows the parallel execution of tasks over 
multiple cores/threads. However, it is not clear if OpenMP automatically leaves threads 
unsubscribed if employing them would lead to cache thrashing. The work has been used as 
baseline to study the offloading of batches (sets) of tasks to GPUs [4]. 
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Appendix. Here is some technical information how to re-construct the results. All the code 
is included in the standard Peano 4 repository. 
 
git clone https://gitlab.lrz.de/hpcsoftware/Peano.git 
 
While the code compiles with any recent C++17 compiler, we found that the best 
performance on AMD EPYCs results from Intel’s oneAPI ipcx compiler. The AMD compiler 
wrapper around LLVM did not yield that advantageous results. The present results all stem 
from the following configure call: 
 
./configure CC=icpx CXX=icpx CXXFLAGS=”-Ofast --std=c++20 -mtune=native -march=native -
fma -fomit-frame-pointer -fiopenmp -Wno-unknown-attributes” LDFLAGS=”-fiopenmp” --
with-multithreading=omp --enable-exahype --enable-loadbalancing --enable-
blockstructured 
 
After a make of the core routines, the benchmarks used here can be found in  
 
cd benchmarks/exahype2/ccz4/gauge-wave 
 
This benchmark is a standard astrophysics benchmark which we use to assess all 
performance statements. We “misuse” its  convergence tests. The Python script 
 
export PYTHONPATH=../../../../python/ 
python3 scalability-study.py -s fv-9 
 
builds the whole benchmark executable. 
 
 


