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Abstract. We consider the task of incorporating real-world common-
sense knowledge into deep Natural Language Inference (NLI) models.
Existing external knowledge incorporation methods are limited to lexical-
level knowledge and lack generalization across NLI models, datasets, and
commonsense knowledge sources. To address these issues, we propose a
novel NLI model-independent neural framework, BiCAM. BiCAM incor-
porates real-world commonsense knowledge into NLI models. Combined
with convolutional feature detectors and bilinear feature fusion, BiCAM
provides a conceptually simple mechanism that generalizes well. Quan-
titative evaluations with two state-of-the-art NLI baselines on SNLI and
SciTail datasets in conjunction with ConceptNet and Aristo Tuple KGs
show that BiCAM considerably improves the accuracy the incorporated
NLI baselines. For example, our BiECAM model, an instance of BiCAM,
on the challenging SciTail dataset, improves the accuracy of incorporated
baselines by 7.0% with ConceptNet, and 8.0% with Aristo Tuple KG.
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1 Introduction

Natural Language Inference (NLI), also known as Recognizing Textual Entail-
ment (RTE), is one of the key problems in the field of Natural Language Under-
standing (NLU). Popularised by a number of PASCAL RTE challenges, the task
is formulated as a - “directional relationship between pairs of text expressions,
denoted by T (the entailing Text) and H (the entailed “Hypothesis”). Text T,
entails hypothesis H, if humans reading T would typically infer that H is most
likely true.” [4]. The task is very challenging as it requires an entailment sys-
tem to acquire the linguistic knowledge (word meaning, syntactic structure and
semantic interpretation), and also to understand commonsense knowledge.

In the context of artificial intelligence, commonsense knowledge is the set of
background information about the everyday world, that an individual is expected
to know or assume, and the ability to use it when appropriate [16]. Many complex
NLU applications such as machine reading [21] achieved improved performance
when supplied with commonsense knowledge.
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Table 1. SNLI example with commonsense triples (red) from ConceptNet KG.

p: Two young girls hang tinsel on a Christmas tree in a room with blue
curtains. (tinsel IsA decoration)

h: Two girls are decorating their Christmas tree. (tree RelatedTo christmas)

Thus far, NLI research has not fully leveraged the additional information
available via the use of commonsense knowledge. For example, state-of-the-art
NLI models [2,11] are limited to incorporating only lexical-level external knowl-
edge, such as synonym and hypernymy. However, NLI is a complex reasoning
task, in addition to lexical-level external knowledge, the task requires real-world
commonsense knowledge to reason inference. Table 1 shows examples from the
SNLI dataset [1], where the commonsense knowledge is retrieved from the Con-
ceptNet Knowledge Graph (KG) [19]. The common knowledge that, tinsel IsA
decoration and tree RelatedTo christmas is useful to ascertain the inference rela-
tionship. Due to the lack of such common knowledge, state-of-the-art NLI models
perform substantially worse for such premise-hypothesis pairs [9].

Incorporating external commonsense knowledge in deep neural NLI models
is challenging. Existing models require considerable architectural changes with
marginal performance gains [2]. Incorporating such knowledge implicitly by re-
fining word embeddings using KGs may negatively affect model performance [20].
Moreover, the existing external knowledge-based NLI models do not generalize
well, and lack extensive evaluation across NLI datasets and KGs [10].

This paper aims to mitigate the aforementioned limitations. We present Bi-
CAM (Bilinear fusion of Commonsense knowledge with Attention-based NLI
Models) - a novel neural network framework that incorporates NLI models
without any architectural changes to the model. The BiCAM is NLI model-
independent framework that generalizes across NLI models, datasets and com-
monsense knowledge sources. In the proposed framework, we first formulate the
heuristics to retrieve commonsense knowledge from the KGs. We then embed re-
trieved knowledge with Holographic Embeddings (HolE) [17], a KG embedding
method to learn the embeddings of entities and relations in the KG. We learn
the commonsense features from KG embeddings using a Convolutional Neural
Network (CNN) based encoder. Finally, we use a state-of-the-art feature fusion
technique, factorized bilinear pooling, to learn the joint representation of the
learned commonsense features and the sentence features from the NLI model.

Evaluation results on two established NLI baselines ESIM [3] and decom-
posable attention model [18], in combination with ConceptNet [19] and Aristo
Tuple [5] KGs demonstrate that BiCAM considerably improve the accuracy of all
the incorporated baselines. For example, compared with ESIM baseline, BiCAM
achieves 7% absolute improvement with ConceptNet and 8% absolute improve-
ment with AristoTuple KG on SciTail dataset. We analyze the effect of incorpo-
rating the different number of commonsense features and find that syntactically
and semantically complex sentences require more commonsense knowledge to
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Fig. 1. A high-level view of our proposed architecture (BiCAM). The data (premise,
hypothesis and the corresponding commonsense triples) flows from bottom to top.
Premise and the corresponding triples are depicted in yellow, hypothesis and the cor-
responding triples are shown in purple.

reason inference. Further, we evaluate the impact of various feature fusion tech-
niques and demonstrate the efficacy of bilinear feature fusion. Finally, we analyze
the examples from SNLI test set, where ESIM and BiCAM succeed and fail.

In summary, the main contributions of this paper are: (1) We introduce the
NLI model-independent neural framework, BiCAM, that generalizes across NLI
models, datasets, and commonsense knowledge sources. (2) We devise an effective
set of knowledge retrieval heuristics from KGs. (3) An extensive evaluation of
the proposed approach with two established NLI baselines in combination with a
general commonsense and (science) domain-specific KG on two NLI benchmarks.

2 Related Work

Leveraging commonsense knowledge in NLU systems has long been proposed
[16], however, NLI neural models have only recently started utilising common-
sense knowledge. KIM [2], is the state-of-the-art neural Knowledge-based Infer-
ence Model, that incorporates lexical-level semantic knowledge into the attention
and composition components. Specifically, external lexical knowledge (such as
synonym and antonym) extracted from the lexical database, WordNet [15], is
used to form relation embeddings between premise-hypothesis words. The Ad-
vEntuRe [11] framework train the decomposable attention model [18] with ad-
versarial training examples generated by incorporating knowledge from linguis-
tic resources such as WordNet, and with a sequence-to-sequence neural genera-
tor. However, lexical knowledge individually is insufficient to reason about the
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premise-hypothesis relationship. Intuitively, when a human judges a premise-
hypothesis relationship, a full range of real-world commonsense knowledge, and
not just the lexical knowledge, is necessary to come to a conclusion [16]. There-
fore, we incorporate knowledge from and empirically evaluate BiCAM on the
real-world commonsense KG, ConceptNet. We also evaluate BiCAM on the (sci-
ence) domain-specific KG, Aristo Tuple.

NSnet [10] is a neural-symbolic entailment model, that integrates the con-
nectionist, deep learning approach with the symbolic approach for the scientific
entailment task. The model decomposes each of the hypotheses into various facts
and verifies each sub-fact against the premises using decomposable attention
model and against the Aristo Tuple KB using a structured scorer. An aggre-
gator network then combines the predictions from the two modules to get the
final entailment score. Word embeddings are refined by dynamically incorpo-
rating relevant background knowledge from external knowledge sources in [20].
Our approach differs in the manner and the level at which commonsense is in-
corporated. We fuse the commonsense features to the sentence encodings of the
premise and hypothesis which we show achieves a better performance.

3 Methods

A high-level view of our proposed BiCAM framework is illustrated in Figure 1.
In this section, we discuss the individual BiCAM components and the uniquely
structured framework.

3.1 Commonsense Knowledge Retrieval

To extract external commonsense knowledge we consider two KGs: ConceptNet,
for general real-world commonsense knowledge and Aristo Tuple, for (science)
domain-specific knowledge. The knowledge in these KGs is represented as a triple
(head, relation, tail), where head and tail are the real-world entities and the
relation, is a specific set of associations, describing the relation between entities.
For example, (tinsel IsA decoration) is a triple in ConceptNet KG.

Retrieval and preparation of contextually specific and relevant information
from knowledge graphs are complex and challenging tasks and is the crucial
step in our model. We use a heuristic retrieval mechanism for knowledge re-
trieval. We find empirically that non-specific commonsense knowledge from the
KGs degrades the model performance. Heuristic mechanism is fast and is effec-
tive in filtering irrelevant knowledge. We formulate the following heuristics and
illustrate the triples retrieved by the application of each heuristic in Table 2.
1. Stop words are removed from the premise and hypothesis.
2. To identify the relations between the words within the premise or hypothesis,

we retrieve all triples involving each pair of words as head and tail.
3. To identify the relations from premise words to hypothesis words, we retrieve

the triples with premise words as head and the words of hypothesis as tail.
For hypothesis, we extract the relations from the hypothesis to premise.
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Table 2. A step by step illustration of commonsense knowledge retrieval for a SNLI
premise-hypothesis pair from ConceptNet. Step 4 shows the final set of triplets for the
premise and hypothesis.

Step Premise Hypothesis

Input A white horse is pulling a cart while a man
stands and watches.

An animal is walking outside.

1. (‘white’, ‘horse’, ‘pulling’, ‘cart’, ‘man’, ‘stands’,
‘watches’)

(‘animal’, ‘walking’, ‘outside”)

2. (horse has property white), (cart related to horse) (animal at location outside)

3.
(horse is a animal), (horse related to animal),
(horse at location outside)

(animal related to horse), (animal antonym man),
(animal distinct from man)

4.
(horse has property white), (cart related to
horse) (horse is a animal), (horse at location
outside)

(animal at location outside), (animal related to horse)
(animal antonym man)

4. The relation RelatedTo has the largest number of triples in ConceptNet. Al-
though the relation communicates that the head and tail are related, it does
not specify the specific relationship between them. To eschew the extracted
commonsense knowledge from non-specific information and a higher num-
ber of triples with RelatedTo relation, we randomly select one triplet with
RelatedTo relation, if multiple such triples are extracted. Additionally, we
removed any duplicated triples from the final set of retrieved triples.

5. Finally, if the words of the premise and the hypothesis do not extract any
commonsense knowledge by the application of above heuristics, we randomly
select a word from them and extract a triple from one of the relations in
(entails, synonym, antonym).

3.2 Encoders

Commonsense Encoding Model. The model learns the features from the
retrieved commonsense triples. We provide a layer-by-layer description.

Embedding Layer. We learn the Holographic Embeddings (HolE) [17] of
KG triples. Given a commonsense triple (h, r, t), HolE represents both the
entities and relations as vectors in Rd. First, HolE compose the head and tail
into h ? t ∈ Rd using the circular correlation:

[h ? t]i =

d−1∑
k=0

[h]k � [t(k+i)mod d] (1)

where � denotes the Hadamard product. The compositional vector obtained is
then matched with the continuous representation of relation to score the com-
monsense triple using the scoring function defined as:

fr(h, t) = rT(h ? t) =

d−1∑
i=0

[r]i

d−1∑
k=0

[h]k � [t](k+i)mod i (2)

where r ∈ Rd is the relation embedding. The score measures the plausibility of
the commonsense triple. We train the HolE embeddings (Θ) using the pairwise
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ranking loss computed as:

min
Θ

∑
i∈Γ+

∑
j∈Γ−

max(0, γ + σ(ηj)− σ(ηi)) (3)

where Γ+ denotes the set of triples in the KG, Γ− denotes the “negative” triples
that are not observed in KG and γ > 0 specifies the width of margin, σ(.) denotes
the logistic function and η is the value of the scoring function.

For ConceptNet and Aristo Tuple, we train the HolE embeddings for the
triples retrieved from the SNLI and SciTail vocabulary. We use AdaGrad [6]
to optimize the objective in Eq 3, via an extensive grid search over an ini-
tial learning rate of (0.001, 0.01, 0.1), a margin of (0.2, 1, 2, 10), mini-batch size
(50, 100, 150, 200) and entity embedding dimensions of (50, 100, 150, 200). At
each gradient step, we randomly generate 5 negative tail entities with respect
to a positive triple. The learned HolE embeddings are evaluated on the triplet
classification task. For SNLI/ConceptNet pair, the model achieves the highest
accuracy of 64.0% with an embedding dimension of 150. For SciTail/ConceptNet
and SciTail/Aristo Tuple pairs, HolE reported the top accuracy of 62.8% and
69.4% respectively at embedding dimension 100.

Encoding Layer. To learn the features over the pre-trained HolE embed-
dings, we employ a CNN-based neural model [13].

For each premise/hypothesis, let T = (τ1, τ2, . . . , τm) be a sequence of length
n created by joining the m retrieved triples from the KG. Each τ is of the form
(h, r, t) and, hence, n = 3m. The sequence T, padded where necessary, and
represented as:

T = (x1, x2, , x3), (x4, x5, , x6), . . . , (xn−2, xn−1, xn) (4)

where, xi is the i -th word in the sequence. Let xi ∈ Rd be the d-dimensional pre-
trained HolE embedding corresponding to the i-th word. A sentence of length
n is represented as a matrix X ∈ Rd×n, by concatenating its word embeddings
as columns, i.e., xi is the i−th column of X. We apply a convolution operation
with filter W ∈ Rd×h, to a window of h words. The convolution operation learns
a new feature map from the set of h words with the operation:

c = f(X ∗W + b) ∈ R(n−h
s )+1 (5)

where, b ∈ R(n−h
s )+1 is the bias term, s is the stride of convolution filter, and f(·)

is the activation function, rectified linear unit in our experiments and ∗ denote
convolution operation. The filter convolve over each window (xih+1: (i+1)h) where
0 ≤ i ≤ n − 1 in X. We set the h and s to 3 for the commonsense triples.
Convolving the same filter with the 3-gram beginning at every 3rd position in
the triple sequence allows the features to be extracted from every triplet from the
KG. We then apply a max-over-time pooling operation over the feature map and
take the maximum value ĉ = max{c} as a feature corresponding to this filter.
Max pooling operation captures the most important feature for each feature
map.
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Above we detailed the process of extracting one feature from one filter. Mul-
tiple filters (with fixed window size and stride of 3) are employed to obtain
multiple features. Each filter is considered as a linguistic feature detector that
learns to recognize a specific feature from the commonsense triple. The output of
the commonsense encoder is a l-dimensional vector to represent commonsense.

NLI Encoders. We incorporate BiCAM with two established NLI baselines:
ESIM [3] and decomposable attention model [18].

Feature Fusion. We apply factorized bilinear pooling [22] to fuse the com-
monsense features and NLI sentence features. Let p and h be the NLI model
generated encoding of premise and hypothesis. Also, let pcs and hcs denote
the corresponding commonsense encoding generated by commonsense encoding
model. We apply the factorized bilinear pooling defined as:

zp = SumPooling(Ũp� Ṽ pcs, k)

zh = SumPooling(Ũh� Ṽ hcs, k),
(6)

where SumPooling(x, k) denote a sum pooling over x with a one dimensional

non-overlapped window of size k, Ũ and Ṽ are projection matrices learned dur-
ing training, � is the Hadamard product and z is the fused feature vector. To
prevent overfitting, we also added a dropout layer [8] after the element-wise mul-
tiplication of the projection matrices. Further, to allow the model to converge to
a satisfactory local minimum, we append power normalization (z← sign(z)|z|0.5)
and l2 normalization layers (z← z/‖z‖) after SumPooling layer [22]. The factor-
ized bilinear pooling captures the complex association between the features from
premise-hypothesis and the corresponding commonsense features. The pooling
method is implemented as a feed-forward neural network.

Classification Layer. We classify the relationship between premise and
hypothesis using a Multilayer Perceptron (MLP) classifier. The input to the
MLP is the concatenation of sentence encodings (p and h) obtained from NLI
model and the corresponding encodings (zp and zh) obtained from feature fusion
layer. The MLP consists of two hidden layers with tanh activation and a softmax
output layer to obtain the probability distribution for each class. The network
is trained in an end-to-end manner using multi-class cross-entropy loss.

4 Experiments and Results

Our aim is to incorporate commonsense knowledge into NLI models in order to
augment the reasoning capabilities. The method should generalize across differ-
ent NLI datasets, models and KGs. We evaluate BiCAM using two attention-
based NLI baselines on two benchmarks in combination with two KGs. We com-
pare our models with both external knowledge-based and attention-based NLI
models. We refer to BiCAM as BiDCAM, when the decomposable attention
model is used as NLI baseline and BiECAM, when ESIM is used (see Figure 1).

Datasets. We assess BiCAMs (BiDCAM and BiECAM) on SNLI (570K
examples) and SciTail (27K examples) benchmarks. We consider ConceptNet
for general commonsense, and Aristo Tuple for domain-specific knowledge.
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Results on SNLI. Table 3 shows the results of the state-of-the-art external
knowledge-based and attention-based NLI models in comparison to BiCAMs.
We evaluate ConceptNet KG for commonsense knowledge for the SNLI dataset.
The models, BiDCAM and BiECAM, improve the performance of their respec-
tive attention-based baselines (decomposable attention and ESIM models) by
+0.4% and +0.8%. BiCAMs also perform consistently better among the exter-
nal knowledge-based and attention-based NLI models. BiECAM model achieves
an accuracy of 88.8% competitive to the state-of-art external knowledge-based
NLI models, ESIM+Syntactic Tree LSTM [3] and KIM [2] without any archi-
tectural changes to the underlying NLI models.

Table 3. NLI Models: Test accuracy. For our models, BiCAMs, the percentage in the
parenthesis shows the performance improvement over the base models.

SNLI Dataset

NLI Model Test Acc(%)

External Knowledge-based Baselines

AdvEntuRe [11] 84.6
BiLSTM (E3) [20] 86.5
ESIM (E3) [20] 87.3
Char+CoVe-L [14] 88.1
ESIM + Syntactic TreeLSTM [3] 88.6
KIM [2] 88.6

Attention-based Baselines

CAM [7] 86.1
Decomposable Attention [18] 86.3
ESIM [3] 88.0

Our Models

BiDCAM + ConceptNet 86.7 (+0.4%)
BiECAM + ConceptNet 88.8 (+0.8%)

SciTail Dataset

NLI Model Test Acc%)

External Knowledge-based Baseline

Majority classifier [10] 60.3
AdvEntuRe(seq2seq) [11] 76.9

Attention-based Baseline

ESIM [3] 70.6
Decomposable Attention [18] 72.3
CAM [7] 77.0
DGEM [12] 77.3

Our Models

BiDCAM + ConceptNet 76.8 (+4.5%)
BiDCAM + Aristo Tuple 77.3 (+5.0%)
BiECAM + ConceptNet 77.6 (+7.0%)
BiECAM + Aristo Tuple 78.6 (+8.0%)

Results on SciTail. The test accuracy of different NLI models on SciTail
benchmark is summarised in Table 3. For SciTail, we study the performance of
BiCAMs on the general commonsense ConceptNet KG as well as the (science)
domain-targeted Aristo Tuple KG. All our models significantly outperform the
incorporated baselines across both the KGs, achieving absolute improvements of
up to 4.5% (BiDCAM + ConceptNet), 5% (BiDCAM + Aristo Tuple) on de-
composable attention baseline and 7% (BiECAM + ConceptNet), 8% (BiECAM
+ Aristo Tuple) on ESIM baseline. This demonstrates our framework’s ability
to generalize well across a number of NLI models and different KGs. All our
models perform competitively on attention-based baselines, CAM and DGEM.
BiECAM + Aristo Tuple observes an accuracy improvement of 1.3% over the
previous state-of-the-art DGEM model.



BiCAM For Natural Language Inference 9

5 Analysis

5.1 Number of Commonsense Features

To investigate the effect of incorporating various numbers of commonsense fea-
tures, we vary the number of triples input to the commonsense encoding model.
Particularly, we are interested in answering the question: How many common-
sense features are required for optimal model performance? Figure 2 shows the
results of the experiment.
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Fig. 2. Accuracy of BiCAMs with varying amount of commonsense triples. (*) denotes
SNLI and (#) SciTail datasets.

For SNLI, the model BiECAM + ConceptNet achieves the highest accuracy
(88.8%) using 7 triples. We observe a decrease in accuracy with increasing the
number of triples. BiDCAM + ConceptNet follow the same trend, however,
it attains the highest accuracy (86.7%) with the fewer number (5) of triples.
The fewer number of triples required for BiCAMs to achieve their maximum
accuracies on SNLI dataset, is attributed to the limited linguistic variation and
short average length of stop-word filtered premise (7.35 for entails and neutral
class) and hypothesis (3.61 for entails and 4.45 for neutral class) [12] of the SNLI
dataset, which limit its ability to fully extract and exploit KG knowledge.

For SciTail, the BiCAMs, when evaluated using the general commonsense
knowledge source ConceptNet, require a relatively high number of triplets (11
and 15 resp.) to achieve their maximum accuracy. This is due to the higher
syntactic and semantic complexity of SciTail, that needs more knowledge to
reason inference. However, when evaluated with the domain-specific Aristo Tuple
KG, the models achieve the highest accuracies with fewer (BiDCAM at 7 and
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BiECAM at 11) triples. The specialised scientific knowledge in Aristo Tuple
improves the model performance with less external knowledge.

We observe that the BiCAMs, when trained on SciTail dataset, require a
higher number of triples to attain maximum accuracy relative to when trained
on the SNLI dataset. This can be attributed to the small training size of the
SciTail dataset, which thus requires a higher number of triples to compensate
for missing knowledge. We conclude that: (1) The commonsense features, when
incorporated in the correct number, help reason the relationship between premise
and hypothesis. (2) The number of commonsense features required depends on
the syntax, semantics and size of the target dataset, as well as the domain of
source KG.

5.2 Ablation Study

To evaluate the impact of factorized bilinear feature fusion, we perform an ab-
lation study on BiECAM + Aristo Tuple, our best performing model on the
SciTail dataset. Table 4 demonstrates the performance of various non-bilinear
and bilinear pooling methods. We observe that factorized bilinear pooling sig-
nificantly outperforms all the non-bilinear pooling methods. To ascertain that
the performance gain is not due to the higher number of parameters in bilinear
method, we stack fully connected layers (with 1200 units per layer, ReLU ac-
tivation and dropout) to increase the parameters in non-bilinear methods. We
observe that increasing the number of parameters does not increase the model
accuracy. The high accuracy of factorized bilinear pooling may be attributed
to the outer product between the NLI sentence and the commonsense feature
vectors. Outer product allows each feature point in the two feature vectors to in-
teract and capture associations between them. The joint representations created
in such manner are more expressive than the representations created through
concatenation or element-wise summation or multiplication.

For the commonsense encoder, our experiments with Recurrent Neural Net-
works (RNNs), LSTMs and BiLSTMs, considerably degraded the performance
of the BiCAMs. This may be attributed to the inherent nature of RNNs, which
learns the representations of words in the context of all previous words in the
sequence. However, the set of triples input to the commonsense encoder is se-
quential within an individual triple. For example, in the set of triples - (outside
Antonym inside) and (table RelatedTo eating), the word inside is associated with
the words in its own triple, outside and Antonym, but not with the words table,
RelatedTo and eating of the second triple. RNNs, due to their inherent recur-
rent nature, learn the incorrect features from the part-sequential input of set
of triples. In contrast, CNNs learns features independently of the position of
words in the sequence. In the commonsense encoder, learning the features over
the window of three words with a stride of three, allows the correct features to
be learnt from the part-sequential set of input triples.
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Table 4. Ablation Study. (� implies
Elementwise)

Fusion Method Acc(%)

Concat 74.6
FC + Concat 75.5
FC + FC + Concat 74.3

FC + � Sum 72.5
FC + FC + � Sum 73.3

FC + � Product 76.4
FC + FC + � Product 76.8

FC + � Difference Concat
FC + � Product

77.6

Factorized Biliniear Pooling 78.6

Table 5. Qualitative Analysis

BiECAM Correct ESIM Incorrect

p: Four boys are about to be hit by an ap-
proaching wave. (wave RelatedTo crash)

h: A giant wave is about to crash on some
boys. (crash IsA hit)

BiECAM Incorrect ESIM Correct

p: A red truck is parked next to a burning
blue building while a man in a green vest
runs toward it. (red Antonym blue), (blue
Antonym green), (green Antonym red)

h: The burning blue building smells of
smoke. (blue Antonym red), (blue Antonym
green)

5.3 Qualitative Analysis

Table 5 highlights selected sentences from the SNLI test set showing correct
and incorrect inference prediction example for both BiECAM and the baseline
ESIM. For the first example, BiECAM has additional context for premise and
hypothesis from the knowledge that (wave RelatedTo crash) and (crash IsA hit),
which helps the model to correctly predict the inference class. However, the
specific knowledge, about the wave and the crash is not available to the baseline
ESIM model and hence, it incorrectly predicts the inference class.

We observe that BiECAM fails to predict the correct inference class when
noisy and irrelevant knowledge is retrieved from the KGs. For example, the last
test case in Table 5, only retrieves the information that colors (such as red and
blue) are antonyms of each other. The retrieved knowledge is irrelevant and is
not completely correct, which does not help BiECAM.

6 Conclusions

We have introduced an NLI model-independent neural framework, BiCAM, that
incorporates commonsense knowledge to augment the reasoning capabilities of
NLI models. Combined with convolutional feature detectors and bilinear fea-
ture fusion, BiCAM provides a conceptually simple mechanism that generalizes
across NLI models, datasets and KGs. Moreover, BiCAM can be easily applied
to different NLI model and KG combinations. Evaluation results show that our
BiCAM considerably improves the performance of all the NLI baselines it in-
corporates, and does so without any architectural change to the incorporated
NLI model. BiCAM achieves state-of-the-art performance on SNLI with Con-
ceptNet KG, outperforming existing state-of-the-art external knowledge-based
NLI models. Particularly for the smaller, syntactically and semantically complex
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SciTail dataset, commonsense knowledge incorporation via BiCAM achieves per-
formance improvements of 7.0% with ConceptNet and 8.0% with Aristo Tuple
KG. Further analysis shows that the sufficient number of commonsense features
required depends upon the syntax, semantics and size of the target dataset, as
well as the domain of source KG. We observe that retrieval and selection of
commonsense knowledge relevant for inference is challenging. In future work,
we plan to leverage contextual word embeddings for commonsense knowledge
retrieval from KGs.
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