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ABSTRACT. We introduce a new formal mathematical framework for probability theory,
taking random quantities to be the fundamental objects of interest, without reference to
a possibility space, in spirit of de Finetti’s treatment of probability, Goldstein’s Bayes
linear analysis, and Williams’s treatment of lower and upper previsions. The aim of our
framework is to formalize temporal reasoning, where we treat future beliefs as random
quantities themselves. We do this by taking random quantities to form a linear space of
expressions, which we endow with structure through a linear projection operator.

We then use a version of the temporal sure preference principle as a basis for inference
over time. We formulate the principle in terms of desirability, and explore its implica-
tions for lower previsions. We derive an explicit expression for the natural extension of
a lower prevision under the temporal sure preference principle. We establish consistency
of the temporal sure preference principle with any given collection of assessments. We
also derive various bounds on the natural extension. Finally, we show how we can recover
standard Bayes linear calculus from our framework.

1. INTRODUCTION

As argued in [12], probabilistic inference has two components, one static and one dy-
namic. The static component is a description of probabilistic judgements now, where we
are free to make any allocations of uncertainty that we consider to be appropriate, ex-
pressed, for example, through buying and selling prices on appropriate gambles, subject
only to the constraints imposed by coherence over the collection of uncertainty judgements,
precise or imprecise, that we choose now to make. The dynamic component describes how
these uncertainty statements may change over time, as we receive further information, re-
flect further on the information that is currently available to us, and so forth.

Aspects of the dynamic component are expressed within the static component, for exam-
ple through conditioning statements, which express our current buying and selling prices
given various called-off bets which describe conditions under which the bets will or will
not take place. Such conditioning is informative for our future judgements, but does not
determine them, partly as our future experiences will not be summarisable as the obser-
vation of membership of a partition that we could specify in advance of our inferences,
partly because we are always free to reflect further on the information that we have already
received and change our judgements to those that we feel are in closer accord with the
prior evidence, and partly because, in any case, there is nothing in the usual probabilis-
tic formalism that forces an equivalence between current views on certain called-off bets,
and actual future uncertainty assessments about the relevant quantities. This should not
be seen as a failure of conditional reasoning itself—indeed, conditional reasoning is still
a perfectly valid and extremely useful formalism for embedding the dynamic features of
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inference strictly within our current static judgements as to how such an inference might
proceed.

At this point, perhaps we should note that one might indeed not care about modelling
future beliefs, and take the stance that all future decisions are fully determined solely by
current beliefs about those random variables that affect these decisions. For example,
normal form decision making is precisely concerned with such scenario: if a subject makes
all future decisions right now, only his current beliefs count, and his future beliefs are
completely irrelevant. In practice however, beliefs are revised over time, and it is rarely the
case that future beliefs, which will determine future decisions, are determined solely on
the basis of called-off bets with respect to current beliefs, say through repeated application
of Bayes theorem. Analyzing our current beliefs about our future beliefs, as in this paper,
is thus important if we now wish to know how we will act in the future based on the actual,
but now still uncertain, beliefs that we will hold in the future.

One particular difficulty in trying to model future beliefs is that the possibility space
is dynamic in itself. In [12], a possibility space for future beliefs was non-constructively
assumed. In this paper, we provide a fully constructive and operational theory, in the sense
that all random quantities belong to an explicitly constructed linear space. We replace
the possibility space with a much simpler structure, namely, a bounding operator. This is
similar to how Williams [14, 15] originally developed the theory of lower previsions. In
addition, we also directly build in our knowledge about which random quantities will be
known at time t. This was left implicit in [12]. We shall see that making these random
quantities explicit in the theory impacts inferences, and therefore it is imperative that they
are appropriately modelled.

Temporal coherence [3, 4, 5] is concerned with the careful description of the relation-
ships between the static and dynamic features of probabilistic reasoning. We do not know
what our future uncertainty judgements will be, but we may now express views about them.
These views are, themselves, probabilistic. The temporal sure preference principle imposes
reasonable constraints on our current judgements about our future judgements. In impre-
cise probability theory, preferences come about as a very natural way of modelling beliefs.
The concept of desirability, that is, which gambles we (possibly marginally) prefer to the
zero gamble, forms a natural foundation for imprecise probability [14, 15, 13]. As shown
in [12], the temporal sure preference principle can be expressed directly in terms of desir-
ability. Consequently, through natural extension, we can directly exploit these constraints
when we perform inference.

In contrast, the traditional way of looking at updating in the subjective approach to im-
precise probability goes by means of conditioning, that is, looking at called-off gambles.
For instance, Zaffalon and Miranda [16] provided a justification for conditioning and con-
glomerability, through temporal reasoning, in a setting where future beliefs are assumed to
be fixed now. However, in practice, future subjective beliefs rarely reflect past called-off
gambles, and in fact there is no compelling reason for this to be so, simply because there
is no compelling reason for them to be fixed now. Indeed, it seems far more natural to start
out from the premise that future beliefs are inherently random, which leads to a more gen-
eral theory, but of course we also risk it to be far less tractable—interestingly, in the precise
case, the generality gained leads to updating rules which are far more efficient than com-
puting with called-off gambles, particularly for large scale problems (for instance, see [1]).
Having preference, in the form of desirability, at its foundations, imprecise probability is a
natural candidate for temporal coherence.
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The aims of this paper are: (i) to develop a theory of lower previsions that abandons the
assumption of a possibility space, (ii) to directly model future beliefs as random quantities,
and (iii) to explicitly account for temporal reasoning, not through conditioning, but by
expressing that we will know certain random quantities at a future time, and by making
an explicit assumption about temporal coherence through the temporal sure preference
principle. Such framework can provide a basis not only for Bayes linear analysis, but also
for imprecise generalisations thereof.

This paper is organised as follows. Section 2 develops a theory of lower previsions with-
out possibility spaces, but instead starting from a bounding operator. In this section, we
also recover all results for lower previsions that we will need later. Section 3 explores how
we can define, constructively, a set of gambles that includes future beliefs as random quan-
tities, and we derive a convenient representation theorem for this set. Section 4 discusses
the temporal sure preference principle. We derive an explicit constructive expression for
the natural extension under the temporal sure preference principle, and explore its impli-
cations. Section 5 looks at the theory when we additionally assume that future beliefs are
precise. There, we allow multiplication of gambles to a limited degree, to allow us to talk
about variance as well. We recover the main results from standard Bayes linear calculus.
Section 6 concludes the paper. Proofs that are omitted from the main text can be found in
Appendix A. Some proofs have been left in the main text, especially where the proofs may
have some interest in themselves.

2. LOWER PREVISIONS AND DESIRABILITY

One of the premises of temporal reasoning is that we cannot specify in advance what the
possibility space ought to be. Therefore, in this paper, following [2, 14, 15], we consider
random quantities as fundamental objects, without referring to a possibility space.

A gamble is simply a bounded random quantity. We will denote gambles by capital
letters X , Y , . . . . By L , we denote the linear span of an arbitrary collection of gambles of
interest. Following [14, 15], we assume that there is a least upper bound operator on L ,
denoted by sup. This operator induces a greatest lower bound operator inf on L , defined
as inf(X) :=−sup(−X).

In our treatment, sup reflects our subjective judgements about the logical boundaries on
all gambles in L . For example, if X1, . . . , Xn is a basis of L , and we deem all Xi to be
logically independent, then we might define

(1) sup

(
n

∑
i=1

aiXi

)
=

n

∑
i=1

ai sup(sign(ai)Xi)

where sign(ai) is 1, 0, or −1 depending on whether ai > 0, ai = 0, or ai < 0 (so we only
need to specify sup on each Xi and −Xi). As another example, if all gambles are defined
as bounded functions on some common possibility space, then we can define sup as the
supremum over functions.

We assume that sup satisfies the following conditions:

(S1) sup(X +Y )≤ sup(X)+ sup(Y ) for all X , Y ∈L .
(S2) sup(λX) = λ sup(X) for all X ∈L and λ ≥ 0.

From sup, we can define a relation� on L , defined as X �Y whenever inf(X−Y )≥ 0.
It is easily seen that � is a preorder (i.e. it is reflexive and transitive). We write X ' Y
whenever X � Y and Y � X , or in other words, whenever sup(X −Y ) = inf(X −Y ) = 0.
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Clearly,' is an equivalence relation on L . If X �Y then supX ≥ supY and infX ≥ infY .1

If X ' Y then supX = supY and infX = infY .
We also assume:
(S3) There is a gamble Ω ∈L such that sup(Ω) = inf(Ω) = 1.

One can easily show that, for all a∈R, sup(aΩ) = inf(aΩ) = a. We will denote the gamble
aΩ simply by a, if no confusion is possible.

By going to the quotient set of the relation ' on L , we can also assume, without loss
of generality:

(S4) There is a unique gamble X such that sup(X) = inf(X) = 0.
The conditions stated above are equivalent to the conditions given in [14, 15].

We also introduce the function ‖X‖ := max{sup(X),sup(−X)}. This turns L into a
normed vector space.

Proposition 1. ‖ · ‖ is a norm on L .

Although we will not need to do so in this paper, using the standard completion through
equivalence classes of Cauchy sequences, we could in principle use this norm to turn L
into a Banach space.

As mentioned in the introduction, we will take desirability to be the basic concept, and
will use it for studying the implications of temporal coherence on lower previsions. To
keep the treatment as simple as possible, however, we will restrict ourselves to sets of
almost desirable gambles induced by lower previsions.

The following serves to introduce the basic ideas behind desirability and lower previ-
sions, and to fix the notation and conventions used in the paper. We refer to [13, 11] for
much more information on the topic. In particular, throughout the paper, we will use the
properties of coherent lower previsions extensively [13, Sec. 2.6.1] [11, Sec. 4.3]. Note
that most of the literature, including [13, 11], assume that L are bounded functions on
some possibility space, whereas we make no such assumption. However, many proofs in
the literature only rely on the properties of sup listed above. Where that is the case, we
will use those results but explicitly point to the relevant proof, allowing the reader to verify
carefully that we only rely on the properties of sup.

A lower prevision P is a function mapping from any subset of L to the real numbers.
For every gamble X in the domain of P, the number P(X) is interpreted as a subjective
assessment of a subject’s supremum buying price. That is, for all ε > 0, the subject would
be willing to pay P(X)− ε in exchange for X , or in other words, the subject would be
willing to accept X−P(X)+ε . Any gamble Y such that Y +ε is acceptable for all ε > 0 is
called almost desirable. Concluding, a subject’s specification of a lower prevision P means
that the subject declares X−P(X) to be almost desirable for all X in the domain of P.

In de Finetti’s approach [2], a subject specifies a prevision P, and where this is un-
derstood to mean that both X −P(X) and P(X)−X are almost desirable to the subject.
De Finetti’s previsions are thus a special case of lower previsions. With lower previ-
sions, if both X and −X are in the domain of P, then X −P(X) is almost desirable and
so is −X − P(−X). However it is not assumed that −P(−X) = P(X), and generally
−P(−X) ≥ P(X). We can interpret −P(−X) as the infimum buying price for X . For
convenience of notation, we define

(2) P(X) :=−P(−X).

1To prove these implications, use supX ≥ inf(X−Y )+ supY and infX ≥ inf(X−Y )+ infY .
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A lower prevision is said to avoid sure loss if and only if [11, p. 43, Def. 4.6(E)]

(3) sup

(
n

∑
i=1

λi(Xi−P(Xi))

)
≥ 0

for all n ∈ N, all λ1 ≥ 0, . . . , λn ≥ 0, and all X1, . . . , Xn in the domain of P. One can show
that this condition implies that there is no combination of acceptable gambles that leads
to a strictly positive loss; see for instance [11, p. 44–45, Sec. 4.2.2] and note that only the
properties of sup are required to complete the argument.

The natural extension E of a lower prevision P is defined, for every gamble X ∈L , by
[13, p. 122, Sec. 3.1.1] [11, p. 47, Def. 4.8]:

E(X) := sup
{

α ∈ R : X−α �
n

∑
i=1

λi(Xi−P(Xi)),

n ∈ N, λ1 ≥ 0, . . . ,λn ≥ 0, X1, . . . ,Xn ∈ domP
}
.(4)

The value E(X) represents the supremum buying price that can be inferred from the sub-
ject’s specifications P. If P avoids sure loss, then E is a lower prevision on L satisfying:

C1 E(X)≥ inf(X)
C2 E(X +Y )≥ E(X)+E(Y )
C3 E(λX) = λE(X)

for all X , Y ∈L and all λ ≥ 0. Any lower prevision on L satisfying these conditions is
called coherent.

Proposition 2. If P avoids sure loss, then E is a coherent lower prevision on L .

This is a well known result, however for the sake of completeness, we give a proof in
the appendix to ensure that only the properties of sup are used.

By E(L ) we denote the set of all coherent lower previsions on L . The upper prevision
E corresponding to E is defined as:

(5) E(X) :=−E(−X).

Coherence implies that E(X) ≤ sup(X) and E(X + a) = E(X)+ a for all a ∈ R; we will
use these properties further.

We can easily construct a set of almost desirable gambles for P through E:

(6) D := {X ∈L : E(X)≥ 0}.
We can show that D satisfies the following conditions [13, p. 152, Sec. 3.7.3]:2

D1 if X � 0 then X ∈D ,
D2 if supX < 0 then X 6∈D ,
D3 if X ∈D and Y ∈D then X +Y ∈D ,
D4 if λ ≥ 0 and X ∈D then λX ∈D , and
D5 if X + ε ∈D for all ε > 0, then X ∈D .

Any subset of L that satisfies these conditions is said to be a coherent set of almost desir-
able gambles.

Proposition 3. D is a coherent set of almost desirable gambles.

Note that we can recover E from D :

2Our axiom infX ≥ 0 =⇒ X ∈D follows from Walley’s (D1) and (D4): if X � 0, or equivalently, infX ≥ 0,
then X + ε ∈D for all ε > 0 by Walley’s (D1), and consequently X ∈D by Walley’s (D4).
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Proposition 4. For every coherent lower prevision E ∈ E(L ), and every X ∈L , we have
that

(7) E(X) = max{a ∈ R : X−a ∈D}

So, in the following, we can use E and D interchangeably.
A lower prevision is called a prevision when it is self-conjugate, that is, when E = E, in

which case we simply denote it by E. By E(L ) we denote the set of all coherent previsions
on L . It is well known that coherent lower previsions correspond to lower envelopes of
sets of coherent previsions. This still holds in our framework. Specifically, let

(8) M (E) := {E ∈ E(L ) : E ≥ E}.

Then we have the following.

Proposition 5. For every coherent lower prevision E ∈ E(L ), and every X ∈L , we have
that

(9) E(X) = min
P∈M (E)

P(X).

3. FUTURE BELIEFS AS GAMBLES

We will consider lower previsions at different points in time—and in this paper, at just
two points in time, 0 and t > 0. As mentioned before, by L we denote the (linear span
of the) collection of gambles that we consider now, at time 0: it represents our subjective
judgement, now, about what gambles are relevant to the statistical problem at hand.

However, we might also consider gambles about future beliefs about gambles in L .
Specifically, Pt denotes our (currently unknown) assessments at time t, in the form of
supremum buying prices for gambles in domPt , at time t. If we assume that Pt avoids
sure loss (which seems reasonable), then we can consider its natural extension Et , which
is a coherent lower prevision. For any X ∈L , the value Et(X) represents the supremum
buying price for X , based on the assessments Pt at time t. This value Et(X) is only known
to us at time t and beyond.

By E0(X), we denote our current supremum buying price for X . It embodies our current
assessments concerning the problem domain at hand, based on some lower prevision P0
that we specify now. However, Et(X) is a gamble by itself, whose value is only realised at
time t.

For some gambles, we may know that we will learn their values at time t. We assume
that L is a direct sum of a set L1 of gambles whose values are not known at time t, and
a set L2 of gambles whose values are known at time t. Such separation is natural in a
statistical setting: L1 will typically contain quantities that we wish to learn about, and L2
will contain quantities that represent the data that we know at time t. For example, when
planning the construction of a new wind farm, we may wish to learn about how the wind
will behave at potential locations. In this case, L2 may contain past wind measurements
near locations of interest until time t, whilst L1 may contain future wind observations at
each location when the farm is producing energy at times beyond t. Those future wind
observation are obviously unknown when the planning decision is made at time t.

For now, we only consider sums of quantities in L1 and L2, and obviously that is a
restriction. In Section 5 we relax the domain restriction in exchange for an additional
restriction on future beliefs.

The corresponding projection operators are denoted by π1 and π2, so for any gamble
X we have that X = π1X + π2X with π1X ∈ L1 and π2X ∈ L2. Although constants are
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obviously known at time t, for convenience, we assume that the constants are in L1 rather
than in L2, as we will consider coherent lower previsions on just L1 later on.

We denote the linear space of all gambles, including gambles that represent beliefs about
other gambles, by L ∗. We define L ∗ to be the set of expressions generated through the
following axioms:

(L1) If X ∈L then X ∈L ∗.
(L2) If U and V ∈L ∗ then U +V ∈L ∗.
(L3) If a ∈ R and U ∈L ∗ then aU ∈L ∗.
(L4) If U ∈L ∗ then Et(U) ∈L ∗.

So, L ∗ is the set of all expressions containing gambles in L , linear combinations, and
applications of Et . Note that L ∗ is much larger than L . We will usually denote gambles
in L by X , Y , and so on, and gambles in L ∗ by U , V , and so on.

For any coherent lower prevision Q on L1 and any U ∈ L ∗, we can project U onto
a gamble πQU ∈L , simply by by replacing Et by Q in the expression of U , where it is
understood that, in the remaining expression, we can treat any Z ∈ L2 inside of Q as a
constant. Because these terms always occur additively, they can always be pulled out of
Q, and therefore the resulting expression can indeed be expressed as an element of L . For
example, if U := Y +2Z +Et(2Y −3Et(Y +Z)), then

πQU = Y +2Z +Q(2Y −3Q(Y +Z)) = Y −Z−Q(Y )(10)

provided that Y ∈L1 and Z ∈L2. One can think of this as the the gamble U after Et = Q
has realised.

With our projection operator from L ∗ to L , we can extend the sup operator from L
to L ∗ as follows.

Definition 6. For every U ∈L ∗, let

(11) sup(U) := sup
Q∈E(L1)

sup(πQU).

Proposition 7. The operator sup on L ∗ satisfies (S1)–(S3).

In the same way as before, this sup operator induces an equivalence relation ' on L ∗.
We study some of its properties in the next few theorems.

Proposition 8. For every a ∈ R and Z ∈L2, we have that a+Z ' Et(a+Z).

More generally, under the equivalence relation ', L ∗ has the following structure:

Proposition 9. For every U ∈L ∗, there are n ∈ N, a1, . . . , an ∈ R, Y0, Y1, . . . , Yn ∈L1,
and Z ∈L2 such that

(12) U ' Y0 +
n

∑
i=1

aiEt(Yi)+Z.

Here, Z is unique, and Y0 is unique up to an additive constant. Moreover, we have that

(13) Et(U)' Et(Y0)+
n

∑
i=1

aiEt(Yi)+Z

To see that Y0 in the representation is only unique up to a constant, note that for instance
Y0 +Et(Y1) ' Y0 + c+Et(Y1− c): we can arbitrarily shift constants between Y0 and any
of the Y1, . . . , Yn. We could force a unique representation by explicitly projecting out the
constants in all Yi. For simplicity, we have chosen not to do so in the current paper.
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The benefit of this representation is that to apply πQ, we can simply replace Et by Q,
and no other operations are required. Another consequence is:

Proposition 10. If U 'V then Et(U)' Et(V ).

We write Dt for the set of almost desirable gambles corresponding to Et .

Definition 11.
(14) Dt := {U ∈L ∗ : Et(U)� 0}

The set Dt naturally contains all non-negative gambles in L . It also contains gambles
such as U−Et(U), for any U ∈L ∗. Up to equivalence, we can write Dt as follows:

Proposition 12. We have that

(15) Dt '

{
Y0 +

n

∑
i=1

aiEt(Yi)+Z : inf
Q∈E(L1)

(
Q(Y0)+

n

∑
i=1

aiQ(Yi)

)
+ infZ ≥ 0,

n ∈ N, a1, . . . ,an ∈ R, Y0, . . . ,Yn ∈L1, Z ∈L2

}
For example, to see that U−Et(U) ∈Dt for U ' Y0 +∑

n
i=1 aiEt(Yi)+Z, note that

(16) U−Et(U)' Y0−Et(Y0)

and obviously Q(Y0)−Q(Y0)≥ 0 for every Q.

4. TEMPORAL SURE PREFERENCE

4.1. The Temporal Sure Preference Principle. In order to establish relationships be-
tween current and future beliefs, we must impose conditions that go beyond coherence at
a single time point. These conditions should be sufficiently weak and compelling to be
widely applicable, while leading to a meaningful account of inference.

Any principle which asserts that beliefs now are compelling for beliefs in the future is,
by its nature, unconvincing, as we cannot know what future information we may receive
or what the outcome of our future reflections may be. The converse, however, is that we
may often view our future beliefs as compelling for our current beliefs, as all such future
reflections and information will be taken into account in such future judgements. In order
for future judgements to influence our current judgements, we must know what such future
judgements are. We therefore introduce the notion of a sure prefererence, at a future time,
as one which we are now sure that we will hold at that time.

It may seem unreasonable, now, to think that we hold any such sure preferences. How-
ever, it so happens that we do indeed hold many such, and recognising them explicitly,
and formalising their implications for our current judgements, provides a natural account
of temporal reasoning. For this reason, Goldstein introduced the temporal sure preference
principle (see [3], [4], [5, Sec. 3.5]), which we discuss next.

Mathematically, we would like to extend E0, defined on L , to a coherent lower previ-
sion on the much larger set of gambles L ∗. We will do so through desirability. Remember,
D0 ⊆ L denotes the set of gambles that are almost desirable now according to E0 (and
thereby, according to our initial assessments P0). By D∗0 ⊆L ∗ we denote the set of gam-
bles in L ∗ that we deem almost desirable now, according to whichever principles that we
choose to adopt.

Clearly, we must have that D0 ⊆ D∗0 . But we can add many more gambles to D∗0 , by
adopting the following variant of the temporal sure preference principle:
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Principle 1 (The Temporal Sure Preference Principle). For any gamble U ∈L ∗, if U is
certain to be almost desirable for us at future time t, i.e. if Et(U) � 0, then U should be
almost desirable for us now:

(17) Dt ⊆D∗0

This principle is proposed for lower previsions in [12, Principle III]. In that work, we
compared this principle with other possible variants, and we proved that it is equivalent
with the standard temporal sure preference for previsions introduced in [3], [4], and [5,
Sec. 3.5]. A key difference between the above principle and the principles proposed in
[12] is that the above principle is slightly simpler in its formulation, because we do not
need to refer to the possibility space.

We note that there can be situations where the principle might not hold. For example, we
might consider that, at the future time, we could undergo personality changes which render
our future judgements suspect to us now (the Doctor Jekyll and Mister Hyde scenario).
More prosaically, we might just recognise situations where our future judgements are likely
to be less reliable than our current judgements (for example, the problem of forgetting).
Therefore, the intention of the temporal sure preference principle is that it should be viewed
as a very weak, and widely applicable principle, whose relevance we should consider for
the problem at hand. If we consider the temporal sure preference principle applicable in
our problem, then we may draw on the strong implications of the principle to provide an
account of temporal coherence for this situation.

4.2. Temporal Natural Extension. We can now constructively define D∗0 through natural
extension, namely, we let D∗0 be the smallest closed convex cone containing both D0 and
Dt . Or, equivalently, in terms of lower previsions:

Definition 13. For any gamble U ∈L ∗, we define

(18) E∗0(U) := sup
α∈R

X∈L : E0(X)≥0
V∈L ∗ : Et (V )�0

{α : U−α � X +V}

In this way, E∗0 captures all inferences both from our initial assessments P0 (remember
that E0 is the natural extension of P0), as well as all inferences that we can make from
the temporal sure preference principle. Note that this form of natural extension is fully
constructive, in contrast to the natural extension proposed in [12].

The next theorem provides a more convenient formula:

Proposition 14. For any gamble U ∈L ∗,

E∗0(U) = sup
X∈L ,Y∈L1

inf [U−X +E0(X)−Y +Et(Y )](19)

= sup
X∈L ,Y∈L1

inf
Q∈E(L1)

inf
[
πQU−X +E0(X)−Y +Q(Y )

]
(20)

Proof. The equality of the two expressions follows immediately from the definition of sup
(and inf) on L ∗.

To see that E∗0 is at least as large as the given expression, note that for any X ∈L and
Y ∈L1, we have that E0(X−E0(X))≥ 0, Et(Y −Et(Y ))� 0, and

(21) U−α � X−E0(X)+Y −Et(Y )

is satisfied for α = inf[U−X +E0(X)−Y +Et(Y )].
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Conversely, consider any α ∈R, X ∈L , V ∈L ∗, such that E0(X)≥ 0, Et(V )� 0, and
U−α � X +V . Then it must be that

(22) inf(U−α−X−V )≥ 0

and consequently,

(23) α ≤ inf[U−X−V ]≤ inf[U−X +E0(X)−V +Et(V )]

Now note that

(24) V −Et(V )' Y −Et(Y )

for some Y ∈L1, by Theorem 9. Consequently E∗0(U) is less or equal to the given expres-
sion. � �

Before we proceed investigating actual inferences from the above expression for natural
extension, we need to address a few concerns. First, there is no guarantee that Principle 1
is consistent with our initial assessments E0. Eq. (18) provides us with a means to verify
this: we merely have to check that E∗0(0)<+∞ [13, p. 123, ll. 4–7]. Secondly, there is no
guarantee that E∗0 coincides with E0 on L . The next theorem answers these concerns.

Proposition 15. For all X ∈L , we have that

(25) E∗0(X) = E0(X).

Proof. Consider any X ∈L . Clearly,

E0(X) = sup
X ′∈L

inf
[
X−X ′+E0(X

′)
]

(26)

≤ sup
X ′∈L ,Y∈L1

inf
[
X−X ′+E0(X

′)−Y +Et(Y )
]
= E∗0(X)(27)

Conversely,

E∗0(X) = sup
X ′∈L ,Y∈L1

inf
Q∈E(L1)

inf
[
X−X ′+E0(X

′)−Y +Q(Y )
]

(28)

and because every coherent lower prevision Q on L1 can be extended to a coherent lower
prevision Q on L (e.g. through natural extension),

≤ sup
X ′∈L ,Y∈L1

inf
Q∈E(L )

Q
[
X−X ′+E0(X

′)−Y +Q(Y )
]

(29)

and now because E(X1−X2)≤ E(X1)−E(X2) by coherence,

≤ sup
X ′∈L ,Y∈L1

inf
Q∈E(L )

Q(X−X ′+E0(X
′))−Q(Y −Q(Y ))︸ ︷︷ ︸

=0

(30)

= sup
X ′∈L

inf
[
X−X ′+E0(X

′)
]
= E0(X)(31)

� �

Note that this proof is much simpler and arguably far more elegant than the proof given
earlier in [12].

We also immediately have the following important result [12, Proposition 12], which
effectively reformulates Principle 1 in terms of lower previsions:

Proposition 16. For every gamble U ∈L ∗,

(32) E∗0(U)≥ infEt(U)
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Proof. By Theorem 14,

E∗0(U) = sup
X∈L ,Y∈L1

inf [U−X +E0(X)−Y +Et(Y )](33)

and because U−Et(U)' Y −Et(Y ) for some Y ∈L1 (see Theorem 9),

≥ inf [U−0+E0(0)−U +Et(U)] = infEt(U)(34)

� �

4.3. Further Implications. First, we derive the following version of conglomerability
[12, Corollary 13]:

Proposition 17. For every U ∈L ∗,

(35) E∗0(U−Et(U))≥ 0.

Proof. By Eq. (32),

(36) E∗0(U−Et(U))≥ infEt(U−Et(U)).

Now note that Et(U−Et(U))' 0. � �

Clearly, if we were to impose a conditioning interpretation, Eq. (35) corresponds to one
of Walley’s conditions for coherence [13, p. 303, (C11)].

Theorem 17 immediately implies a number of interesting inequalities:

Proposition 18. For every U ∈L ∗,

E∗0(Et(U))≤ E∗0(U)≤ E∗0(Et(U)),(37)

E∗0(Et(U))≤ E∗0(U)≤ E∗0(Et(U)).(38)

and consequently, for all X ∈L ,

E∗0(Et(X))≤ E0(X)≤ E∗0(Et(X)),(39)

E∗0(Et(X))≤ E0(X)≤ E∗0(Et(X)).(40)

Proof. See [12, Corollary 14]. � �

Unfortunately, we cannot derive a non-trivial lower bound on E∗0(Et(U)), and similarly,
we cannot derive a non-trivial upper bound on E∗0(Et(U)), due to the possibility of dilation
[9]. Some further inequalities for imprecise variance can be found in [12, Proposition 16].
This requires L ∗ to include squares of gambles, which complicates the analysis consider-
ably. Additionally, only the lower variance can be effectively bounded, and therefore these
inequalities are not particularly interesting. So we will not discuss them here.

5. TEMPORAL COHERENCE FOR PREVISIONS

5.1. Basic Structure. In this section, we revisit the existing theory of temporal coherence
for previsions, from the point of view of the theory that we have so far developed. Stronger
properties can be derived if Et is a coherent prevision. To study these properties, we need
to be able to square gambles. For this reason, we assume that L is the set of all constant,
linear, and quadratic polynomials in the variables B1∪B2, where the gambles in B1 are
assumed to be unknown at time t, and the gambles in B2 are assumed to be known at time
t. We assume that sup is defined on L and satisfies (S1)–(S4) as well as:

(S5) sup(X2)≥ 0 for all X ∈L such that X2 ∈L .
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We then construct L ∗ as the set of expressions generated through the following axioms,
where we simultaneously also define the degree function deg∗ : L ∗→ N:

(L’1) If a ∈ R then a ∈L ∗ and deg∗(a) := 0.
(L’2) If X ∈B1∪B2 then X ∈L ∗ and deg∗(X) := 1.
(L’3) If U and V ∈L ∗ then U +V ∈L ∗ and deg∗(U +V ) := max{deg∗(U),deg∗(V )}.
(L’4) If U and V ∈L ∗ then UV ∈L ∗ provided that deg∗(UV ) := deg∗(U)+deg∗(V )≤

2.
(L’5) If U ∈L ∗ then Et(U) ∈L ∗ and deg∗(Et(U)) := deg∗(U).

The smallest set L ∗ satisfying (L’1)–(L’5) is the set of all expressions containing gambles
in B1 and B2, linear combinations, products, and applications of Et , whose degree is less
or equal than 2. We could obviously relax the degree requirement, and let L ∗ be a full
polynomial ring, however doing so would require us to assume that we can specify a future
coherent prevision Et on the full polynomial ring in the variables B1. But, the distribu-
tion of a variable is often (although not always) uniquely determined by its moments [10,
Section 11]. So if we go for a full polynomial ring, we might as well assume that we can
specify a possibility space, which is precisely what we set out to avoid.

We emphasize that deg∗(U) is the degree of U as an expression, which may be larger
than the polynomial degree. For example, let X ∈B1, and consider U := X2−X2. As an
expression, deg∗(X2−X2) = 2. As a polynomial, obviously the degree of X2−X2 is 0.

In order to extend the sup operator from L to a sup operator on L ∗, we use a sim-
ilar construction as before. Let L1 denote the set of all constant, linear, and quadratic
polynomials in the variables B1, and let L2 denote the set of all constant, linear, and qua-
dratic polynomials in the variables B2. For any element X of L1 or L2, we denote the
polynomial degree of X by deg(X).

For any coherent prevision Q on L1 and any U ∈L ∗, we can project U onto a gamble
πQU ∈L by replacing Et by Q in the expression of U , where it is understood that we treat
all appearances of Z ∈L2 in the remaining expression as constants. We then define:

(41) sup(U) := sup
Q∈E(L1)

sup(πQU).

where E(L1) denotes the set of all coherent previsions on L1.
The following property is of particular interest:

Proposition 19. For all U ∈L ∗ with deg∗(U)≤ 1, we have that sup(U2)≥ 0.

Proof. By definition of πQ, we have that πQ(U2) = (πQU)2, and sup
(
(πQU)2

)
≥ 0 by

assumption. �

Because of the linearity of Q, we have the following result:

Proposition 20. For every U ∈L ∗, there are Yi and Y ′i j ∈L1, Zi ∈L2, and k j ∈ N, such
that

(42) U '
n

∑
i=1

ZiYi

ki

∏
j=1

Et(Y ′i j)

where deg(Zi)+deg(Yi)+∑
ki
j=1 deg(Y ′i j)≤ 2, for all i ∈ {1, . . . ,n}. In that case,

(43) Et(U)'
n

∑
i=1

ZiEt(Yi)
ki

∏
j=1

Et(Y ′i j)
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This theorem says that L ∗ is, up to equivalence, equal to the set of all polynomials
generated by B1 ∪B2 ∪{Et(Y ) : Y ∈L1} subject to a degree constraint. It also tells us
that, when written in the above form, we can apply Et simply by replacing the Yi terms by
Et(Yi).

Note that this does not work for lower previsions, because we cannot treat terms of the
form Et(ZY ): for any z ∈R, Q(zY ) is equal to zQ(Y ) when z≥ 0 and equal to zQ(X) when
z < 0: we cannot simply pull constants out unless we know their sign. The linearity of Et
is really key to make Theorem 20 work.

5.2. Temporal Natural Extension. We can define again a natural extension, as before.
Note that this natural extension is inherently imprecise, even if our current beliefs E0 are
precise (i.e. when E0 is a prevision).

E∗0(U) := sup
α∈R

X∈L : E0(X)≥0
V∈L ∗ : Et (V )�0

{α : U−α � X +V}(44)

= sup
X∈L ,V∈L ∗

inf [U−X +E0(X)−V +Et(V )](45)

The proof of the second expression for the natural extension follows in essence the proof
of Theorem 14. We can also show that, for all X ∈L ,

(46) E∗0(X) = E0(X)

(see the proof of Theorem 15), and that, for all U ∈L ∗,

(47) E∗0(U)≥ infEt(U)

(see the proof of Theorem 16).
The next proposition, which is in essence due to Goldstein [4, Theorem 1], forms the

basis for linking future beliefs about expectation and variance to current beliefs about ex-
pectation and variance.

Proposition 21. For every U ∈L ∗ and V ∈L ∗ with deg∗(U)≤ 1 and deg∗(V )≤ 1, and
such that Et(V )'V , we have that

(48) E∗0((U−V )2− (U−Et(U))2))≥ 0

Proof. First note that, by Theorem 20, if Et(V ) ' V , then we must have the following
representation for V :

(49) V '
n

∑
i=1

Zi

ki

∏
j=1

Et(Y ′i j)

with Y ′i j ∈L1 and Zi ∈L2. Consequently, we must also have a similar representation for
V 2 (with different gambles of course). It follows, again by Theorem 20, that,

(50) Et(−2VU +V 2)'−2V Et(U)+V 2.

Note that, by Eq. (47),

E∗0((U−V )2− (U−Et(U))2))(51)

≥ infEt((U−V )2− (U−Et(U))2)(52)

= infEt(−2VU +V 2 +2UEt(U)−Et(U)2)(53)
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and now by Eq. (50) and Theorem 20,

= inf
(
−2V Et(U)+V 2 +2Et(U)2−Et(U)2)(54)

= inf
(
(Et(U)−V )2)≥ 0(55)

where we used Theorem 19. � �

The following is a well known result:

Lemma 22. For every U ∈L ∗ with deg∗(U)≤ 1 and every coherent prevision E on L ∗,
we have that

(56) argmin
a∈R

E((U−a)2) = E(U)

Proof. Simply note that

(57) E((U−a)2) = E((U−E(U))2)+(E(U)−a)2.

� �

If we combine this with Theorem 21, we get:

Proposition 23. For every U ∈L ∗ with deg(U)≤ 1 we have that

(58) E∗0(U−Et(U)) = E∗0(U−Et(U)) = 0.

Proof. Fix any E ∈M (E∗0).
We now follow the argument presented in [4, Corollary 1]. By Theorem 21, with V :=

Et(U)+a,

(59) E((U−Et(U)−a)2)≥ E((U−Et(U))2))

for all a ∈ R. Consequently, it follows that

(60) argmin
a∈R

E((U−Et(U)−a)2) = 0.

By Eq. (56), this means that E(U−Et(U)) = 0.
Since this holds for all E ∈M (E∗0), by Theorem 5, it must be that E∗0(U −Et(U)) =

E∗0(U−Et(U)) = 0. � �

Interestingly, we can drop the degree condition on U , if we use a slightly different
method of proof:

Proposition 24. For every U ∈L ∗ we have that

(61) E∗0(U−Et(U)) = E∗0(U−Et(U)) = 0.

Proof. By Eq. (47),

(62) E∗0(U−Et(U))≥ infEt(U−Et(U)) = 0

and similarly,

E∗0(U−Et(U)) =−E∗0(−U−Et(−U))(63)

≤− infEt(−U−Et(−U)) = 0(64)

Putting everything together, and using E∗0 ≤ E∗0,

(65) 0≤ E∗0(U−Et(U))≤ E∗0(U−Et(U))≤ 0

establishing the desired equality. � �
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If we apply Theorem 24 any X ∈L with E0(X) = E0(X) = E0(X), then we recover [4,
Corollary 1]: we find that E∗0(Et(X)) = E∗0(Et(X)) = E0(X) (we also relied on Eq. (46)).
This is very similar to the usual definition of conglomerability as in for instance [13, p. 305,
(C15)]. It is worth emphasizing that this is not your usual conglomerability, because Et(X)
is not necessarily obtained through conditioning. We also emphasize that Theorem 24
applies also to situations where E0(X) 6= E0(X), so it is more general than [4, Corol-
lary 1]. Because our framework uses a much weaker structure, we also side-step the non-
conglomerability issues one has when relying on finitely additive probability measures
[7, 8].

The next lemma is also well known; see [4] or [5, p. 55–57]:

Lemma 25. For every coherent prevision E on L ∗, and every U and V ∈ L ∗ with
deg∗(U)≤ 1 and deg∗(V )≤ 1, we have that

varV (U) := min
a,b∈R

E((U−a−bV )2) = var(U)− cov(U,V )2

var(V )
(66)

where the minimum is achieved for a+bV equal to

EV (U) := E(U)+
cov(U,V )

var(V )
(V −E(V ))(67)

Using this, we can also say something about the expected future variance, that is,
vart(U).

Proposition 26. For every U ∈L ∗ and V ∈L ∗ with deg∗(U)≤ 1 and deg∗(V )≤ 1, and
such that Et(V )'V , and every E ∈M (E∗0), we have that

(68) E(vart(U))≤ varV (U),

Proof. By Theorem 24, we have that E(U ′) = E(Et(U ′)), for U ′ := (U−Et(U))2. So,

E(vart(U)) = E(Et((U−Et(U))2)) = E((U−Et(U))2)(69)

and now, by Theorem 21,

≤ E((U−EV (U))2) = varV (U)(70)

� �

Note that we could not have used Theorem 23 in the proof, because we would have that
deg∗(U ′) = 2 when deg∗(U) = 1.

In particular, if U ∈L1 and V ∈L2, and our assessments at time 0 constitute a prevision
E0, then varV (U) is precisely known, and we have an upper bound on the expected variance
of our future beliefs.

All these results demonstrate that our framework fully encapsulates standard Bayes lin-
ear calculus.

6. CONCLUSION

We have discussed lower previsions without possibility spaces, and used this framework
to set up a theory of lower previsions that fully treats future beliefs as random quantities.
First, we revisited the theory of lower previsions but starting from a bounding operator
instead of a possibility space. We proved that many results carry over immediately to this
more general framework. Next, we constructed a set of gambles as a set of expressions that
involved also future beliefs as random quantities. We used a linear projection operator to
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induce a logical bounding operator on these expressions. This enabled us to characterize
coherent lower previsions on such set.

For simplicity, in the current paper, for the case where we work with lower previsions,
we limited ourselves to sums of variables that are known at time t and variables that re-
main unknown. This separation is quite natural: one class corresponds to data and one to
quantities for which we will use the data to make inferences. Linearity allows us to explore
how the linear operations of Bayes linear theory extend to lower previsions. Nevertheless,
it would be interesting to see if this limitation could be lifted. To allow products, as in the
full Bayes linear case, a minimal requirement would be to be able to consider the positive
and negative parts of any gamble Z whose value is known at time t, to allow for instance:

(71) Et(Y Z)' (Z∨0)Et(Y )+(Z∧0)Et(Y )

We can know that Z∨0 and Z∧0 belong to L2 if L2 forms a Riesz space (and assuming
that L2 also contains all constants). This is a much larger structure than just a linear space,
and requires a lot more detail to be specified.

Following [12], we used the temporal sure preference principle in the context of desir-
ability and lower previsions, however, our framework did so in a more constructive way,
and in a way that explicitly models random quantities that are known at a future time t.

We identified an expression for natural extension under the temporal sure preference
principle, and established consistency of the temporal sure preference principle with prior
specifications, which also guarantees that those prior specifications are not modified by
adopting the temporal sure preference principle, so we can still use the usual (non-temporal)
form of natural extension for gambles as far as our current beliefs are concerned. We have
also derived a host of bounds on lower and upper expectations of future lower and upper
expecations.

We then extended the framework to sets of gambles that form constant, linear, and
quadratic polynomials. We noted that a reduced representation is possible when future
beliefs are precise. From this representation, we recovered the basic properties of standard
Bayes linear calculus.

APPENDIX A. PROOFS

Proof of Theorem 1. Remember that we defined ‖X‖ := max{sup(X),sup(−X)}.
First, for all a ∈ R,

(72) ‖aX‖= max{sup(|a|X),sup(−|a|X)}= max{|a|sup(X), |a|sup(−X)}
= |a|max{sup(X),sup(−X)}= |a|‖X‖.

Next,

‖X +Y‖= max{sup(X +Y ),sup(−X−Y )}(73)

≤max{sup(X)+ sup(Y ),sup(−X)+ sup(−Y )}(74)

≤max{sup(X),sup(−X)}+max{sup(Y ),sup(−Y )}= ‖X‖+‖Y‖.(75)

And, because inf(X)≤ sup(X),

sup(X)≤ 0 =⇒ inf(X) =−sup(−X)≤ 0 =⇒ sup(−X)≥ 0(76)

and therefore ‖X‖ ≥ 0. Finally, we also have that

‖X‖= 0 =⇒ sup(X) =−sup(−X) = 0 =⇒ X = 0(77)

because of the uniqueness of the zero gamble. So, ‖ · ‖ is a norm. � �
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Proof of Theorem 2. C1. Take all λi = 0 in Eq. (4).
C2. Consider any n and m ∈ N with n < m, any λ1 ≥ 0, . . . , λm ≥ 0, and any X1, . . . ,

Xm ∈ domP. Assume that

X−α �
n

∑
i=1

λi(Xi−P(Xi))(78)

Y −β �
m

∑
i=n+1

λi(Xi−P(Xi))(79)

By definition of �, this means that

inf

(
X−

n

∑
i=1

λi(Xi−P(Xi))

)
≥ α(80)

inf

(
Y −

m

∑
i=n+1

λi(Xi−P(Xi))

)
≥ β(81)

Because inf(V +W )≥ inf(V )+ inf(W ), it follows that

(82) inf

(
X +Y −

m

∑
i=1

λi(Xi−P(Xi))

)
≥ α +β

or, in other words,

(83) X +Y −α−β �
m

∑
i=1

λi(Xi−P(Xi))

Consequently, for every α and β such that Eqs. (78) and (79) are satisfied, we can find a
γ ≥ α +β (actually, we can even take it to be equal) such that

(84) X +Y − γ �
m

∑
i=1

λi(Xi−P(Xi))

By the definition of E (Eq. (4)), it thus follows that E(X +Y )≥ E(X)+E(Y ).
C3. For λ = 0, this follows from the avoiding sure loss condition. For λ > 0, note that

X � Y if and only if λX � λY , because inf(λX −λY ) = λ inf(X −Y ). By the definition
of E (Eq. (4)), it now easily follows that E(λX) = λE(X). � �

Proof of Theorem 3. We establish each of the properties.
D1 If X � 0 then E(X)≥ inf(X)≥ 0 so X ∈D .
D2 If supX < 0 then E(X)≤ sup(X)< 0 so X 6∈D .
D3 If X ∈D and Y ∈D then E(X +Y )≥ E(X)+E(Y )≥ 0 so X +Y ∈D .
D4 If λ ≥ 0 and X ∈D then E(λX) = λE(X)≥ 0 so λX ∈D .
D5 If X + ε ∈D for all ε > 0, then E(X + ε) = E(X)+ ε ≥ 0 for all ε > 0, so it must

be that E(X)≥ 0 as well, and thus X ∈D .
� �

Proof of Theorem 4. Because E(X−a) = E(X)−a for all a ∈ R, it follows that

max{a ∈ R : X−a ∈D}= max{a ∈ R : E(X−a)≥ 0}(85)

= max{a ∈ R : a≤ E(X)}= E(X)(86)

� �
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Proof of Theorem 5. This proof is a simplified version of the proof given in [11, p. 71–72,
proof of Theorem 4.38(iii)].

Clearly E(X) ≥ infP∈M (E) P(X) since P(X) ≥ E(X) for all P ∈M (E). We are left to
show that E(X) = P(X) for some P ∈M (E).

Consider the linear functional Λ defined on the linear space {aX : a ∈ R} by

(87) Λ(aX) := aE(X)

Note that

(88) Λ(aX) = aE(X) =

{
E(aX)≤ E(aX) if a≥ 0
E(aX) if a < 0

so E dominates Λ on domΛ. Consequently, since E is sublinear, by the Hahn-Banach
theorem [6, Section 12.31, (HB3)], Λ can be extended to a linear functional P on L such
that P(Y )≤ E(Y ) for all Y ∈L . In particular, for all Y and Z ∈L ,

(i) P(Y )≤ E(Y )≤ sup(Y ),
(ii) P(λY ) = λP(Y ) for all λ ≥ 0, and

(iii) P(Y +Z) = P(Y )+P(Z).

Also P(Y ) = −P(−Y ). Consequently, P ∈M (E), and P(X) = E(X) by construction,
establishing the desired equality. � �

Proof of Theorem 7. For (S1), note that, by (P2):

sup(U +V ) = sup
Q∈E(L1)

sup(πQU +πQV )(89)

≤ sup
Q∈E(L1)

(
supπQU + supπQV

)
(90)

≤

(
sup

Q∈E(L1)

supπQU

)
+

(
sup

Q∈E(L1)

supπQV

)
= supU + supV(91)

(S2) follows similarly by (P3). (S3) follows because sup already satisfies (S3) on L and
by (P1). � �

Proof of Theorem 8. Note that, by definition,

(92) πQ(Et(a+Z)) = Q(a+Z) = a+Z = πQ(a+Z).

So inf((a+Z)−Et(a+Z)) = sup((a+Z)−Et(a+Z)) = 0, establishing the desired in-
difference. � �

Proof of Theorem 9. We first show the last equivalence. Consider any n ∈ N, a1, . . . , an ∈
R, Y0, Y1, . . . , Yn ∈L1, and Z ∈L2, such that U ' Y0 +∑

n
i=1 aiEt(Yi)+Z. Then, for any

Q ∈ E(L1),

πQ(U) = πQ

(
Y0 +

n

∑
i=1

aiEt(Yi)+Z

)
(93)

= Y0 +
n

∑
i=1

aiQ(Xi)+Z(94)



FOUNDATIONS FOR TEMPORAL REASONING USING LOWER PREVISIONS 19

Then, by Eq. (94),

πQ(EtU) = Q

(
Y0 +

n

∑
i=1

aiQ(Yi)+Z

)
(95)

= Q(Y0)+
n

∑
i=1

aiQ(Yi)+Z(96)

= πQ

(
Et(Y0)+

n

∑
i=1

aiEt(Xi)+Z

)
(97)

Consequently, indeed, it must be that Et(U)' Et(Y0)+∑
n
i=1 aiEt(Xi)+Z.

For the first equivalence, we proceed by structural induction. Clearly, for any X ∈L ,
X = π1X + π2X so the the statement holds for n = 0, Y0 = π1X , and Z = π2X . If the
statement holds for U and V , then obviously it will also hold for U +V and for aU for all
a ∈ R. We are left to show that if the statement holds for U , then it also holds for Et(U).
This follows immediately from the first part of the proof.

To show the uniqueness of Z, simply note that we can obtain the Z component of U by
applying the π2 operator to πQU .

To show the uniqueness of Y0 up to a positive constant, assume that

(98) Y0 +
n

∑
i=1

aiEt(Yi)+Z ' Y ′0 +
m

∑
j=1

biEt(Y
′
i )+Z′

We already know that Z ' Z′, so we can drop both terms from the above equivalence. We
are left with

(99) Y0−Y ′0 '
n

∑
i=1

aiEt(Yi)−
m

∑
j=1

biEt(Y
′
i )

Equivalently, for every Q ∈ E(L1),

(100) Y0−Y ′0 =
n

∑
i=1

aiQ(Yi)−
m

∑
j=1

biQ(Y ′i )

The left hand side does not depend on Q, so it can only be that the right hand side is a
constant. � �

Proof of Theorem 10. Assume U 'V . It suffices to show that πQ(EtU) = πQ(EtV ) for all
Q ∈ E(L1). Indeed, first note that, by Theorem 9, there are n, m ∈ N, a1, . . . , an, b1, . . . ,
bm, c ∈ R, Y0, Y1, . . . , Yn, Y ′1, . . . , Y ′m ∈L1, and Z ∈L2 such that

U ' Y0 +
n

∑
i=1

aiEt(Yi)+Z(101)

V ' Y0 + c+
m

∑
j=1

biEt(Y
′
i )+Z(102)
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Because U 'V ,

Y0 +
n

∑
i=1

aiQ(Yi)+Z = πQ

(
Y0 +

n

∑
i=1

aiEt(Yi)+Z

)
(103)

= πQ

(
Y0 + c+

m

∑
j=1

biEt(Y
′
i )+Z

)
(104)

= Y0 + c+
m

∑
j=1

biQ(Y ′i )+Z(105)

So, again by Theorem 9, and by the above equality,

πQ(EtU) = Q(Y0)+
n

∑
i=1

aiQ(Yi)+Z(106)

= Q(Y0)+ c+
m

∑
j=1

biQ(Y ′i )+Z(107)

= Q(Y0 + c)+
m

∑
j=1

biQ(Y ′i )+Z(108)

= πQ(EtV )(109)

� �

Proof of Theorem 12. Let U ' Y0 +∑
n
i=1 aiEt(Yi)+Z. Note that Et(U)� 0 if and only if

0≤ inf(EtU)(110)

= inf
Q∈E(L1)

inf(πQ(EtU))(111)

= inf
Q∈E(L1)

inf

(
Q(Y0)+

n

∑
i=1

aiQ(Yi)+Z

)
(112)

= inf
Q∈E(L1)

(
Q(Y0)+

n

∑
i=1

aiQ(Yi)

)
+ infZ(113)

� �

Proof of Theorem 20. Let U ∈ L ∗. It suffices to show that there are Yi and Y ′i j ∈ L1,
Zi ∈L2, and k j ∈ N, such that for all Q ∈ E(L1),

(114) πQU =
n

∑
i=1

ZiYi

ki

∏
j=1

Q(Y ′i j)

We prove this by structural induction.
Clearly, the statement is satisfied for X ∈ {1}∪B1∪B2 because then X easily can be

written in the form ∑
n
i=1 ZiYi by definition. Also, if the statement is satisfied for U and

V , then it is satisfied for U +V . Since a product of sums can be rearranged into a sum
of products, it will also be satisfied for UV , and deg∗(U)+ deg∗(V ) ≤ 2 ensures that the
polynomial degree condition is satisfied. Is it satisfied for Et(U)? Indeed,

πQ(EtU) = Q

(
n

∑
i=1

ZiYi

ki

∏
j=1

Q(Y ′i j)

)
(115)
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and now, using the linearity of Q (remember that the terms Zi are treated as constants),

=
n

∑
i=1

ZiQ(Yi)
ki

∏
j=1

Q(Y ′i j)(116)

This last equality also proves the equivalence expression for Et(U). � �
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