
Chapter 1
Uncertainty quantification in lasso-type
regularization problems

Tathagata Basu, Jochen Einbeck and Matthias C. M. Troffaes

Abstract Regularization techniques, which sit at the interface of statistical
modeling and machine learning, are often used in the engineering or other
applied sciences to tackle high dimensional regression (type) problems. While
a number of regularization methods are commonly used, the ‘Least Absolute
Shrinkage and Selection Operator’ or simply LASSO is popular because of its
efficient variable selection property. This property of the LASSO helps to deal
with problems where the number of predictors is larger than the total number
of observations, as it shrinks the coefficients of non-important parameters
to zero. In this chapter, both frequentist and Bayesian approaches for the
LASSO are discussed, with particular attention to the problem of uncertainty
quantification of regression parameters. For the frequentist approach, we
discuss a refit technique as well as the classical bootstrap method, and for the
Bayesian method, we make use of the equivalent LASSO formulation using a
Laplace prior on the model parameters.
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1.1 Introduction

Statistics is a collection of mathematical concepts to analyze and find the
structure in data. Data can be either numeric or character-valued (representing
a class) depending on the problem. There are several purposes of statistics;
however one of the main purposes is description of the data and prediction
of system behavior from the observed data. Elements of statistical reasoning
have been traced back as early as 400 AD [14, p. 7] in India. However, the
modern-day approach only started emerging in the 18th century, following
advances in the theory of probability [14, p. 176].

In this chapter, we will discuss statistical regularization and uncertainty
quantification problems using LASSO (‘Least Absolute Shrinkage and Se-
lection Operator’) estimators [24, 25]. The LASSO estimator is a popular
regularization method due to its variable selection property. After Tibshirani
introduced LASSO in 1996 [24], numerous authors contributed further to the
theory, including Osborne, Presnell, and Turlach [21] and Efron et al. [7].
Friedman et al. [10] discussed computational aspects of the LASSO. Park and
Casella [22] introduced the Bayesian approach for LASSO estimators using a
hierarchical mixture model for parameter estimation. Other notable works
deal with the specification of shrinkage parameter by Lykou and Ntzoufras
[18]; the Dirichlet LASSO by Das and Sobel [5]; and the spike and slab LASSO
by Roc̆ková [23].

First, we will introduce the basic notions behind statistical modeling and
regularization. In Section 1.2, we will look at some important concepts of
parameter estimation with and without regularization. Eventually, we will
introduce the LASSO estimators in Section 1.3. In Section 1.4, we will discuss
different uncertainty quantification methods for the LASSO followed by an
extension to the logistic model in Section 1.5. Section 1.6 concludes the
chapter.

1.1.1 Statistical Modeling

To make statistical inferences from data, first, we need variables, and a model
describing the relations between those variables. We can categorize variables
into response variables and predictor variables:

1. Predictor (or independent) variables are characteristics of the system which
directly control the properties of the system.

2. Response (or dependent) variables are characteristics of the system which
depend on the predictor variables. In other words, they respond to a change
of values of the predictors in some systematic fashion.

Assume we have a dataset containing n independent and identically distributed
(i.i.d.) observations of real-valued responses y1, . . . , yn ∈ R, along with
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corresponding vector-valued predictors x1, . . . , xn ∈ Rp. We consider each
xi to be a column vector.

Fig. 1.1 Scatter plot matrix of the Gaia dataset. The variable denoted t (temperature)
corresponds to the response; the variables denoted b1 to b16 (bands) correspond to the
predictors. Note that the plot is symmetric w.r.t. the counterdiagonal.

Example 1 (Gaia Dataset). Gaia is a mission by the European Space Agency
(ESA) to formulate a three dimensional map of our galaxy [1]. The data de-
picted in Fig. 1.1 are part of a dataset which was simulated prior to the launch
of the mission from computer experiments [8, 2]. The data contain essentially
spectral information divided into p = 16 wavelength bands (intervals), along
with certain stellar parameters which are to be inferred from the spectral
data. That is, each observation in the data set represents a stellar object, and
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the measurement for each ‘band’ is the energy flux (photon counts) emitted
from that object within that wavelength interval.

In this example, stellar-temperature (in Kelvin scale) is the response
variable. In the dataset that we have available, a total of n = 8286 observations
(stellar objects) are recorded. It can be seen from Fig. 1.1 that the 16 predictors
variables are strongly correlated with each other, suggesting that they carry
redundant information.

Often, one of the objectives of statistical modeling is to identify a functional
relationship (‘model’) between the responses and the predictor variables:

E(yi|xi) = φ(xi,β) (1.1)

where φ is a function that depends on a parameter vector β. For instance,
as will be described in Section 1.1.3 in more detail, in a linear regression
context one typically has φ(xi,β) = xTi β. There also exist non-parametric
approaches which do not assume an explicit parametric shape, but most
of such approaches achieve this by simply introducing a large number of
parameters, so that they still can be expressed as in Eq. (1.1).

1.1.2 Statistical Inference

Statistical inference is the process by which we use the available data to gain
knowledge about the model parameters, such as β in Eq. (1.1), as well as
their uncertainties. In a wider sense it will also include methods by which
we quantify and validate our assumptions on the model. Statistical inference
deals with the estimation of parameters that are used to specify the family of
probability distributions which underlie the statistical model for yi|xi. Infer-
ence has several applications in science and engineering. Generally, there are
two conceptually different approaches to statistical inference: the frequentist
approach and the Bayesian approach. There are some other concepts available
which are beyond the scope of this chapter, but are addressed in other articles
in this volume.

The frequentist approach is the most widely used estimation method.
Sometimes it is referred to as the ‘classical’ approach. The estimation can be
a point estimate where we simply try to find the best guess for the parameter
of the parametric model. Alternatively, we seek an interval which covers the
unknown parameter value with high probability (generally 0.95). We call this
a 95% confidence interval.

While several point estimators are available, the maximum likelihood esti-
mator (or, MLE) is among the most popular because of its simple and wide
implementability and its consistency properties. It finds the parameter value
which maximizes the probability density of the sample given the parameter,
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i.e. the likelihood. For linear regression models under normal errors, MLE is
equivalent to the ordinary least squares.

The Bayesian approach starts from Bayes’s rule for conditional probability.
Denote the data by Y . For example, in our setting, Y is simply the vector
of observed response values (y1, . . . , yn)T . The statistical model is specified
through a likelihood function p(Y | β). In the context of the regression model
in Eq. (1.1), this likelihood would be considered conditional on the observed
values of the predictors, that is, the observed values of the predictors are
considered as fixed. Finally, we need a prior distribution p(β) for the model
parameters β to incorporate our prior knowledge. Bayes’s rule then tells us
that the posterior distribution p(β | Y ) is given by

p(β | Y ) ∝ p(β)× p(Y | β). (1.2)

The normalization constant can be calculated from the law of total probability
if necessary. However, this calculation may not be always trivial so that simu-
lation methods like MCMC need to be employed. The posterior distribution is
then used for further inference. For instance, we can look at its mean, mode,
or other characteristics.

1.1.3 Linear Models

The linear model is one of the most popular forms for statistical modeling.
Here, the functional relationship between the response and predictor is linear
i.e. yi = xTi β+ εi, where β ∈ Rp, and usually the assumption εi

i.i.d.∼ N(0, σ2)
is made for the random errors. The linear model can be written in a matrix
form for all cases i ∈ {1, . . . , n} simultaneously as follows:

Y = Xβ + ε (1.3)

where

Y :=

y1
...
yn

 X :=

x
T
1
...
xTn

 β :=

β1
...
βp

 ε :=

ε1...
εn

 . (1.4)

The matrix X is called the design matrix. Remember that each xi ∈ Rp is
considered as a column-vector, so X is an n× p matrix.
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1.1.4 Strong Duality and the Karush-Kuhn-Tucker
Conditions

In this section, we briefly give the main duality result for non-linear optimiza-
tion that we will apply further. Assume we aim to minimize a function f(β),
where β ∈ B ⊆ Rp subject to a constraint h(β) ≤ 0. In the following sections,
we will have either B = Rp or B = Rp+ (i.e. the set of non-negative vectors in
Rp), although in principle B can be an arbitrary convex set. So, we try to find

f∗ := min
β∈B
h(β)≤0

f(β). (1.5)

One may think of the function f(·) as a least squares criterion or a negative
(log-)likelihood. Define now the Lagrangian:

`(β, λ) := f(β) + λh(β) (1.6)

and the Lagrange dual function:

g(λ) := min
β∈B

`(β, λ). (1.7)

Note that

max
λ≥0

g(λ) = max
λ≥0

min
β∈B

`(β, λ) ≤ max
λ≥0

min
β∈B
h(β)≤0

`(β, λ) (1.8)

≤ max
λ≥0

min
β∈B
h(β)≤0

f(β) = f∗. (1.9)

This inequality holds in general. Strong duality tells us that, under certain
conditions, the inequality becomes an equality [3, §5.2.3].

Theorem 1 (Strong Duality). If f and h are convex functions, and h(β) <
0 for at least one β ∈ B, then

max
λ≥0

g(λ) = min
β∈B
h(β)≤0

f(β) = f∗ (1.10)

So, under strong duality, to minimize f(β) over β subject to h(β) ≤ 0, we
can also instead maximize the Lagrange dual function over λ ≥ 0. In that
case, the Karush-Kuhn-Tucker conditions provide necessary and sufficient
conditions for optimality.

Definition 1 (Subgradient). For any function F on B, we say that v ∈ Rp
is a subgradient of F at β whenever

F (β′)− F (β) ≥ vT (β′ − β) (1.11)
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for all β′ ∈ B. The set of all subgradients of F at β is denoted by ∂F (β).

Theorem 2 (Karush-Kuhn-Tucker). If f and h are convex functions, and
h(β) < 0 for at least one β ∈ B, then f(β) = f∗ if and only if

0 ∈ ∂f(β) + λ∂h(β) (1.12)
λh(β) = 0 (1.13)
h(β) ≤ 0 (1.14)
λ ≥ 0 (1.15)

So, Eq. (1.12) is just a fancy way of writing that β is a global minimum
of f + λh, for a fixed value of λ. Equation (1.12) is called the stationarity
condition. Equation (1.13) is called the complementary slackness condition,
and implies that either λ = 0 or h(β) = 0. The inequality h(β) ≤ 0 is called
primal feasibility, and the inequality λ ≥ 0 is called dual feasibility.

To solve the Karush-Kuhn-Tucker conditions, we split the problem into
two cases as per Eq. (1.13), λ = 0 and h(β) = 0. We then solve Eq. (1.12)
under each equality constraint. We throw away any solution that does not
satisfy primal or dual feasibility, and then choose the solution that achieves
the lowest value.

For the case λ = 0, we need to find the global unconstrained minimum
of f . If the primal feasibility constraint h(β) ≤ 0 is satisfied at the global
minimum of f , then we have found a solution. Obviously, this solution must
be the optimal solution of the original constrained problem as well.

If h(β) > 0 at the global minimum of f , then we need to find the minimum
of f under the constraint that h(β) = 0. We could do so by finding a joint
solution to the system of equations formed by Eq. (1.12) and h(β) = 0.
Alternatively, we could gradually increase λ until the global unconstrained
minimum g(λ) of f + λh satisfies h(β) = 0. Indeed, due to the form of the
objective function, increasing λ will favor β that have lower values for h(β),
so eventually, h(β) = 0. By strong duality, we also know that finding this λ is
equivalent to maximizing the Lagrange dual function g(λ) over λ ≥ 0.

1.2 Parameter Estimation

In a statistical modeling problem our task is to estimate β from the data Y
and X. There are several methods to estimate these parameters in a linear
model. We will discuss some of them and their properties.
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1.2.1 Ordinary Least Squares

In ordinary least squares [6], we estimate the parameters by minimizing the
sum of the squared errors:

β̂OLS := arg min
β
R(β) (1.16)

where

R(β) :=
n∑
i=1

ε2i =
n∑
i=1

(yi − xTi β)2 = ‖Y −Xβ‖2
2. (1.17)

We have used ‖ · ‖2 to denote the standard Euclidean norm, that is ‖z‖2 :=√∑n
i=1 z

2
i . A necessary condition to have a minimum for Eq. (1.17) is

∂

∂β
R(β) = −2XTY + 2(XTX)β = 0. (1.18)

Therefore, ifXTX is invertible (this requires that the number of observations,
n, is larger or equal than the total number of predictors, p), then the ordinary
least squares estimator is given by

β̂OLS = (XTX)−1XTY , (1.19)

where (XTX)−1XT is the Moore-Penrose inverse of X.
The Gauss-Markov theorem states that when the errors are uncorrelated

with expectation zero and constant variance, then the ordinary least squares
estimate is the best linear unbiased estimator.

Two issues that often arise are:

1. If p > n then XTX is singular, hence Eq. (1.18) has no unique solution.
2. Even if p ≤ n, p may still be much larger than needed, and we may wish

to identify sparse solutions where unnecessary parameters are set to zero.
In other words, we may wish to perform variable selection as part of our
statistical inference.

1.2.2 Non-Negative Garrote

The non-negative garrote was introduced by Breiman [4]. It is a two stage
procedure that gives a sparse solution. It has a close relationship to the
LASSO, however as a starting point of the problem the ordinary least square
estimates are needed. Given the initial estimate β̂OLS ∈ Rp, we solve the
following optimization problem over c = (c1, c2, · · · , cp)T :
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ĉ = arg min
c≥0
‖c‖1≤t

‖Y −XCβ̂OLS‖2
2 (1.20)

where C := diag(c) ∈ Rp×p, and where ‖.‖1 denotes the l1-norm; that is
‖c‖1 =

∑p
i=1 |ci|. We get the final non-negative garrote parameter estimate

β̂ by setting β̂i = ĉiβ̂
OLS
i for each i ∈ {1, 2, . . . , p}.

Equivalently, we can solve the dual problem, by introducing a Lagrangian
multiplier λ for the constraint ‖c‖1 − t ≤ 0 [15], similar to what we discussed
in Section 1.1.4:

max
λ≥0

min
c≥0

(
‖Y −XCβ̂OLS‖2

2 + λ(‖c‖1 − t)
)

(1.21)

Effectively, we thus need to solve

ĉλ = arg min
c≥0

(
‖Y −XCβ̂OLS‖2

2 + λ‖c‖1

)
(1.22)

where the Lagrange multiplier λ ≥ 0 can be interpreted as a regularization
weight. If ‖ĉλ‖1 ≤ t for λ = 0, then we are done. Otherwise, λ is calibrated
until ‖ĉλ‖1 = t, as we discussed in Section 1.1.4. This value for λ is also
the value that achieves the maximum in Eq. (1.21). If the columns of the
design matrix X are orthogonal (i.e. XTX = I), then the explicit solution
of Eq. (1.22) is given by [26]:

ĉλi = max
{

0, 1− λ

(β̂OLS
i )2

}
. (1.23)

Consequently, in this case, if the coefficient β̂OLS
i of a predictor is less than√

λ, then ĉλi = 0, and therefore also β̂i = ĉλiβ̂
OLS
i = 0. In this way, larger λ

will produce sparser solutions.
The starting point of this method depends on the least square estimates

β̂OLS. Therefore, if p > n, then no unique solution is available. However,
alternative initial estimators such as the LASSO can be used in this case [26].

1.2.3 Regularization under lq Penalty

Unfortunately, the non-negative garrote in Eq. (1.20) still fails to deliver when
we have no least squares estimate to start from, which happens for instance
when we have more predictors than observations. To solve this, we can use a
different method, where no initial estimate is needed. The basic idea is to add
a penalty term to the least squares problem, in order to penalize non-zero
parameter values. This can be done in the following way:
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β̂λ = arg min
β

(
1
2‖Y −Xβ‖

2
2 + λ‖β‖qq

)
(1.24)

where q ≥ 0 determines the shape of the penalty, and λ ≥ 0 determines the
strength of the penalty. Here,

‖z‖qq :=
{∑n

i=1 |zi|q if q > 0∑n
i=1 Izi 6=0 if q = 0

(1.25)

where Izi 6=0 = 1 if zi 6= 0, and 0 otherwise. So, ‖z‖0
0 simply counts the number

of non-zero components of z.
For different values of q we have different types of regularization. This

leads to ridge regression for q = 2, LASSO for q = 1, and best subset selection
method for q = 0 [15].

q=2 q=1 q=0.5 q=0.01

Fig. 1.2 Contour plots of different lq penalty functions.

In Fig. 1.2, we illustrate some contour plots of the lq penalty function, for
different values of q. As will be illustrated in Section 1.3.1, it is the ‘spiked’
shape of the contours which leads to sparsity; in other words all penalties
with q ≤ 1 will lead to sparse estimators. However, for q < 1, the lq penalty
function is no longer convex, as can be seen from the contour plots. Therefore,
q = 1 is the only value for which the problem is convex and allows sparse
solutions.

1.3 The LASSO

The LASSO estimator was first proposed by Tibshirani [24]. The objective
is to solve the ordinary least squares problem, but subject to an additional
constraint on the 1-norm of the parameters, as follows:

min
β : ‖β‖1≤t

(
1
2‖Y −Xβ‖

2
2

)
. (1.26)
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It is usually assumed that X and Y are standardized to mean 0. Otherwise,
they can always be standardized without any loss of generality.

1.3.1 Solving The LASSO Optimization Problem

By strong duality (see Theorem 1 in Section 1.1.4), equivalently, we can solve
the dual problem, by introducing a Lagrangian multiplier λ for the constraint
‖β‖1 − t ≤ 0:

max
λ≥0

min
β

(
1
2‖Y −Xβ‖

2
2 + λ(‖β‖1 − t)

)
. (1.27)

For the inner minimization problem, we need to find

β̂λ := arg min
β

(
1
2‖Y −Xβ‖

2
2 + λ‖β‖1

)
. (1.28)

From the discussion in Section 1.1.4, we know that if ‖β̂0‖1 ≤ t, then the
solution is immediately given by β̂0 (note that β̂0 = β̂OLS). If ‖β̂0‖1 > t,
then we need find that value for λ ≥ 0 for which ‖β̂λ‖1 = t, and the solution
is then given by the corresponding β̂λ. In either case, this λ is also the λ
which achieves the maximum in Eq. (1.27), and which solves the Karush-
Kuhn-Tucker conditions in Theorem 2.

Let us derive the stationarity condition (Eq. (1.12) in Section 1.1.4) of
the Karush-Kuhn-Tucker equations, specifically for the LASSO. As we saw,
along with complementary slackness (either λ = 0 or ‖β‖1 = t) and feasibility
(λ ≥ 0 and ‖β‖1 ≤ t), this condition fully characterizes the optimality of our
solution.

For the LASSO, the Lagrangian is given by

1
2‖Y −Xβ‖

2
2 + λ(‖β‖1 − t).

The stationarity condition says that the subgradient with respect to β of this
Lagrangian must contain the origin, that is, we need that:

0 ∈ −XT (Y −Xβ) + λ∂‖β‖1. (1.29)

It can be shown that [20, §3.1.5]

∂‖β‖1 = sign(β1)× · · · × sign(βp) (1.30)

where
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sign(βj) :=


{−1} if βj < 0
[−1, 1] if βj = 0
{1} if βj > 0.

(1.31)

Therefore, we can write Eq. (1.29) in the following way

XT (Y −Xβ) = λs (1.32)

where s = (s1, s2, . . . , sp) are auxiliary variables subject to the constraint
sj ∈ sign(βj).

When the columns of X are orthogonal (this holds for instance when there
is only one predictor) and are standardized such that XTX = I , the solution
to this system can be expressed as a thresholded version of the ordinary least
squares [15]:

β̂λj = Sλ(β̂OLS
j ) (1.33)

with soft-thresholding operator (see Fig. 1.3)

Sλ(βj) := sign(βj) max{0, |βj | − λ}. (1.34)

Otherwise, the solution can still be expressed through an iterative execution
of soft-thresholding operations [15].

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

x

S1(x)

Fig. 1.3 Soft-thresholding function Sλ(x) for λ = 1.

The contour lines in Fig. 1.4 illustrate why and how the LASSO works.
The contours refer to the ordinary least squares problem, and the diamond
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● β̂
OLS

Fig. 1.4 Relationship between the OLS estimate and the l1 constraint imposed by the
LASSO (red); adapted from [16].

corresponds to the constraint ‖β‖1 = t. Remember that β̂OLS = β̂0, so the
figure depicts the case where ‖β̂0‖ > t. We want the point on the diamond
closest to the ordinary least squares. This is likely to lie on the axes, hence
setting smaller parameters to 0.

1.3.2 Cross-Validation

Cross-validation is a commonly used method to identify the optimal value of
a tuning parameter, which is in our case the penalty parameter λ. It is based
on minimizing an estimate of the prediction error. In cross-validation, we use
one part of the data to fit the LASSO model, and the other part of the data
to validate it [16].

We fix initially a dense grid of values of λ, that is λ is discretized with small
step-sizes over a suitable range which reflects the scope of the regularization
trade-off that we are willing to consider. The dataset is then divided into K
equally sized partitions. We assume for simplicity that K is a divisor of n so
that each partition contains n/K elements. For each fixed value of λ of the
grid, and the k’th partition, k = 1, . . . ,K, we fit the LASSO model using the
remaining K − 1 parts and calculate the prediction error of the fitted model.
Specifically, denote β̂−kλ the parameter vector obtained under a penalty of λ
when omitting the k’th partition, so that xTi β̂−kλ is the corresponding fitted
model under predictor xi. Then the prediction error for the k’th partition is
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Pk(λ) = K

n

n/K∑
i=1

L(yi,xTi β̂−kλ ) (1.35)

where, for the linear model (Eq. (1.3)), the loss function L is just the squared
error. We repeat this step for every k = 1, 2, · · · ,K and combine the values
of Pk(λ) to find the average prediction error, P (λ) = K−1∑K

k=1 Pk(λ). This
is then repeated for every value of λ in the grid, and we choose the value of λ
which minimizes P (λ) [15].

For smaller values of λ, the LASSO estimators contain more predictors
which may lead to an over-fitted model. However, for larger values of λ, the
model has fewer predictors leading to sparsity and producing a more easily
interpretable model.

To avoid misunderstandings, it is noted that the problem of finding the
optimal λ (in the sense of minimal prediction error), as discussed in this
subsection, is very different from, and entirely unrelated to, the problem
of maximizing over λ as in for instance in (Eq. (1.27)). The latter is a
purely formal operation which ensures mathematical equivalence of the two
dual versions of the LASSO optimization problem, and does not imply any
statement on the best choice of λ.

Example: Gaia dataset

Figure 1.5 represents the cross-validation curve for the Gaia dataset. Here we
have taken normalized data to get rid of scalability. The graph is consistent
with the property of cross-validation i.e. we can see that for smaller values of
λ the number of predictors is higher and for larger values of λ the number
of predictors gets reduced. Here, log(λ) is used as the tuning parameter,
increased values of which lead to reduced numbers of included variables
(note that log denotes the natural logarithm throughout this chapter). From
the cross-validation curve we get the value of log(λ) to be approximately
0.775 (shown by the solid vertical line) and hence the prediction error of the
LASSO-fitted model is minimal at λ ≈ 2.17. We use this value to estimate the
coefficients of the parameters. Note that the plot for this dataset is somewhat
unusual, as the minimum falls close to the boundary (solid vertical line);
compare further with Fig. 1.11 for a more typical appearance.

Figure 1.6 shows the coefficient path of the parameters, i.e. the change
in coefficients of the predictors as a function of λ. The black vertical line
denotes the value of log(λ) for which the prediction error is minimal. For this
particular value of λ we see that there are only 11 non-zero parameters and
others are shrunk towards zero.

For the cross-validation method for LASSO, we have used the glmnet [11]
package in R. It is noted at this occasion that this software by default also
draws a second vertical line in the cross-validation plot (which is dotted in
Fig. 1.5), which indicates the largest value of log(λ) which is less than one
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Fig. 1.5 Cross-validation curve for the Gaia dataset, with the number of selected
predictor variables as a function of log(λ) given on top of the plot.

Fig. 1.6 Coefficient path of the parameters for the Gaia dataset.
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standard error (calculated for each λ from the Pk(λ), k = 1, . . . ,K) away
from the minimum [15]. Arguably this gives an even sparser solution which is
statistically not distinguishable from the one obtained under the minimum.
We do not follow this line of reasoning in this exposition, and work with the
estimator under the ‘optimal’ λ at all occasions.

1.4 Uncertainty Quantification

1.4.1 Refit-LASSO

The ‘refit’-LASSO is one of the possible ways to quantify system uncertainty
of a LASSO fitted model. The simple idea is to use the ‘important’ (non-zero)
variables selected by the LASSO procedure in a subsequent ordinary least
squares fit.

We implement a slight modification of this idea. We carry out the entire
cross-validation procedure multiple times with random partitions, which gives
us different optimized λ for each run, producing an ensemble of possible
estimates of β. We then let the ensemble vote on the inclusion of the variables
into the model. We will consider variables as important if they have not been
shrunk to 0 for a pre-defined proportion of the runs. Then we apply an ordinary
least squares fit on the important variables to get the refit-LASSO estimates.
Standard errors of the j’th parameter estimate, β̂j , are then obtained as
s
√

(XTX)−1
j , where the suffix j indicates the j’th diagonal element taken

after application of the inverse, and s2 denotes the unbiased estimator of σ2.

Example: Gaia dataset

We applied the refit-LASSO on the Gaia dataset. We have taken 100 simulation
runs for the selection of important variables. The result is displayed in Fig. 1.7.
We set the desired proportion of inclusion at 50% as indicated by a horizontal
line. Then we have applied OLS fit on the important variables; in Table 1.1 we
show the standard error of our prediction with its ‘t-value’ and corresponding
probability. We also give a comparison between the refit-LASSO estimates
and the original cross-validated LASSO estimates in the last two columns.

We notice from the Fig. 1.7 that the third variable appeared to be important
in several runs. However, it is non-important in most of the runs.
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Fig. 1.7 Relative frequency of occurrence of variables, for refit-LASSO applied on the
Gaia dataset.

Predictors Estimate Std. Error t value Pr(>|t|) Original Difference
band1 841.04 140.89 5.97 0.00 823.53 17.51
band2 1001.36 298.78 3.35 0.00 954.10 47.26
band6 8960.42 434.64 20.62 0.00 9169.52 -209.09
band7 -3664.57 257.19 -14.25 0.00 -2992.80 -671.77
band8 2842.23 260.48 10.91 0.00 1995.79 846.44
band9 -987.10 201.13 -4.91 0.00 -651.95 -335.15
band10 -1584.91 213.89 -7.41 0.00 -1088.03 -496.88
band11 150.19 175.58 0.86 0.39 28.85 121.33
band14 685.64 204.44 3.35 0.00 708.89 -23.25
band15 -588.20 234.04 -2.51 0.01 -381.77 -206.43
band16 -641.26 259.41 -2.47 0.01 -401.16 -240.10

Table 1.1 Summary of refit-LASSO for the Gaia dataset. The column ‘Estimate’ gives
the parameter estimates from the refitted model using the selected variables. ‘Original’
estimates refer to a (single) initial cross-validated LASSO execution as discussed in
Section 1.3.2, and ‘Difference’ refers to the difference between refit-LASSO and original
estimates.

1.4.2 Bootstrap Method

Bootstrap is a general frequentist method to quantify statistical accuracy,
where one randomly draws samples from a given training dataset with re-
placement, the sample size being equal to that of the original training dataset.
This is done for B times (often multiples of 1000). Then one fits the model
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to each of these B datasets and examines the empirical distributions of the
estimated parameters.

Bootstrap for LASSO

For the LASSO estimation methodology as outlined in Section 1.3.1 and
Section 1.3.2, the bootstrap technique is applied straightforwardly, but it
has to be ensured that the selection of λ through cross-validation is part of
the uncertainty being assessed. Specifically, for each sample dataset obtained
through the aforementioned bootstrap routine, we perform cross-validation to
obtain the minimal prediction error. This gives us a selected value of λ and
hence a parameter estimate β̂λ for each bootstrap sample. Then, we use these
to calculate the bootstrap standard deviations or empirical distributions of
the parameters.

Example: Gaia dataset

At first, we get a one time LASSO estimate using the cross-validation method.
Then we take 1000 bootstrap replicates of the original Gaia dataset to calculate
the bootstrap statistics. In Table 1.2 we display the summary of our bootstrap
result. In addition to the bootstrap mean, median and standard deviation, we
also calculated the bootstrap bias using the formula

Bias = Initial Estimate – Bootstrap Mean

In Fig. 1.8, we visualize the bootstrapped distribution of the parameters
through box-plots.

Clearly, it can be seen from Table 1.2 and Fig. 1.8 that band3, band4,
band5, band12, band13 are the non-important parameters. While the mean
for band3 and band13 is not very close to 0, they still act as non-important
parameters with median being 0.
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Predictors mean median bias sd CI-lower CI-upper
band1 827.98 835.75 9.33 132.04 483.41 1062.81
band2 991.57 986.84 37.78 333.28 350.15 1655.07
band3 10.21 0.00 10.21 64.39 -30.62 182.39
band4 -2.21 0.00 -2.21 27.26 -67.58 46.23
band5 0.25 0.00 0.25 2.50 0.00 0.87
band6 9127.26 9137.34 -49.87 366.25 8421.19 9797.16
band7 -2984.39 -3019.35 -37.65 338.35 -3441.90 -1557.63
band8 1998.24 2059.49 58.57 429.29 0.84 2486.86
band9 -678.97 -692.91 -46.31 188.08 -1013.58 -78.25
band10 -1092.59 -1123.82 -42.44 226.78 -1392.43 -127.41
band11 58.00 21.52 37.91 78.82 -3.37 254.11
band12 -6.95 0.00 -6.95 22.94 -80.57 0.24
band13 22.90 0.00 22.90 32.18 -0.39 102.34
band14 680.22 697.12 -27.19 147.25 215.06 920.35
band15 -400.80 -405.13 -30.81 127.43 -637.49 -139.13
band16 -391.75 -398.42 -8.78 136.66 -638.43 0.00

Table 1.2 Summary of bootstrap estimates for the Gaia dataset. The lower and upper
bounds of the 95% confidence intervals for model parameters are obtained as the 2.5%
and 97.5% quantiles of the empirical bootstrap distributions.

Fig. 1.8 Bootstrappped distribution of the parameters in the Gaia dataset.
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1.4.3 Bayesian LASSO

The Bayesian methodology provides a natural way to quantify the model
uncertainty in a LASSO-fitted model. To motivate this approach, recall firstly
that, under the assumption ε ∼ N(0, σ2I), we can write the likelihood of
model (1.3) in the following way,

p(Y |X,β) ∝ e−
1

2σ2

∑n

i=1
ε2
i

∝ e−
1

2σ2 ‖Y −Xβ‖
2
2 .

(1.36)

Tibshirani [24] suggested using a Laplace prior

p(β) ∝ e−λ‖β‖1 (1.37)

for the model parameters, yielding the following posterior,

p(β |X,Y ) ∝ p(Y |X,β)× p(β)

∝ e−( 1
2σ2 ‖Y −Xβ‖

2
2+λ‖β‖1) (1.38)

It is a well-established result that the mode of (1.38), that is the posterior
mode of β under Laplace priors, corresponds just to the frequentist LASSO
estimate [18, 22, 24]. Draws from this posterior are not necessarily sparse, but
still can be used to assess uncertainty of model parameters [15].

The Bayesian LASSO has been implemented in several different facets,
which differ essentially in the way that sparsity is induced, and in the way
that the regularization parameter is handled. In 2008, Park and Casella [22]
proposed a hierarchical mixture model for parameter estimation:

Y |µ,Xβ, σ2 ∼ Nn(µ1n +Xβ, σ2In),
β|σ2, τ2

1 , · · · , τ2
p ∼ Np(0p, σ2Dτ )

Dτ = diag
(
τ2

1 , · · · , τ2
p

)
,

σ2, τ2
1 , · · · , τ2

p ∼ π(σ2)dσ2
p∏
j=1

λ2

2 e−λ
2τ2
j /2dτ2

j ,

σ2, τ2
1 , · · · , τ2

p > 0.

(1.39)

After marginalizing over τ2
1 , · · · , τ2

p we get the conditional prior on β of the
following form

π(β|σ2) =
p∏
j=1

λ

2σ e
−λ|βj |σ. (1.40)

For the choice of the LASSO penalty parameter, Park and Casella sug-
gested two different techniques. Firstly, they suggested the possibility of using
marginal maximum likelihood estimates for the choice of λ. They considered
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a Monte Carlo EM algorithm which, in iteration k, updates the parameter λ
using the iterative scheme

λk =
√

2p∑p
j=1 Eλk−1 [τ2

j |Y ]
, (1.41)

where Y is assumed to be centered, and the conditional expectation is esti-
mated via averages of a Gibbs sample. For p < n, the initial value λ0 was
suggested to be

λ0 =
p
√
σ̂2

OLS∑p
j=1 |β̂OLS

j |
,

where σ̂2
OLS and β̂OLS

j are ordinary least squares estimates. In another ap-
proach, they discussed the possibility of using gamma priors on λ2:

π(λ2) = δr

Γ (r) (λ2)r−1e−δλ
2
; λ2 > 0 (r > 0, δ > 0), (1.42)

where r is the shape parameter and δ the rate parameter. Lykou and Ntzoufras
[18] used gamma priors for λ, and developed a concept for specification of
the hyperparameters based on Bayes factors which evaluate the evidence for
inclusion of the respective predictor variables.

Example: Gaia dataset

We obtained the posterior distribution of the parameters for the Gaia dataset
using the blasso function from the monomvn [13] package in R. For the
choice of the LASSO penalty parameter λ, we used marginal maximum
likelihood estimates, as mentioned earlier. We drew 1000 posterior samples
from this distribution, which are displayed in Fig. 1.9.

It can be seen that the output from the Bayesian method is similar to that
of the Bootstrap method. For a better comparison between the methods we
also show the standard errors for the coefficient estimates of each important
variable in Fig. 1.10.

1.5 LASSO for Classification

Recall the linear model in row-wise notation, yi = xTi β + εi, or E(yi|xi) =
xTi β, which makes the implicit assumption on the distribution of the response
variable:

yi ∼ N(xTi β, σ2).

However, this assumption is too restrictive for many real data situations.
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Fig. 1.9 Posterior distribution of the parameters in the Gaia dataset.

Fig. 1.10 Standard errors of LASSO based parameter estimates for the Gaia dataset,
obtained from different methods.
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One can use generalized linear models to relax the assumption of normality.
We introduce a function g, which acts as a link function such that,

g(E(yi|xi)) = xTi β; (1.43)

here, yi can possess any exponential family distribution, such as Poisson,
Binomial, or Gamma. Note that if yi ∈ {0, 1} then,

µi ≡ E(yi|xi) = P (yi = 1|xi) (1.44)

hence we can (for our purposes) define:

Definition 2 (Classification). Classification is the process of carrying out
a regression problem with 0/1-valued response, and allocating observations to
one of the two classes according to the decision rule µi ≥ 0.5.

1.5.1 Logistic Regression

In logistic regression we start with the logistic model,

log µi
1− µi

= xTi β (1.45)

with ‘logit’ link function g(µi) = log µi
1−µi . An alternative formulation of

Eq. (1.45) is:
P (yi = 1|xi) = h(xTi β) (1.46)

where the logistic function

h(t) = exp(t)
1 + exp(t) (1.47)

maps the range (−∞,∞) to [−1, 1]. The parameters in the logistic model are
estimated through an iteratively weighted least squares technique known as
‘Fisher Scoring’, for details of which we refer to [9].

Example 2 (Sonar Dataset). Gorman and Sejnowski used this dataset in their
study of the classification of sonar signals using a neural network [12]. The
objective of the study was to discriminate between sonar signals bounced
off a metal cylinder and a cylindrical rock. Each observation is a set of 60
numbers (serving as predictor variables) in the range 0.0 to 1.0. Each number
represents the energy within a particular frequency band, integrated over a
certain period of time. The label associated with each response contains the
letter ‘R’ if the object is a rock and ‘M’ if it is a mine (metal cylinder). There
are total of 208 observations in this dataset [17]. Here, due to computational
limitations, we have taken the first 48 predictors of the Sonar dataset, and
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used the standardized form to handle numerical scaling issues, throughout
the examples.

Cross-validation

We apply cross-validation onto the Sonar dataset, and investigate the achieved
sparsity as compared to the original model with 48 different predictors. The
result of the cross-validation procedure is displayed in Fig. 1.11. The pre-
diction error for this purpose is calculated as in Eq. (1.35) but now the
loss function L is given by the deviance (that is, two times the difference
of saturated and model log likelihood [9]). From Fig. 1.11 we find that the
prediction error is minimal when log λ = −3.672, so λ = 0.0254. Using this
value of λ we calculate the coefficients of the parameters. For this particular
dataset LASSO eliminates 29 predictors, and reduces the number of retained
variables to 19. In Fig. 1.12, we illustrate the coefficient path of the parameters.

Fig. 1.11 Cross-validation curve for Sonar dataset.
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Fig. 1.12 Coefficient path of the parameters for the Sonar dataset.

1.5.2 Uncertainty Quantification

Here, we will discuss uncertainty quantification for the LASSO under the
logistic model, by way of application on the Sonar dataset.

Refit-LASSO

We applied the refit-LASSO method on the Sonar dataset. We carried out
100 cross-validation runs with randomized partitions to check the behavior
of variable selection. We considered variables as important if they appeared
to be non-zero in 50 or more runs. We illustrate the selection of important
variable in Fig. 1.13. Then we applied logistic regression on the important
variables. We used the glm package in R for model-fitting. The corresponding
refit-LASSO estimates are given in Table 1.3.

Bootstrap

We applied the bootstrap method on the Sonar dataset with 1000 bootstrap
replicates. The procedure works identically as outlined in Section 1.4.2, except
that for the Sonar dataset the response variable follows a Bernoulli distribution,
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Fig. 1.13 Relative frequency of occurrence of variables, for refit-LASSO applied on the
Sonar dataset.

so that for model fitting (and re fitting) we need to work with the binomial
response family instead of the normal distribution. The graph in Fig. 1.14
shows the bootstrap distribution of the estimated parameters.

Bayesian approach

We obtained the posterior distribution of the parameters using the MCMClogit
function from the MCMCpack [19] package in R. We took the Laplace
priors for parameter estimation. We have taken 100,000 MCMC samples with
a thinning interval length of 10 and a Metropolis tuning parameter set at
0.05, yielding 10,000 posterior samples for the assessment of the coefficient
distribution. It can be seen that for the Bayesian approach the variability is
almost same as that of bootstrap method.

For a better comparison between each parameter estimation method, we
have shown the standard errors for the coefficient estimates of each important
variable in Fig. 1.16 indexed according to the refit-LASSO method.
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Predictors Estimate Std. Error z value Pr(>|z|) Original Difference
(Intercept) -0.49 0.24 -2.01 0.04 -0.24 -0.24
V1 -0.72 0.33 -2.16 0.03 -0.12 -0.60
V4 -0.91 0.39 -2.32 0.02 -0.26 -0.65
V7 0.67 0.30 2.18 0.03 0.00 0.66
V11 -1.10 0.49 -2.24 0.02 -0.53 -0.57
V12 -0.34 0.41 -0.82 0.41 -0.25 -0.09
V16 1.05 0.34 3.14 0.00 0.29 0.76
V20 -0.88 0.57 -1.54 0.12 -0.03 -0.85
V21 0.25 0.57 0.44 0.66 -0.27 0.52
V23 -0.77 0.33 -2.35 0.02 -0.17 -0.60
V28 0.12 0.41 0.30 0.77 -0.10 0.22
V29 -0.63 0.48 -1.31 0.19 0.00 -0.63
V31 0.87 0.31 2.82 0.00 0.14 0.73
V36 1.04 0.58 1.80 0.07 0.58 0.46
V37 0.27 0.56 0.49 0.62 0.05 0.23
V40 0.34 0.33 1.04 0.30 0.01 0.34
V43 -0.03 0.46 -0.06 0.95 -0.07 0.04
V44 -0.80 0.58 -1.37 0.17 -0.14 -0.66
V45 -0.80 0.79 -1.01 0.31 -0.52 -0.28
V46 -0.06 0.64 -0.09 0.93 -0.02 -0.04
V48 -1.23 0.39 -3.16 0.00 -0.38 -0.85

Table 1.3 Summary of refit-LASSO for the Sonar dataset. The column ‘Estimate’ gives
the parameter estimates obtained after refitting the model using the selected variables.
‘Original’ estimates refer to a (single) initial cross-validated LASSO execution as discussed
in Section 1.5.1, and ‘Difference’ refers to the difference between refit-LASSO and the
original estimates.

Fig. 1.14 Coefficient distribution of the bootstrap estimates for the Sonar dataset.
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Fig. 1.15 Coefficient distribution of the Bayesian LASSO estimates for the Sonar
dataset.

Fig. 1.16 Standard errors from different methods, for the logistic LASSO applied on
the Sonar dataset.
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1.6 Conclusion

We have presented an overview over commonly used methods for uncertainty
quantification in the context of l1-penalized linear or logistic regression,
comprising refit, bootstrap and Bayesian approaches.

We have illustrated these methods in the context of two datasets, both of
which have some relevance for aerospace engineering: one dataset relating to
the current Gaia space mission, and another dataset involving the analysis of
sonar signals.

For both modeling scenarios, we found good agreement of the parameter
uncertainties obtained through the different methods. Standard errors of
the bootstrap and refit methods agreed particularly closely, noting however
the limitation of the latter to quantify uncertainty of inclusion as such. The
Bayesian standard errors were of the same magnitude as their frequentist
counterparts, however they tended to be larger, and also did show some
differences for specific parameters. For the Sonar dataset the refit indicated
sparser models than Bayes or bootstrap, which may appear unexpected at
first glance, but can be explained by the cut-off threshold of 50% which
happened to be just above the relative frequencies of occurrence for many of
the variables.

While the discussed uncertainty quantification methods are well established
and investigated for the linear model, this is less the case for the logistic
model. This is not only reflected in the abundance of relevant literature, but
also in the availability of statistical software. Since we had not been able to
locate an implementation of the Bayesian logistic LASSO which could handle
a model with 60 variables, we had to reduce this dataset from the start to 48
variables. We did so for all methods, to ensure comparability.
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