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Abstract: This study aims to explore and improve ways of handling a continuous 

variable dataset, in order to predict student dropout in MOOCs, by implementing 

various models, including the ones most successful across various domains, such 

as recurrent neural network (RNN), and tree-based algorithms. Unlike existing 

studies, we arguably fairly compare each algorithm with the dataset that it can 

perform best with, thus ‘like for like’. I.e., we use a time-series dataset ‘as is’ 

with algorithms suited for time-series, as well as a conversion of the time-series 

into a discrete-variables dataset, through feature engineering, with algorithms 

handling well discrete variables. We show that these much lighter discrete 

models outperform the time-series models. Our work additionally shows the 

importance of handing the uncertainty in the data, via these ‘compressed’ models. 
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1    Introduction  

Over the years, an undeniable challenge in online learning became to find ways to 

reduce and predict students’ dropout rates, which fall roughly at 77%-87% [3][4]. The 

majority of the studies such as [3][4], use the same dataset and variables to implement 

predictive models, without taking into consideration the type of variables each model 

uses for maximising its performance. For example, Tang et. al. [3] trained a time-series 

Long Short-Term Memory (LSTM) model using the same dataset that was used to train 

other non-time series machine learning models, including Logistic Regression, Random 

Forest, and Gradient Boosting Decision Tree (GBDT) models. The results show that 

time-series models (LSTM) outperform other machine learning models (i.e., Linear 

Regression, Decision Tree), and achieve higher accuracy, precision and recall when 

they are compared to their natural environment (continuous/time-series variables). We 

argue, however, that previous methods do not take into account the target on which the 

algorithms are performing best. We thus aim to provide benchmarks for predicting the 

completers and non-completers and examine the following research question: 
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Is it a good practice to use sequential time-series as-is, or first convert the dataset 

into a discrete-variables one, for obtaining enhanced metrics (precision, recall, 

accuracy) on predicting students’ dropout with the appropriately tuned method? 

2    Related Work  

Many studies focused on classifying students into completers and non-completers. 

Some of them, such as [5], [6] use statistics, or traditional machine learning algorithms 
(e.g., Decision Trees, Logistic Regression, Random Forest, Support Vector Machines) 

[7]–[10], while others, such as [11], [12], used more advanced algorithms (e.g. Deep 

Learning ), or even visualisation [13]. There are also a few studies [3], [4], that used 

both traditional machine learning algorithms and more advanced. However, they [3], 

[4] used the same dataset to train both Neural Networks and machine learning models 

(time-series), showing that NN outperformed the other machine learning techniques. In 

our case, we convert the time-series dataset through feature engineering into discrete 

variables and train each model on the type of dataset it can process best. For example, 

[14] indicates that if our aim were to train a Neural Network, it is better to use a time-

series dataset, while [15] suggests that we should use discrete variables when we aim 

to train a tree-based algorithm (either categorical or continuous variables). 
Interestingly, some papers [12] [13] show that Artificial Recurrent Neural Networks 

(RNN) with memory, such as Long-Short-Term-Memory (LSTM), are generally con-

sidered as superior models to solve time-series tasks, because of their nature – the way 

they operate and handle data. On the other hand, [18], [19] indicate that traditional ma-

chine learning algorithms, such as Logistic Regression, Random Forest and GBDT pro-

duce better results with discrete-variable data.  

3    Method 

The dataset used in this study is comprising 300,000 interactions and 2,000 unique 

registered students, extracted from XuetangX (launched in October 2013, one of the 

largest MOOC platforms in China). We converted the time-series dataset, which our 

LSTM model was trained on, into a discrete-variables dataset, which our tree-based 

models were trained on. For the construction of the discrete-variables dataset, we used 

the time-series dataset and we have counted for each student the number of unique 

actions. In total, there are 14 different types of unique actions and thus we engineered 

14 features for 14 input variables for our predictive models. Considering the LSTM 

model’s feature engineering in preparation of the dataset, the actions of each student 

were sequentially grouped together, according to the time they were performed. Thus, 

the essence of the time-series was preserved, while still considering the unique action 

performed. Afterwards, the actions were translated into a sequence of binary numbers, 
to retain the categorical nature of the actions. Here, we examined the effectiveness of 

converting a time-series dataset into a discrete dataset through feature engineering. We 

trained the predictive models with the initial raw datasets, aiming to produce a 

benchmark for future work. We implemented an LSTM model and several tree-based 

machine learning models, including Decision Tree, Random Forest, and BART. 
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For all the above models we used the basic parameters, including the basic split of 

the data into 70% train and 30% test sets. Moreover, to evaluate the machine learning 

models, we used the k-fold cross-validation technique, and we did not perform any 

hyperparameter optimisation. The purpose of this setting is to find a benchmark and 

compare the two datasets on their primitive forms, without any data pre-processing (se-

quential time-series and discrete). To evaluate our predictive model’s performance, we 

utilised the following standard, comprehensive metrics: 
• Precision: the proportion of positive identifications which was actually correct; 

• Recall: the proportion of actual positives that were identified correctly; 

• F1 score: the weighted average of Precision and Recall; 

• Accuracy: the ratio of correctly predicted observations over the total observations. 

4    Results and Discussions 

Table 1 presents the result comprising three tree-based models (Decision Tree, Random 

Forest, BART) and an LSTM model. From the results, we can clearly determine the 

difference between the two types of datasets and draw some useful conclusions. BART 
outperforms the other models – achieving a very high accuracy of 90% for identifying 

students who might drop out from an online course. The Decision Tree and Random 

Forest models achieved relatively high accuracy of 83% and 89%, respectively. The 

LSTM model achieved the lowest accuracy of 77%. Table 1 especially showcases the 

performance of the BART model and its improved learning ability in comparison with 

the other models. From the four figures (Figs. 1-4), and the AUC scores, we observe 

that BART (Fig. 3) has an improved ability to discriminate the test values in comparison 

with the other models (Decision Tree, Random Forest, LSTM). Furthermore, we can 

identify the improved trained ability of the tree-based models, when the discrete dataset 

was used, by the recall metric, which shows a clear ability to select the most relevant 

items on the classification task with the highest percentage of 96% produced by BART. 

In comparison with the tree-based models, the LSTM model did not perform as well as 
the other models. That is partially because LSTMs are known to require a large amount 

of data, in order to be efficiently trained. 
 

Table 1. Performance comparisons between the predictive models 

Metric DT RF BART LSTM 
Precision 

Recall 
F1 

Accuracy 

0.83 
0.83 
0.83 
0.82 

0.88 
0.88 
0.87 
0.89 

0.89 
0.96 
0.92 
0.90 

0.77 
0.76 
0.75 
0.77 
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         Fig. 1 Decision Tree ROC curve         Fig. 2 Random Forest ROC curve 

 

Fig. 3 BART ROC curve                Fig. 4 LSTM ROC curve 

Our results suggest that, whenever possible, it could be beneficial to convert the 
time-series dataset into a discrete variable dataset, as it is highly probable to produce 

better performance, especially when the time-series datasets are not populated enough.  

 

5    Conclusions 

In summary, this paper presents the results of a study aiming to discover whether it is 

efficient to convert a time-series dataset into discrete variables dataset, to train predic-

tive models with better performance, in terms of predicting students’ dropout. The re-
search results have clearly indicated that we should convert a dataset into different 

forms when this is feasible. It has shown that this process assists different types of 

predictive models to obtain higher performance and enhance their learning ability. We 

have proven that it would be useful to manipulate the dataset for a variety of models 

first, thus enhancing the final results. We have also shown that BART, which includes 

a representation of uncertainty, outperforms all other tree-based methods. 
Future work might include tuning the models’ parameters and investigating the da-

taset further through data pre-processing and more sophisticated feature engineering 

techniques (i.e., Frequency count, Frequency Encoding) to achieve better performance. 

Also, it would be interesting to perform hyperparameter optimisation so that we can 

find out the optimal learning efficiency of the predictive models. In addition to improv-

ing the algorithms, more data could refine the results of this study. 
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