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Quantum field theory of dilute homogeneous Bose-Fermi mixtures at zero temperature:
General formalism and beyond mean-field corrections
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We consider a dilute homogeneous mixture of bosons and spin-polarized fermions at zero temperature. We
first construct the formal scheme for carrying out systematic perturbation theory in terms of single particle
Green’s functions. We especially focus on the description of the boson-fermion interaction. To do so we need
to introduce the renormalized boson-fermionT matrix, which we determine to second order in the boson-
fermions-wave scattering length. We also discuss how to incorporate the usual boson-bosonT matrix in mean
field approximation to obtain the total ground-state properties of the system. The next-order term beyond mean
field stems from the boson-fermion interaction and is proportional toaBFkF . The total ground-state energy
density to this order is the sum of the kinetic energy of the free fermions, the boson-boson mean-field
interaction, the usual mean-field contribution to the boson-fermion interaction energy, and the first boson-
fermion correction beyond mean field. We also compute the bosonic and the fermionic chemical potentials, the
compressibilities, and the modification to the induced fermion-fermion interaction. We discuss the behavior of
the total ground-state energy and the importance of the correction beyond mean field for various parameter
regimes, in particular considering mixtures of6Li and 7Li and of 3He and4He. Moreover, we determine the
modification of the induced fermion-fermion interaction due to the effects beyond mean field. We show that
there is no effect on the depletion of the Bose condensate to first order in the boson-fermion scattering length
aBF .

DOI: 10.1103/PhysRevA.65.053607 PACS number~s!: 03.75.Fi, 03.70.1k , 01.55.1b
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I. INTRODUCTION

Following the spectacular success in achieving Bo
Einstein condensation in trapped, dilute atomic gases in 1
@1–3#, there has been an explosion of experimental and
oretical activity on this newly accessible state of matter~for
recent reviews focusing on different experimental and th
retical aspects, see, for instance, Refs.@4–8#!. More recently,
there has been increasing interest and experimental act
also in quantum-degenerate ultracold Fermi gases@9–14#, in
particular because of the possibility of observing a BCS ty
transition in a dilute atomic gas@15,16#. Dilute mixtures of
ultracold gases of bosonic and fermionic atoms are also
ceiving increased attention, in particular because sympath
cooling of the fermions by the bosons is an important me
of their achieving quantum degeneracy@11–14#, and also
because bosons can mediate an induced~attractive! fermion-
fermion interaction@17#. Moreover, mixtures of atomic3He
and 4He have become interesting in their own right after t
recent achievement of Bose-Einstein condensation in m
stable 4He @18,19#, as they could represent a bridge towa
the understanding of superfluidity in helium.

Current analyses of dilute mixtures of ultracold atom
boson and fermion vapors are based on mean-field app
mations. They include, for example, the work on stabil
considerations for homogeneous systems by Viveritet al.
@17#, and the calculation of density distributions and pha
separation of trapped mixtures by Nygaard and Mo” lmer @20#.
Some interesting effects have been studied by Bijlsmaet al.
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@21#, where an effective modification of the fermion-fermio
scattering length, mediated by boson-fermion scattering p
cesses, was determined. Puet al. have determined the pho
non spectrum of the Bose condensate in a boson-ferm
mixture at zero temperature@22#.

Mean-field approaches have proved to be extremely u
ful in the theoretical and experimental study of Bos
Einstein condensed dilute atomic gases, and are likely
prove similarly useful for quantum-degenerate mixed bos
fermion systems. It is nevertheless desirable to consider
fects beyond mean field, and under what circumstances
are likely to be most relevant. For pure~unpolarized! fer-
mion @23–25# and pure boson@24–31# systems, expansion
of the ground-state energy, in terms of the small parame
kFaFF and AnBaBB

3 (kF is the Fermi wave number,nB the
boson density, andaFF and aBB the fermion-fermion and
boson-boson scattering lengths!, are well established. Thes
expansions go beyond mean-field approximations while
depending only on thes-wave scattering lengths. Althoug
determined for homogeneous systems, the use of bey
mean-field corrections arising from consideration of such
pansions may be readily extended to the experimentally
evant case of inhomogeneous trapped gases by applicatio
the local density approximation. In general, the correctio
beyond mean field for the bosons are smaller than for
fermions, since the exponent of the small dimensionless
rametern1/3a (n is the density parameter anda the scattering
length! is 1 in the fermion case but 3/2 in the boson case

Important work on realistic treatments of strongly inte
©2002 The American Physical Society07-1
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acting 4He-3He mixtures has been carried out by exploiti
correlated basis function theory. In this framework t
ground-state energy density can be written as an inte
over the interaction potential and the correlation functio
@32,33#. A thorough variational theory of fermion-boson mix
tures has then been developed in terms of extended Jas
Feenberg wave functions that include both pair and trip
correlation functions. On the other hand, the application
field theoretic and functional methods to mixtures of boso
and fermions has been so far almost unexplored. In the
of dilute fermions immersed in a Bose gas an expansion
the ground-state energy in terms of the small parame
AaBB

3 nB and nF /nB , wherenF is the fermion density, was
performed by Saam@34#. This was motivated by considerin
quantum-degenerate dilute gases as a model for the beh
of superfluid helium, where the assumption ofnF /nB as a
small parameter is justified by the much greater natural
currence of bosonic4He compared to that of the fermioni
3He isotope. Considering a regime of low fermion conce
tration relative to the boson concentration, Saam negle
corrections of the order of the Fermi wave number to
mean-field interaction, while treating the bosons in the B
goliubov approximation; in this way, he obtained the corre
tions to mean field that are proportional to the bosonic
parameter. Considering a regime of high fermion concen
tion, we instead assume the bosons in the ideal gas app
mation ~thus neglecting the corrections proportional to t
bosonic gas parameter!, while treating the boson-fermion in
teraction to second order, thus obtaining the correction
mean field that are proportional to the Fermi wave numb
We will show in the following that in the case of comparab
bosonic and fermionic densities, these latter corrections
larger than those obtained by Saam. In particular, we dev
a systematic treatment of the boson-fermion interaction,
determining the renormalized boson-fermionT matrix to sec-
ond order in the boson-fermion scattering length. In this w
we compute the lowest order correction beyond mean fiel
the ground-state energy density due to the boson-fermion
parameter. This correction is obviously absent in Saa
treatment, and it is of order 7/3 in the overall power of t
combined bosonic and fermionic densities. On the ot
hand, the lowest Saam’s correction due to the renormal
boson-boson interaction is of order 5/2 in the overall pow
of the combined bosonic and fermionic densities. The c
rection due to the renormalized boson-fermion interaction
then the larger one, and thus the one of greatest relevanc
the description of dilute Bose-Fermi mixtures beyond me
field, when both densities are of comparable magnitude
there are vastly more fermions than bosons. We can in p
ciple combine the effects of the renormalization of t
boson-fermion and boson-boson couplings to compute all
corrections to order 5/2~which will include the ones com
puted by Saam by taking into account only the renormali
boson-boson interaction!. Work is in progress on the dete
mination of the higher-order corrections, and will be repor
elsewhere.

We point out that our results are valid for any ratio of t
fermionic and bosonic densities. Systems where there
vastly more bosons than fermions are certainly experim
05360
al
s

w-
t
f
s
se
of
rs

ior

c-

-
ed
e
-
-
s

a-
xi-

to
r.

re
p
y

y
to
as
’s

r
d
r
r-
is
for
n
or
n-

e

d

d

re
n-

tally achievable in dilute atomic gases, and it can in fact
advantageous to have an excess of bosons in order to
hance sympathetic cooling@11#. However, there is in prin-
ciple no a priori reason to confine theoretical analyses
such systems. In fact, in recent experiments@13,14# the num-
bers of fermions and bosons are comparable. Thus m
vated, in the present paper, as already anticipated, we de
a systematic perturbative expansion for the ground-state
ergy and other related relevant physical quantities for dil
Bose-Fermi mixtures at zero temperature and for arbitr
ratios of the boson and fermion densities. In this way
determine the lowest-order correction to the mean field in
case of weakly interacting bosons and spin-polarized fer
ons in terms of the Bose-Fermi gas parameterkFaBF , where
aBF is the boson-fermions-wave scattering length. The
ground-state energy thus derived can then be implemen
in local density approximation, as the energy functional
the study of the experimentally relevant case of trapped m
tures, in complete analogy with the pure bosonic and p
fermionic cases.

The plan of the paper is as follows. In Sec. II we intr
duce the basic Hamiltonian for a system of interacti
bosons and spin-polarized fermions, expressed in its gra
canonical form after performing the Bogoliubov replac
ment. In Sec. III we define the one-particle Green’s functio
needed for a systematic field-theoretical analysis of
boson-boson and boson-fermion interactions, and we de
mine the associated Feynman rules. In Sec. IV we implem
the perturbative expansion by introducing the boson-ferm
self-energy and the renormalized boson-fermionT matrix in
the ladder approximation and by solving the correspond
Bethe-Salpeter equation to second order inkFaBF . In Sec. V
we exploit the results obtained in the previous sections
compute some relevant physical quantities. In particular,
provide the expression for the ground-state energy densit
second order in the gas parameter, the bosonic and fermi
chemical potentials, the compressibilities, and the indu
fermion-fermion interaction. We then compare the resu
thus obtained with actual and foreseeable experimental s
ations to assess the relative importance of higher-order
rections with respect to the mean-field results. In Sec.
conclusions are drawn and some possible future deve
ments are discussed.

II. SYSTEM

A. Hamiltonian and ground-state energy

1. Many-body Hamiltonian

We consider a homogeneous mixture of interact
bosons and fermions, imposing periodic boundary conditi
on a volumeV. In complete generality there are thus boso
boson, boson-fermion, and fermion-fermion interactions
consider. However, for spin-polarized fermions, there is
s-wave scattering contribution to the fermion-fermion inte
action @35#. The first nonvanishing contribution is due t
p-wave scattering, which can generally be neglected w
compared to the boson-boson and boson-fermion interact
due tos-wave scattering. We thus take into accounts-wave
scattering between bosons, and between bosons and ferm
only.
7-2
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QUANTUM FIELD THEORY OF DILUTE HOMOGENEOUS . . . PHYSICAL REVIEW A 65 053607
In second-quantized form, the Hamiltonian describing t
situation is

Ĥ5T̂B1T̂F1Û1V̂, ~1!

where

T̂B5
\2

2mB
E d3x“F̂†~x!•“F̂~x!, ~2!

T̂F5
\2

2mF
E d3x“Ĉ†~x!•“Ĉ~x!, ~3!

Û5E E d3xd3x8F̂†~x!Ĉ†~x8!U~ ux2x8u!Ĉ~x8!F̂~x!,

~4!

V̂5
1

2E E d3xd3x8F̂†~x!F̂†~x8!V~ ux2x8u!F̂~x8!F̂~x!,

~5!

and whereF̂(x) is a bosonic field operator,Ĉ(x) is a fermi-
onic field operator, andmB andmF are the respective masse
of the bosons and fermions. For later reference we also
fine

Ĥ05T̂B1T̂F , ~6!

Ŵ5Û1V̂. ~7!

2. Mean-field theory

It is straightforward to determine a zero-temperatu
mean-field theory forĤ @20#. Employing the well-known
Thomas-Fermi approximation, the mean-field ground-s
energy density is

E

V
5

3

5

\2kF
2

2mF
nF1

2p\2aBF

m
nBnF1

2p\2aBB

mB
nB

2, ~8!

where m5mFmB /(mF1mB) is the reduced mass, andkF
5(6p2nF)

1/3 is the Fermi wave number@36#. In the case of
a pure~unpolarized! fermionic system, the corrections to th
ground-state energy density beyond the mean field are g
by @23#

EF

V
5

3\2kF
2

5mF
nFF11

128

15
kFaF1~kFaF!21•••G . ~9!

For pure bosons corrections to the ground state have b
calculated by, e.g., Hugenholtz and Pines@28# and by Wu
@29#. These corrections are obtained via a perturbative
pansion in terms of the bosonic gas parameterAnBaBB

3 . As
already mentioned, this parameter is in general smaller t
the fermionic gas parameter~see also Sec. V B!. Our goal is
thus to determine ageneralexpression equivalent to Eq.~9!,
taking into account boson-fermion interactions, while n
glecting corrections proportional to higher powers of t
bosonic gas parameter.
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B. Bogoliubov replacement and grand-canonical Hamiltonian

In order to determine the energy functional to higher ord
than in Eq.~8!, we will adopt a perturbative approach usin
one-particle Green’s functions, in a way essentially equi
lent to the field-theoretical treatment of pure bosonic a
fermionic systems@24,25#. We thus first carry out the Bogo
liubov replacement@37#, where the condensate bosons a
treated as ac-number field:

F̂~x!5An01f̂~x!, ~10!

where n05N0 /V is the condensate density, andN0 is the
number of~condensate! atoms in thek50 mode. This pre-
scription breaks particle number conservation~see@38–41#
for alternative Bogoliubov replacements that preserve p
ticle number conservation!; average particle number conse
vation is assured by introducing the grand-canonical Ham
tonian

K̂5Ĥ2mBN̂B , ~11!

wheremB is a Lagrange multiplier, to be identified with th
boson chemical potential@25#. Substituting Eq.~10! into Eq.
~11!, the grand-canonical Hamiltonian reads

K̂5K̂02mBN01Û11Û21Û31V̂11V̂2

1V̂31V̂41V̂51V̂61V̂7 , ~12!

where

K̂05
\2

2mB
E d3x“f̂†~x!•“f̂~x!

1
\2

2mF
E d3x“Ĉ†~x!•“Ĉ~x!2mBE d3xf̂†~x!f̂~x!,

~13!

Û15n0E E d3xd3x8Ĉ†~x8!U~ ux2x8u!Ĉ~x8!, ~14!

Û25An0E E d3xd3x8Ĉ†~x8!U~ ux2x8u!Ĉ~x8!f̂~x!

1H.c., ~15!

Û35E E d3xd3x8f̂†~x!Ĉ†~x8!U~ ux2x8u!Ĉ~x8!f̂~x!,

~16!

V̂15
1

2
n0

2E E d3xd3x8V~ ux2x8u!, ~17!

V̂25n0An0E E d3xd3x8V~ ux2x8u!f̂~x!1H.c., ~18!

V̂35
1

2
n0E E d3xd3x8V~ ux2x8u!f̂~x8!f̂~x!1H.c.,

~19!
7-3
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V̂45n0E E d3xd3x8f̂†~x!V~ ux2x8u!f̂~x8!, ~20!

V̂55n0E E d3xd3x8f̂†~x!V~ ux2x8u!f̂~x!, ~21!

V̂65An0E E d3xd3x8f̂†~x!V~ ux2x8u!f̂~x8!f̂~x!1H.c.,

~22!

V̂75
1

2E E d3xd3x8f̂†~x!f̂†~x8!V~ ux2x8u!f̂~x8!f̂~x!.

~23!

III. SYSTEMATIC PERTURBATION THEORY WITH
GREEN’S FUNCTIONS

A. Green’s functions: Definitions

The boson~B! and fermion~F! Green’s functions for the
boson-fermion system are defined as

iGB~x,t,x8,t8!5^juT@F̂~x,t !F̂†~x8,t8!#uj&, ~24!

iGF~x,t,x8,t8!5^juT@Ĉ~x,t !Ĉ†~x8,t8!#uj&, ~25!

where the time argument inF̂(x,t) andĈ(x,t) means they
evolve according to Heisenberg’s equations of motion,T de-
notes the time ordered product, anduj& is the ground state o
K̂ ~we similarly defineuj0& to be the ground state ofK̂0). We
use the Bogoliubov replacement to write

iGB~x,t,x8,t8!5n01 iGB8~x,t,x8,t8!, ~26!

where

iGB8~x,t,x8,t8!5^juT@f̂~x,t !f̂†~x8,t8!#uj& ~27!

is the propagator for the noncondensate bosons.

B. Perturbative expansion

The Green’s functions can be evaluated in perturba
theory @25#, whereŴ is the perturbation toK̂0. Thus

iGB8~x,t,x8,t8!5

(
n50

`

iG̃B
(n)~x,t,x8,t8!

(
n50

`

^j0uS(n)uj0&

, ~28!

iGF~x,t,x8,t8!5

(
n50

`

iG̃F
(n)~x,t,x8,t8!

(
n50

`

^j0uS(n)uj0&

, ~29!

where

iG̃B
(n)~x,t,x8,t8!5^j0uT@S(n)f̃~x,t !f̃†~x8,t8!#uj0&, ~30!
05360
n

iG̃F
(n)~x,t,x8,t8!5^j0uT@S(n)C̃~x,t !C̃†~x8,t8!#uj0&, ~31!

S(n)5
1

n! S 2 i

\ D nE dt1•••E dtnT@W̃~ t1!•••W̃~ tn!#. ~32!

Operators with a tilde are defined to be in the interact
picture, i.e.,Õ(t)5exp(iK̂0t/\)Ôexp(2iK̂0t/\). In the limit
of a noninteracting system (Ŵ→0) the Green’s functions
reduce to the zeroth order terms in the expansions, so t

iGB
0~x,t,x8,t8!5 iG̃B

(0)~x,t,x8,t8!

5^j0uT@f̃~x,t !f̃†~x8,t8!#uj0&, ~33!

iGF
0~x,t,x8,t8!5 iG̃F

(0)~x,t,x8,t8!

5^j0uT@C̃~x,t !C̃†~x8,t8!#uj0&. ~34!

C. Evaluation of terms using Wick’s theorem

Equations~30!, ~31!, and~32! can be evaluated by Wick’
theorem, which states that the vacuum~noninteracting
ground-state! expectation values of time ordered products
operators can be expressed as the sum of all produc
contractions of pairs of operators in the time-ordered prod
@42#. The contraction of two operators is defined as

Õ~ t !( i )P̃~ t8!( i )5T@Õ~ t !P̃~ t8!#2:Õ~ t !P̃~ t8!:, ~35!

where :Õ(t) P̃(t8): is the normal ordered product. In partic
lar,

f̃~x,t !( i )f̃†~x8,t8!( i )5f̃†~x8,t8!( i )f̃~x,t !( i )

5 iGB
0~x,t,x8,t8!, ~36!

C̃~x,t !( i )C̃†~x8,t8!( i )52C̃†~x8,t8!( i )C̃~x,t !( i )

5 iGF
0~x,t,x8,t8!, ~37!

and all other contractions of pairs of operato

P$f̃(x,t),f̃†(x8,t8),C̃(x9,t9),C̃†(x-,t-)% vanish~see also
Appendix A!. Substituting Eqs.~36! and~37! into Eqs.~30!,
~31!, and~32!, the first order terms can be determined to

iG̃B
(1)~xm,ym!5

2 i

\ E E d4x1
md4y1

mH U~x1
m2y1

m!

3@2n0iGF
0~y1

m ,y1
m!iGB

0~xm,ym!

2 iGF
0~y1

m ,y1
m!iGB

0~xm,x1
m!iGB

0~x1
m ,ym!#

1V~x1
m2y1

m!Fn0
2

2
iGB

0~xm,ym!

1n0iGB
0~xm,x1

m!iGB
0~x1

m ,ym!

1n0iGB
0~xm,x1

m!iGB
0~xm,x2

m!G J , ~38!
7-4
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iG̃F
(1)~xm,ym!5

2 i

\ E E d4x1
md4y1

mH U~x1
m2y1

m!

3@2n0iGF
0~y1

m ,y1
m!iGF

0~xm,ym!

2n0iGF
0~xm,y1

m!iGF
0~y1

m ,ym!#

1V~x1
m2y1

m!
n0

2

2
iGF~xm,ym!J , ~39!

S(1)5
2 i

\ E E d4x1
md4y1

mH U~x1
m2y1

m!@2 in0GF
0~y1

m ,y1
m!#

1V~x1
m2y1

m!
n0

2

2 J , ~40!

where we have used the more compact four-vector nota
@xm5(t,x)#, and definedU(xm2ym)5U(x2y)d(x02y0)
and V(xm2ym)5V(x2y)d(x02y0). Note thatGB

0(t,x,t,y)
50 ~i.e., there are no boson loops at zero temperature!.

Higher-order terms may be similarly evaluated, and w
similarly be expressed in terms of integrals over products
noninteracting Green’s functions, condensate factorsn0, and
interaction terms. We represent these graphically~see Fig. 1!:
straight lines for fermions, wiggly lines for noncondensa
bosons, dashed lines for condensate bosons, and zigzag
for interaction terms~whether it is a boson-boson or boso
fermion interaction is clearly determined by the kinds of p
ticle lines attached to the vertices of the interaction line!.

As is usual@24,25,43#, all disconnected graphs in the nu
merator can be factorized out by the denominator, so tha

GB8~xm,ym!5 (
n50

`

G̃B
(n)~xm,ym!connected, ~41!

GF~xm,ym!5 (
n50

`

G̃F
(n)~xm,ym!connected. ~42!

Noting that each connected graph essentially appearsn!
times, with simple permutations on the labeling, when co
posing such graphs we integrate over all internal variab
and affix a factor of (i /\)n(21)F(2 i )C, wheren is the num-
ber of interaction lines,F is the number of closed fermio
loops, andC is the number of dashed boson lines.

D. Feynman rules

For homogeneous systems it is convenient to Fou
transform to energy-momentum space, so that

FIG. 1. Definition of the diagram lines.
05360
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GB
0~pm!5

1

p02\p2/2mB1mB /\1 in
, ~43!

GF
0~pm!5

1

p02\p2/2mF1 i sgn~p2kF!n
, ~44!

where sgn(k)51 for k>0 and521 for k,0 ~we write p
for upu). The appropriate Feynman rules for the boson~fer-
mion! Green’s function in this representation are then as
lows.

~1! Draw all topologically distinct connected diagram
with one outgoing external wiggly boson~fermion! line and
one incoming external wiggly boson~fermion! line, no ex-
ternal fermion~boson! lines and no internal dashed boso
lines,n zigzag interaction lines, each of which is attached
one vertex to an incoming and an outgoing boson line~either
wiggly or dashed!, and at the other vertex either to an incom
ing and an outgoing boson line, or to an incoming and
outgoing~not necessarily distinct! fermion line. Each vertex
must be attached to exactly one zigzag interaction line.

~2! All wiggly boson lines must run the same directio
and there are no closed boson loops.

~3! Each dashed boson line corresponds to a factor
An0, each wiggly boson line to a factor ofGB

0(km), each
fermion line to a factor ofGF

0(km), each boson-fermion in-
teraction line to a factor ofU(km)5U(k), and each boson
boson interaction line to a factor ofV(km)5V(k).

~4! Assign a direction to each interaction line; associat
directed four-momentum with each line and conserve fo
momentum at each vertex. Each dashed boson line ca
four-momentum 0 and each wiggly boson line has fo
momentum not equal to 0.

~5! Integrate over then independent four-momenta.
~6! Affix a factor of (i /\)n(2p)24(n)(21)F(2 i )C, where

F is the number of closed fermion loops andC is the number
of dashed boson lines.

IV. DETERMINATION OF THE BOSON-FERMION T
MATRIX AND SELF-ENERGIES IN LADDER

APPROXIMATION

A. The Hugenholtz-Pines theorem

According to the Hugenholtz-Pines theorem@28,44#, the
bosonic chemical potentialmB , defined as

]E/V

]nB
5mB , ~45!

is given by

mB5\SB~0!2\S12~0!, ~46!

whereSB(0) andS12(0) are the proper self-energies for th
bosons due to their interaction with both bosons and fer
7-5
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ALBUS, GARDINER, ILLUMINATI, AND WILKENS PHYSICAL REVIEW A 65 053607
ons, evaluated atpm50 ~in what follows we call them the
bosonic self-energies!. The self-energies are in general r
lated to the Green’s functions by the Dyson equations. T
Dyson equation for the bosons is given by

S GB8~pm! G12~2pm!

G21~pm! GB8~2pm!
D

5S GB
0~pm! 0

0 GB
0~2pm!

D 1S GB
0~pm! 0

0 GB
0~2pm!

D
3S SB~pm! S12~pm!

S21~pm! SB~2pm!
D S GB8~pm! G12~pm!

G21~pm! GB8~2pm!
D ,

~47!

where we have introduced the anomalous boson Gre
functions G12(pm) and G21(pm) „defined as the Fourie
transforms of G12(x

m,ym)5^juT@f̂(xm)f̂(ym)#uj& and
G21(x

m,ym)5^juT@f̂†(xm)f̂†(ym)#uj&, respectively…. The
Dyson equation for the fermions takes the much simpler s
lar form

GF~pm!5GF
0~pm!1GF

0~pm!SF~pm!GF~pm!, ~48!

whereSF(pm) is the proper self-energy for the fermions d
to the interaction with the bosons~the fermionic self-energy!.

B. The self-energies in the ladder approximation

As we are considering a dilute system, in terms of Fe
man diagrams only diagrams with interaction lines betwe
two systems of connected propagators are important@24,25#
~the ladder approximation!. This is expressed in terms of th
boson-fermion and boson-bosonT matrices in Fig. 2, where
the boson-fermionT matrix TBF in the ladder approximation
is defined in Fig. 3, the boson-bosonT matrix TBB ~also in
the ladder approximation! is well known from studies of di-
lute pure Bose systems, and the normal~diagonal! bosonic
proper self-energy is given by

SB~pm!5SBF~pm!1SBB~pm!. ~49!

The proper self-energies can thus be determined by a
ing the proper self-energies of a system of interacting bos
to those of a hypothetical mixed boson-fermion syst
where there are boson-fermion interactions only@45#. This
result arises from our use of the ladder approximation, an
not in general true~there also exist, for example, inseparab
three-legged ‘‘ladders’’ consisting of a boson-boson and
boson-fermion ladder joined by a common boson leg,
these clearly describe higher-order processes!. For such a
hypothetical mixed system, the only self-energies we nee
consider and to evaluate areSBF(pm) andSF(pm), which can
be written algebraically as

\SBF~pm!52
i

~2p!4E d4kmTBF~pm,km,pm,km!GF
0~km!,

~50!
05360
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\SF~pm!5TBF~0,pm,0,pm!n0 . ~51!

C. Bethe-Salpeter equation forTBF

The boson-fermionT matrix TBF can also be represente
recursively, as shown in Fig. 4. If we now transform
center-of-mass coordinates,

Pm5p1
m1p2

m5p3
m1p4

m ,

k1
m5~p1

m2p2
m!/2, ~52!

k2
m5~p3

m2p4
m!/2,

the algebraic form of the equation represented in Fig. 4 re

TBF~k1
m ,k2

m ,Pm!5U~k12k2!1
i

\~2p!4E d3kU~k12k!

3E dk0GB
0~Pm/21km!

3GF
0~Pm/22km!TBF~km,k2

m ,Pm!. ~53!

This is a kind of Bethe-Salpeter integral equation, which
will now solve recursively for low momenta, stopping
order aBF

2 . As the interactions are instantaneous, the o
frequency dependence inTBF(k1

m ,k2
m ,Pm) is in P0 @24,25#.

Thus, a contour integration overk0 in Eq. ~53! yields

FIG. 2. The self-energies in the ladder approximation, expres
in terms of theT matrices.
7-6
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TBF~k1 ,k2 ,Pm!5U~k12k2!1
1

~2p!3E d3k
U~k12k!TBF~k,k2 ,Pm!u~ uP/22ku2kF!

\P02\2~P/21k!2/2mB2\2~P/22k!2/2mF1m1 in
. ~54!

We now express Eq.~54! in terms of the free scattering amplitudef (k1 ,k2), by first formally inverting~see Ref.@24#!

2p\2

m
f ~k1 ,k2!5U~k22k1!1

1

~2p!3E d3k
U~k22k!2p\2f ~k1 ,k!/m

\2k1
2/2m2\2k2/2m1 in

, ~55!

and then exploiting the resulting expression to rewrite Eq.~54! as

TBF~k1 ,k2 ,Pm!5
2p\2

m
f ~k2 ,k1!1

1

~2p!3E d3k
2p\2

m
f ~k,k1!TBF~k,k2 ,Pm!

3F u~ uP/22ku2kF!

\P02\2~P/21k!2/2mB2\2~P/22k!2/2mF1m1 in
2

1

\2k1
2/2m2\2k2/2m1 in

G . ~56!

For low momenta the vacuum scattering amplitudef (k1 ,k2) can be expanded to second order in the scattering lengthaBF ~see
Ref. @25#!:

f ~k1 ,k2!'aBF2 iaBF
2 k, ~57!

wherek5k15k2→0. We insert this into Eq.~56!, iteratively substituting Eq.~56! into itself, and consistently keeping term
up to quadratic order inaBF only. This produces

TBF~k1 ,k2 ,Pm!'
2p\2

m
@aBF2 iaBF

2 k1#1
4p2\4aBF

2

~2p!3m2 E d3k

3F u~ uP/22ku2kF!

\P02\2~P/21k!2/2mB2\2~P/22k!2/2mF1m1 in
2

1

\2k1
2/2m2\2k2/2m1 in

G , ~58!

FIG. 3. The boson-fermionT matrix.

FIG. 4. The integral equation forTBF .
053607-7
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the renormalized second order expansion of the boson-fermionT matrix. The integral can be evaluated~see Appendix B! to
give

TBF~k1 ,k2 ,Pm!'
2p\2

m
aBF1

2\2aBF
2 kF

m
1

aBF
2 \2

2m2 S mBkF
2

P
2

m2P

mB
22mAD2

mBD

P D ln
kF1mP/mB1AD1 in/2aBFAD

kF2mP/mB2AD2 in/2aBFAD

2
aBF

2 \2

2m2 S mBkF
2

P
2

m2P

mB
12mAD2

mBD

P D ln
kF2mP/mB1AD1 in/2aB

kF1mP/mB2AD2 in/2aBFAD
, ~59!
m

is
by

in

r

on-
e

-

the
-

a

Eq.

on
where

D52
m

mB1mF
P21

2mP0

\
1

2mm

\2
. ~60!

V. PHYSICAL QUANTITIES

A. Bosonic chemical potential

Substituting Eq. ~44! into Eq. ~50! the equation for
SBF(pm) can be rewritten as

\SBF~pm!52
i

~2p!4E d4qm

3
TBF„~p2q!/2,~p2q!/2,pm1qm

…

q02\q2/2mF1 i sgn~q2kF!n
. ~61!

To evaluate this, we substitute Eq.~58! into Eq. ~61!, and
first carry out the frequency integral. As the pole in the co
plex q0 plane of the integrand in Eq.~58! is below the real
axis, in order to get a nonvanishing result the pole of@q0

2\q2/2mF2 i sgn(q2kF)n#21 must be above the real ax
(q,kF). The frequency integral is thus readily solved
contour integration. Thek integration in Eq.~58! is then very
similar to that leading to Eq.~59!. The resulting expression
for \SBF(pm) is then

\SBF~pm!5
1

~2p!3E d3qu~kF2q!

3TBFS p2q

2
,
p2q

2
,S p01

\q2

2mF
,p1qD D .

~62!

We wish to similarly solve this integral to second order
aBF . In Eq. ~59!, all terms that depend onD have a prefactor
aBF

2 . Thus, in order to get a result for Eq.~62! that is correct
to second order inaBF , it is sufficient to use the zeroth orde
expression forD. Specializing to the case wherepm50 this
can be written as

D05
mB

2

~mB1mF!2
q2. ~63!
05360
-

We now substituteD0 for D in Eq. ~59!, and, after a straight-
forward ~if lengthy! integration overq, arrive at

\SBF~0!5
2p\2aBF

m
nFF11

aBFkF

p
f ~d!G , ~64!

where

f ~d!512
31d

4d
1

3~11d!2~12d!

8d2
ln

11d

12d
, ~65!

d5(mB2mF)/(mB1mF), and we have used
(2p)24*d4kmGF(k

m)5GF(x
m,xm)5 inF . Note that in this

integration we need only consider the real part of the bos
fermion T matrix, as within the range of the integration th
imaginary part is zero~see Appendix B!. The necessary ex
pression for theT matrix is then just given by Eq.~59!,
where we take the absolute values of the arguments of
logarithms and setn50. From the Hugenholtz-Pines theo
rem @Eq. ~46!#,

mB5\SBF~0!1\SBB~0!2\S12~0!. ~66!

Thus, using the expression forSBF(0) in Eq. ~64!, and the
results from Ref.@27# for SBB(0) and S12(0) ~neglecting
corrections of the order of the boson gas parameter!,

mB5
4p\2aBB

mB
nB1

2p\2aBF

m
nFF11

aBFkF

p
f ~d!G . ~67!

This is exactly equivalent to adding\SBF(0) to the standard
mean-field result for the bosonic chemical potential for
pure, self-interacting bosonic system.

B. Ground-state energy density

To obtain the ground-state energy we simply integrate
~45!:

E

V
5E

0

nB
m~nB4!dnB41C~nF!, ~68!

whereC(nF) is a quantity that can depend on the fermi
densitynF only. Considering the limitaBF→0, we see that
C(nF) can only be the kinetic energy for free fermions~the
Fermi energy densityeF) @25#, that is,
7-8
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C~nF!5eF5
3

5

\2kF
2

2mF
nF . ~69!

Substituting this and Eq.~67! into Eq. ~68!, and then inte-
grating, gives, finally,

E

V
5eF1eB1

2p\2aBF

m
nFnBF11

aBFkF

p
f ~d!G , ~70!

whereeB52p\2aBBnB
2/mB is the bosonic mean-field energ

density. Equation~70! is the main result of this paper, bein
the desired extension of the mean-field result Eq.~8!.

It is illuminating to describe Eq.~70! in terms of the di-
mensionless gas parameters and the dimensionless rat
the boson and fermion densities:

a5aBFkF , ~71!

b5AnBaBB
3 , ~72!

h5
nB

nF
, ~73!

so that

FIG. 5. Plot of f (d), whered5(mB2mF)/(mB1mF), propor-
tional to the correction to second order ina5kFaBF to the energy
density functional@Eq. ~74!#. The relevant values off (d) for mix-
tures of 3He and 1H, 6Li and 7Li, 3He and 4He, and 40K and
87Rb are indicated. Quantities are dimensionless.
05360
of

E

V
5eFX11

20ph

11d H ~12d!S hb

6p2D 2/3

1
a

3p2 F11
a

p
f ~d!G J C, ~74!

The corrective term to second order ina is proportional to
the rather complicated functionf (d), defined in Eq.~65!, of
the relative mass ratiod; the value of this function will thus
vary considerably depending on the masses of the ato
species used in any given experiment. In Fig. 5 the values
mixtures of6Li and 7Li, and 40K and 87Rb, corresponding to
real experimental configurations currently under investi
tion, are plotted, as well as that for a mixture of3He and
4He, also a likely candidate for future investigation in ultr
cold dilute gas experiments. The value for a hypotheti
mixture of 3He and1H is also shown, as it is almost exact
the maximum possible. The functionf (d) is always positive
in the total range@21,1# of variations ofd. Note that in the
limit mB /mF→`, one hasd→1 and f (d)→0. Thus the
second-order correction to the boson-fermion interaction
ergy and the total boson-boson interaction energy disapp
This is because if the bosons are infinitely massive~com-
pared to a fixed, finite fermion mass!, then it is impossible
for them to be scattered out of the condensate, and only
boson-fermion mean field interaction remains, since all
bosons can be treated as the~condensate! mean field. In the
opposite limit ofmB /mF→0, the situation is different, be
cause of the Pauli exclusion principle.

In Fig. 6 we compare the mean-field contributions~a! and
second-order correction~b! to the energy functional for a
6Li, 7Li mixture, for a range of values ofh. The plots corre-
spond to a situation where the scattering lengthsaBB
50.2 nm, aBF52.7 nm and the fermion densitynF55.1
31010 cm23 are fixed, and compatible with the experimen
described in Ref.@14#, while the boson density is varied
Note that for any reasonable boson density, the boson
parameterb is indeed very small compared toa. In Fig. 7
we do the same for a3He,4He mixture. In this case the
interspecies scattering length is unknown; however, we c
jecture it to be of the same order of magnitude as the bos
boson scattering length. The plots correspond to a situa
whereaBB5aBF516 nm, andnF53.131013 cm23. These
values are compatible with current experiments on me
f

ty
FIG. 6. Boson-fermion~solid
line! and boson-boson~dotted
line! mean-field contributions~a!
and second-order correction~b! to
the ground-state energy density o
a 6Li, 7Li mixture, in units ofeF ,
to the ground-state energy densi
in units of eF . Parameters are
nF

1/3aBF50.001 and nB
1/3aBB

50.000 135h1/3, where the di-
mensionless density ratioh is the
running independent variable.
7-9



f

ty

ALBUS, GARDINER, ILLUMINATI, AND WILKENS PHYSICAL REVIEW A 65 053607
FIG. 7. Boson-fermion~solid
line! and boson-boson~dotted
line! mean-field contributions~a!
and second-order correction~b! to
the ground-state energy density o
a 3He,4He mixture, in units ofeF ,
to the ground-state energy densi
in units of eF . Parameters are
nF

1/3aBF50.05 and nB
1/3aBB

50.05h1/3, where the dimension-
less density ratioh is the running
independent variable.
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stable triplet 4He condensates@18,19#, and are particularly
interesting in that the corrections beyond mean field are q
large ~of the order of 10%!. The true significance of the
boson-fermion interaction energy correction will of cour
depend on the actual value of the interspecies scatte
length. We notice that if the latter turns out to be about o
order of magnitude larger than in the pure fermionic a
bosonic cases~this is, for instance, what happens for lithiu
mixtures!, then the effect of the correction can be as large
50% of the mean-field prediction. Then, of course, corr
tions proportional to the boson gas parameter also have t
taken into account.

C. Other physical quantities, Bose condensate depletion,
and induced fermion-fermion interaction

From Eq.~70! we can readily determine the chemical p
tential for the fermionsmF , defined as

mF5S ]E/V

]nF
D

NB ,V

, ~75!

to be

mF5
\2kF

2

2mF
1

2p\2aBF

m
nBF11

4aBFkF

3p
f ~d!G . ~76!

The pressure reads

P52S ]E

]VD
NB ,NF

5
2

5

\2kF
2

2mF
nF1

2pnB
2aBB\2

mB

1
2p\2aBF

m
nFnBF11

4aBFkF

3p
f ~d!G . ~77!

We then obtain the compressibilities, respectively, for
bosons,

cB
25

1

mB
S ]P

]nB
D

NF ,V

5
4pnB

2aBB\2

mB
2

1
2p\2aBF

mBm
nF

3F11
4aBFkF

3p
f ~d!G , ~78!
05360
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and for the fermions,

cF
25

1

mF
S ]P

]nF
D

NB ,V

5
2

3

\2kF
2

2mF
2

1
2p\2aBF

mFm
nB

3F11
16aBFkF

9p
f ~d!G . ~79!

We notice that the possible instabilities induced by the me
field boson-fermion interaction term in the case of a nega
value ofaBF are countered by the beyond mean-field corr
tion, since the latter is always positive.

Concerning the structure of the Bose condensate fract
in addition to the known depletion due to the boson-bos
interaction, we expect in principle a further contribution
depletion due to the interaction of the bosons with the fer
ons. The depletion is computed in a standard way by in
grating the boson propagator for the noncondensed part
GB8 (pm) over the four-momentum. To obtain the boso
propagator we have to solve the Dyson equation~47! for
GB8 (pm). This yields

GB8~pm!5Fp01
\p2

2mB
1SB~2pm!2SB~0!1S12~0!G

3H Fp02
SB~pm!2SB~2pm!

2 G2

2F \p2

2mB
2SB~0!1S12~0!

1
SB~pm!1SB~2pm!

2 G2

1S12
2 ~pm!J 21

, ~80!

where we have made use of the Hugenholtz-Pines relat
The total diagonal bosonic self-energySB(pm) picks up a
boson-boson and a boson-fermion contribution@see Eq.
~49!#. It can be easily checked that to first order inaBB and in
aBF the total diagonal bosonic self-energy does not dep
on the four-momentum. Therefore the diagonal self-ene
terms in the boson propagator Eq.~80! cancel,GB8 (pm) is
independent ofaBF , and there is no depletion of the Bos
condensate due to the fermions to this order, since the c
tribution of the fermions to the off-diagonal self-energi
7-10
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QUANTUM FIELD THEORY OF DILUTE HOMOGENEOUS . . . PHYSICAL REVIEW A 65 053607
vanishes anyway in the ladder approximation. The situa
will be different to next order inaBF , as in this case the tota
diagonal bosonic self-energy will depend on the fo
momentum. However, the calculation ofSB(pm) to second
order in the boson-fermion scattering length at nonzero fo
momentum involves the evaluation of integrals that can
be carried out analytically in a straightforward way. In co
clusion, in the present situation, we will consider the dep
tion due to the bosons only, which is well known@24,25#:

nB2n05
8

3
AnBaB

3

p
nB . ~81!

We now turn to a discussion of the fermion-fermion inte
action induced by the presence of the bosons. Subtracting
bosonic contribution from the energy density, we get

E

V
2eB5eFF11

20h

3p~11d!
a1

20h

3p~11d!

f ~d!

p
a2G .

~82!

This describes the first three terms of a power expansio
a, of exactly the same form as that of an imperfect~unpo-
larized! Fermi gas, although clearly with different coeffi
cients. There is thus, as expected, an induced ferm
fermion interaction, which can now be computed
exploiting the expressions that we have derived for both
bosonic and the fermionic chemical potentials. This w
yield a modification of the known induced fermion-fermio
interaction previously discussed in the mean-field appro
mation @17#. The expression for the induced interaction
zero energy-momentum transferU ind(q

m50) is

U ind~qm50!5
]mF

]nF
U

mB

2
]mF

]nF
52S ]mF

]nB
D 2 ]nB

]mB
, ~83!

which in our case reads

U ind~qm50!52
4p\2~12d2!h1/3a2

mFkF~6p2!1/3b2/3

3@114 f ~d!a/3p#. ~84!

The extension to finite momentum transfer is achieved
introducing the boson density-density response func
x(qm), and is represented diagrammatically in Fig. 8, wh
two fermions interact by exchanging a boson density fluct

FIG. 8. Effective fermion-fermion interaction due to exchan
of boson density fluctuations.
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tion wave. This is the simplest diagram by which two ferm
ons can interact via the exchange of a bosonic excitation

The density-density response functionx(qm) is indepen-
dent ofaBF to first order. This can be easily verified follow
ing the same line of reasoning described previously in
analysis of the bosonic propagator. Thus its expression is
same as in the pure bosonic case~to this order!:

x~qm!5
\n0q2/mB

~q0!22~\q2/2mB!224p\3n0aBBq2/mB
2

.

~85!

The vertexgFF can be determined by considering the lim
iting expression forx(qm) asqm→0. In this case the expres
sion for the diagram given in Fig. 8 must reduce to the e
pression given in Eq.~84!. It follows that

gFF5
2Ap\2aBF

m
@114 f ~d!aBFkF/3p#. ~86!

Then the induced interaction potential in the static caseq0

50) reads

U ind~0,q!52
4p\4aBF

2 @114 f ~d!aBFkF/3p#2

m2

3
n0

\q2/4mB14p\2n0aBB /mB

. ~87!

In real space this is

U ind~0,q!5
4\2mBn0aBF

2 @114 f ~d!aBFkF/3p#2

m2

3
eA2r /j

r
, ~88!

where

j25
1

8pn0aB
. ~89!

We observe that, compared to the mean-field result@17#,
while there are quantitative modifications in the prefacto
there is no qualitative change in the form of the induc
interaction, i.e., we still have an attractive Yukawa potent
Modifications in the analytic form of the induced fermion
fermion interaction potential will appear only once seco
order effects in the boson-fermion scattering lengthaBF to
the depletion of the Bose condensate are included.

VI. DISCUSSION AND OUTLOOK

In summary, we have determined ground-state proper
of a homogeneous system of bosons mixed with sp
polarized fermions at zero temperature. We have calcula
the boson-fermionT matrix and the corresponding sel
energies. We have then shown how to incorporate the eff
7-11
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of the boson-boson interaction and derived some relev
physical quantities of the system, in particular the grou
state energy. The importance of the corrections beyond m
field has been discussed in several different instances o
perimental interest. For mixtures of bosonic and fermio
helium we have shown that the terms beyond mean field m
yield significant corrections~up to 50% of the mean-field
result!. We have provided partial results also on two ve
significant physical quantities, namely, the Bose conden
fraction and the induced fermion-fermion interaction. To p
vide more quantitative predictions for these quantities,
well as for the BCS transition temperature, we will need
compute in detail the corrections to second order in
boson-fermion scattering length. Results of this analy
which go beyond the scope of the present paper, will app
in a forthcoming work, together with a detailed numeric
analysis of the conditions for stability and for phase sepa
tion. Collective modes, effective fermion mass, and exc
tion spectra fully evaluated to second order in the bos
fermion scattering length will be discussed as well.

Extensions of the formalism developed in this paper c
be made in different directions. First, one can consider
polarized spin-1/2 fermions. Calculations are very similar
the present situation with the main difference that one ha
include the effects of the direct interactions of fermions w
different spins. This would correspond to having a third sc
tering lengthaFF. As in the previous case, we expect that
the two-particle scattering approximation the energy con
bution for a pure fermion system of spin-1/2 fermions
simply added to Eq.~70! in this case~and of course, the
Fermi momentum has to be modified appropriately!.

The formalism can also be extended to consider fin
temperature. As in the case of pure bosons we expect
siderable difficulties near the critical temperature. Well b
low that temperature, however, we expect no major com
cations and the calculations will be similar to the pres
case, except that boson loops will have to be taken into
count and frequency integrals will have to be replaced
Matsubara frequency sums.

A very important and natural possible extension is
investigation of inhomogeneous, e.g., harmonically trapp
systems. This can be done by augmenting the existing m
field calculations via the correlation terms in local dens
approximation. To this end, the results obtained in
present work are needed. The method and the full nume
procedure will be described in a forthcoming paper.

Finally, higher-order corrections may be computed
principle. These higher-order terms will also involve t
bosonic gas parameter as well as three-particle correlati
and thus expansions like Eq.~70! will not reduce to sums of
terms, where only one scattering length appears at a time
will include also terms that contain products of powers
both scattering lengths. To even higher orders nonunive
properties like the parameters describing the shape of
interaction potentials will become important and will have
be taken properly into account, as has been recently don
the pure bosonic case@31,47#.
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APPENDIX A: NORMAL ORDERED PRODUCTS
AND THE VACUUM STATE

If we expand the field operators in terms of momentu
eigenstates we get

F̂~x!5
1

AV
(

k
âke

ik•x5
1

AV
â01f̂~x!, ~A1!

Ĉ~x!5
1

AV
(

k
b̂ke

ik•x5ĉ1
†~x!1ĉ2~x!, ~A2!

with

f̂~x!5
1

AV
(

uku.0
âke

ik•x, ~A3!

ĉ1~x!5
1

AV
(

uku<kF

b̂k
†e2 ik•x, ~A4!

ĉ2~x!5
1

AV
(

uku.kF

b̂ke
ik•x. ~A5!

In terms of the bosonic and fermionic occupation numb
operatorsN̂B(k)5âk

†âk andN̂F(k)5b̂k
†b̂k the ground state of

the noninteracting systemuj0& can be characterized by

N̂B~0!uj0&5NBuj0&, ~A6!

N̂B~k!uj0&50 for uku.0, ~A7!

N̂F~k!uj0&5uj0& for uku<kF , ~A8!

N̂F~k!uj0&50 for uku.kF , ~A9!

whereNB is the total number of bosons, which in this ca
coincides with the number of zero-momentum bosonsN0
~Bose-Einstein condensate!. In occupation number represen
tation we thus have

uj0&5uNB,0,0, . . . &B^ u1,1, . . .,1,1,0,0, . . . &F , ~A10!

where the subscriptB refers to the boson Hilbert space andF
to the fermion Hilbert space. The change from 1 to 0 in t
fermion state happens atkF . Additionally,

f̂~x!uj0&5ĉ1~x!uj0&5ĉ2~x!uj0&50. ~A11!
7-12
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In this sense the ground state can be regarded as the va
state with respect to fermions excited above the Fermi
the fermion holes below the Fermi sea, and the noncond
sate bosons.

The normal product is defined on pairs of creation a
destruction operators:

:f̃~x,t !f̃†~x8,t8!:5f̃†~x8,t8!f̃~x,t !,

:c̃ j~x,t !c̃k
†~x8,t8!:52c̃k

†~x8,t8!c̃ j~x,t !,
~A12!

:f̃~x,t !c̃ j
†~x8,t8!:5c̃ j

†~x8,t8!f̃~x,t !,

:c̃ j~x,t !f̃†~x8,t8!:5f̃†~x8,t8!c̃ j~x,t !,

for j ,kP$1,2%. For all other pairs of creation and destructio
operators the normal product is the same as the ordin
operator product. It can also be readily determined that
s

e

05360
um
a,
n-

d

ry

@f̃~x,t !,f̃†~x8,t8!#5^j0uf̃~x,t !f̃†~x8,t8!uj0&,

$c̃1~x8,t8!,c̃1
†~x,t !%5^j0uC̃†~x8,t8!C̃~x,t !uj0&,

~A13!

$c̃~x,t !,c̃†~x8,t8!%5^j0uC̃~x,t !C̃†~x8,t8!uj0&,

and all other~anti!commutators are zero. With Eqs.~A12!
and~A13!, the contractions of Eq.~37! can be readily evalu-
ated.

APPENDIX B: EVALUATION OF THE T MATRIX AND
COUPLING CONSTANT RENORMALIZATION

1. The first integral I
We define
I5E d3k
u~ uP/22ku2kF!

\P02\2~P/21k!2/2mB2\2~P/22k!2/2mF1m1 in
. ~B1!

Transforming the integration variables toP/22k gives

I5E d3k
u~ uku2kF!

\2k2/2m2\2P•k/mB2\P01\2P2/2mB2m2 in
. ~B2!
ity

t

ga-
Setting a5\2/2m, b5\2P/mB , and E52\P0

1\2P2/2mB2m and transforming to spherical coordinate
we get

I52pE
kF

kc
dkk2E

0

p

df sinf
1

ak22bk cosf1E2 in

5
2p

b E
kF

kc
dkk ln

ak22bk1E2 in

ak21bk1E2 in
, ~B3!

where we will ultimately consider the limitkc→`. Using
D5(b/2a)22E/a we can approximate for smalln ~if D
Þ0; the caseD50 can be treated similarly and gives th
same answer as taking the limitD→0 at the very end!:

I52
2pmB

\2P
E

kF

kc
dkkS ln

k1mP/mB1AD1 in/2aAD

k2mP/mB2AD2 in/2aAD

1 ln
k1mP/mB2AD2 in/2aAD

k2mP/mB1AD1 in/2aAD
D . ~B4!

The integral can be solved@46# to give
, lim
kc→`

I52
8pmkc

\2
1

4pmkF

\2
1

p

\2 S mBkF
2

P
2

m2P

mB
22mAD

2
mBD

P D ln
kF1mP/mB1AD1 in/2aAD

kF2mP/mB2AD2 in/2aAD

2
p

\2 S mBkF
2

P
2

m2P

mB
12mAD2

mBD

P D
3 ln

kF2mP/mB1AD1 in/2aAD

kF1mP/mB2AD2 in/2aAD
, ~B5!

where outside the logarithms we have taken the limitn→0
~simply settingn50), and we have made use of the ident

lim
x→`

x2 ln
11a/x

12a/x
52ax, ~B6!

for the limit kc→`. There remains an ultraviolet divergen
term; the boson-fermionT matrix @Eq. ~58!# is, however,
ultimately renormalized by the second integral.

The real part ofI is readily evaluated in the limitn→0 by
settingn50 and using the absolute values inside the lo
rithms:
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lim
n→0

ReI52
8pmkc

\2
1

4pmkF

\2
1

p

\2 S mBkF
2

P
2

m2P

mB

2
mBD

P D lnU~kF1mP/mB!22D

~kF2mP/mB!22D
U2

2pm

\2
AD

3 lnU~kF1AD !22~mP/mB!2

~kF2AD !22~mP/mB!2U . ~B7!

Using the identity~easily evaluated by polar decompos
tion!

lim
n→01

Im ln
a1 in

b2 in
5H 0, sgn~a!5sgn~b!,

p, sgn~a!Þsgn~b!,
~B8!

the imaginary part ofI in the limit n→0 can be evaluated to
be

lim
n→0

Im I5
p2

\2 S mBkF
2

P
2

m2P

mB
22mAD2

mBD

P D ~B9!

if D.0 andkF,umP/mB2ADu;

lim
n→0

Im I52
4p2mAD

\2
~B10!

if D.0 andumP/mB2ADu,kF,mP/mB1AD; and

lim
n→0

Im I50 ~B11!

if D<0 or kF.mP/mB1AD.
an

n,

et

v.

e

r-
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2. The second integralJ
We define

J52E d3k
1

\2k1
2/2m2\2k2/2m1 in

5
4p

a E
0

kc
dkS 12

k1
21 in/a

k22k1
22 in/a

D , ~B12!

where as beforea5\2/2m, and we have transformed to po
lar coordinates and integrated over the angle variables.
integral can be evaluated@46# to give

J5
4pkc

a
2

2p

a
Ak1

22 in/aln
kc1Ak1

22 in/a

kc2Ak1
22 in/a

1
2p

a
Ak1

22 in/aln
Ak1

22 in/a

2Ak1
22 in/a

. ~B13!

We then use

lim
kc→`

ln
kc1Ak1

22 in/a

kc2Ak1
22 in/a

50 ~B14!

to get

lim
n→0

J5
8pmkc

\2
1 i

4p2mk1

\2
. ~B15!

If we now take the sum of Eqs.~B5! and~B15!, the ultravio-
let divergent terms cancel exactly. The resulting express
for I1J can then be substituted into Eq.~58! to get Eq.~59!
for the renormalized boson-fermionT matrix.
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