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We consider a dilute homogeneous mixture of bosons and spin-polarized fermions at zero temperature. We
first construct the formal scheme for carrying out systematic perturbation theory in terms of single particle
Green'’s functions. We especially focus on the description of the boson-fermion interaction. To do so we need
to introduce the renormalized boson-fermidmmatrix, which we determine to second order in the boson-
fermion swave scattering length. We also discuss how to incorporate the usual bosonfhwsdrix in mean
field approximation to obtain the total ground-state properties of the system. The next-order term beyond mean
field stems from the boson-fermion interaction and is proportionagidk-. The total ground-state energy
density to this order is the sum of the kinetic energy of the free fermions, the boson-boson mean-field
interaction, the usual mean-field contribution to the boson-fermion interaction energy, and the first boson-
fermion correction beyond mean field. We also compute the bosonic and the fermionic chemical potentials, the
compressibilities, and the modification to the induced fermion-fermion interaction. We discuss the behavior of
the total ground-state energy and the importance of the correction beyond mean field for various parameter
regimes, in particular considering mixtures %fi and “Li and of *He and“*He. Moreover, we determine the
modification of the induced fermion-fermion interaction due to the effects beyond mean field. We show that
there is no effect on the depletion of the Bose condensate to first order in the boson-fermion scattering length
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I. INTRODUCTION [21], where an effective modification of the fermion-fermion
scattering length, mediated by boson-fermion scattering pro-
Following the spectacular success in achieving Boseeesses, was determined. Pual. have determined the pho-
Einstein condensation in trapped, dilute atomic gases in 19980on spectrum of the Bose condensate in a boson-fermion
[1-3], there has been an explosion of experimental and themixture at zero temperatuf@2].
oretical activity on this newly accessible state of maffer Mean-field approaches have proved to be extremely use-
recent reviews focusing on different experimental and theoful in the theoretical and experimental study of Bose-
retical aspects, see, for instance, Rpfs-8|). More recently, Einstein condensed dilute atomic gases, and are likely to
there has been increasing interest and experimental activifgrove similarly useful for quantum-degenerate mixed boson-
also in quantum-degenerate ultracold Fermi g@8ed4], in  fermion systems. It is nevertheless desirable to consider ef-
particular because of the possibility of observing a BCS typdects beyond mean field, and under what circumstances they
transition in a dilute atomic gg45,16. Dilute mixtures of are likely to be most relevant. For putanpolarized fer-
ultracold gases of bosonic and fermionic atoms are also remion [23—25 and pure bosoh24—-31] systems, expansions
ceiving increased attention, in particular because sympathetif the ground-state energy, in terms of the small parameters
cooling of the fermions by the bosons is an important meangqar- and \ngads (ke is the Fermi wave numbeng the
of their achieving quantum degenerafdl-14, and also hoson density, andr and agg the fermion-fermion and
because bosons can mediate an induedtdactive fermion-  poson-boson scattering lengthare well established. These
fermion interactior{17]. Moreover, mixtures of atomiéHe  expansions go beyond mean-field approximations while still
and “He have become interesting in their own right after thedepending only on the-wave scattering lengths. Although
recent achievement of Bose-Einstein condensation in metatetermined for homogeneous systems, the use of beyond
stable *He [18,19, as they could represent a bridge toward mean-field corrections arising from consideration of such ex-
the understanding of superfluidity in helium. pansions may be readily extended to the experimentally rel-
Current analyses of dilute mixtures of ultracold atomicevant case of inhomogeneous trapped gases by application of
boson and fermion vapors are based on mean-field approxihe local density approximation. In general, the corrections
mations. They include, for example, the work on stability beyond mean field for the bosons are smaller than for the
considerations for homogeneous systems by Vivetial.  fermions, since the exponent of the small dimensionless pa-
[17], and the calculation of density distributions and phasgametem®?a (n is the density parameter aadhe scattering
separation of trapped mixtures by Nygaard antrivier [20]. length is 1 in the fermion case but 3/2 in the boson case.
Some interesting effects have been studied by Bijletnal. Important work on realistic treatments of strongly inter-
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acting “He-2He mixtures has been carried out by exploiting tally achievable in dilute atomic gases, and it can in fact be
correlated basis function theory. In this framework theadvantageous to have an excess of bosons in order to en-
ground-state energy density can be written as an integrdlance sympathetic cooling1]. However, there is in prin-
over the interaction potential and the correlation functionsCiPlé no a priori reason to confine theoretical analyses to
[32,33. A thorough variational theory of fermion-boson mix- SUch systems. In fact, in recent experimei(s, 14 the num-
tures has then been developed in terms of extended Jastrofl€'S Of fermions and bosons are comparable. Thus moti-
Feenberg wave functions that include both pair and triplet@€d. in the present paper, as already anticipated, we derive

; : o systematic perturbative expansion for the ground-state en-
?igIr(;etlﬁggpefi%n;ggr}zhgir:)rtg?n?tter;ﬁtr)(?:‘?:’r;&?ufgspgﬁitg)snor?@rgy and other related relevant physical quantities for dilute
Bose-Fermi mixtures at zero temperature and for arbitrary

and_fermions _has been SO faT almost unexplored. In th_e Ca%ﬁtios of the boson and fermion densities. In this way we
of dilute fermions |mmers§d In a Bose gas an expansion Ofiatarmine the lowest-order correction to the mean field in the
the ground-state energy in terms of the small parametergyge of weakly interacting bosons and spin-polarized fermi-
Vaggng andng/ng, whereng is the fermion density, was ons in terms of the Bose-Fermi gas paraméterg:, where
performed by Saarf84]. This was motivated by considering ag- is the boson-fermions-wave scattering length. The
quantum-degenerate dilute gases as a model for the behaviground-state energy thus derived can then be implemented,
of superfluid helium, where the assumptionmf/ng as a in local density approximation, as the energy functional for
small parameter is justified by the much greater natural octhe study of the experimentally relevant case of trapped mix-
currence of bosoniéHe compared to that of the fermionic tures, in complete analogy with the pure bosonic and pure
3He isotope. Considering a regime of low fermion concen-fermionic cases.
tration relative to the boson concentration, Saam neglected The plan of the paper is as follows. In Sec. Il we intro-
corrections of the order of the Fermi wave number to theduce the basic Hamiltonian for a system of interacting
mean-field interaction, while treating the bosons in the Bo-bosons and spin-polarized fermions, expressed in its grand-
goliubov approximation; in this way, he obtained the correc-canonical form after performing the Bogoliubov replace-
tions to mean field that are proportional to the bosonic gagnent. In Sec. Ill we define the one-particle Green’s functions
parameter. Considering a regime of high fermion concentraneeded for a systematic field-theoretical analysis of the
tion, we instead assume the bosons in the ideal gas approXtoson-boson and boson-fermion interactions, and we deter-
mation (thus neglecting the corrections proportional to themine the associated Feynman rules. In Sec. IV we implement
bosonic gas paramejewhile treating the boson-fermion in- the perturbative expansion by introducing the boson-fermion
teraction to second order, thus obtaining the corrections téelf-energy and the renormalized boson-fermiomatrix in
mean field that are proportional to the Fermi wave numberthe ladder approximation and by solving the corresponding
We will show in the following that in the case of comparable Bethe-Salpeter equation to second ordekdag. In Sec. V
bosonic and fermionic densities, these latter corrections areée exploit the results obtained in the previous sections to
larger than those obtained by Saam. In particular, we developompute some relevant physical quantities. In particular, we
a systematic treatment of the boson-fermion interaction, byrovide the expression for the ground-state energy density to
determining the renormalized boson-fermibmatrix to sec-  second order in the gas parameter, the bosonic and fermionic
ond order in the boson-fermion scattering length. In this waychemical potentials, the compressibilities, and the induced
we compute the lowest order correction beyond mean field téermion-fermion interaction. We then compare the results
the ground-state energy density due to the boson-fermion gdBus obtained with actual and foreseeable experimental situ-
parameter. This correction is obviously absent in Saam'&tions to assess the relative importance of higher-order cor-
treatment, and it is of order 7/3 in the overall power of therections with respect to the mean-field results. In Sec. VI
combined bosonic and fermionic densities. On the othegonclusions are drawn and some possible future develop-
hand, the lowest Saam’s correction due to the renormalizethents are discussed.
boson-boson interaction is of order 5/2 in the overall power
of the combined bosonic and fermionic densities. The cor- Il. SYSTEM
rection due to the renormalized boson-fermion interaction is A. Hamiltonian and ground-state energy
then the larger one, and thus the one of greatest relevance for
the description of dilute Bose-Fermi mixtures beyond mean
field, when both densities are of comparable magnitude, or We consider a homogeneous mixture of interacting
there are vastly more fermions than bosons. We can in prinbosons and fermions, imposing periodic boundary conditions
ciple combine the effects of the renormalization of theon a volumeV. In complete generality there are thus boson-
boson-fermion and boson-boson couplings to compute all thboson, boson-fermion, and fermion-fermion interactions to
corrections to order 5/2which will include the ones com- consider. However, for spin-polarized fermions, there is no
puted by Saam by taking into account only the renormalized-wave scattering contribution to the fermion-fermion inter-
boson-boson interactipnWork is in progress on the deter- action [35]. The first nonvanishing contribution is due to
mination of the higher-order corrections, and will be reportedp-wave scattering, which can generally be neglected when
elsewhere. compared to the boson-boson and boson-fermion interactions
We point out that our results are valid for any ratio of thedue tos-wave scattering. We thus take into accosntave
fermionic and bosonic densities. Systems where there arscattering between bosons, and between bosons and fermions
vastly more bosons than fermions are certainly experimenenly.

1. Many-body Hamiltonian
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In second-quantized form, the Hamiltonian describing this B. Bogoliubov replacement and grand-canonical Hamiltonian

situation is
H=Tg+Te+U+V, (
where
. h? . .
TB=2—mBJ d3xVdT(x)- Vd(x), (
h? . .
?F=2—mJ d3xV ¥ T(x)- V¥ (x), (

Ozf f dBxdx’ ST ()T T(x U (|x—x"|) T (x")D(x),

In order to determine the energy functional to higher order
than in Eq.(8), we will adopt a perturbative approach using

D one-particle Green’s functions, in a way essentially equiva-
lent to the field-theoretical treatment of pure bosonic and
fermionic system$24,25. We thus first carry out the Bogo-
liubov replacemen{37], where the condensate bosons are

2)  treated as @&number field:

®(x) =N+ B(x), (10)

whereng=N;,/V is the condensate density, ai is the
number of(condensateatoms in thek=0 mode. This pre-
scription breaks particle number conservatisee[38—41]

for alternative Bogoliubov replacements that preserve par-

3)

(4) ticle number conservationaverage particle number conser-

V= %j fd3xd3x’Ci)T(x)Ci)T(x’)V(|x—x’|)<i>(x’)<i>(x),
(

vation is assured by introducing the grand-canonical Hamil-
tonian

5) K=H-pusNg, (11)

and whered (x) is a bosonic field operatoW (x) is a fermi- ~ Whereug is a Lagrange multiplier, to be identified with the
onic field operator, anchg andmg are the respective masses Poson chemical potentig25]. Substituting Eq(10) into Eq.
of the bosons and fermions. For later reference we also dé11). the grand-canonical Hamiltonian reads

fine
HOZ-,I\-B‘}':I\-F, (

w=U0+V. (

2. Mean-field theory

It is straightforward to determine a zero-temperature

R: RO_/.LBN0+ 01+ 02+ 03+Vl+\72
6 A
) +V3+V,4+Vs+Ve+Vy, (12

7) where

2
Ko= zﬁ—mB J d*xV ¢'(x) - V ¢ (x)

mean-field theory ford [20]. Employing the well-known 72 R . A A
Thomas-Fermi approximation, the mean-field ground-state +HJ d3xV\IfT(x)-V‘If(x)—,uBf d3x ' (x) p(x),
F

energy density is

E _ 3 ﬁ2k|2: 27Tﬁ2aB|: 27Th2aBB 2
Vosom FT T m et T e

(

(13

8) . .
Ulznoffd3xd3x’\W(x’)U(|x—x’|)\1r(x’), (14)

where m=mgmg/(mg+mg) is the reduced mass, arg
=(67°ng) Y3 is the Fermi wave numbéB6]. In the case of

a pure(unpolarized fermionic system, the corrections t

othe  U2=No f f dxd® W)U (|x=x' )P (x) (%)

ground-state energy density beyond the mean field are given

by [23] +H.c., (15
Er 37%kZ 28 ~ R TN V() 3
VF:WFnF 1+ EkFaF+(kFaF)2+ ) U3:f fdstSX T U (X=X )P () p(x),

] (16)

For pure bosons corrections to the ground state have been 1

calculated by, e.g., Hugenholtz and Pii@8] and by Wu vlz_nzf Jd3xd3x’V(|x—x’|) 17)

[29]. These corrections are obtained via a perturbative ex- 20 ’

pansion in terms of the bosonic gas paramefegagBB. As

already mentioned, this parameter is in general smaller than ¢ _, /p j f d3xd3x V(Ix—x"Nb(x)+H.c.. (18
the fermionic gas parameté&ee also Sec. V)BOur goal is 2="o\No ( DeCo+Hc., (18
thus to determine generalexpression equivalent to E¢(P),

taking into account boson-fermion interactions, while ne- ~ 1

glecting corrections proportional to higher powers of the

bosonic gas parameter.

VSZEnOJ' f d3Xd3X’V(|X_X’|)¢(Xr)¢(X)+H'C.,(lg)
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Uimno [ [ dxax $r0ovx-xDdex). (20

Vs=ng f f dixd3x' FTOOV(x-xNdx), (2D

Vo= g | [ doxa® 3100V x D dx) 300 +He
(22

.1 - - A -
V7=§f f d®xd®x’ ¢T(x) pT(XIV(Ix=X"]) (X") b(X).
(23)
IIl. SYSTEMATIC PERTURBATION THEORY WITH
GREEN’S FUNCTIONS
A. Green'’s functions: Definitions
The boson(B) and fermion(F) Green'’s functions for the
boson-fermion system are defined as

iGg(X,t,X ) =(&T[D(xDT(X t)]]&), (29

GO tX ) =(E TV (x, )T (x' ,t')]]€), (29

where the time argument iﬁ)(x,t) and\if(x,t) means they
evolve according to Heisenberg’s equations of motibdge-
notes the time ordered product, gdl is the ground state of

K (we similarly defing &,) to be the ground state &f,). We
use the Bogoliubov replacement to write

iGg(x,t,x",t")=ng+iGg(x,t,x",t’), (26)
where

iGa(x LX) =(ET[d(x, D (X', t)]|E) (27

is the propagator for the noncondensate bosons.

B. Perturbative expansion

The Green’s functions can be evaluated in perturbation

theory[25], whereW is the perturbation t&,. Thus

©

S BRIt
iGL(X, X t')=—% , (28)
DRTIELES
Z GM(x,t,x',t")
iG(X,t,X t)=—s : (29
Z (&0|S™| &)
where
iGE(x,t,x )= (&| T[SV (X, 1) (' )] &),  (30)

PHYSICAL REVIEW A 65 053607

iIGE(xtX 1) = (&|T[SMT(x,n) TT(X' )] &), (31)

sM=_ ( )Jdtl fdt T[W(ty)---W(t,)]. (32

Operators with a tilde are defined to be in the interaction
picture, i.e.,O(t) = exp(Kt/h)O exp(iKot/A). In the limit

of a noninteracting system\/A\(HO) the Green’s functions
reduce to the zeroth order terms in the expansions, so that

iIGY(x,t,x/,t")=iGO(x,t,x't")

=(&|T[H(X,D (X' 1)]|&), (39
iIG2(x,t,x/,t")=iGO(x,t,x",t")
=(&| TP ()W (X' ,t)]|é).  (34)

C. Evaluation of terms using Wick’s theorem

Equations(30), (31), and(32) can be evaluated by Wick’s
theorem, which states that the vacuugnoninteracting
ground-stateexpectation values of time ordered products of
operators can be expressed as the sum of all products of
contractions of pairs of operators in the time-ordered product
[42]. The contraction of two operators is defined as

O WPtHD=TOMP(t)]-:OMmP(t):, (35
where O(t)P(t'): is the normal ordered product. In particu-
lar,

dx,HVPT(x 1) D=3T(x" 1)V h(x,1)®

=iG3(x,t,x',t"), (36)
T, HOWH(x/ 1) D= -t (x' 1) DW(x,1)D
=iGYx,t,X "), (37)
and all other contractions of pairs of operators

e{d(x,0), DT (x" 1), T (x",t"), ¥T(x” ,t")} vanish(see also
Appendix A). Substituting Eqs(36) and(37) into Egs.(30),
(31), and(32), the first order terms can be determined to be

~ —i
IGEI(xk y) = == f f d4x’1’“d4y’f[U(x’f—y‘f

X[ —noiGA Y4, y4)iGR(xH,y4)

—iIG Y4 yE)IGI(xH, xE)IGa (X4 ,y*)]
2

n

ZiGRxyH)

+V(X{=vy7)

+Ngi G 3(xH, Xt)iG§(xt y*)

] , (38

+Ngi GB(X*, X4)iGg(x*,x5)
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e = Gp(at,yh), 1

¥ v Ga(p")= 45— —, (43)
° » ° — G%(az“,y”), ] _ﬁp /2mB+MB/ﬁ+|V

o y*

MM = Uz —g¥) or V(" —y¥), 1

I 7

§ y GR(P")= 5 : . (49
—----o = ./ng p°—Ap2me+i sgrip—kg) v

FIG. 1. Definition of the diagram lines. where sgrk)=1 for k=0 and=—1 for k<0 (we write p

, for |p|). The appropriate Feynman rules for the bosfan-
iél(zl)(xl-t,y,u): %f f d4x’l‘d4y’f{ U (xE—yh) Irg\i/t;g) Green'’s function in this representation are then as fol-
. . (1) Draw all topologically distinct connected diagrams
X[=noi GR(yY y1)iGR(X*,y*) with one outgoing external wiggly bosdfermion) line and
— Nl GYX“, yE)iGYUy# y#)] one incomi_ng external_wiggly boso(rI:\ermion) line, no ex-
ternal fermion(boson lines and no internal dashed boson
ng_ lines, n zigzag interaction lines, each of which is attached at
+V(X'f—y’f)§|GF(X“,Y") , (39  one vertex to an incoming and an outgoing boson (&ither
wiggly or dasheg and at the other vertex either to an incom-
—j ing and an outgoing boson line, or to an incoming and an
3(1):7j J d‘&’fd“y’f{ U(xE—y) [ —ingGAy4,y4 ] outgoing(not necessarily distingfermion line. Each vertex
must be attached to exactly one zigzag interaction line.
né (2) All wiggly boson lines must run the same direction
+V(x‘1‘—y"f)?], (40)  and there are no closed boson loops.
(3) Each dashed boson line corresponds to a factor of

where we have used the more compact four-vector notationor €ach wiggly boson I|r(1)e to a factor @g(k¥), each
[x#=(t,x)], and definedU(x*—y*)=U(x—y)8(x°—y°) fermlqn Ilne to a factor ofGg(k*), each boson-fermion in-
and V(x*— y*) = V(x—y) 8(x°—y°). Note thatG3(t,x,t,y) teraction line toa factor o) (k#)=U(k), and each boson-
=0 (i.e., there are no boson loops at zero temperature ~ POSON interaction line to a factor (k) =V(k). _
Higher-order terms may be similarly evaluated, and will _ (4) Assign a direction to gach interaction line; associate a
similarly be expressed in terms of integrals over products ofirécted four-momentum with each line and conserve four-
noninteracting Green’s functions, condensate faatgrand momentum at each vertex. Eac_h dashed bos_:on line carries
interaction terms. We represent these graphidatse Fig. 1 four-momentum 0 and each wiggly boson line has four-
straight lines for fermions, wiggly lines for noncondensateMementum not equal to 0.
bosons, dashed lines for condensate bosons, and zigzag lines(®) Integrate over the mdeper_u?lent four;mo_mcenta.
for interaction termgwhether it is a boson-boson or boson- _(6) Affix a factor of (i/#)"(2) ™(—1)7(~1)°, where
fermion interaction is clearly determined by the kinds of par-F iS the number of closed fermion loops a@ds the number
ticle lines attached to the vertices of the interaction)line ~ ©f dashed boson lines.
As is usual[24,25,43, all disconnected graphs in the nu-

merator can be factorized out by the denominator, so that |/ HETERMINATION OF THE BOSON-EERMION T

MATRIX AND SELF-ENERGIES IN LADDER

GI’B(XlL’yM) é(Bn)(XMuyM)connected (41) APPROXIMATION

[l
>
M s

A. The Hugenholtz-Pines theorem

o - (0o o According to the Hugenholtz-Pines theor¢f8,44), the
Gr(x"y )_nZO GE"(X*,¥¥) connected (42 posonic chemical potentialg, defined as
Noting t_hat _each connecte_d graph essenti_ally appears ‘?E/V:MB, (45)
times, with simple permutations on the labeling, when com- dng
posing such graphs we integrate over all internal variables
and affix a factor of i/%)"(—1)7(—i), whereniis the num- ¢ given by
ber of interaction linesF is the number of closed fermion
loops, andC is the number of dashed boson lines.
up=h2p(0)—%Z%150), (46)

D. Feynman rules

For homogeneous systems it is convenient to Fouriewhereg(0) and>,(0) are the proper self-energies for the
transform to energy-momentum space, so that bosons due to their interaction with both bosons and fermi-
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ons, evaluated gt*=0 (in what follows we call them the A
bosonic self-energigsThe self-energies are in general re-
lated to the Green’s functions by the Dyson equations. Thegs,(p#) = Tap ja
Dyson equation for the bosons is given by
' A
(GB(p") Glz(—p“))
Ga(p*) Gg(—p*) »A E Ll
_(Gse 0 | [Gsp) O ) = | .|
Lo ey 0 GY-pY T > >
X(EB(P“) S 1p") )( Gi(p*)  GuAp*) ) Ao b
E H 2 —p* G M G’ —p* ' I ]
21(p*) g(—p*) 21(P*) g(—p*) : : Yy
(47)
3 = > b =
where we have introduced the anomalous boson Green: 2% Too P () Tos
functions G1,(p#) and G,4(p*) (defined as the Fourier Y : '
transforms  of Gio(x*,y*)=(&T[$(x*)b(y")]|¢) and P
Gou(x*,y*) = (& T[T (x*) ¢"(y*)1|é), respectively. The ! A
Dyson equation for the fermions takes the much simpler sca: | P
lar form
RER(p") = Twr
Gr(p")=GR(p")+GRp*)Ze(p*)GH(p*),  (48) —
I

whereX (p*) is the proper self-energy for the fermions due

to the interaction with the bosortghe fermionic self-energy FIG. 2. The self-er_1ergies in the ladder approximation, expressed
in terms of theT matrices.

B. The self-energies in the ladder approximation

As we are considering a dilute system, in terms of Feyn- A3 e(p*)=Tge(0,p*,0,p*)Ng. (51)
man diagrams only diagrams with interaction lines between
two systems of connected propagators are impof@he5
(the ladder approximationThis is expressed in terms of the
boson-fermion and boson-bos@mmatrices in Fig. 2, where ~ The boson-fermio matrix Tge can also be represented
the boson-fermiofl matrix Tgg in the ladder approximation recursively, as shown in Fig. 4. If we now transform to
is defined in Fig. 3, the boson-bos@nmatrix Tgg (also in  center-of-mass coordinates,
the ladder approximatigris well known from studies of di-
lute pure Bose systems, and the norrt@ihgona) bosonic
proper self-energy is given by

2g(p*) =Zge(p*) + 2ga(p*). (49

The proper self-energies can thus be determined by add- k= (p5—p4)/2,
ing the proper self-energies of a system of interacting boson%
to those of a hypothetical mixed boson-fermion systemt
where there are boson-fermion interactions o$]. This
result arises from our use of the ladder approximation, and is Bl PR — _
not in general truéthere also exist, for example, inseparable Ter(Ki kg PO =Ulki ko) +
three-legged “ladders” consisting of a boson-boson and a
boson-fermion ladder joined by a common boson leg, but 0~0/pu u
these clearly describe higher-order processEsr such a Xf dkCGa(Pr/2+ k")
hypothetical mixed system, the only self-energies we need to
consider and to evaluate a¥gg(p*) and> (p*), which can
be written algebraically as

C. Bethe-Salpeter equation forT g

P#=p1+p2=pPs+ps,

k1 =(p1—p3)/2, (52

e algebraic form of the equation represented in Fig. 4 reads
i
h(2m)*

fd3kU(kl—k)

X GYPH2—k*) Tge(k“ k& ,P#).  (53)

This is a kind of Bethe-Salpeter integral equation, which we
will now solve recursively for low momenta, stopping at
Jd4kMTBF(pﬂ'kﬂ’pu’kﬂ)Gg(kﬂ), order agg. As the interactions are mstgnt_anecgus, the only

frequency dependence ifge(kf k5 ,P*) is in P° [24,25.
(50 Thus, a contour integration ov&P in Eq. (53) yields

A My= —
Sgr(p*) (2m)°
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b dph

p‘l‘l
vhd (V.1 v hgp g gt — pihplf

oA —qt Apb

N choe Y LA

FIG. 3. The boson-fermiofl matrix.

U(kl_k)TBF(k,kz,PM)0(|P/2_k|_
— _ 3
Ter(ky ko, PH)=U(k;—ky)+ fd P

: 54)
—h2(PI2+Kk)212mg— #2(PI2— k) 2/12me+ u+ i v (

(2m)®

We now express Ed54) in terms of the free scattering amplitudiék, ,k,), by first formally inverting(see Ref[24])

2wh2f(k )= Ulky—ko) 1 f o U(ko—k)2ah?f(ky,k)/m =5
1 2 Y 2m)3 #2k22m—h2Kk22m+iv |
and then exploiting the resulting expression to rewrite (64) as
Tor(ky k PM)—ZWﬁZf(k ko)t — fdfkaWhZf(kk)T (KK, PH)
BFRLR1,R2, m 2,01 (277_)3 m N ETBRURG 2,
o(|P12—k|—k 1
X 0_32 2(| l ° 2 S22 212 Tl (56
AP —h(PI2+ k) 12mg—A“(PI2—K)*2me+ u+iv  AKI2m—Ak2m+iv

For low momenta the vacuum scattering amplitdifle; ,k,) can be expanded to second order in the scattering lengttsee
Ref.[25]):

f(ky,kp)~age—iadek, (57)

wherek=k;=k,— 0. We insert this into Eq56), iteratively substituting Eq(56) into itself, and consistently keeping terms
up to quadratic order imge only. This produces

2

27h - Amhiad;
Tae(ky ky, PH)~ [agr—iageki]+ 7J d3k
(27)°m?

0(|PI2—k|—kg) 1
X 0_ 32 2 2 2 212 21,2 R (58)
AP°—h(P2+ k) 12mg—A“(PI2—K)“2me+ u+iv  AKI2m—A“k2m+iv
ih ¢+ Apt
ol W |
o —-¢ Ap+¢
p’f‘ Ap‘; 1 q 2 q
Tsr = o\/\\V i/ \\\e + FIG. 4. The integral equation foFgg.
o5 A ot -} Aof
Twr
%A o
s 4
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the renormalized second order expansion of the boson-ferfimatrix. The integral can be evaluatéske Appendix Bto
give

2’7Tﬁ2 Zﬁzaé,:kp aépﬁz mBk|2: m2P mBD k|:+ m P/mB+ \/B+ i V/ZaBF\/B
Ter(ky, ko, PH)~ agrt - —2m\D- n :
m 2m?> \ P Mg P | ke—mP/mg— D —iv/2age/D
aé’:ﬁz mBk,Z: m2P mBD kF_ m P/mB+ \/5"!‘ i V/ZaB
T o2 - myD - In : , (59)
2m P Mg P k|:+ m P/mB_ \/B_ | V/zaBF\/B
|
where We now substitut®? for D in Eq. (59), and, after a straight-
forward (if lengthy) integration over, arrive at
5 m L, 2mP° . 2mu (60 - y
= — . mn°a a
Mg+ Mg h %2 ﬁEBF(O)zTBFnF 1+ B; Ff(é)}, (64)
V. PHYSICAL QUANTITIES where

A. Bosonic chemical potential )
3+ 5+ 3(1+0)°(1-6) 1+6

Substituting Eq.(44) into Eq. (50) the equation for f(o)=1- 15 5 n1_5, (65)
> ge(p*) can be rewritten as 86
i 6= (mg—mg)/(mg+mg), and we have used
h3ge(p*)=— 2 )4J d*g* (27) 4 d*k*Gg(k*) = GE(x*,x*)=ing. Note that in this
o

integration we need only consider the real part of the boson-

fermion T matrix, as within the range of the integration the

XTBF((D—Q)/Z.(p—Q)/Z,p”quﬂ)_ (61)  imaginary part is zergsee Appendix B The necessary ex-
q°—Aqg?/2me+i sgriq—ke) v pression for theT matrix is then just given by Eq(59),

where we take the absolute values of the arguments of the

To evaluate this, we substitute ES8) into Eq. (61), and logarithms and set=0. From the Hugenholtz-Pines theo-

first carry out the frequency integral. As the pole in the com-rem[Eq. (46)],

plex q° plane of the integrand in Eq58) is below the real

axis, in order to get a nonvanishing result the pold gt up=h2ge(0)+#A255(0)—A2140). (66)

—hg%/2me—i sgn@—kg) v] " must be above the real axis

(q<kg). The frequency integral is thus readily solved by Thus, using the expression farge(0) in Eq. (64), and the

contour integration. Thi integration in Eq(58) is then very  results from Ref[27] for 25(0) andX%,,(0) (neglecting

similar to that leading to Eq(59). The resulting expression corrections of the order of the boson gas parameter

for 22 ge(p*) is then

47Th2aBB 27Tﬁ2aB|:
1 mB= ng+ Ng

Mg m
| asie-a)

apek
1+ 255 5)

ko

. (67
h3ge(p*)=

3
(2m) This is exactly equivalent to addirig® g(0) to the standard

) mean-field result for the bosonic chemical potential for a

ho?
pure, self-interacting bosonic system.

p-qp-q( , hq®
P+ Pt

X
TBF 2 ] 2 l

(62) B. Ground-state energy density
We wish to similarly solve this integral to second order in ~ To obtain the ground-state energy we simply integrate Eq.
age. In Eq.(59), all terms that depend db have a prefactor  (45):
a3c. Thus, in order to get a result for E2) that is correct E N
. .. . . B
to second order imgg, it is sufficient to use the zeroth order —= J u(ngd)dngd+C(ng), (68
expression foD. Specializing to the case whep# =0 this A
can be written as
whereC(ng) is a quantity that can depend on the fermion

m2 densityng only. Considering the limige— 0, we see that
DO:—BZqZ, (63 C(ng) can only be the kinetic energy for free fermioftke
(mg+mg) Fermi energy densityf) [25], that is,
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FIG. 5. Plot off(68), where §=(mg—mg)/(mg+mg), propor-
tional to the correction to second order dr=kragr to the energy
density functiona[Eg. (74)]. The relevant values df(5) for mix-
tures of *He and'H, °Li and 7Li, 3He and“He, and“K and
87Rb are indicated. Quantities are dimensionless.

3 7%k

C(”F)ZEF:§2—mF

Ng. (69

Substituting this and Eq67) into Eq. (68), and then inte-
grating, gives, finally,

27h?
= EF+ €B+

E
v

agr aprke

Neng| 1+

f(5)}, (70

whereeg= ZWﬁZaBBnélmB is the bosonic mean-field energy
density. Equatior{70) is the main result of this paper, being
the desired extension of the mean-field result @4.

It is illuminating to describe Eq70) in terms of the di-

mensionless gas parameters and the dimensionless ratio

the boson and fermion densities:

PHYSICAL REVIEW A 65 053607

2/3
8
672

E

v °F

207
1+ 1rs (1-9)

I

The corrective term to second order dnis proportional to

the rather complicated functioi{ §), defined in Eq(65), of

the relative mass ratié; the value of this function will thus
vary considerably depending on the masses of the atomic
species used in any given experiment. In Fig. 5 the values for
mixtures of®Li and “Li, and “°K and 'Rb, corresponding to
real experimental configurations currently under investiga-
tion, are plotted, as well as that for a mixture #fle and
“He, also a likely candidate for future investigation in ultra-
cold dilute gas experiments. The value for a hypothetical
mixture of 3He and!H is also shown, as it is almost exactly
the maximum possible. The functidiid) is always positive

in the total rangé¢ — 1,1] of variations ofé. Note that in the
limit mg/mg—o0, one hasé—1 and f(5)—0. Thus the
second-order correction to the boson-fermion interaction en-
ergy and the total boson-boson interaction energy disappear.
This is because if the bosons are infinitely masgisem-
pared to a fixed, finite fermion masghen it is impossible

for them to be scattered out of the condensate, and only the
boson-fermion mean field interaction remains, since all the
bosons can be treated as fltendensatemean field. In the
opposite limit ofmg/mg—0, the situation is different, be-
cause of the Pauli exclusion principle.

In Fig. 6 we compare the mean-field contributidgasand
second-order correctiotb) to the energy functional for a
8Li, “Li mixture, for a range of values of. The plots corre-
gpond to a situation where the scattering lengths
=0.2 nm, age=2.7 nm and the fermion densityz=5.1
X 10 cm 2 are fixed, and compatible with the experiments

o
1+ —f(5) (74)
o

a
J’_ R
372

a=agekKe, (71  described in Ref[14], while the boson density is varied.
Note that for any reasonable boson density, the boson gas
T3 parameterB is indeed very small compared te. In Fig. 7
B=\nedgs, (72 e do the same for &He,*He mixture. In this case the
interspecies scattering length is unknown; however, we con-
= N (73) jecture it to be of the same order of magnitude as the boson-
ng’ boson scattering length. The plots correspond to a situation
whereagg=agr=16 nm, andng=3.1x10* cm 3. These
so that values are compatible with current experiments on meta-
4
02 ?) 3 X110 b FIG. 6. Boson-fermion(solid
line) and boson-boson(dotted
2.5 line) mean-field contributionga)
- 0.15 o ol and second-order correctidh) to
D e the ground-state energy density of
E 01 S1s a BLi, “Li mixture, in units of e,
> g to the ground-state energy density
& o 17 in units of eg. Parameters are
0.05 05 nag=0.001 and nl’agg
‘ =0.000 135" where the di-
0 0 mensionless density ratig is the
0 3 i'(l) 15 20 0 3 ”lrf|) 1> 20 running independent variable.
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a) b)
1.4 - 0.1 FIG. 7. Boson-fermion(solid
line) and boson-boson(dotted
12 . - o
0.08 line) mean-field contributionga)
- ! - and second-order correctigh) to
) 08 < 0.06 the ground-state energy density of
= 0. 5 3H 4 . . .
5 3 a °*He,*He mixture, in units ofg,
S 06 g 0.04 to the ground-state energy density
= 0.4 © in units of eg. Parameters are
002 nPage=0.05 and niags
02 =0.057'%, where the dimension-
okl 0 less density ratioy is the running
0 05 1 1.5 2 25 3 0 05 1 15 2 25 3 independent variable.
m n

stable triplet*He condensategl8,19, and are particularly and for the fermions,
interesting in that the corrections beyond mean field are quite

large (of the order of 10% The true significance of the , 1 [dP 2 h2k2  2mhilage
boson-fermion interaction energy correction will of course CF = el ane =352 "mom Ms
. . : F FIN. v 2mg F
depend on the actual value of the interspecies scattering B
length. We notice that if the latter turns out to be about one 16anck
order of magnitude larger than in the pure fermionic and X1+ 93: Ff(éi) . (79

bosonic caseghis is, for instance, what happens for lithium

mixtures, then the effect of the correction can be as large a . o e
50% of the mean-field prediction. Then, of course, Correc_?Ne notice that the possible instabilities induced by the mean-

tions proportional to the boson gas parameter also have to %eld boson-fermion interaction term in the case O].c a negative
taken into account. value ofagg are countered by the beyond mean-field correc-

tion, since the latter is always positive.
Concerning the structure of the Bose condensate fraction,

C. Other physical quantities, Bose condensate depletion, i addition to the known depletion due to the boson-boson
and induced fermion-fermion interaction interaction, we expect in principle a further contribution to

From Eq.(70) we can readily determine the chemical po- depletion due to the interaction of the bosons with the fermi-

tential for the fermionsug, defined as ons. The depletion is computed in a standard way by inte-

grating the boson propagator for the noncondensed particles

_[9EIV 75 Gg(p*) over the four-momentum. To obtain the boson
i TN V’ propagator we have to solve the Dyson equatién) for
B Gg(p*). This yields
to be ip?
Ga(pH) =|p°+ s—+3g(—p*) —2g(0)+2 0}
K42 2mhag: Aagke g(P¥)=|p 2me B(—P*)—25(0) +2150)
MF:2—+—nB 1+ 3 f(o|. (76 5
mem m o[ o ZeP) s =P
The pressure reads 2
p?
(9E 2 ﬁ2k|2: ZWHZBaBBﬁZ - Z_rnB_EB(O)Jrle(O)
RN N_§2anF mg , i,
BF Sp(p*)+Zg(—pH) 432 M)] (80)
27Tﬁ2aB|: 4aB|:k|: 2 12 p ’

where we have made use of the Hugenholtz-Pines relation.

We then obtain the compressibilities, respectively, for the! N€ total diagonal bosonic self-energys(p*) picks up a

boson-boson and a boson-fermion contributimee Eg.

bosons, . ) ; .
(49)]. It can be easily checked that to first orderigs and in
2 2 2 age the total diagonal bosonic self-energy does not depend
ngi(ﬁ) - 4mNgageh + 2mh aBFnF on the four-momentum. Therefore the diagonal self-energy
Mg\ dNe/_ v m3 MM terms in the boson propagator E@®0) cancel,Gg(p*) is

independent ofge, and there is no depletion of the Bose
condensate due to the fermions to this order, since the con-
tribution of the fermions to the off-diagonal self-energies

4aprke

% 3

1+

f(5)}, (78)
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tion wave. This is the simplest diagram by which two fermi-
ons can interact via the exchange of a bosonic excitation.
x(g") The density_—density response functig(l_q“) is_ i_ndepen-
gFF gFF dent ofagg to first order. This can be easily verified follow-
ing the same line of reasoning described previously in the
analysis of the bosonic propagator. Thus its expression is the
same as in the pure bosonic cdsethis ordey:

hnog?/mg

(9°)2— (hq%/2mg)?— 47 °*noageq?/m3
(85)

FIG. 8. Effective fermion-fermion interaction due to exchange
of boson density fluctuations.

x(g*)=

vanishes anyway in the ladder approximation. The situation
will be different to next order imgg, as in this case the total ~ The vertexggr can be determined by considering the lim-
diagonal bosonic self-energy will depend on the four-iting expression fory(q*) asq“—0. In this case the expres-
momentum. However, the calculation Bf(p*) to second sion for the diagram given in Fig. 8 must reduce to the ex-
order in the boson-fermion scattering length at nonzero fourpression given in Eq(84). It follows that
momentum involves the evaluation of integrals that cannot o (2
be carried out analytically in a straightforward way. In con- Th"agr
clusion, in the pres)ént si%/uation, Wegwill consider %/he deple- 9rFF= m [1+41(9)ageke/3]. (86
tion due to the bosons only, which is well know24,25:

Then the induced interaction potential in the static cage (

8 [nga; =0) reads
nB_n0=§ iTBnB. (81)
Anhi*ald 1+ 4f(8)agekd/3m]?

We now turn to a discussion of the fermion-fermion inter- Uina(0.0)= = m2
action induced by the presence of the bosons. Subtracting the
bosonic contribution from the energy density, we get No

(87)
E

;,  €EB™ €F

v 1

X .
207 20y f(9) ) hq2/4mB+4wh2n0aBB/mB
3110 3m1re) # ¢

In real space this is

(82

2 2 2
This describes the first three terms of a power expansion in U d(OQ):4h MgNoage 1+ 47(5)ageke/37]
a, of exactly the same form as that of an imperfastpo- ne m?2
larized Fermi gas, although clearly with different coeffi- Bl
cients. There is thus, as expected, an induced fermion- xe\‘ 89)
fermion interaction, which can now be computed by r -’
exploiting the expressions that we have derived for both the
bosonic and the fermionic chemical potentials. This will where
yield a modification of the known induced fermion-fermion
interaction previously discussed in the mean-field approxi- 2= 1 (89)
mation [17]. The expression for the induced interaction at 8mnpag’
zero energy-momentum transfer,,(q#=0) is

We observe that, compared to the mean-field regLif,

B g g g\ ? ang while there are quantitative modifications in the prefactors,
Uina(@#=0)=-—| ———=—|-—] ——, (83  there is no qualitative change in the form of the induced
INg INg dNg/ dug . > . . .
] interaction, i.e., we still have an attractive Yukawa potential.
o Modifications in the analytic form of the induced fermion-
which in our case reads fermion interaction potential will appear only once second
) o 13 2 order effects in the boson-fermion scattering lengg to
U (qh=0)=— Amh (11— 6%) " a the depletion of the Bose condensate are included.
ind( 4" =Y) = mek(672) Y323
VI. DISCUSSION AND OUTLOOK
X[1+4f(5)al3m]. (84

In summary, we have determined ground-state properties

The extension to finite momentum transfer is achieved byf a homogeneous system of bosons mixed with spin-

introducing the boson density-density response functiorpolarized fermions at zero temperature. We have calculated
x(g*), and is represented diagrammatically in Fig. 8, wherehe boson-fermionT matrix and the corresponding self-

two fermions interact by exchanging a boson density fluctuaenergies. We have then shown how to incorporate the effects
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fraction and the induced fermion-fermion interaction. To pro-
vide more quantitative predictions for these quantities, as  APPENDIX A: NORMAL ORDERED PRODUCTS
well as for the BCS transition temperature, we will need to AND THE VACUUM STATE
compute in detail the corrections to second order in the ] )
boson-fermion scattering length. Results of this analysis, !f We expand the field operators in terms of momentum
which go beyond the scope of the present paper, will appeaﬁ"genStates we get
in a forthcoming work, together with a detailed numerical 1
analysis of the conditions for stability and for phase separa- ci)(x): —
tion. Collective modes, effective fermion mass, and excita- W
tion spectra fully evaluated to second order in the boson-
fermion scattering length will be discussed as well.

Extensions of the formalism developed in this paper can
be made in different directions. First, one can consider un-
polarized spin-1/2 fermions. Calculations are very similar towith
the present situation with the main difference that one has to
include the effects of the direct interactions of fermions with
different spins. This would correspond to having a third scat-
tering lengthage. As in the previous case, we expect that in
the two-particle scattering approximation the energy contri-
bution for a pure fermion system of spin-1/2 fermions is
simply added to Eq(70) in this case(and of course, the
Fermi momentum has to be modified approprigtely

The formalism can also be extended to consider finite y _i A aikox

| Ya(X) = ; b, (A5)

temperature. As in the case of pure bosons we expect con- V [K[>ke
siderable difficulties near the critical temperature. Well be-
low that temperature, however, we expect no major compli{n terms of the bosonic and fermionic occupation number
cations and the calculations will be similar to the presennperatorsl\lg(k)=alak andNF(k)zblbk the ground state of
case, except that boson loops will have to be taken into adhe noninteracting systeig,) can be characterized by
count and frequency integrals will have to be replaced by

o 1. “
; ake'k'x=\/—vao+ d(X), (A1)

W (x)= > be= W0+ i(x),  (A2)

<l

1 )
_ ik-x
(x)= N ‘k%o e, (A3)

<

g 1 fTa—ik-x
wl(X):\/_VlkSkF bre ™7, (A4)

Matsubara frequency sums. Ng(0)|&0)=Ng|&o), (A6)
A very important and natural possible extension is the .

investigation of inhomogeneous, e.g., harmonically trapped, Ng(k)|&)=0 for |k|>0, (A7)

systems. This can be done by augmenting the existing mean- ~

field calculations via the correlation terms in local density Ne(k)|éo)=€0)  for [K|<k, (A8)

approximation. To this end, the results obtained in the R

present work are needed. The method and the full numerical Ne(k)[€0)=0 for |Kk|>ke, (A9)

procedure will be described in a forthcoming paper.

Finally, higher-order corrections may be computed in
principle. These higher-order terms will also involve the
bosonic gas parameter as well as three-particle correlation
and thus expansions like E(0) will not reduce to sums of
terms, where only one scattering Ie_ngth appears atatime, but |£,)=|Ng,0,0 ...)s®[1,1,...1,1,0,0... )¢, (Al0)
will include also terms that contain products of powers of
both scattering lengths. To even higher orders nonuniversavhere the subscrif refers to the boson Hilbert space ahd
properties like the parameters describing the shape of thi® the fermion Hilbert space. The change from 1 to O in the
interaction potentials will become important and will have tofermion state happens &g. Additionally,
be taken properly into account, as has been recently done in

the pure bosonic cag@1,47. B(N)|€0) = 1(X)| &0y = ha(X)|E0)=0. (A1)

whereNg is the total number of bosons, which in this case
coincides with the number of zero-momentum bosbhs
Bose-Einstein condensatén occupation number represen-
ation we thus have
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In this sense the ground state can be regarded as the vacuum [B(x.1),dT(x' t’)]=<§o|?i>(x tyd(x’ t)[ &)
state with respect to fermions excited above the Fermi sea, Y ’ ' ’ '
the fermion holes below the Fermi sea, and the nonconden-

sate bosons. (i (X 1) D)= (£l T (X 1) (x,1)| &),
The normal product is defined on pairs of creation and (A13)
destruction operators:
P BTX ) =BT ) B(x), {000, PO = (&P (DT T(X 1) &),
PO PR ) = =P P, and all other(antjcommutators are zero. With EqéA12)
(A12) and(A13), the contractions of Eq37) can be readily evalu-
ated.

PO P X ) =Y (X ) B(xb),

TG BT ) =BT ) (), APPENDIX B: EVALUATION OF THE T MATRIX AND
COUPLING CONSTANT RENORMALIZATION
for j,ke{1,2}. For all other pairs of creation and destruction
operators the normal product is the same as the ordinary
operator product. It can also be readily determined that We define

1. The first integral 7

0(|PI2— k| —kg)

I= f d3k —.
hPO—#2(PI2+K)?/2mg— 2 (PIl2—K)2/2me+ w+iv

(B1)

Transforming the integration variables R62—k gives

I:f K 6(|k|—kg) (82)
#2k212m—h2P-kimg— PO+ 2P 2mg— u—iv

Setting a=#2%/2m, b=#?P/mg, and E=-#P° 8mmk, 4mmke w [Mgk? m2P
+#2P?/2mg— u and transforming to spherical coordinates, lim Z=— + +— -—-2m/D
- h? n2 a2\ P Mg
we get ke—
mgD |  Ket+mP/mg+ /D +iv/2a\D
K¢ T - n .
Zzzwf dksz' désing ! P/ ke—mPImg— D —iv/2a\D
Ke 0 ak’—bkcosp+E—iv 5
o mBkF mZP mBD
2m [k ak’—bk+E—iv 2P e +2myD-——
oy U (B3) °
b Ji ak?+bk+E—iv
ke—mP/mg+ /D +iv/2a\D
XIn - , (B5)
where we will ultimately consider the limik,—o. Using ke+mP/mg— D —iv/2ayD

D=(b/2a)>—E/a we can approximate for smal (if D . . -
£0: the caseD=0 can be treated similarly and gives the where outside the logarithms we have taken the limit0

same answer as taking the linDt— 0 at the very end (simply settingy=0), and we have made use of the identity
lim 2| 1+alx ) 5
k+mP/mg+ VD +iv/2ayD M " rx ~ % (B6)

X— 00

I ZWmekcdkk
=— n
72P Jke k—mP/mg— D —iv/2a\D

k+mP/mg— D —iv/2a\D
n
k—mP/mg+ D +iv/2a\D

for the limit k;—<. There remains an ultraviolet divergent
term; the boson-fermiom matrix [Eqg. (58)] is, however,
: (B4) ultimately renormalized by the second integral.
The real part of. is readily evaluated in the limit— 0 by

settingr=0 and using the absolute values inside the loga-
The integral can be solvdd6] to give rithms:

+1
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) 8mmk, 4mmk: mBk2 m2p 2. The second integral7
llllinoReI: - ﬁ2 + ﬁZ + ﬁ P mB We define
1
mBD) (k,:+mP/mB)2—D’ 27m j:_f d3k
- | - D 21,219 £ 212 .
P (kF—mP/mB)Z—D’ 52 \/— hoki2m—#k2m+iv
4 (ke k2+ivia
(ke+ D)= (MP/mg)?| ST - 2 B12)
i 2_ 2 (B7) a Jo K2~k ~ivia
(ke— VD)2~ (mP/mg)?| :

h | | d lar d where as befora=72/2m, and we have transformed to po-
Using the identity(easily evaluated by polar decomposi- lar coordinates and integrated over the angle variables. The

tion) integral can be evaluatdd6] to give
a+iv [0, sgrfa)=sgr(b), _4mk 2w ket VK2 —ivia
lim Im] B m - —”
iy {w, sgria)#sgrib), 0 m'” 2_j
v—0 ki—iv/ia
the imaginary part of in the limit v— 0 can be evaluated to Jk ? |,,/a
be +—\/kl ivlaln——— (B13)
— \/k —iv/a
mgk?2  m?2P
lim Im Z=— ( o ———2m (B9 ~ Wethenuse
v— B
° ket JK=ivla
if D>0 andke<|mP/mg—\DI; o e —iia " (B14)
47°my\D to get
ImimZ=— —2\/— (B10) J
v—0 h . 8’7kac . 47T2mk1
limJ= o i TR (B15)
if D>0 and|mP/mg— VD|<ke<mP/mg+D; and -0 h h
imimZ=0 (811  !fwe now take the sum of Eq¢B5) and(B15), the ultravio-
) let divergent terms cancel exactly. The resulting expression
for Z+ J can then be substituted into E&8) to get Eq.(59)
if D<O or ke>mP/mg++/D. for the renormalized boson-fermiGhmatrix.
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