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Abstract. The analysis of the output from a large-scale computer sim-
ulation experiment can pose a challenging problem in terms of size and
computation. We consider output in the form of simulated crop yields
from the Environmental Policy Integrated Climate (EPIC) model, which
requires a large number of inputs - such as fertiliser levels, weather con-
ditions, and crop rotations - inducing a high dimensional input space. In
this paper, we adopt a Bayes linear approach to efficiently emulate crop
yield as a function of the simulator fertiliser inputs. We explore emula-
tor diagnostics and present the results from emulation of a subset of the
simulated EPIC data output.
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1 Introduction

The use of computer simulations to model complex systems has become increas-
ingly popular, with applications spanning many areas of scientific study. The
Environmental Policy Integrated Climate (EPIC) model [1] is one such exam-
ple, constructed to explore and simulate the behaviour of various crops over
time in response to key inputs such as crop rotation, fertilizer levels, land man-
agement, weather conditions, and other environmental variables. Consideration
of the simulator behaviour in response to such a large number of inputs is a
challenging and high-dimensional problem. An effective strategy to model such
simulator output is through the use of an emulator, which acts as a statistical
surrogate for the computationally expensive computer simulation. In this paper,
we explore emulator construction and diagnostics for a subset of output from
the EPIC simulation, with a view to developing our understanding of yield trend
corresponding to fertilizers inputs.

2 The Simulator

The scope and scale of EPIC’s behaviour and outputs are quite complex, encom-
passing: (i) crop rotation - the sequence of crops planted and harvested during
the run of the simulation; (ii) fertilizer inputs - the levels of nitrogen and phos-
phorous applied during the simulation; (iii) land characteristics - encapsulated
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in the form of different soils and land steepness; and (iv) weather - while not an
input that can be controlled, a variety of historical weather scenarios are applied.
Evaluation of the simulator then outputs a time series of various attributes re-
lating to the crop and land conditions throughout a 60-year simulation. For this
analysis, we focus on the annual reported yield for each of the crops of interest,
thus our simulated data reduces to the form of a single simulated yield for each
combination of input variables. For our analysis, we will focus on the continuous
fertiliser inputs of nitrogen (N) and phosphorus (P ) levels, which were simulated
over a discrete grid of values, each with 13 values over [0, 100]. Thus, for a given
crop and fixed combination of land and weather variables, we obtain a grid of 169
simulated yields, Y , in response to N and P . Examples of such yield responses
are shown in Fig. 1, plotting only the marginal response of spring barley yield
to N . We note the common feature of a monotone increasing yield in response
to increased fertilisation, however, we observe a number of simulations deviate
from this expected pattern being either constant or changing suddenly.

Fig. 1. Left panel: Line plot for the 1250 unique combinations of spring barley data
with respect to nitrogen fertilizer; Right panel: Line plot for 15 different small unique
combinations to assess the clear trend of the data.

3 Methodology

3.1 Bayes linear methods

In Bayesian inference, data is used to update beliefs about random quantities
of interest - typically represented via probability distributions. The Bayesian
approach typically combines a parametric model for the data in the form of the
likelihood with a prior probability distribution over the model’s parameters to
produce a posterior distribution for those parameters given the data. This fully
probabilistic approach poses a number of practical challenges: the first being
making a meaningful prior specification, and the second being computational
issues in obtaining or simulating from the posterior distributions.

An alternative approach follows the concept of de Finetti [2], where we con-
sider belief specifications in terms of expectation rather than probability. This
is known as a Bayes linear approach, and it operates based on means and vari-
ances. The fundamental Bayesian update can then be compactly expressed by
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the following two equations [3]:

ED[B] = E[B] + Cov[B,D]V ar[D]−1(D − E[D]) (1)
V arD[B] = V ar[B]− Cov[B,D]V ar[D]−1Cov[D,B] (2)

where prior beliefs about random quantities B are updated given data D. A
key advantage to this approach to Bayesian inference is the elimination of the
need for complex sampling schemes to investigate the posterior distributions,
as posterior means and variances can be found directly via the equations above.
Additionally, without the need to specify full distribution forms for our priors the
task of the prior specification is also less complex. However, the key consequence
of this and the primary limitation of this approach is that we have potentially
sacrificed the richness of the information provided by operating with probability
distributions.

3.2 Emulation

For our problem, we will treat each collection of simulated yields as functions of
N and P . As the functional form of the simulated yield response to N in Fig. 1 is
not consistent with a single parametric model, we will use a statistical emulator
to model the relationship between the inputs from the simulator to the outputs.
The general form of an emulator is based around a combination of a regression
surface with correlated and uncorrelated errors as follows:

f(x) =
p∑

i=1
βigi(x) + u(x) (3)

where
∑p

i=1 βigi(x) represents the mean function in a regression form, expressed
in terms of the input variables, x. The parameters βi are unknown scalar regres-
sion coefficients corresponding to the regression basis functions for the active
inputs gi(x). The final component is then u(x), which is a zero-mean weakly
stationary process to explain additional variation around the mean function in
terms of x. To complete the model specification, we require a covariance function
for the residual process u(x), which typically has a Gaussian form:

Cov[u(x1), u(x2)] = σ2 exp[−θ|x1 − x2|2] (4)

for any pair of inputs x1 and x2, with a correlation length parameter θ and
variance σ2. To construct our Bayes linear emulator [4], we structure the mean
function as a simple regression in terms of the simple basis [1, N, P ]. Thus, from
the equation (3) we can write as E[f(x)] = E[β0]+E[β1]N+E[β2]P , in terms of
three regression coefficients β0, β1, β2. Prior expectations and variances for these
coefficients and σ2 were assigned to the corresponding least-squares estimates
over the training data set. The correlation length parameters for N and P were
assigned to a value of 0.015 after investigation via cross-validation, and to reflect
a common level of smoothness of yield in response to both inputs.
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3.3 Emulator diagnostics

To assess the quality of our emulator, we can compute various diagnostics. First,
the resolution [4] of the Bayes linear update can be expressed as,

RD[f(x)] = 1− V arD[f(x)]
V ar[f(x)] (5)

The resolution lies between 0 and 1, and functions much like a classical R2 where
that resolution values close to 1 indicate a high proportion of the variation has
been explained. Secondly, the standardized prediction errors (SPE) [4] for a
simulation value Y with corresponding inputs x can be expressed as,

SPE = Y − ED[f(x)]√
V arD(f(x))

(6)

Large values of SPE indicate a clear conflict between the emulator and simulator,
indicative of deficiencies in the fit of the emulator or surprising simulator output
values. In general, values of (6) of absolute value greater than 3 are used to
identify such problems [4].

4 Results and Discussion

For our analysis, we present results from a subset of crops, namely maize and
spring barley. For each crop, our simulations are structured we have 1250 sim-
ulations of yield corresponding to different simulation conditions, each of which
explores a 13Ã-13 grid of combinations of the two fertiliser inputs, N and P . Fo-
cussing on a single grid of simulated yield, we construct a Bayes linear emulator
based on a simple regression (3) and a correlated error with covariance function
(4) using 80% of the available data, reserving the remaining 20% for testing and
diagnostics.

The emulator is updated from the training data via the Bayes linear formulae
(1) and (2), with results shown in Fig. 2. The left and centre panels show the
emulated mean maize yield and its associated standard deviation as functions
of N and P . We note that the crop yield is increasing with increasing Nitrogen
levels, though the effect of Phosphorous is much less pronounced and arguably
only important when levels of Nitrogen are low. The standard deviation plot
highlights low levels of uncertainty in mean maize yield around the locations for
which we have simulations, with uncertainty increasing as we move away from
these points. The right panel shows the emulated mean yield for spring barley,
where we note that the weak dependency on Phosphorous has now disappeared
entirely and the crop yield appears insensitive to values of P .

Diagnostic plots for the emulation of maize yield are given in Figure 3. The
plot of the emulator resolution (left) displays high values (greater than 0.7)
over much of the space, indicating the emulator has explained much of the data
variability. The blue regions of low resolution indicate locations corresponding
to the test data, which were not used for emulator fitting, hence little data was
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available to reduce the variance in these locations. Standardised prediction errors
are shown in the centre and right panels of Fig. 3, and we note that all points
lie within Â±2, suggesting a high degree of consistency and agreement between
emulator and simulator.

Fig. 2. Left: emulated mean maize yield as a function of Nitrogen (x1) and Phosphorus
(x2); middle: emulator standard deviation for maize yield; right: emulated mean spring
barley yield.

Fig. 3. From left to right: plot of resolution (5) of the Bayes linear update; standard-
ised prediction error for test data on the maize yield emulator as a function of N ;
standardised prediction error for test data on the maize yield emulator as a function
of P .

5 Concluding Remarks

Emulation is an effective tool for modelling computer simulations, where a para-
metric model of the simulator’s response to changes in inputs may not be known
a priori. For data such as these EPIC simulations, the shape of the yield re-
sponse was not consistent between simulations necessitating an emulation-based
approach where the yield response could be determined from prior information
and the simulation output itself. A fully Bayesian approach would require dis-
tributional specifications for each of the parameters in such an emulator and
simulation-based methods for any subsequent inference, which becomes chal-
lenging when dealing with computer models with large numbers of outputs. For
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our analysis, we adopted a Bayes linear approach which simplified the compu-
tation and complexity in fitting the model substantially, while still providing
a powerful tool for modelling and analysing the computer model output. Ad-
ditionally, the emulator’s quality and performance can be readily assessed and
monitored through the use of appropriate diagnostics. Looking ahead, a natural
progression from this work is to broaden the input space and consider the ef-
fects of the entire collection of simulator inputs - including both continuous and
categorical variables.
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6 Appendix

6.1 R code for Bayes Linear Emulation

R code implementation of our methods is available at https://sites.google.com/
d/1siopGfjK_btE99h2TU2BGfwzgEn8szeA/p/1NjQxo2ti4d23Hc8zIeXP0Py0NsXVzHpK/
edit.
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