510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,

MAY 2002

Bayesian Graphical Models
for Software Testing

David A. Wooff, Michael Goldstein, and Frank P.A. Coolen

Abstract—This paper describes a new approach to the problem of software testing. The approach is based on Bayesian graphical
models and presents formal mechanisms for the logical structuring of the software testing problem, the probabilistic and statistical
treatment of the uncertainties to be addressed, the test design and analysis process, and the incorporation and implication of test
results. Once constructed, the models produced are dynamic representations of the software testing problem. They may be used to
drive test design, answer what-if questions, and provide decision support to managers and testers. The models capture the knowledge
of the software tester for further use. Experiences of the approach in case studies are briefly discussed.

Index Terms—Bayesian graphical models, expert judgment, knowledge capture, software reliability, software testing, statistical

methods, test design.

1 INTRODUCTION

N a recent article, Redmill [17] discusses a number of

deficiencies of available software testing approaches. For
example, he states that “testing can prove imperfection by
finding a single fault, but it cannot prove perfection” and
“given that we can never prove perfection, we want to
avoid testing beyond the point of significantly diminished
returns—while still achieving the desired level of con-
fidence.” He emphasizes that testing is a risk management
activity where “we need to choose test cases carefully, to
achieve the necessary coverage while avoiding replication.”
According to Redmill, “there is no definitive answer to the
question of what is the minimum level of testing needed to
secure the desired level of confidence. In fact, usually there
is no knowledge of what level of confidence is desired.
Indeed, the issue is almost never addressed.” The Bayesian
graphical model (BGM) approach presented within this
paper provides a natural logical and probabilistic frame-
work to software testing which allows all these issues to be
resolved.

The theory of BGMs [3], [10], [13], [16], [24] has led to
many new applications of uncertainty modeling, in parti-
cular, to complex problems where a large number of factors
contribute to overall uncertainty. BGMs derive from
Bayesian statistical methodology, which is characterized
by providing a formal framework for the combination of
data with the judgments of experts such as software testers.
For the application area of software testing, we demonstrate
how the problem should be structured and how the
resulting models may be used. We illustrate the methodol-
ogy with case studies arising from applying the approach to

o The authors are with the Department of Mathematical Sciences, University
of Durham, Durham, DH1 3LE, UK.
E-mail: {d.a.wooff, michael.goldstein, frank.coolenj@durham.ac.uk.

Manuscript received 13 Dec. 1999; revised 9 Apr. 2001; accepted 23 Aug.
2001.

Recommended for acceptance by |. Bechta-Dugan.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 111102.

large-scale software testing problems for a major UK
company.

In Section 2, we briefly present the mathematical theory
underpinning the approach. Our presentation throughout is
targeted at the software testing community so that we limit
statistical technicalities as far as is practicable. In Section 3,
we describe practical aspects of the BGM approach,
including the structural modeling and the assessment of
the relevant probabilities. In Section 4, we describe the use
of the BGM for testing and sensitivity analyses. In Section 5,
we summarize the application of the methodology to two
case studies. Finally, in Section 6, some related issues are
briefly discussed.

1.1 Uncertainty in Software Testing:
Related Approaches

General issues in software reliability have attracted atten-
tion from statistical researchers: Overviews and references
can be found in [12], [22]. However, much of this work
attempts to fit problems related to software reliability
within existing mathematical frameworks rather than
attempting carefully to model the actual uncertainties
occurring in software testing and the process of learning
from tests. We make case studies central to the development
of the methods described in this paper as the emphasis of
our approach is in modeling the actual testing process and,
thus, contributing to better testing.

Yamaura [27] describes the relevance of careful docu-
mentation of test cases. One advantage is the possibility of
repeating the same tests, perhaps by another tester. Two
further stated advantages are easy validation of the quality
of the test cases and estimation of the quality of the target
software. However, Yamaura does not specify how to
perform such validation and estimation. These issues and
requirements are clearly addressed by the BGM approach.
Another important test advocated, but not described, by
Yamaura is a 48-hour continuous operation test, which is
aimed at revealing faults related to memory leakage,
deadlock, and connection time-out. We acknowledge the

0098-5589/02/$17.00 © 2002 |IEEE
Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

WOOFF ET AL.: BAYESIAN GRAPHICAL MODELS FOR SOFTWARE TESTING

importance of such testing. It requires sophisticated model-
ing, but can be handled by the BGM approach. However,
we do not discuss this further in this paper.

Smidts and Sova [23] present another approach for
software reliability quantification, placing the functional
architecture of the software centrally in their model. They
suggest that their model “encourages a testing philosophy
directed toward the triggering of failure modes and
removal of related faults,” but they do not provide further
guidelines for testing at the input partition level. It would
be interesting to consider if such, or related, models could
be used in the process of creating BGMs for software
testing.

Frankl et al. [5] identify two main goals in testing
software: to achieve adequate quality (debug testing) and to
assess existing quality (operational testing). The objective for
debug testing is to probe software for defects so that these
can be removed. The objective for operational testing is to
gain confidence that the software is reliable. They examine
the relationship between these testing goals via a probabil-
istic analysis in which the effectiveness of testing is based
on the reliability of a program after testing. Both approaches
are based on subjective arguments: Debug testing relies on
insights on where faults are likely to be; operational testing
depends on knowledge and assumptions on operational
profiles. Both approaches have advantages, depending on
the practical situation, and both depend on partitioning of
the input space. The BGM approach also requires partition-
ing the input space. Our partitioning is driven by focusing
on differing software actions (SAs), which we regard as
essential to test complex software. Frankl et al. carefully
discuss the difficult problem of defining “faults” that are
responsible for failures and suggest avoiding the term
"bug” because of its often vague definition. They conclude
that a formal treatment of “faults” is not available and
suggest using “failure regions” of the input space, where
one such region is a set of failure points that is eliminated
by a program change. We stay close to this in our analysis
by probabilistically tracking back an observed failure in the
graphical model to see to which specific SA the cause of
failure is likely related, to guide attempts to fix the fault.
Detailed operational testing enables a statistical analysis,
when based on a large number of tests, of the reliability of
the software in operation. While we support such testing
whenever possible, resource constraints for our applica-
tions, together with vague knowledge about operational
profiles, often prevent us from applying such testing.
However, some aspects of operational profiles are reflected
in utilities which influence the design of test suites.

One aspect shared by most practical software testing
approaches is partitioning of the input domain into
subdomains such that any input in the same subdomain is
considered to have the same effect on the system. The
testing task then becomes the task of selecting at least one
representative from each partition. The art of testing then
becomes that of defining the partitions. Such partitions can
be created either from a black-box (see [4]) view of the
system utilizing knowledge of the software requirements
and specification, through a white-box view utilizing a
structural analysis of the code, or by a combination of these

511

two views. While there are a number of techniques that can
be used, the process is often thought to be still fraught with
difficulties and problems [7], [8], [25], [26]. Hierons and
Wiper [9] discuss the estimation of failure rate on the basis
of both random and partition testing. Again, their work
depends strongly on an assumed operational profile. In our
approach, we also partition the input domain using groups
of similar inputs, where the similarity is a subjective
assessment with regard to the software actions shared. We
carefully discuss how this is executed and the effects actual
tests have on our confidence in the quality of nontested
inputs, both in the same subdomain as tested inputs and in
other subdomains.

Regression testing is the process of testing a program
after changes have been made to it to ensure that the
changes have been effective and have not introduced
further faults. For such testing, there already exists a set
of prior test cases. It is not usually an option to rerun all of
these tests, so some method for regression test selection
needs to be devised. Rothermel and Harrold [19], [20]
evaluate current regression test methods. All of the
methods analyzed are based on information about the
source code before and after modification and yet none of
the methods attempt to capture expert knowledge about the
software and the tests. Regression testing is not explicitly
addressed in this paper, but is deferred to a subsequent
report in which we will demonstrate formal logical and
probabilistic mechanisms for regression testing within the
BGM approach and which enables a routine and automatic
treatment of regression testing.

Many statistical methods have been suggested or used in
attempts to create better software. Burr and Owen [2]
describe the possible use of methods from classical
statistical quality control, although the adaptation to soft-
ware problems is rather vague. Our first case study was far
too complex to allow any standard classical statistical
methods to be used in a straightforward fashion and this
appears to be typical for testing problems. Singpurwalla
and Wilson [21], [22] give overviews of an active area of
statistical research in software reliability. Mostly, these are
contributions to the theory of stochastic processes, linking
reliability metrics to assumed behavior of processes with
which failures occur, both while testing and in operation.
They also discuss testing aspects related to such assumed
models. While such approaches are potentially interesting,
it seems that direct application is currently only possible to
software of rather restricted complexity.

A classical approach to experimental design can be
useful in some software testing situations when choosing
test suites. Dalal and Mallows [4] discuss factorial designs
which seem promising for smaller applications. In complex
situations, such as our first case study, straightforward
adaption of their approach is not feasible. Our automatic
test design algorithm (Section 4.2) uses simple stepwise
methods to arrive at efficient test suites according to
appropriate criteria. These methods offer a great improve-
ment on current practice, although there is scope for
refinement, which is the subject of ongoing research.
Compared to the approach by Dalal and Mallows, an
advantage of our approach is that it insists on proper

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

512 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,

structuring and delivers outputs which make testing of
functionality in multiple areas both feasible and desirable
and that these outputs drive appropriate experimental
design. The nature of our case studies is such that we treat
the software being tested as black-box in that the structures
relate to the detailed knowledge of the tester. If detailed
code analysis information is available, it can be embedded
in our approach.

BGMs, also called Bayesian belief networks (BBN), have
been applied to different problems on software quality. Neil
and Fenton [14] use them to predict software quality, taking
into account a diversity of factors such as effort and
complexity of design, skills of people involved in the
process of development and testing, and costs. While this is
an interesting approach to give an overall idea of the
density of defects in a piece of software, these BBNs are not
aimed directly at assisting testers. The most typical use of
BBNs in this application area is in inferring models for
reliability from large databases. The SERENE project
(http://www.hugin.dk/serene/) presents interesting
applications of BBNs in the area of safety and risk
evaluation and some of the work within this project also
takes software into account [1], albeit without actual
support at the test design level. Our usage of BGM rather
than BBN reflects the terminology used in the wider
statistics literature and helps to emphasize that our BGMs
model testers’ judgments and are not the results of inferring
models from large databases.

2 THe BGM APPROACH TO SOFTWARE TESTING

2.1 Introduction

Suppose that the function of a piece of software is to process
an input number, such as a credit card number, in order to
perform an action and that this action might be carried out
correctly or incorrectly; for example, the action might be to
check whether the account corresponding to the number is
in credit. The various tests that we may run correspond to
choosing various numbers and checking that the software
action (SA) is performed correctly for each number. Usually,
we will not be able to check all possible inputs, but instead
we will check a subset from which we will, hopefully, be
able to conclude that the software is performing reliably.
Already we can see that, whether we quantify the
uncertainties or not, a subjective judgment must be made
about the functionality of the software over the collection of
all inputs that have not been tested. Therefore, we must
choose whether we explicitly quantify the uncertainties
concerning further failures given our test results or whether
we are content to make a purely informal qualitative
judgment for such uncertainties. In many areas of risk and
decision analysis, uncertainties are routinely quantified as
subjective probabilities representing the best assessments of
uncertainty of the experts carrying out the analysis. In this
paper, we will argue the benefits of quantifying and
analyzing our uncertainties for software failure as sub-
jective probabilities. Such an analysis involves a certain,
possibly substantial, investment of effort on our part in
thinking carefully about our prior knowledge. However, the
reward from this investment is that we may make precise
probabilistic statements having seen the test results which
describe our confidence in the functionality of the software,

MAY 2002

rather than making an informal guess as to what the result
might be of carrying out the exact calculations. We may also
gain further advantage from the practical uses of the fully
specified probabilistic model, which may play a central role,
for example, in risk management for the software release
and as a decision support tool for creating and analyzing
proposed suites of software tests.

If we accept that, in principle, the probabilistic analysis is
the correct way to proceed, then we must consider, first,
whether the work involved in constructing the belief model
is worth the gains in precision that we may obtain and,
second, whether this analysis requires the tester to make
judgments that are beyond his ability to make. The first
question is strongly context dependent as it takes the same
amount of effort to build the probabilistic description if the
consequences of software failure are negligible or if they are
catastrophic. In a further paper, we will show how to adjust
the level of detail in the formal analysis to its potential
benefit. We will address the second question by showing
how uncertainties for software failure may be system-
atically modeled in the form required for a probabilistic
analysis of the testing process.

The simplest case occurs when the tester judges all
possible test results to be exchangeable. This expresses the
judgment that we have no information about the differences
in software reliability for different subsets of the numbers.
Thus, the subjective probability that an individual test will
succeed is the same whichever number is chosen to test, the
probability that any pair of tests will both succeed is the
same whichever pair of nonidentical numbers is chosen to
test, and so forth.

Qualitatively, exchangeability is a simple judgment for
the tester to make: Either there are features of the set of
possible inputs which cause him to treat some subsets of
test outcomes differently from other subsets or, for him, the
collection of outcomes is exchangeable. In this example,
suppose that the software is intended to cope with both
short and long numbers (in one of our case studies, number
length could be anything from 8 to 16 digits) and that he
judges test success to be exchangeable for all short numbers
and test success to be exchangeable for all long numbers; for
example, it might be that the first release of the software
only dealt with credit cards with short numbers, but, in a
subsequent release, cards with long numbers have also been
incorporated.

As we increase the complexity of the example, it becomes
increasingly important to have methods for systematic
description and analysis of the uncertainties that arise. We
will use BGMs for this purpose. These models provide a
flexible and powerful way to organize the belief modeling,
quantification, and analysis for software testing. We now
describe how such graphical models may be constructed.

2.2 Modeling a Software Action

In our example, suppose that we are primarily interested in
the probability of the event N, that the software contains no
faults. We decompose this event by considering the two
overlapping events, S, that at least one of the short numbers
is processed incorrectly and, L, that at least one of the long
numbers is processed incorrectly. We wish to model our
beliefs over S, L, N and we intend to use a BGM.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

WOOFF ET AL.: BAYESIAN GRAPHICAL MODELS FOR SOFTWARE TESTING

513

Fig. 1. A Bayesian graphical model showing the structure underlying the handling of number faults and judgments as to the causes and their

relationship.

In a BGM, we represent each uncertain event by a node.
Some nodes may be joined by directed arrows. If a directed
arc goes from node A to node B, then node A is termed a
parent of B and node B is termed a child of A. We term
node A a root node if A has no parents. Node B is a
descendent of node A if there is a directed path from A to B.
Informally, a directed arc from node A to B indicates that
the probability for node B is influenced by the value of
node A. More strongly, the collection of parents of a node
determines the probability at the node in the following
sense: For any pair of nodes B and C which are connected
via parent nodes, if we specify the outcomes of all of these
parent nodes, then B is conditionally independent of C.

To construct a graphical model, we draw a directed,
acyclic graph to represent the qualitative relationships
between the nodes. We then quantify all of the probabilities
for the events in the graph as follows: First, we determine
the probability of occurrence of each event represented by a
root node. Second, for each child node, we determine the
probability of occurrence of the event represented by the
node conditional on the occurrence or nonoccurrence of
each parent of that node. These specifications determine the
probabilities for all combinations of events represented on
the graph. Because the full joint probability distribution has
been specified, each time we observe an event (for example,
the success of a software test), we may update all of the
probabilities for all of the remaining events in the model
(for example, the event that there are no faults in the
software) by probabilistic conditioning. Further, because of
the structure of the graphical model, it is straightforward to
carry out such belief updating, even for large models, using
principles of local computation. General treatments of
BGMs can be found in [3], [10], [13], [16], [24].

In our example, we have three events, S, L, and N. One
way to think about the relationship between events S and L
is to consider that there are three possibilities for faults in
the code: problems which only affect short numbers,
problems which only affect long numbers, and problems
common to all numbers. We introduce three further events,
S*, L*, and C*, to express these possibilities so that S* is the
event that there is a problem in the code which may
produce faults for short but not long numbers, L*
corresponds to faults in long but not short numbers, and
C* corresponds to faults which may occur in any number.

These events are not directly observable, but they are
helpful in explaining our beliefs relating to the observable
events S and L. We will treat S*, L*, and C* as independent.

Our model is given as Fig. 1. There are three independent
root nodes, S*, C*, and L*. Node S has parents S* and C*,
node L has parents C* and L*, and node N has parents S
and L. Thus, S and L are independent given S*, L* and C*
and N is independent of S*, C*, and L* given S and L.

We now quantify beliefs over the model. The model can
be quantified directly or by adopting an elicitation process,
such as is described in Section 3.5. Here, we first specify
probabilities for the root nodes, beginning by ranking the
relative failure probabilities. We let P(C*) be that prob-
ability that there is at least one fault in the software
corresponding to C*. Suppose that the tester judges P(C*) to
be much larger than P(L*), which is much larger than
P(S*), which is judged to be small. While we may find it
difficult to give precise values for these probabilities, we
will usually be able to give values which appear to be of
reasonable orders of magnitude. When we carry out the full
probabilistic analysis, we check the sensitivity of our
conclusions by varying the probabilistic inputs. Usually,
the conclusions will not be sensitive to small variations in
the probabilistic assignments. However, if our conclusions
for the reliability of the software do depend critically on
certain input values, then the inescapable conclusion is that
these values must be considered carefully. In this way, we
identify those aspects of the quantification where it is
important to be precise and which have strong implications
for the testing process.

We now specify conditional probabilities for each child
node given each parent node. In the present example,
suppose that we consider the probability that .S occurs to be
one if either S* or C* or both occur and 0 otherwise and the
probability that L occurs to be one if either L* or C* or both
occur and 0 otherwise. Similarly, the probability that N
occurs is one if neither S nor L occur and is 0 otherwise. In
this example, all of the links are deterministic, i.e., if the
parent event occurs, then the child event will also occur. In
general, if a parent root node in our structure has a single
child, then we will usually assign a probability of one that
the child inherits the problem from the parent. In other
cases, the links may be probabilistic; for example, if the
common problem C* could potentially affect many child

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

514 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.5, MAY 2002

Fig. 2. Linking multiple possible test outcomes to the basic BGM.

nodes, then we might identify some child nodes that would
definitely be affected by the common node, some that
would be affected with high probability because they
shared many characteristics with these nodes, and some
that would be affected with low probability as they shared
few characteristics.

2.2.1 Linking Test Outcomes to Domain Nodes

To complete the graphical model, we must link test
outcomes to the graph. Consider tests of short numbers. If
there is at least one fault in handling a short number, then
we must consider the proportion, pg, of short numbers
which will give correct responses when tested. The quantity
ps is unknown and, therefore, must be given a probabilistic
description. A simple but useful form is to consider the
probability distribution for pg to be a mixture of two
components. The first component is a point mass ¢g at the
value pg = 0. Therefore, gg is the probability that, given that
there is a fault in at least one short number, then this fault
will occur in whichever short number that we choose to test.
In many cases, this will be sufficient as a single test success
or failure will determine whether the node will always or
never be in error. For more general cases, the remaining
probability, ¢5 =1 —gs, is represented by a continuous
probability density on (0, 1). A natural choice would be to
suppose that pg has a Beta distribution, Be(ag, 8s), so that
the probability density of pg is

L(as +Bs) as-1
T(as)T ()"

with parameters ag, 35, which we must select to represent
our beliefs about the shape of the prior distribution. Values
ag = s = 1 correspond to the uniform distribution on [0, 1]
and changing the ratio ag/(as + Bs) moves the center of the
distribution toward 0 or 1, while large values of one or both
of these parameters correspond to small variation for the
distribution. The choice of appropriate values can most
easily be carried out with a computer-based elicitation tool.

We select the Beta distribution as this is the standard
conjugate prior distribution for binomial sampling. That is,

flp) = 1-p)* ", o0<p<i,

Long test m

the conditional distribution for pg, given that pg # 0, if we
observe a collection of test outcomes, is also a Beta
distribution. The implication of a test pass is to update the
parameters ag, Sy to values ag+ 1, 8s, while a test failure
updates the values to ag, 85 + 1. This greatly simplifies the
calculations for updating probabilities. Note that each test
pass moves the probability distribution for ps toward one as
we increase the overall probability for observing test
successes. We similarly construct a model for tests on long
numbers, selecting values qr, ar, Br.

Suppose that we carry out mg tests on different short
numbers and m; tests on long numbers. We add to the
graph (Fig. 1) nodes Ps and P, to represent the models for
observed tests for each observable, together with the nodes
for each actual test, giving Fig. 2. We have only shown the
nodes for the first and last test in each group. As the nodes
Pg, Pp, are continuous random quantities, we must specify
the conditional probability of each child node, namely, each
test outcome, conditional on each possible value of the
parent node. This is straightforward in this case as the
probability that a test fails, for example, for a short number,
is equal to the numerical value of the parent node Ps.
Notice that, in Fig. 2, the only parent that we have chosen
for Pg is the event S. In a more complex model, we might
have several links into Ps.

2.2.2 Simplified Representations

Fig. 2 is a full description of the model. It can be convenient
to show the model in a reduced form. Partly, this is so that
greater complexity can be accommodated while retaining a
visualization of the essential structure without becoming
mired in irrelevant details. In addition, this also reflects the
way in which graphical modeling software handles the
computations, for which we wish to avoid including any
nodes which are not strictly necessary to the computational
description of the process. There are three essential
simplifications. First, we do not need to describe the test
nodes so extensively. All that is important is that there is a
test process which is connected to a single node. Second,
any node, such as N, which is a deterministic function of

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

WOOFF ET AL.: BAYESIAN GRAPHICAL MODELS FOR SOFTWARE TESTING

515

/
/Q)

Fig. 3. A reduced form depiction of the full model shown in Fig. 2.

the parent nodes, can be removed from the diagram.
Finally, any root node with a single child node can be
absorbed into that child node. For example, if we absorb
node S* into S, then the only modification that we must
make is to increase the conditional probability that .S occurs
if C* occurs and, if C* does not occur, to take into account
the probability that S occurs given that S* occurs. Therefore,
we have a reduced form representation of Fig. 2 as Fig. 3.
This reduction is particularly helpful as we increase the
number of characteristics which may influence the software
failure. We illustrate this process by introducing a further
failure condition.

2.3 Combinations of Software Problems

In our example, suppose we realize that, in addition to
problems with short and long numbers, there is a potential
problem with numbers which begin with a zero as we
suspect that the software can sometimes incorrectly strip
out a leading zero (for one of our case study models, there
were five different potential problems involving the value
of the starting and ending digit). We construct the further
events Z, the event that at least one number beginning with
a zero is processed incorrectly due to problems with
handling zeros as the first digit of the number; X, the
event that at least one number not beginning with a zero is

/

=2

processed incorrectly due to problems with handling
nonzero first digits. Suppose that we see no reason to
suppose that correct initial digit processing should be
related to correct number length processing so that we
judge pair Z, X to be independent of pair S, L.

We have four subgroups of tests, which we abbreviate as
[S,Z] (short numbers beginning with zero), [S,X] (short
numbers not beginning with zero), [L,Z] (long numbers
beginning with zero), and [L,X] (long numbers not
beginning with zero). Failures for numbers within each
group are judged to be exchangeable. Our graphical model
is given in Fig. 4. We are using the reduction that we
introduced in Fig. 3 for which we only display parent nodes
with more than one child. Thus, we show the node I* which
is the event that there are initial digit faults which may
occur in numbers starting with any digit, but we do not
show the event Z* which corresponds to faults solely in
numbers beginning with zero. Similarly, each of the
individual test nodes, for example [L, Z], may be linked to
a corresponding root node describing possible problems
which may manifest only for that particular combination of
test factors.

As before, we specify probabilities for each root node
and conditional probabilities for each child node given the
outcomes for each parent node. For example, for the event

Cr D
8/\
L

Fig. 4. A reduced form depiction of the full model for a software problem with a combination of two possible failure modes.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

516 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,

that there is at least one fault in the treatment of [S, Z]
numbers, we would have to specify four conditional
probabilities: the conditional probability that this event
occurs if events S and Z both occur, if S occurs and Z does
not, if Z occurs and S does not, and if neither S nor Z occur.
It may be suitable to judge these effects as independent, in
which case, the probability of at least one fault for [S, Z] if S
and Z both occur is simply the sum of the probabilities of a
fault given S and a fault given Z minus the product of these
two probabilities. However, we have complete freedom to
construct each conditional probability table according to
whatever interactions we deem appropriate.

The conditional probabilities may also be influenced by
higher order nodes expressing further hierarchical structure
in the software. For example, the software may process the
input number to perform a variety of functions and we may
construct nodes to express the relations between faults in
one function, such as adding a new card number to a
database, and faults in another function, such as modifying
the value of the number.

2.4 The Test Procedure

The test procedure for the model is as follows: We select a
number to test. If the test fails, then the software is modified
and retested. The BGM for the software is adjusted to reflect
information about the nature of the software failure and our
beliefs about the likely success in fixing the problem
without introducing new faults. For example, the tester
may judge that previously successful tests in areas which
are very different from that in which the problem has been
identified are unlikely to reveal any new faults, while those
in closely related areas are likely to require extensive
retesting. This adjustment to the BGM may either be
formally modeled or carried out informally by the tester.
Whichever is the case, the adjusted model provides the
appropriate knowledge base for both further testing and
regression testing.

For tests which are successful, we probabilistically
propagate the implications of the success across the BGM.
This reduces the current probability of software failure for
many of the various nodes on the model and, particularly,
for those nodes most strongly connected to the node where
we have observed a test pass. We then choose a further test.
We continue in this way, fixing and retesting each time we
find a fault and updating our probabilities for successful
tests, until we either exceed our test resources or we reach a
point where our probability that the software is reliable is
sufficiently high that there is judged to be no need for
further testing. This criterion may be refined, if there are
several different types of potential faults, to terminate with
low probability for faults with major consequences but to
tolerate a higher probability for faults with minor
consequences.

The BGM approach provides probabilistic assessments of
the reliability of the software being tested before and during
the testing process. As such, these assessments provide a
natural approach to test design. There are two criteria that
we require for the test suite. First, we would like to judge
the software acceptable if all of the tests are successful so
that we want to choose the test suite which maximizes the
conditional probability of software acceptability, given
success for each test, subject to any resource constraints.

MAY 2002

We may assess the value of such a termination probability
before carrying out the test suite and, thus, may judge
a priori whether the resources are sufficient to test the
software to the required level of confidence. Similarly, we
can use such judgments to determine a realistic schedule for
release of the software. Second, each time we find a fault,
there may be some need for regression testing. We typically
prefer to find most of the faults as early as possible in the
testing sequence. Thus, when we have selected the test set
to optimize a termination probability, we then sequence the
tests so that, at each stage, we choose, subject to any
practical constraints, the test with maximum probability of
finding a fault given that each previous test has been
successful.

We may therefore use the probabilistic model either to
generate and sequence the test suite in a purely automatic
fashion or to function as a decision support system for
evaluating and choosing how to sequence a suite suggested
by the tester and to check for additional tests which may
have been overlooked. We shall address test design issues
more fully in a separate paper. Briefly, within the
BGM approach, it is straightforward to design tests to take
account of differing levels of fault consequence and to show
how regression testing and the test-retest cycle can be
accommodated and resolved.

3 PRACTICAL ASPECTS

We have used the BGM approach in several case studies
undertaken for a major UK company. In this section we
discuss the main practical aspects of the approach. In
Section 4, we describe the kinds of analysis that are enabled
by the approach. In Section 5, we summarize results from
the application of the approach to two case studies.

3.1 Structuring Prior to Modeling

Before the software system can be modeled graphically, it
must be organized in ways which we describe below.
Sometimes the organization we describe can be obtained
directly from the functional specification for the software,
either from documentation or as a by-product of the
software design process. In cases where software is sourced
from external suppliers according to a functional specifica-
tion, the tester can only test whether the software achieves
the functional specification and the software is treated as
black-box in that it is possible only to observe what outputs
are given by specified inputs and it is not generally possible
to observe at the programming level how those outputs are
determined. Thus, in order to test the software efficiently, it
is necessary for the tester to relate the possible tests to his
subjective assessment of what the black-box software must
do to achieve the functional specification.

Such structuring stages are extremely valuable, regard-
less of whether Bayesian graphical modeling is applied to
the structures that result, as it is important to have a clear
and structured appreciation of how the different function-
ality interacts, what the SAs are, what the possible inputs
are, and so forth. With respect to such interactions, as there
is usually only resource available to test a small number of
the combinations of possible inputs, confidence in test
results depends strongly on beliefs about such relation-
ships. The structuring of a software system typically
includes the following stages.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

WOOFF ET AL.: BAYESIAN GRAPHICAL MODELS FOR SOFTWARE TESTING

3.1.1 Initial Structuring

We begin by listing the transactions which the software
system performs. By a transaction, we mean a major
software function, such as adding a credit card to a database,
modifying a customer’s details, and so forth. Each transac-
tion will typically involve many SAs (such as processing a
card number), which may or may not be shared with other
transactions. The main point is to identify any features, such
as shared code, that relate the transactions.

3.1.2 Identifying the Software Actions

Each transaction involves a possibly large number of
distinct software actions (SA). An SA is defined to be
software code responsible for a particular piece of proces-
sing and which can be specifically tested. From our case
studies, one example was the SA that encrypted a credit
card number. A second example is provided by the SA
which was responsible for transmitting a record from one of
the databases to another. With respect to the level of detail
involved, we consider an SA to be an action such that, at the
testing phase, from the tester’s point of view, there is no
value or intention (for whatever reason) in deconstructing
into further SAs.

3.1.3 Relationships between Software Actions

It is important to establish which SAs are common to other
transactions and to record whether any of the SAs are
related to other SAs. There are three situations of interest.
Suppose that there are two SAs, A and B, forming parts of
two transactions (or occurring at different points within the
same transaction). A and B are common if A and B are the
same piece of code so that a test of A with a given set of
inputs necessarily also tests B if the details are identical. A
and B are related if, before you carry out a test of A, you
expect the test of A to also give you some information about
the reliability of B. A and B are independent if you believe
that a test of A cannot give you any information about the
reliability of B. In making such judgments, we assume that
any earlier processing which needed to have been carried
out before entry to this SA has worked perfectly. That is,
any failure in this SA has not occurred because of a failure
upstream. Software actions may be related for various
reasons: For example, they may be variants of the same
piece of code, they might be different code but using similar
algorithms (e.g., decryption), or it might be known that the
code has been supplied by the same software provider,
perhaps notoriously incompetent. In such cases, the soft-
ware actions remain distinct, but related.

3.1.4 Sequencing the Software Actions

A chronological order for the various SAs must be
established. This is vital to the design and interpretation
of tests and the elicitation of failure probabilities. To do this,
it is necessary to establish, for each transaction, which
observable SAs must have been completed before the next SA
is attempted. The point here is that a test failure within an
SA must clearly be identified as reflecting a fault within that
SA and not a simple consequence of a fault occurring
upstream.

517

3.1.5 Partitioning the Input Spaces of Software Actions
Once the list of SAs has been established, it is necessary to
consider the input spaces for each. For some SAs, the input
space simply consists of one input. Other SAs need to work
correctly for a variety of different inputs (such as card
number). We wish to arrive at partitions of the input spaces
of SAs which satisfy the requirements of exchangeability
noted in Section 2.1. We do this by taking each SA and
separating its inputs into groups such that the inputs in a
group satisfy the following judgments: 1) The inputs have
the same probability of failure and 2) the implication of
observing a test for one input is the same for all other inputs
in the node. To achieve this aim, we proceed through the
scheme shown in Fig. 5. Typically, input spaces are
partitioned according to certain characteristics (such as
number of digits in a card number and whether or not the
number starts with a zero). The partitions that we arrive at,
together with the associated SAs, comprise the basic
testable and observable features for our approach. We shall
term these groupings nodes, as each will be represented as a
distinct observable node for the BGM. Essentially, the
tester’s judgments are such that he should test at this level
of detail and, so, the testing process will focus on making
observations at this level of detail.

3.2 Advantages of Formal Structuring

The focus of the initial structuring is to arrive at this
decomposition into characteristics and nodes. We will show
shortly how the BGMs are constructed from these. How-
ever, irrespective of whatever approach is undertaken from
this point, the initial structuring of the software testing to
arrive at these characteristics and nodes (which are the
logical consequences of the tester’s judgments) is obviously
valuable in providing the foundation for any formal testing
process. For our case studies, we found that this proper
structuring process caused testers to think more carefully
about the nature of the software being tested and, indeed,
led them to consider issues they had previously overlooked.

3.3 Converting Software Actions into BGMs

The initial structuring will have resulted in the definition of
a number of observable nodes, which we term domain
nodes, each consisting of an SA plus a distinct group of
inputs. It is necessary next to convert these structures into
BGMs according to shared characteristics. This is under-
taken as described in Section 2.2. Additionally, we must
handle any SAs which have been judged as being related, for
example, because of similarity of transaction or because of a
tester’s judgment that SAs share general background
operating mechanisms which, it is felt, are not worth
modeling in more detail. We handle these as follows: We
form a distinct cluster of SAs that are interrelated. That is, if
SAs A, B, and C are related and SAs D and E are related, we
work with distinct clusters {A, B, C} and {D, E}, where the
clusters are independent in the sense that SAs within one
cluster are independent of SAs in any other cluster. We
think of each cluster as a composite SA which is capable of
carrying out any or all of its component SAs and we
introduce a marker characteristic to denote the component
SAs. From this point, we simply treat the marker
characteristic in the same way as any other input
characteristic and partition accordingly.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

518 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

Choosc a softwarc action and
define the input space. Group
the inputs.

VOL. 28, NO.5, MAY 2002

Consider each group separately.

Do all the inputs in the group

Separate the inputs into groups

have the same prior probability
of failure?

®

If you saw the result of a test for
one input, would it have the same

so that each input in a group has
the same probability of failurc.

This group of inputs forms a node

implication for your revised
probabilities of failure for the
remaining untested inputs?

S

Separate the inputs into groups
so that the implication of

a test is the same for all
remaining inputs in the group

Fig. 5. Partitioning the input space.

3.4 Assessing Prior Specifications

To enable modeling of the tester’s judgments, the specifica-
tions described below are to be elicited. Here, and in Section
3.5, we briefly describe the methods we used for elicitation
in our case studies.

3.4.1 Prior Distributions for Tests for Domain Nodes

For each domain node, the tester assesses gg, the probability
that, assuming a test for one input fails, all other inputs
would also fail. If g¢ <1, we must select a probability
distribution f(p) for the proportion of the remaining inputs
that would pass. To do so, we employ Beta distributions,
which are convenient for this situation and allow sufficient
flexibility.

3.4.2 Assessing Parental Influence

The graphical models that we construct can be interpreted
as having parent nodes, where faults occur, and child
nodes, where faults show up. Informally, if we assume that
there are faults in the parent node (but no faults anywhere
else), the implication of an arc is to show (using a
probability) the potential of a parent node to induce a fault
in the child node.

Inputs in a node have these propertics:
(1) each has the same probability of
failure as any other input in the node;
(2) the implication of observing a test
for one input is the same for all other
inputs in the node.

We treat a parent as being independently able to pass its
fault to each child. An arc between parent and child nodes
on the graph is labeled by a value which represents the
probability that, if the parent has at least one fault, it will
transmit a fault to the child. To specify the tables of
conditional probabilities of child nodes given parent nodes,
we employ the following scheme, termed noisy OR-gate
(disjunctive interaction, [16]). Let X =0, X =1 be the
events that node X represents software with no fault and
at least one fault, respectively. For a node X with parents Y;,
i =1,...k, specify probabilities

P(X=0Y;=0N...0Y;,=1N...NY,=0) =,

so that we think of ¢; =1 — v; as the probability that the
parent Y; transmits its fault. Then, for any configuration
of parents Y, P(X =0|Y)=Iljy_yv;. Finally, as all
the causes of failure have been explicitly modeled,
P(X =0|Y =0) =0. The underlying assumption is that
Yi,..., Y fail to transmit their faults independently.

3.4.3 Elicitation of Root Probabilities

In specifying root node probabilities, it may be difficult to
arrive at precise judgments. However, calibration and

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

WOOFF ET AL.: BAYESIAN GRAPHICAL MODELS FOR SOFTWARE TESTING

sensitivity analyses will be run after the initial specification
in order to achieve greater precision.

Information which is directly relevant to the elicitation
process includes historic information, such as previous test
results or test results for similar software areas. Further
issues for the tester to consider include the following:

1. How complex is the code for the node? Perhaps, the
greater the complexity, the higher the chance of a
fault.

2. Comparatively, do you judge this code more or less
reliable than other pieces of code for which you have
a better idea of the reliability?

3. Is the code old code, which has passed many
previous tests, or is it essentially new code to
undertake new functionality, or is it somewhere in
between?

4. What, historically, has been the reliability of the
software author responsible for this piece of code? A
well-respected software house or an entirely new
provider?

5. Has similar code been tested in the past and found to
be reliable or unreliable?

In Section 3.5, we briefly describe a general process for
elicitating root node probabilities. This process is especially
helpful when the tester’s knowledge is quite vague.
Elicitation is an important topic in applied Bayesian
statistics [15] and we shall provide additional methods
and guidance for elicitation related to the BGM approach in
the future.

3.4.4 Measuring Consequences and Prioritization
of Faults

Software reliability can be judged in many different ways;
for example, the natural output of our BGM approach is to
deliver the probability that a node, or any network formed
from a group of nodes, has at least one fault. Another
measure is the expected number of domain nodes contain-
ing at least one fault. One natural expression of the
reliability of the modeled software is via a utility scale:
The Bayesian approach provides a natural framework for
combination of probabilities and utilities for decision
making [6]. For example, every domain node either passes
or fails a test and there is a consequence to the software
owner if a particular node fails. Such consequences can be
ascribed numerical values, perhaps reflecting the expected
cost to the company of using the software given that it
contains that fault.

A possible grading of faults is as follows: Priority faults
have a catastrophic effect on software operations and would
damage the company if they passed undetected. Major faults
have an important effect on software operations and would
cause the company some embarrassment if they passed
undetected. Minor faults have a local effect and may or may
not be fixed when they are discovered. Cosmetic faults
would not normally be fixed unless a major revision of the
software were undertaken. For a risk analysis, the domain
nodes may be categorized according to fault priority and
probabilities of failure and other summary measures
calculated separately for each category. For a decision
analysis, it would be more natural to combine measures on

519

a utility scale. For example, the software owner may judge
that the cost to the company for each fault category is,
respectively, 100,000, 20,000, 1,000, and 1 unit of loss. Such
utilities play an important role in designing test suites as
they allow us to focus on the more relevant faults.

3.5 A Procedure for Probabilistic Specification
of the BGM

We now describe a formal procedure for probabilistic
specification of the BGM. A particular advantage of the
procedure is that it can generate the quantification from
vague knowledge, but is also sufficiently flexible to allow
the quantification of detailed knowledge. The procedure
has two stages. First, we obtain a reasonable approximation
to the initial specification by asking the tester a few simple
questions to assess the relative reliabilities of different areas
of the software system. Second, we take the initial
specification and refine it in the light of calibration analyses
and other relevant information.

Typically, the SAs will be separated into several un-
connected BGMs. We begin by asking the tester to rank all
the BGMs in terms of expected reliability before testing.
Next, each BGM has been constructed by partitioning SAs
according to characteristics, such as number length and
starting digit. Thus, the tester is asked to rank, within every
BGM separately, characteristics in terms of expected
reliability before testing. Next, each characteristic has been
partitioned into groups of inputs; for example, the char-
acteristic number length might be partitioned into 8-digit, 9-
digit, and 10-16-digit numbers. For the root nodes for the
constructed BGMs, we typically must assess reliability for
general software problems handling the characteristic and
for problems occurring for specific partitions of the
characteristic. Thus, the tester is asked to rank, within every
characteristic separately, the common and specific causes in
terms of expected reliability before testing. Finally, any root
nodes formed from the combinations of characteristics used
to partition an input space are ranked among the common
cause and specific partition quantities.

Once the ranking has been completed, we specify two
initial tuning parameters: p reflects the general level of
unreliability in the least reliable BGM and d reflects the
general level of unreliability in the most reliable BGM
compared to the most unreliable BGM. The parameter p
equates to the probability that there is at least one fault in
the most unreliable root node in the most unreliable BGM;
dp equates to the probability that there is at least one fault in
the most unreliable root node in the most reliable BGM. It is
important to note that these are initial judgments: They
provide a basis for further calibration and sensitivity
analysis and there is full scope for revising the judgments
in line with guidance from such analysis.

To quantify the BGM initially, proceed as follows:
Label the n independent graphical models G,Gs,...,G,.
Label the n; characteristics in model G; as Ci1, Cia, . .., Cip,.
Next, label the n;; partitions of characteristic C;; as
Liji, Lij2, - ., Lijn,; so that Ly is the kth partition of the
jth characteristic of the ith graphical model. Similarly, let
7i,Tij,Tij be the ranks assigned to Gj,Cjj, L, respec-
tively. Let p;ji be the probability that there is at least one
fault in the root node L;j.. The aim of the elicitation is to

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

520 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.5, MAY 2002

establish the probabilities {p;;;} for the root nodes {L;;}.
The approach is to take

_ (ri=1)p(1—d) _
pi =P— ni—1) 2*17)T
o yeip-d) _ _
Pij =PI t=1...,n, j=1,...,m
_ (rigp—1)pij(1—di;) _ .
Pijk =P = s b= Leoan, g=1 g,
=4 7nij

It remains to choose suitable values for d; and d;;. For
characteristics, d; corresponds to d for networks in the sense
that it gives a rough indication for model G; as to the
relative reliabilities of the most and least unreliable
characteristics within model G;. For partitions within
characteristics, d;; corresponds to d for networks and d;
for characteristics and gives a rough indication for
characteristic C;; as to the relative ratio between most
unreliable and least unreliable partition within character-
istic Cj;. It is appropriate initially to choose d; = d for all ¢
and d;; = d for all 4, j. The probability for a root node thus
consists of its reliability ranking within its local area,
multiplied by a probability tuning parameter for that local
area, modified by a tuning parameter expressing the
difference in reliability between the least and most reliable
root nodes for that local area.

3.5.1 Refining and Calibrating the Model

The ranking process, together with initial tuning para-
meters, provides an initial probability specification for the
graphical model. It is straightforward to use the outputs of
the models to help the tester realize the consequences of his
judgments and thereby to revise or calibrate the BGM until
the outputs are in accord with his judgments. For example,
the model can calculate how many nodes are expected to
contain at least one fault. Testers sometimes have a good
feel for this quantity so that, if outputs from the constructed
BGM disagree with this judgment, the BGM can be revisited
in order to tune it. For example, it is simple to calculate an
automatic scaling for the root nodes in the BGM so that the
calculated output from the BGM exactly matches some
specified number of nodes expected to contain faults. This
process of calibration is to whatever level of detail is
required by the tester. In addition to general calibration of
the model to match the tester’s judgments, the tester is free
to add direct specifications wherever desired. For example,
the tester may wish to construct a model where he has fairly
vague knowledge about most of the software to be tested,
but where he also has detailed knowledge for some parts of
the software. This is straightforward to accommodate.
Calibration taking into account possible test suites is
discussed in Section 4.2.

4 UsING THE BGMs

4.1 Prior Analysis

Before any tests are run, we calculate prior descriptions of
reliability across the software and, if desired, at the level of
individual networks. These can be used for various
purposes, including sensitivity and calibration analyses,
obtaining systematic summaries of current software relia-
bility, and to drive test design. The prior probabilities are, in
general, only computable once the network has been
defined and follow entirely from prior probabilities for root

nodes, structural relationships, and probabilities on the arcs.
Three kinds of summary measure that can be employed are:
1) the probability that the software contains at least one
fault; 2) the expected number of domain nodes with low,
medium, and high priority faults; and 3) a utility measure of
the kind discussed in Section 3.4 which, informally, reflects
the penalty to the company of releasing the software at a
given point. The former pair can be used to focus risk
analyses; for example, to direct testing toward high priority
faults. The last is more naturally employed within a decision
analysis framework. These computations must normally be
performed using suitable software (Section 4.2).

4.1.1 Sensitivity Analysis

We undertake sensitivity analyses to explore how changes
in the initial specification affect the prior (pretesting) and
posterior (posttesting) summaries of reliability. Prior sensi-
tivity analysis is useful in helping to provide a good initial
model. Posterior sensitivity analysis, which we describe in
Section 4.3, is useful when a specific test suite is in mind.
The particular aspect of sensitivity analysis which is
important prior to testing is the identification of areas
where it is important to be precise and, so, where it may be
worth putting extra effort into the process of specifying the
model and, on the other hand, areas where quite crude
specification is adequate. This is possible in a number of
ways (see, for example, [11]). A simple approach is to
examine the effect of increasing the specified probability of
failure for every root node singly by comparing appropriate
summary statistics before and after the change.

4.2 Using the BGM for Testing

The operational use of BGMs is fully described elsewhere
[3], [10], [13], [16], [24]. Thus, we shall only briefly describe
how updating the models operates. Instead, we shall focus
on the ways in which we exploit the models in the context
of software testing.

4.2.1 Mapping of Domain Nodes to Tests

Any test that we carry out will result in observation of a
subset of the domain nodes across the various graphical
models constructed to represent the software testing
problem. Thus, it is necessary to map the tests to the
domain nodes. Each test is likely to test several aspects of a
problem. One simple way of forming the mapping is to list
all the possible domain nodes (generally, all the child nodes
from the graphical models), list all the possible tests, and
form a matrix showing which tests result in an observation.
This is straightforward when there already exists a given
test suite. Otherwise, the focus will be on test design. To
avoid unnecessary duplication, the mapping of domain
nodes to tests is a mapping to potential tests and must be
carried out at the SA level, i.e., the stage reached before
partitioning the input space (Section 3.1). Which of the
partitions is then observed by a given test is choosable and
becomes one of the features addressed by test design.

4.2.2 Computation

All the results required by the approach are computation-
ally straightforward using any package capable of perform-
ing the basic algorithms of Bayesian graphical modeling,
such as Netica™ (Norsys Software Corporation, Vancouver,
Canada) and HUGIN™ (Hugin Expert A/S, Aalborg,

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

WOOFF ET AL.: BAYESIAN GRAPHICAL MODELS FOR SOFTWARE TESTING

Denmark), which provide, inter alia, libraries of C routines
providing BGM tools. Other suppliers provide similar BGM
packages, see [3] for an overview. For our case studies, we
wrote additional C surround programs.

4.2.3 Preposterior Analysis Assuming an
Existing Test Suite

Preposterior analysis of a given test suite provides an
assessment of the posterior reliability of the software,
assuming that it passes the given test suite, and is the key
to assessing the efficiency of a particular test suite. Thus,
before running any tests, we can examine the implications
for the models of all tests passing. It is straightforward to
compute these implications for the various reliability
measures we employ. Similarly, it is straightforward to
explore the implications of test failures and alternative
sequences of the proposed test suite so that we may use
such assessments to compare and select between different
potential test suites.

4.2.4 Simplifying and Sequencing Test Suites

Given a test suite, we may calculate the implication of any
subset of tests and any sequence of tests. This enables a
study of overlap of tests; for example, it may show that
some tests do not increase utility and do not lead to
reduction in the probability of at least one fault in any
network, implying that, according to the tester’s judgments,
there is no value in running such a test at that moment in
the test sequence, except perhaps to satisfy a coverage
requirement. (Such apparently valueless tests can play an
important diagnostic role for examining the assumptions of
the model.) It is easy to sequence a given test suite; for
example, for early selection of tests which test software
areas with high remaining probability of failure.

4.2.5 Design and Analysis of Tests Additional to
a Test Suite

Preposterior analysis provides measures of the reliability of
the software given that it will be tested by a given test suite.
If we assume that this test suite has not revealed any
failures, an obvious question is to determine whether there
remain substantial failure probabilities anywhere and, if so,
how they might be tested. It is straightforward to use the
outputs of the BGM to identify software areas which would
contain substantial unreliability even if all of the tests in the
test suite were to be successful and, so, to design extra tests
to tackle these areas.

4.2.6 Design of New Test Suites

Just as we may design new tests to add to an existing test
suite, the BGM approach can be used to design test suites
ab initio, using whatever criteria are desired. Some of the
technical issues are as follows: Typically, we choose criteria
based on probability or utility calculations, which should
take account of physical time and cost constraints, and
management risk policies. For example, managers may
wish to specify several fixed levels of software reliability (in
terms of a performance measure such as probability of
failure or utility) for which the test design process would
yield, for each level of reliability, a test suite, together with
its costs, from which managers could choose.

A simple approach is to choose tests in order to reduce
the probability of at least one fault remaining in the

521

software being tested by considering all possible tests in
turn and assessing the implication for the model assuming a
successful test for each test singly. This will produce one (or
more) tests with the biggest gain in the chosen performance
measure. This test is selected as the first test to be run. We
continue this procedure iteratively by choosing, at each
stage, the best remaining test and then repeating the
procedure until the desired criterion has been achieved.
This simple algorithm may not produce an optimal test
design, but should produce one which is near optimal.

More advanced criteria and other technical considera-
tions are the subject of ongoing research; for example,
whether tests are chosen to take account of the difficulty of
fixing any faults arising or to take account of faults which
would prevent further testing. Test design must take
account of constraints such as sequencing. It is simple to
update the BGM using composite tests which do take
account of sequencing and, in principle, easy to take
account of batch constraints for test design. A further
consideration in efficient test design is that it is useful to be
able to sequence tests according to some criterion. For
example, it may be cost-effective to design a sequence of
tests so that the probability of finding faults during early
tests is highest. This is due to the need for partial retesting,
as guided by the graphical model, once faults are found.

There are obvious benefits from such a test design process
allied to the Bayesian graphical modeling approach. Not
only do we have all the advantages of the clear probabilistic
representation of the expert and other knowledge, but also
the careful analysis given by the test design process should
arrive at smaller test suites with better coverage.

4.3 Posterior Sensitivity Analysis

It is important to explore sensitivity in relation to the testing
process in particular because it helps to inform decisions as
to when the software will be ready for release, given a
specific test suite. It is a general feature of Bayesian analysis
that differences in prior beliefs are often largely resolved by
observing data and what matters is the effect of changes in
prior belief on our posterior probability that the software is
ready for release.

Consider the situation where there is a particular test
suite envisaged, either historic or to be generated auto-
matically using the BGM, and where we wish to examine
the sensitivity of the initial specification in relation to this
test suite. A simple approach, based on one-off changes to
root nodes is as follows:

1. Specify and calibrate the model.

2. Apply the given test suite to the model and calculate
the desired posterior summaries, assuming that all
tests are successful.

3. Leaving all other root nodes unchanged, for each
root node in the model, in turn, we take the
probability of at least one fault and alter it on an
appropriate scale.

4. We then apply the given test suite to the altered
model and calculate the desired posterior summaries.

5. The differences between the posterior summaries for
the initial and altered models measure the sensitivity
of our conclusions to the probability specification for
the altered root node.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

522 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,

We can also assess sensitivity globally by varying tuning
parameters such as p and d (Section 3.5) and measuring the
changes in the outputs of the BGMs. Other approaches to
measuring sensitivity to prior specifications are discussed,
for example, in [11].

5 CASE STUDIES

The case studies we use to illustrate the approach are based
on a larger ongoing study being undertaken for a major UK
company. Some details have been altered or fictionalized to
preserve confidentiality. For each case study, we briefly
describe overall aspects of the implementation of our
approach.

5.1 Credit Card Database Management

5.1.1 Software Area

The software being tested relates to all the software required
for operations on products which can be taken to be credit
cards. For example, the company has a database which
contains customer details such as name and address, credit
card number, credit card brand, current amount owing on
the card, and so forth. A second database handles online
referrals and, so, must hold details such as credit card
number, credit limit, amount owing, and any restrictions.
For example, a card may be suspended for fraud or because
a credit limit has been exceeded. There are various further
databases. Additionally, some of these databases may be
physically disaggregated; for example, there are several
online referral databases for specific regions or countries.
There are typically several databases involved not only for
operational reasons, but also because databases which
involve personal or sensitive details (such as PIN) need to
be isolated as far as is practicable. The testing process must
test not only processing that occurs within databases, but
must also test that databases communicate correctly.

5.1.2 Software Novelty

The software being tested represented a major update of
existing software to provide new functionality and fix faults.

5.1.3 Tester Expertise

The senior tester had considerable expertise in the
functionality of the software and his testing team had
already constructed (but not run) a test suite.

5.1.4 Scale

This case study was medium scale. There were 16 separate
major testable areas. The initial structuring process led to
the tester identifying 168 different domain nodes. These
168 nodes were contained within 54 distinct (independent)
BGMs. The tester’s test suite consisted of 233 tests, which
were then mapped to the domain nodes.

5.1.5 Sequential Analysis

Analysis of the tester’s test suite, analyzed in the order the
tester intended the tests to be run, showed no gain in
information through running the last 57 tests. (Some tests
are run purely for coverage purposes.) The sequential
analysis of this test suite is shown in Fig. 6 and illustrates
that it is a consequence of the tester’s judgments that the
vast majority of the tests are not expected to remove
uncertainty about the reliability of the software. The tester
found this initially surprising.

MAY 2002

5.1.6 Test Efficiency

The tester’s original test suite reduced the probability of at
least one fault remaining from 0.336514 to 0.011580 and, so,
reduces the initial probability by 96.56 percent. Of the 233
original tests, 66 turned out to be completely redundant in
the sense that their test coverage is fully covered by (some
combination) of the remaining 167 tests. Of the 168
observables, 55 were not tested at all.

5.1.7 Test Selection and Scheduling

It is simple to select which subset of the tests in an existing
test suite is most efficient at reducing the probability of
there being at least one fault remaining in the software. Of
the original 233 tests, the best 11 tests reduced the prior
probability of at least one fault by 95.07 percent. The next
best 156 tests further reduced this probability by 1.49 per-
cent. The remaining 66 tests do not further reduce this
probability. This rescheduling ignores some of the sequen-
cing constraints, but there is no practically significant
difference in doing so.

5.1.8 Test Design

It was straightforward to design extra tests to cover gaps in
the coverage provided by the existing test suite. For
example, we designed one extra test which had the effect
of reducing the residual probability of failure by 57.1 per-
cent. The senior tester agreed that this would have been a
useful test to run.

5.1.9 Conclusion

Numerical summaries of the efficiency of the tester’s test
suite, in probability and utility measures, are given in
Table 1, together with the impact of one extra new test.
Overall, the tester designed a fairly comprehensive test
suite. Given that all these tests run successfully, the
probability of at least one failure remaining is 3.44 percent
of what it was before testing. However, the BGM approach
could have 1) helped the tester choose far fewer tests with at
least equal coverage, 2) helped the tester design extra tests
to fill gaps, and 3) helped the tester to schedule the tests
optimally in order to maximize the chance of picking up
faults at an early stage of testing. When the tester’s test suite
was run, faults were found in the areas for which the BGMs
had correspondingly relatively high probability of failure at
that point in the test suite. Finally, the BGM approach
provides probabilistic information concerning this soft-
ware’s reliability which allows managers to decide whether
or not it is reasonable to release the software or whether to
allocate more resources to further testing.

5.2 Record Renumbering

5.2.1 Software Area

The software to be tested is intended to carry out
renumbering of all records in a database because the
present number of digits is insufficient to meet an
expansion in customer demand.

5.2.2 Software Novelty
Such renumbering has been carried out in the past for
different databases, but this is newly created software
which will be used once.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

WOOFF ET AL.: BAYESIAN GRAPHICAL MODELS FOR SOFTWARE TESTING

523

Probability

000 005 010 015 020 025 030

o 50 100 150 200
Test
(a)
w© -
w
-
P
&
s
B o
~
o
T T T T T
o 50 100 150 200
Test
=N
=
8
S
B
]
=
b=
2 |
2
Y
5 -
o
8
s |
3
&
h
o
8
s
3
N
T T T T T
o 50 100 150 200

Test

()

Fig. 6. Sequential analysis of the tester’s test suite, analyzed in the order the tester intended the tests to be run. The utility scale is as described in

Section 3.4.4.

5.2.3 Tester Expertise

The sole tester had no prior expertise in the reliability of the
software to be tested and only vague notions as to the
software operations needed for the software to do what it
was intended to do.

5.2.4 Scale

This case study was small scale, with three separate major
testable areas. The tester identified 40 domain nodes,
contained in three independent BGMs. In this case study,
although the tester must choose an input from a possibly
large range of allowable inputs, each such test is expected to
fully test the domain node. The tester’s test suite consisted
of 20 tests, constructed (but not run) before the BGMs were
elicited. The elicitation process described in Section 3.5 was
used to quantify the models and the expected number of
faults remaining was chosen to match the models’ outputs
to the tester’s judgments.

5.2.5 Sequential Analysis

Sequential analysis of the tester’s test suite, analyzed in the
order the tester intended the tests to be run, showed no gain
in information through running the last eight tests.

5.2.6 Test Efficiency

The tester’s original test suite reduced the probability of at
least one fault remaining from 0.801101 to 0.209129 and, so,
reduces the original probability by 73.89 percent. Of the 20
original tests, at least 11 are completely redundant in the
sense that their test coverage is fully covered by (some
combination) of the remaining nine tests. It is simple to
analyze the scheduling for the tester’s test suite, but this is
of no further interest for this case study as a replacement
test suite can be designed automatically.

5.2.7 Test Design

For this case study, it was possible to design, automatically,
ab initio, an efficient test suite, given only the tester’s basic
specification of the operations to be tested and the BGM so
constructed. The automatically designed test suite contains
only six tests, but fully tests the software. The tester agreed
that the automatically designed test suite was more efficient
at testing the software and agreed that it tested an area he
had missed. The tester had not originally considered that
this area needed testing, but did agree with hindsight that it
was sensible to test this area, which came to light only
through the initial BGM structuring process.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

524

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,

MAY 2002

TABLE 1
Numerical Summaries of the Reliability of the Software before Testing, after One Successful Test,
after Running the Full Test Suite, and after One New Extra Test

Probability of at least one fault Utility attached to consequence of failure

Before After After After 1 Before After After After 1

Area || Testing | 1 test | 233 tests | new test | Testing 1 test 233 tests | new test
M, .002796 | .002292 | .000000 | .000000 | -279.55 | -229.17 0.00 0.00
M, .000795 | .000775 | .000075 | .000075 -76.11 -75.10 -6.70 -6.70
Mj .000038 | .000058 | .000028 | .000028 -5.78 -5.80 -2.83 -2.83
M, .004493 | .000000 | .000000 | .000000 | -449.34 0.00 0.00 0.00
My .007485 | .005000 | .005000 | .000000 || -748.53 | -500.00 -500.00 0.00
Mg 016390 | .011259 | .000000 | .000000 || -1639.02 | -1125.91 0.00 0.00
M> .003576 | .003576 | .000000 | .000000 || -357.56 | -357.56 0.00 0.00
Mg 007885 | .007885 | .003202 | .003202 || -788.51 | -788.51 -320.23 | -320.23
My 002197 | .002197 | .000502 | .000502 || -203.83 | -203.83 -50.24 -50.24
My || .000581 | .000151 | .000000 | .000000 -58.10 -15.07 0.00 0.00
My, 006624 | .005849 | .000267 | .000266 || -663.47 | -585.67 -26.71 -26.62
My || .009781 | .009781 | .000000 | .000000 || -978.06 | -978.06 0.00 0.00
Mys || .005696 | .001478 | .000104 | .000104 || -522.00 | -107.86 -10.08 -10.08
Myq || 009799 | .008293 | .002445 | .002445 || -979.90 | -829.26 -244.53 | -244.53
M5 || .003815 | .000000 | .000000 | .000000 || -381.53 0.00 0.00 0.00
Mis || .006382 | .000000 | .000000 [.000000 || -639.99 0.00 0.00 0.00
All .085095 | .057117 | .011578 | .006610 || -8858.75 | -5860.26 | -1162.48 | -662.39

Summaries are given for each of 16 distinct software areas and overall.

5.2.8 Conclusion

The tester designed a reasonably comprehensive test suite.
Given that all the tests run successfully, the probability of
at least one failure remaining is 26.11 percent of what it
was before testing. However, the BGM approach auto-
matically designed a test suite with fewer tests (six,
compared to 20) with better (in fact, full) coverage.
Further, through providing a framework for capturing
knowledge about the structure of the software being
tested, the BGM approach would have led the tester to
consider testing areas which he omitted to consider. With
regard to sensitivity analysis, none is required for this case
study as, according to the tester’s judgment, 100 percent
coverage can be achieved. Thus, the prior specification is
relevant only at the structural level.

6 DISCUSSION

We have described an approach to the probabilistic model-
ing and analysis of software systems. In practice, the models
that we produce may be complex. However, they will never
be more complex than the considerations which the software
tester must, in any case, bring to bear in assessing software
reliability as all of the distinctions that are introduced into
the model are there because the tester judged these
distinctions to be important. All that we have done is, first,
to draw a picture identifying the various distinct groups of
tests which could be run and, second, to require a prior

quantification of the uncertainties in the diagram. It is, in any
event, good practice to carry out the first stage in this process
when planning a software test suite. As for the quantifica-
tion, in many cases, it will be comparatively straightforward
to rank the relative probabilities for the various sources of
fault. When we place precise numbers on the diagram, it may
be the case that the model analyses will be relatively
insensitive to variations in the prior values, provided the
prior constraints are obeyed; in which case, we may be
confident that the software has been tested to a high degree
of reliability. Alternatively, we may find that there are
plausible prior inputs for which we are unable to conclude
that the software is reliable given the test results. In such
cases, we must either model more carefully or test more
extensively. The modeling process, combined with a careful
sensitivity analysis, forces us to consider how much we can
defend our judgments of software reliability. The alternative,
namely, making the same judgments of software reliability
without a framework for analyzing the uncertainties, is far
more likely to lead to bad judgments. Further, having
constructed the model, we gain the various advantages
resulting from a probabilistic analysis, such as automatic
generation of good test suites, a quantified approach to risk
analysis for the software release, and so forth.

The model that we have described exploits the expert
judgments of the tester. If these judgments are overly
simplistic, then the model will not give a good representa-
tion of the faults in the software. In such cases, the model

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

WOOFF ET AL.: BAYESIAN GRAPHICAL MODELS FOR SOFTWARE TESTING

will still improve on the analysis of the tester, but with the
additional advantage that the various assumptions of the
tester may be explicitly scrutinized within the model by the
model diagnostics for the BGM. These diagnostics are based
on discrepancies between the actual test behavior and the
predicted behavior according to the model; for example, the
prediction of few faults in a given subarea might be
contradicted by observation of several faults in that area.

Finally, note that the BGM approach captures, as far as is
deemed practicable, the expertise of the tester and main-
tains it in usable form as a knowledge base. This represents
a considerable resource to the software owner, who is
routinely faced by the problem of the expertise of a tester
being lost due to everyday practicalities such as personnel
changes.

The relevance of the BGM approach to support software
testing, from a management perspective, is addressed in
[18], which also considers the circumstances under which
this approach has been developed. In a future paper, we
shall address how we may assess the viability of the
approach in terms of the scale and complexity of the
software to be tested.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the provision of
funding for much of this work from British Telecommuni-
cations plc and input on its industrial direction. The
probabilities and other results shown in this paper are
illustrative and do not reflect the company’s actual
judgments. They also wish to thank the referees for their
helpful comments.

REFERENCES
[1]

M. Bouissou, F. Martin, and A. Ourghanlian, “Assessment of a

Safety-Critical System Including Software: A Bayesian Belief

Network for Evidence Sources,” Proc. Ann. Reliability and Main-

tainability Symp., RAMS "99, 1999.

[2] A. Burr and M. Owen, Statistical Methods for Software Quality.
London: Thomson, 1996.

[3] R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter,
Probabilistic Networks and Expert Systems. New York: Springer, 1999.

[4] S.R.Dalal and C.L. Mallows, “Factor-Covering Designs for Testing
Software,” Technometrics, vol. 40, pp. 234-243, 1998.

[5] P.G. Frankl, R.G. Hamlet, B. Littlewood, and L. Strigini,
“Evaluating Testing Methods by Delivered Reliability,” IEEE
Trans. Software Eng., vol. 24, pp. 586-601, 1998, Erratum: vol. 25,
p- 286, 1999.

[6] S. French and D. Rios Insua, Statistical Decision Theory. London:
Arnold, 2000.

[71 D. Hamlet, “Are We Testing for True Reliability?” IEEE Software,
pp- 21-27, July 1992.

[8] D. Hamlet and R. Taylor, “Partition Testing Does Not Inspire
Confidence,” IEEE Trans. Software Eng., vol. 16, pp. 1402-1411, 1990.

[9] R.M. Hierons and M.P. Wiper, “Estimation of Failure Rate Using

Random and Partition Testing,” Software Testing, Verification, and

Reliability vol. 7, pp. 153-164, 1997.

E.V. Jensen, An Introduction to Bayesian Networks. London: UCL

Press, 1996.

U. Kjeerulff and L.C. van der Gaag, “Making Sensitivity Analysis

Computationally Efficient,” Proc. 16th Conf. Uncertainty in Artificial

Intelligence, 2000.

L. Kuo, “Software Reliability,” Encyclopedia of Statistical Sciences,

S. Kotz, ed., update vol. 3, pp. 671-680, 1999.

S.L. Lauritzen, Graphical Models. Oxford: Clarendon, 1996.

M. Neil and N. Fenton, “Predicting Software Quality Using

Bayesian Belief Networks,” Proc. 21st Ann. Software Eng. Workshop

NASA/Goddard Space Flight Center, 1996.

(10]

(1]

[12]

[13]
(14]

525
[15] A. O’Hagan, “Eliciting Expert Beliefs in Substantial Practical
Applications,” The Statistician, vol. 47, pp. 21-35, 1998.
J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, Calif.: Morgan Kaufmann, 1988.
F. Redmill, “Why Systems Go Up in Smoke,” The Computer
Bulletin, pp. 26-28, Sept. 1999.
K. Rees, F.P.A. Coolen, M. Goldstein, and D.A. Wooff, “Managing
the Uncertainties of Software Testing: A Bayesian Approach,”
Quality and Reliability Eng. Int’l, vol. 17, pp. 191-203, 2001.
G. Rothermel and M.]. Harrold, “Analyzing Regression Test
Selection Techniques,” IEEE Trans. Software Eng. , vol. 22, pp. 529—
551, 1996.
G. Rothermel and M.J. Harrold, “Empirical Studies of a Safe
Regression Test Selection Technique,” IEEE Trans. Software Eng.,
vol. 24, pp. 401-419, 1996.
N.D. Singpurwalla and S.P. Wilson, “Software Reliability Model-
ing,” Int'l Statistical Rev., vol. 62, pp. 289-317, 1994.
N.D. Singpurwalla and S.P. Wilson, Statistical Methods in Software
Engineering: Reliability and Risk. New York: Springer, 1999.
C. Smidts and D. Sova, “An Architectural Model for Software
Reliability Quantification: Sources of Data,” Reliability Eng. and
System Safety, vol. 64, pp. 279-290, 1999.
D.J. Spiegelhalter, A.P. Dawid, S.L. Lauritzen, and R.G. Cowell,
“Bayesian Analysis in Expert Systems,” Statistical Science, vol. 8,
pp. 219-283, 1993.
EJ. Weyuker and B. Jeng, “Analyzing Partition Testing Strate-
gies,” IEEE Trans. Software Eng., vol. 17, pp. 703-711, 1991.
E.J. Weyuker and T.J. Ostrand, “Theories of Program Testing and
the Application of Revealing Subdomains,” IEEE Trans. Software
Eng., vol. 6, pp. 236-246, 1980.
T. Yamaura, “How to Design Practical Test Cases,” IEEE Software,
pp- 30-36, Nov.-Dec. 1998.

[16]
(171

(18]

[19]

(20]

(21]
(22]

(23]

(24]

(23]

[26]

[27]

David A. Wooff is the director of the Statistics
and Mathematics Consultancy Unit, University of
Durham, United Kingdom. He is a chartered
statistician and has lectured in statistics at
Durham University since October 1991. His
research interests include Bayes linear statis-
tics, applied industrial statistics, and Bayesian
approaches to software testing. He has been
lead or coinvestigator for a number of commer-
cial and UK Engineering and Physical Sciences
Research Council research projects.

Michael Goldstein is a professor of statistics at
the Department of Mathematical Sciences, Uni-
versity of Durham, United Kingdom. His re-
search interests are concerned with foundations,
methodology, and applications of the Bayesian
approach to statistics and decision analysis. In
particular, he has developed Bayes linear
approaches which simplify both belief specifica-
tion and analysis and, therefore, allow the
; extension of Bayesian methodology to increas-
mgly complex problems, one such being uncertainty analysis for
computer models of large scale physical systems, for which he has
received both commercial and UK Engineering and Physical Sciences
Research Council support.

Frank P.A. Coolen received the MSc and PhD
degrees from Eindhoven University of Technol-
ogy, The Netherlands. He is a reader in statistics
in the Department of Mathematical Sciences,
University of Durham, United Kingdom. His
research interests include foundations of statis-
tics, reliability theory, and Bayesian graphical
models.

> For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 27, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

