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Abstract

We consider the radiative transition φ → f0γ, which is a sensitive probe
of the nature of the f0(980) particle. Using the QCD sum-rule technique,
we estimate the branching ratio of such decay mode to be: B(φ → f0γ) =
(2.7 ± 1.1) 10−4, in fair agreement with present experimental data. As for
the structure of the f0, the result suggests a sizeable ss̄ component; however,
this result does not exclude the possibility of further components and allows
a more complex structure than indicated by the naive quark model.
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The quark model provides a rather good description of hadrons, which fit into suitable

multiplets reasonably well. In its simplest version the model then interprets mesons as

pure qq states. Scalar mesons present a remarkable exception to this successful scheme.

Indeed, the nature of these mesons is not established yet [1]. There are more scalars

than can fit into one quark model multiplet. Consequently, some of these states could

be either glueballs or admixtures of quark and gluonic states, or belong to multiquark

multiplets. A particular feature of some of these particles is that they appear to be rather

wide [2, 3, 4, 5]. They have very short lifetimes and large couplings to hadronic channels,

such as KK or ππ. This might suggest that they can be identified as composite systems

of hadrons, or that they spend an appreciable part of their lifetimes as such states. This

could be the result of hadronic dressing, whereby the strong interaction enriches a qq state

with other components such as
∣

∣

∣KK
〉

, |πη〉, etc. Such a viewpoint could also explain why

the scalar mesons seem to contradict the OZI rule. Since the two mesons composing the

state in which they spend much of their lifetime may readily annihilate to qq, leading to

a subsequent OZI allowed decay.

In this letter, we focus on the structure of the f0(980) and the possibility of gleaning

information about this from radiative φ decays. According to the quark model, the f0(980)

should be an ss state, an interpretation supported in Refs. [6, 7, 8]. However, this does

not explain its mass degeneracy with the a0(980), that should be a (uu− dd)/
√

2 state.

There are also suggestions that the f0(980) could be a four quark qqqq state [9]. In this

case, it could either be nucleon-like [10], i.e. a bound state of quarks with symbolic

quark structure ss(uu+ dd)/
√

2 1, or deuteron-like, i.e. a bound state of hadrons, which

is usually referred to as a KK molecule [2, 11, 12, 13]. In the former of these two

possibilities, the mesons are treated as point-like objects, while in the latter they should

be considered as extended objects. Some objections have been raised against the KK

molecular model [2, 14]. In particular, such an interpretation requires a width smaller

than the binding energy of the molecule itself, which has been estimated to be ǫ ≃ 10−20

MeV [2], in contrast to the measured width lying in the range 40 − 100 MeV [15].

Various ways have been suggested of clarifying the situation, such as the analysis of

the f0 → γγ decay [16, 17] or of the ratio
Γ(φ→ a0γ)

Γ(φ→ f0γ)
[11]. In the naive quark model,

for example, it is expected that B(φ → f0γ) and B(φ → a0γ) would differ by a factor of

10. Moreover the rate for φ→ f0γ may distinguish among the different possibilities [11],

1Within the same framework the isovector partner a0(980) is written as ss(uu + dd)/
√

2.
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since, according to the existing theoretical estimates, the expected branching ratio would

be as high as 10−4 in the qqqq case, O(10−5) in the ss case. For a KK molecule, the

branching ratio clearly depends on its size. For a compact state this is ∼ 7 · 10−5, while

for a diffuse, deuteron-like system, it is down below 10−5 [11].

From the experimental point of view, the PDG value [15]:

B(φ→ f0γ) = (3.4 ± 0.4) 10−4 (1)

stems from averaging the results of the CMD2 [18] and SND [19] collaborations, analysing

π+π−γ, π0π0γ and 5γ final states. What is more, a significant improvement is expected

at the φ factory DAΦNE [20], where the first results give:

B(φ→ f0γ → π0π0γ) = (0.81 ± 0.09(stat) ± 0.06(syst)) × 10−4 (2)

and

B(φ→ f0γ → π−π+γ) < 1.64 × 10−4 (3)

at 90% C.L. [21].

The present letter is devoted to analysis of the radiative decay φ → f0γ using QCD

sum-rules [22], which we previously applied to the radiative φ transitions to η, η′ [23].

That the f0(980) couples significantly through ss components has long been known 2

from its appearance as a peak in J/ψ → φf0 [25] and Ds → πf0 [26], as discussed in

Refs. [3], and in more detail in [27]. Our calculation relies on the assumed coupling of

the f0 to the scalar ss density. As a preliminary, we evaluate the strength of this coupling

using two point QCD sum-rules. The result will then be exploited in the three point QCD

sum-rule evaluation of the relevant quantity needed to compute B(φ→ f0γ).

The coupling of the f0(980) to the scalar current Js = ss can be parametrized in terms

of a constant f̃ :

〈0| Js |f0(p)〉 = mf0
f̃ . (4)

In order to compute this parameter by QCD sum-rules, we consider the two-point corre-

lator:

T (q2) = i
∫

d4xeiq·x 〈0|T [Js(x)Js†(0)] |0〉 , (5)

2And noticed more recently by Delbourgo et al. [24] for φ → f0γ.
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which is given by the dispersive representation:

T (q2) =
1

π

∫ ∞

4m2
s

ds
ρ(s)

s− q2
+ subtractions . (6)

In the region of low values of s, the physical spectral density contains a δ−function term

corresponding, in the small width approximation, to the coupling of the f0 to the scalar

current. Picking up this contribution and dropping possible subtractions which we discuss

later, we can write:

T (q2) =
m2

f0
f̃ 2

m2
f0
− q2

+
1

π

∫ ∞

s0

ds
ρhad(s)

s− q2
, (7)

assuming that the contribution of higher resonances and continuum of states start from

an effective threshold s0. On the other hand, the correlator T (q2) can be computed in

QCD for large Euclidean values of q2, by using the Operator Product Expansion (OPE)

to expand the T -product in Eq. (5) as the sum of a perturbative contribution plus non-

perturbative terms which are proportional to vacuum expectation values of quark and

gluon gauge-invariant operators of increasing dimension, the so called vacuum conden-

sates. In practice, only a few condensates are included, the most important contributions

coming from the dimension 3 < qq > and dimension 5 < qgσGq >.

In the QCD expression for the two-point correlator considered, the perturbative term

can also be written dispersively, so that:

TQCD(q2) =
1

π

∫ ∞

4m2
s

ds
ρpert(s)

s− q2
+ d3 < ss > +d5 < sgσGs > +... , (8)

where the spectral function ρpert and the coefficients d3, d5 can be computed in QCD. The

next step consists in assuming quark-hadron duality, which amounts to the claim that the

physical and the perturbative spectral densities give the same result when integrated

appropriately above some s0. This leads to the sum-rule:

m2
f0
f̃ 2

m2
f0
− q2

=
1

π

∫ s0

4m2
s

ds
ρpert(s)

s− q2
+ d3 < ss > +d5 < sgσGs > + . . . (9)

This expression can be improved by applying to both sides of Eq. (9) a Borel transform,

defined as follows:

B[F(Q2)] = lim
Q2→∞, n→∞, Q2

n
=M2

1

(n− 1)!
(−Q2)n

(

d

dQ2

)n

F(Q2) , (10)
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where F is a generic function of Q2 = −q2. The application of such a procedure to the

sum-rules amounts to exploiting the following result:

B
[

1

(s+Q2)n

]

=
exp(−s/M2)

(M2)n (n− 1)!
, (11)

where M2 is known as the Borel parameter. This operation improves the convergence of

the series in the OPE by factorials in n and, for suitably chosen values of M2, enhances

the contribution of low lying states. Moreover, since the Borel transform of a polynomial

vanishes, it is correct to neglect subtraction terms in Eq. (6), which are polynomials in

q2. The final sum-rule reads:

m2

f0
f̃ 2 exp

(

−
m2

f0

M2

)

=
3

8π2

∫ s0

4m2
s

ds s

(

1 − 4m2
s

s

)3/2

exp

(

− s

M2

)

+ms exp

(

− m2
s

M2

)[

< ss >

(

3 +
m2

s

M2
+
m4

s

M4

)

+ < sgσGs >
1

M2

(

1 − m2
s

2M2

)]

.(12)

In the numerical evaluation of Eq. (12) we use < ss >= 0.8 < qq >, < qq >= (−0.24)3

GeV3, < sgσGs >= 0.8 GeV2 < ss >, mf0
= 0.980 GeV. The strange quark mass

is chosen in the range ms = 0.125 − 0.160 GeV, obtained in the same QCD sum-rule

framework [28]. The threshold is chosen below a possible f0(1370) pole and varied between

s0 = 1.6 − 1.7 GeV2. Since the Borel parameter has no physical meaning, we look for a

range of its values (“stability window”) where the sum-rule is almost independent on M2.

Such a window is usually sought in a restricted interval of values of the Borel parameter

chosen by requiring that the perturbative contribution is at least 20% of the continuum

and additionally requiring that the perturbative term is greater than the non-perturbative

contribution. The stability window for M2 is selected in [1.2, 2] GeV2, as seen in Fig. 1,

where, taking into account the uncertainty on ms, we obtain the coupling:

f̃ = (0.180 ± 0.015) GeV . (13)

This result will be used in the analysis of the decay φ → f0γ as we shall see in the

following.

The relevant matrix element describing the transition φ → f0 induced by a strange

vector current Jµ = sγµs, can be parameterized as follows:

〈f0(q2)| Jµ |φ(q1, ǫ1)〉 = F1(q
2) (q1 · q2) ǫ1µ + F2(q

2) (ǫ1 · q2) (q1 + q2)µ

+ F3(q
2) (ǫ1 · q2) qµ (14)
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Figure 1: Coupling of the f0 to the scalar current as a function of the Borel parameter M ,
for ms = 0.140 GeV. The solid curve corresponds to the higher threshold s0 = 1.7 GeV2,
the dashed curve corresponds to s0 = 1.6 GeV2.

where q = q1 − q2. In order to consider the radiative decay φ → f0γ, one needs the

amplitude

A(φ(q1, ǫ1) → f0(q2)γ(q, ǫ)) = −1

3
e ǫ∗µ [F1(0) (q1 ·q2) ǫ1µ+F2(0) (ǫ1 ·q2) (q1+q2)µ] , (15)

where the charge of the strange quark has been explicitly written. Eq. (15) shows that

only two of the three form factors appearing in Eq. (14) are actually needed. Furthermore,

gauge invariance requires that qµ · [F1(0) (q1 · q2)ǫ1µ +F2(0) (ǫ1 · q2) (q1 + q2)µ] = 0, which

relates the values of F1 and F2 at q2 = 0:

F2(0) = F1(0)
m2

φ +m2
f0

2(m2
φ −m2

f0
)
. (16)

In terms of F1(0), the rate for the process we consider becomes:

Γ(φ→ f0γ) = α [F1(0)]2
(m2

φ −m2
f0

)(m2
φ +m2

f0
)2

216 m3
φ

. (17)

Three-point QCD sum-rules can be applied to evaluate the form factor F1(q
2). We consider

the three-point function:

Πµν(q
2

1, q
2

2, q
2) = i2

∫

d4x d4y e−iq1·x eiq2·y 〈0|T [Js(y)Jν(0)Jµ(x)] |0〉 (18)
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where Js has been defined above and Jν = sγνs is the vector current. The correlator

Eq. (18) can be written in terms of invariant structures as follows:

Πµν(q
2

1, q
2

2, q
2) = Π(q2

1, q
2

2, q
2) gµν + Π1(q

2

1 , q
2

2, q
2) q1µq1ν + · · · (19)

and a QCD sum-rule can be built up for the structure Π(q2
1, q

2
2, q

2). The method closely

follows the one described for the two-point sum-rule. We assume Π(q2
1, q

2
2, q

2) obeys a

dispersion relation in both the variables q2
1, q

2
2:

Π(q2

1, q
2

2, q
2) =

1

π2

∫

ds1

∫

ds2

ρ(s1, s2, q
2)

(s1 − q2
1)(s2 − q2

2)
, (20)

with possible subtractions. Such a representation is true at each order in perturbation

theory and, as is standard in QCD sum rule analyses, it is assumed to hold in general.

In this case the spectral function contains, for low values of s1, s2, a double δ−function

corresponding to the transition φ→ f0. Extracting this contribution, we can write:

Π(q2

1, q
2

2, q
2) = −mf0

f̃ mφ fφ F1(q
2)(q1 · q2)

(m2
φ − q2

1)(m
2
f0
− q2

2)
+

1

π2

∫ ∞

s′
0

ds1

∫ ∞

s0

ds2

ρhad(s1, s2, q
2)

(s1 − q2
1)(s2 − q2

2)
,

(21)

where subtractions are neglected as later they will vanish on taking a Borel transform.

The parameter f̃ appearing in the previous equation is just the coupling of the f0 to the

scalar current, computed previously. Deriving an OPE-based QCD expansion for Π for

large and negative q2
1 , q

2
2 and q2, one can write:

Π(q2

1, q
2

2, q
2) =

1

π2

∫ ∞

4m2
s

ds1

∫ ∞

4m2
s

ds2

ρpert(s1, s2, q
2)

(s1 − q2
1)(s2 − q2

2)
+ c3 < ss > +c5 < sgσGs > +... .

(22)

Invoking quark-hadron global duality as before, we arrive at the sum-rule:

mf0
f̃ mφ fφ F1(q

2) (q2 −m2
φ −m2

f0
)

2(m2
φ − q2

1)(m
2
η − q2

2)
=

1

π2

∫

D
ds1ds2

ρpert(s1, s2, q
2)

(s1 − q2
1)(s2 − q2

2)

+ c3 < ss > +c5 < sgσGs > +... , (23)

where the domain D should now also satisfy the kinematical constraints specified below.

After a double Borel transform in the variables −q2
1 and −q2

2 , we obtain:

1

2
mf0

f̃mφfφ(q
2 −m2

φ −m2

f0
)F1(q

2) exp
(

− m2
φ

M2
1

− m2
f0

M2
2

)

=

1

π2

∫

D
ds1ds2 exp

(

− s1

M2
1

− s2

M2
2

)

ρpert(s1, s2) (24)
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+ exp
(

− m2
s

M2
1

− m2
s

M2
2

)

{

< ss >

[

q2 + 2m2

s −
m2

sq
2

M2
1

+
m2

sq
2(2m2

s − q2)

2M2
1M

2
2

+
m4

sq
2

2

(

1

M4
1

+
1

M4
2

)]

+ < sgσGs >

[

− 1

3
+
q2 −m2

s

3M2
1

+
2q2 +m2

s

3M2
2

− q2(5m2
s − 2q2)

6M2
1M

2
2

− m2
sq

2

4M4
2

− m2
s(3q

2 +m2
s)

12M4
1

]}

,

where:

ρpert(s1, s2) =
3ms

4

{

(4m2

s + s1 − s2 + q2)
[(

s1 + s2 − q2
)2 − 4s1s2

]

+ 4q2s1s2

}

/

[

(s1 + s2 − q2)2 − 4s1s2

]3/2

. (25)

The integration domainD over the variables s1, s2 depends on the value of q2. For (−q2) >

s0 − 4m2
s, D is specified by: (s2)− ≤ s2 ≤ s0 4m2

s ≤ s1 ≤ s′0; while, for (−q2) < s0 − 4m2
s

D is bounded by: (s2)− ≤ s2 ≤ (s2)+ if 4m2
s ≤ s1 ≤ (s1)− and (s2)− ≤ s2 ≤ s0 if (s1)− ≤

s1 ≤ s′0, with: (s2)± =
[

2m2
sq

2 + (2m2
s − q2)s1 ±

√

s1q2(q2 − 4m2
s)(s1 − 4m2

s)
]

/2m2
s and

(s1)± =
[

2m2
sq

2 + (2m2
s − q2)s0 ±

√

s0q2(q2 − 4m2
s)(s0 − 4m2

s)
]

/2m2
s.

Since we consider the form-factor F1(q
2) for arbitrary negative values of q2, we could

perform a double Borel transform in the two variables Q2
1 = −q2

1 and Q2
2 = −q2

2 , which

allows us to remove single poles in the s1 and s2 channels from the sum-rule. Our pro-

cedure is therefore to compute the form-factor F1(q
2) and then to extrapolate the result

to q2 = 0. In the numerical analysis we use: mφ = 1.02 GeV, fφ = 0.234 GeV (obtained

from the experimental datum on the decay to e+e− [15]). We compute the result for two

values of the φ threshold: s′0 = 1.8, 1.9 GeV2. s0 coincides with the f0 threshold chosen

as for the two point function. The extrapolation to q2 = 0 shown in Fig. 2 gives:

F1(0) = 0.34 ± 0.07 , (26)

which, using Γ(φ) = 4.458 MeV [15] and Eq. (17), gives:

B(φ→ f0γ) = (2.7 ± 1.1) 10−4 . (27)

Both the results Eq. (13) and Eq. (26) have been derived without the inclusion of radiative

αs corrections, an approximation which is usually believed more accurate for the three

point sum rule, where the O(αs) corrections are expected to cancel in the ratio of a

three-point and a two-point function.
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Figure 2: Form factor F1(q
2). The dashed and dotted lines are the highest and the lowest

curves obtained varying the set of parameters entering in the sum rule (24). The isolated
point on the right is the result of an extrapolation. The result (26) corresponds to the
central point on the right obtained by extrapolating the solid curve.

Our result of Eq. (27) is in reasonable agreement with the outcome of refs. [29, 11],

where the decay is supposed to proceed through the chain φ → KKγ → f0γ, and so

depends on the coupling gf0KK
3. Their results are: B(φ → f0γ) = 1.9 × 10−4 [29] and

B(φ→ f0γ) = 1.35×10−4 [11]. On the other hand, QCD spectral sum rules are exploited

in ref. [31] to predict B(φ→ f0γ) = 1.3 × 10−4.

A different strategy is proposed in [16], where the experimental datum is assumed

together with the structure f0(980) = nn cos θ + ss sin θ, where nn = (uu + dd)/
√

2 and

θ is a mixing angle. A theoretical prediction is derived describing the particles (φ, f0)

through wave functions depending on the radii of the mesons. Such a prediction is then

compared to the experimental datum in order to constrain the mixing angle.

Although our result of Eq. (27) is affected by a rather large uncertainty, it is in

agreement with the available data [18, 19]. Since our sum rule analysis is based on the

hypothesis that the f0(980) couples to the scalar ss current, this agreement leads to the

conclusion that an ss component is present in such a state. However, our branching

ratio is an order of magnitude larger than the naive quark model gives for a pure ss

3Such a coupling is taken from ref. [30].
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state. Our result is consequently consistent with the view that the f0(980) is a meson

with a basic qq composition, which spends a sizeable part of its lifetime in a two meson

state, such as KK. This is in keeping with the analyses of [6, 8, 17, 32] that attribute

such multi-hadron components to dressing. While the effect of KK couplings have been

studied phenomenologically in Ref. [16] in a range of hadronic reactions, they have been

dynamically calculated by Marco et al. [33] explicitly for the radiative decay we study

here and found to give B(φ → f0γ) = 2.4 × 10−4, in reassuringly good agreement with

our sum-rule result, Eq. (27).

We acknowledge the EU-TMR Programme, Contract No. CT98-0169, EuroDAΦNE

for support. F.D.F. warmly thanks the Institute for Particle Physics Phenomenology,

University of Durham, where this work was started.

References

[1] For reviews see: L. Montanet, Rep. Prog. Phys. 46 (1983) 337; F.E. Close, Rep.

Prog. Phys. 51(1988) 833; N.N. Achasov, Nucl.Phys. Proc. Suppl. B21 (1991) 189;

T. Barnes, hep-ph/0001326.

[2] J. Weinstein and N. Isgur, Phys. Rev. Lett. 48 (1982) 659; Phys. Rev. D27 (1983)

588; Phys. Rev. D41 (1990) 2236.

[3] K.L. Au, D. Morgan and M.R. Pennington, Phys. Rev. D35 (1987) 1633.

[4] G. Janssen et al., Phys. Rev. D52 (1995) 2690.

[5] J.A. Oller and E. Oset, Phys. Rev. D60 (1999) 074023; Nucl. Phys. A620 (1997)

438, Nucl. Phys. A652 (1999) 407 (E).

[6] N.A. Tornqvist, Phys. Rev. Lett. 49 (1982) 624; Z. Phys. C68 (1995) 647.

[7] N.A. Tornqvist and M.Roos, Phys. Rev. Lett. 76 (1996) 1575.

[8] E. van Beveren et al., Z. Phys. C30 (1986) 615; M.D. Scadron, Phys. Rev. D26

(1982) 239; E. van Beveren, G. Rupp and M.D. Scadron, Phys. Lett. B495 (2000)

300.

10

http://arXiv.org/abs/hep-ph/0001326


[9] R.L. Jaffe, Phys. Rev. D15 (1977) 267, 281; D17 (1978) 1444; R.L. Jaffe and K.

Johnson, Phys. Lett. B60 (1976) 201.

[10] N.N. Achasov and V.N. Ivanchenko, Nucl. Phys. B315 (1989) 465; N.N. Achasov

and V.V. Gubin, Phys. Rev. D56 (1997) 4084.

[11] N. Brown and F.E. Close, in ref. [20], pp. 447-464; F.E. Close, N. Isgur and S.

Kumano, Nucl. Phys. B389 (1993) 513.

[12] R. Kaminski, L. Lesniak and J.P. Maillet, Phys. Rev. D50 (1994) 3145.

[13] N.N. Achasov, V.V. Gubin and V.I. Shevchenko, Phys. Rev. D56 (1997) 203.

[14] D. Morgan and M.R. Pennington, Phys. Lett B258 (1991) 444; ibidem B269 (1991)

477 (E).

[15] Review of Particle Physics, D.E. Groom et al., Eur. Phys. J. C15 (2000) 1.

[16] A.V. Anisovich, V.V. Anisovich and V.A. Nikonov, hep-ph/0011191.

[17] M. Boglione and M. R. Pennington, Phys. Rev. Lett. 79 (1997) 1998.

[18] R.R. Akhmetshin et al., Phys. Lett. B462 (1999) 380.

[19] M.N. Achasov et al., Phys. Lett. B440 (1998) 442.

[20] For a review, see: The DAΦNE Physics HandBook, L. Maiani, G. Pancheri and N.

Paver eds, INFN Frascati, 1995.

[21] KLOE Collab., M. Adinolfi et al., hep-ex/0006036.

[22] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147 (1979) 385,

448. For a review on the QCD sum-rule method see Vacuum Structure and QCD

Sum Rules, M.A. Shifman ed., North-Holland, Amsterdam, 1992.

[23] F. De Fazio and M.R. Pennington, JHEP 0007 (2000) 051.

[24] R. Delbourgo, D.-S. Liu and M.D. Scadron, Phys. Lett. B446 (1999) 332.

11

http://arXiv.org/abs/hep-ph/0011191
http://arXiv.org/abs/hep-ex/0006036


[25] G. Gidal et al., MARK II Collab., Phys. Lett. B107 (1981) 153; U. Malik, MARK III

Collab., Proc. XXI Rencontre de Moriond, Vol. 2, ed J. Tran Thanh Vanh (Editions

Frontières, 1986), p. 431; W. Lockman, Mark III Collab., Proc. 3rd Int. Conf. on

Hadron Spectroscopy (Ajaccio, France), eds F Binon et al. (Editions Frontières, 1989)

p.109; A. Falvard et al., DM2 Collab., Phys Rev D38 (1988) 2706.

[26] J.C. Anjos et al., E691 Collab., Phys. Rev. Lett. 62 (1989) 125 and more recent E.M.

Aitala et al. E791 Collab., Phys. Rev. Lett. 86 (2001) 765.

[27] D. Morgan and M.R. Pennington, Phys. Rev. D48 (1993) 1185.

[28] P. Colangelo, F. De Fazio, G. Nardulli and N.Paver, Phys. Lett. B408 (1997) 340.

For other determinations see the review: P. Colangelo and A. Khodjamirian, hep-

ph/0010175.

[29] J. Lucio and J. Pestieau, Phys. Rev. D42 (1990) 3253.

[30] S. Nussinov and T.N. Truong, Phys. Rev. Lett. 63 (1989) 1349; 2002 (E).

[31] S. Narison, Nucl. Phys. Proc. Suppl. 96 (2001) 244.

[32] N.A. Tornqvist, hep-ph/0008136.

[33] E. Marco et al, Phys. Lett. B470 (1999) 20.

12

http://arXiv.org/abs/hep-ph/0010175
http://arXiv.org/abs/hep-ph/0010175
http://arXiv.org/abs/hep-ph/0008136

