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FERNANDO GALAZ-GARCÍA∗ AND JESÚS NÚÑEZ-ZIMBRÓN

Abstract. We survey several results concerning the geometry and topology of three-
dimensional Alexandrov spaces with the aim of providing a panoramic and up-to-date
view of the subject. In particular we present the classification of positively and non-
negatively curved spaces, the geometrization theorem, a discussion of known results for
simply-connected and aspherical spaces, the equivariant and topological classifications of
closed three-dimensional Alexandrov spaces with isometric compact Lie group actions, and
recent developments on collapsing theory.
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1. Introduction

The natural objects of study in Riemannian geometry are smooth manifolds which carry
a smooth Riemannian metric, that is, smooth Riemannian manifolds. Many useful tools
have been developed to study these objects, including highly developed theories of geometric
and functional analysis on Riemannian spaces. Riemannian manifolds also carry a natural
metric space structure allowing not only for local analytic arguments, but also for global
results linking geometry and topology.

On account of being metric spaces, compact Riemannian manifolds naturally fall in the
context of the Gromov–Hausdorff distance, which makes the collection of (isometry classes of)
compact metric spaces into a metric space. It is then natural to ask what the metric closure
of the class of compact Riemannian manifolds is under Gromov–Hausdorff convergence. The
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answer to this question was obtained by Cassorla in [16]: this closure consists of all compact
inner metric spaces.

On a different note, Riemannian manifolds can be studied via several fundamental invari-
ants, the most important being the curvature tensor. The curvature tensor itself gives rise
to different notions of curvature (and, in particular, curvature bounds) such as sectional,
Ricci, and scalar curvatures. One could then wonder about the interplay between curvature
and Gromov–Hausdorff convergence, or particularly, what the closure of different classes of
Riemannian manifolds with given curvature bounds is. This leads in a natural way to the
consideration of different curvature notions on non-smooth metric spaces.

Motivated by the preceding considerations, much work has been devoted to extending
the definitions of sectional, Ricci, and scalar curvature lower bounds to non-smooth metric
spaces. By now, there exists a well established theory of metric spaces with sectional cur-
vature bounded either above or below, known, respectively, as CAT [3, 10] or Alexandrov
spaces [12, 13]. In the case of Ricci curvature bounded below, starting with the seminal work
of Lott, Villani [62], and Sturm [95, 96], the theory of metric spaces with a lower curvature
Ricci curvature has evolved into a well developed field that has seen much attention in recent
years (see, for example, [36, 37]). Finally, a metric generalization of a uniform lower scalar
curvature bound is, at the moment, open and remains the focus of current research (see, for
example, [39, 40, 94, 97]).

Alexandrov spaces in particular play an important role in questions involving the global
geometry of Riemannian manifolds and arise, for example, as Gromov–Hausdorff limits of
convergent sequences of n-dimensional compact Riemannian manifolds with a uniform lower
sectional curvature bound. Familiar examples of Alexandrov spaces include Riemannian orb-
ifolds with a uniform lower sectional curvature bound and orbit spaces of isometric compact
Lie group actions on complete Riemannian manifolds with sectional curvature bounded be-
low. In addition to their relevance in Riemannian geometry, Alexandrov spaces are objects
of interest in their own right and, since complete Riemannian manifolds with a uniform lower
sectional curvature bound are Alexandrov spaces, Alexandrov geometry may be seen as a
metric generalization of Riemannian geometry. Indeed, many Riemannian theorems, such as
the Bonnet–Myers theorem, have corresponding analogues for Alexandrov spaces and much
effort has been made in generalizing Riemannian results to Alexandrov spaces. This seem-
ingly simple approach involves significant challenges, as in Alexandrov geometry one must
make do without the smooth tools available for Riemannian manifolds, relying instead on
purely metric machinery. Thus, in order to recover Riemannian results, one must usually
devise new arguments depending only on metric considerations.

As noted above, generic Alexandrov spaces are not manifolds and their topological intri-
cacies increase considerably with their dimension. Indeed, locally, an n-dimensional Alexan-
drov space is homeomorphic to a cone over an (n − 1)-dimensional Alexandrov space with
curvature bounded below by 1. The latter spaces are far from being classified, even in the
Riemannian case. Moreover, even if the space is manifold, the set of metric singularities
may be dense. It is natural then to first consider Alexandrov spaces of low dimensions. The
topology and geometry of one- and two-dimensional Alexandrov spaces is, essentially, well
understood (see for example [12, Corollary 10.10.3]). Therefore, the next step consists in
analyzing three-dimensional Alexandrov spaces and in this survey we present an up-to-date
and panoramic view of the topology and geometry of such spaces.
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Our manuscript is organized as follows. In Section 2 we recall preliminary notions of
Alexandrov geometry. In Section 3 we present the classification of positively and non-
negatively curved spaces, the geometrization theorem, and a discussion on simply-connected
and aspherical three-dimension Alexandrov spaces. We then present Lie group actions and
their topological and equivariant classifications for three-dimensional Alexandrov spaces in
Section 6. Finally, in Section 7 we give a brief account of results on collapsing Alexandrov
spaces in dimension three.

Acknowledgements. These notes are based on a minicourse given by the first named
author at the 11th Minimeeting on Differential Geometry held at CIMAT, in Guanajuato,
Mexico, on December 10–12, 2018. These talks were in turn based on [27] and the present
notes are an expanded and updated version of this earlier survey. Both authors would like to
thank Rafael Herrera, Luis Hernández-Lamoneda, and Gerardo Arizmendi, who organized
the meeting, as well as CIMAT, for their hospitality and their support in preparing these
notes. The authors would also like to thank Luis Guijarro, with whom most of the joint
work presented in this survey was carried out. The first named author would like to thank
John Lott for bringing to his attention reference [55] on singular 3-manifolds.

2. Alexandrov spaces

In this section we recall some basic concepts and general results on Alexandrov geometry.
Most of this material can be found in the basic references [12, 13]; see also [83, 91]. We refer
the reader to [1, 82] for further results on Alexandrov geometry as well as to Petersen’s notes
in this same volume.

2.1. Basic definitions. Let (X, d) be a metric space. A curve (or path) in X is, by defini-
tion, a continuous function γ : I → X defined on an interval I ⊂ R. We define the length of
a curve γ : [a, b]→ X by

Length(γ) = sup
P

n∑
i=1

d(γ(ti−1), γ(ti)),

where the supremum is taken over all partitions of [a, b], i.e., over all finite collections of
points P = { t0, . . . , tn } with a = t0 < t2 < · · · < tn = b. The metric space (X, d) is a length
space if it is path connected and the distance d(p, q) between points p, q ∈ X is given by
the infimum of lengths of curves joining p and q, i.e., curves γ : [a, b] → X with γ(a) = p
and γ(b) = q. In this case, d is said to be an intrinsic (or inner) metric. Note that any
connected Riemannian manifold equipped with its Riemannian distance is a length space.

Let I ⊂ R be an interval. A curve γ : I → X is a geodesic if, for each interior value t of I,
the restriction of γ to a small interval centered at t is a shortest path. A curve γ between
points p and q in a metric space (X, d) is a minimal geodesic if Length(γ) = d(p, q). We will
assume all geodesics to be minimal unless otherwise stated. It is worth noting that for locally
compact and complete length spaces, one can always join every pair of points by a minimal
geodesic [12, Theorem 2.5.23]. We will denote a geodesic between p and q by [pq]. Note that
this terminology differs from the one used in Riemannian geometry, where a geodesic is a
curve that locally minimizes distances between any two of its points and may not necessarily
realize the distance between its endpoints. This may be easily verified by considering great
circles on a round sphere.
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Let us now define the Hausdorff dimension of a metric space Y . Let V = {Vi}i∈I be a
countable covering of Y , let h ≥ 0 be a real number, and fix δ > 0. Define

Hh
δ (Y ) = inf

V

{∑
i∈I

diam(Vi)
h : diam(Vi) < δ for all i ∈ I

}
,(2.1)

where the infimum is taken over all countable coverings of Y by subsets of diameter less than
δ. Note that if no such covering exists, then Hh

δ (Y ) = ∞. We convene that, if h = 0, then
every 00 term appearing in the sum

∑
i∈I diam(Vi)

h in (2.1) is replaced by 1. We then define
the h-dimensional Hausdorff measure of Y , denoted by Hh(Y ), by letting

Hh(Y ) = C(h) lim
δ→0

Hh
δ (Y ).

Here C(h) > 0 is a normalization constant chosen so that, if h is a positive integer, then
Hh([0, 1]h) = 1, where [0, 1]h is the unit cube in Euclidean space Rh. We define the Hausdorff
dimension of Y by

dimH(Y ) = inf
{
h ≥ 0 : Hh(Y ) = 0

}
.

We define the Hausdorff dimension of subsets of Y by considering such subsets as metric
spaces equipped with the subspace metric induced by the metric on Y . Note that the
Hausdorff dimension of a metric space may not necessarily be an integer. Indeed, many self-
similar subspaces of Euclidean spaces, such as the Cantor set in R or the Sierpinski triangle
in R2, have non-integer Hausdorff dimensions. On the other hand, the Hausdorff dimension
of a Riemannian n-manifold equals its topological dimension.

We conclude this subsection by recalling the definitions of the Hausdorff and Gromov–
Hausdorff distances. Let X be a metric space. Given r > 0 and a subset S ⊂ X, let
Ur(S) = {x ∈ X : d(x, S) < r }, i.e., Ur(S) is an open r-neighborhood of S in X. The
Hausdorff distance dH(A,B) between two subsets A,B of X is, by definition,

dH(A,B) = inf{ r > 0 : A ⊂ Ur(B) and B ⊂ Ur(A) }.

Now, let X and Y be compact metric spaces. The Gromov–Hausdorff distance dGH(X, Y )
between X and Y is given by

dGH(X, Y ) = inf { dH(f(X), g(Y ) } ,

where the infimum is taken over all metric spaces Z and all isometric embeddings f : X → Z
and g : Y → Z. This distance measures how far X and Y are from being isometric. Indeed,
dGH(X, Y ) = 0 if and only if X is isometric to Y . The space of (isometry classes of) compact
metric spaces equipped with the Gromov–Hausdorff distance is itself a metric space.

From now on we will assume that (X, d) is a complete, locally compact length space. This
guarantees the existence of geodesics between any two points in (X, d) (see [12, Theorem
2.5.23]). In the Riemannian setting the existence of shortest curves between any pair of
points in a complete Riemannian manifold is a consequence of the Hopf–Rinow Theorem
(see [22, Ch. 7, Theorem 2.8]). To lighten the notation, we will usually denote the metric
space (X, d) simply by X. We will assume all our spaces to be connected.
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2.2. Curvature bounded below. Rather than considering directly the geometry of a
length space X, we will compare distances in X with distances in a given model space
whose geometry is well understood. Our goal is to define a notion of (sectional) curvature
bounded below using only distances in X.

The model space M2
k with curvature k ∈ R is the simply-connected complete Riemannian

2-manifold with constant sectional curvature k. Hence, M2
k is isometric to the Euclidean

plane R2 if k = 0, to the round sphere of radius 1/
√
k if k > 0, or to the hyperbolic plane

appropriately rescaled so that its sectional curvature is k < 0. Observe that

diam(M2
k ) =

{
π/
√
k if k > 0;

∞ if k ≤ 0.

A geodesic triangle 4pqr inX consists of three different points p, q, r ∈ X and three geodesics
[pq], [pr], [qr] between them. Given k ∈ R, a comparison triangle for 4pqr in M2

k is a
geodesic triangle 4pqr in M2

k with vertices p, q, r and whose sides have the same length as
the corresponding sides of 4pqr, i.e., d(p, q) = d(p, q), d(p, r) = d(p, r), and d(q, r) = d(q, r).

The angles of 4pqr at each one of its vertices p, q, and r are the comparison angles and

we denote them, respectively, by ]̃rpq, ]̃pqr, and ]̃prq. Given a geodesic triangle 4pqr in
X, a corresponding comparison triangle exists and is unique (up to an isometry of the model

space) if k ≤ 0, or if k > 0 and the perimeter of 4pqr is strictly less than 2π/
√
k.

Suppose now that X is a complete Riemannian manifold with sectional curvature sec ≥ k
for some k ∈ R. By Toponogov’s comparison theorem, if 4pqr is a geodesic triangle in X
and 4pqr is a comparison triangle in M2

k , then

d(p, s) ≥ d(p, s),(2.2)

where s is a point in the geodesic [qr] in 4pqr and s is the point in the side [qr] of 4pqr with
d(s̄, q̄) = d(s, q). Conversely, if inequality (2.2) holds for any geodesic triangle 4pqr and
a corresponding comparison triangle 4pqr in M2

k , then X has sectional curvature bounded
below by k (see [10, Theorem 1A.6]). We now take this metric characterization of sectional
curvature bounded below as the definition of a lower (sectional) curvature for length spaces.

Definition 2.1 (Property Tk). Let X be a complete, locally compact length space. A
geodesic triangle 4pqr in X satisfies property Tk for a given k ∈ R if, for any comparison
triangle 4pqr in M2

k and for any point s in the geodesic [qr] in 4pqr,

d(p, s) ≥ d(p, s),

where s̄ is the point in the side [qr] of 4pqr with d(s̄, q̄) = d(s, q).

Definition 2.2. A complete, locally compact length space X has curvature bounded below
by k ∈ R (denoted by curv ≥ k) if every point in X has an open neighborhood Up where
property Tk holds for every geodesic triangle in Up.

With a metric definition of lower curvature bound now in hand, we define Alexandrov
spaces.

Definition 2.3. A complete, locally compact length space of finite (Hausdorff) dimension
is an Alexandrov space with curvature bounded below by k ∈ R if property Tk is satisfied
locally.
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Figure 1. The Tk-property. On the left hand side, 4pqr is displayed. On
the right hand side, a comparison triangle 4pqr is displayed on M2

k . In the
figure M2

k has k = 0.

Toponogov’s globalization theorem [12, Theorem 10.3.1] implies that property Tk holds
globally on any Alexandrov space with curvature bounded below by k, i.e., the property
holds for any geodesic triangle in the space. We convene that the line R, the half line R+,
line segments of length greater than π/

√
k, and circles of length greater than 2π/

√
k are not

Alexandrov spaces with curv ≥ k > 0.

Remark 2.4. Since the definition of lower curvature bound is independent of the Hausdorff
dimension of the length space under consideration, it is possible to omit the finiteness of the
Hausdorff dimension in Definition 2.3 (see, for example, [83]). Doing so, however, introduces
technical difficulties that do not arise in finite dimensions (see, for example, [47]). We refer
the reader to [99, 100] for other results on infinite dimensional spaces with curvature bounded
below.

The graph in Figure 2, considered as a subset of R2, equipped with the length metric
induced by the usual Euclidean distance, is not an Alexandrov space. Indeed, no neighbor-
hood of a vertex of degree three or more (i.e., where three or more edges meet) has a lower
curvature bound. This space, however, has curvature bounded above in the comparison sense
(see, for example [12, Ch. 9]). Similarly, a subset of R3 consisting of a 2-plane attached to an
interval by one of its endpoints with the induced length metric is not an Alexandrov space
of curvature bounded below.

Alexandrov spaces have several nice topological and geometric properties. For example,
they are non-branching, i.e., geodesics do not bifurcate. This does not hold, for instance, for
the length space in Fig. 2. The Hausdorff dimension of an Alexandrov space is an integer
and it equals its topological dimension.

We will denote the class of n-dimensional Alexandrov spaces with curvature bounded be-
low by k ∈ R by Alexn(k). Observe that Alexn(k) contains the set of complete n-dimensional
Riemannian manifolds with sec ≥ k. This inclusion is proper, since not every Alexandrov
space is homeomorphic to a topological manifold, as the examples in the following subsection
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Figure 2. These spaces are not Alexandrov spaces.

illustrate. Thus, Alexandrov geometry may be seen as a generalization of Riemannian geom-
etry and, indeed, many Riemannian theorems have corresponding analogues for Alexandrov
spaces. One such result is the Bonnet–Myers theorem [12, Theorem 10.4.1], which we will
use in subsequent sections.

Theorem 2.5 (Bonnet–Myers). If X is and Alexandrov space with curv ≥ k > 0, then

diam(X) ≤ π/
√
k. In particular, X is compact.

2.3. Examples and constructions. We now list some well-known examples and construc-
tions of Alexandrov spaces.

Complete Riemannian manifolds with sec ≥ k. As stated in the preceding subsection, To-
ponogov’s comparison theorem implies that every complete Riemannian manifold with sec-
tional curvature bounded below by k is an Alexandrov space with curv ≥ k.

Convex sets. Any convex subset of an Alexandrov space with curv ≥ k is again an Alexan-
drov space with curv ≥ k.

Convex surfaces. Every convex surface in R3, i.e., the boundary of a convex body in R3,
equipped with the intrinsic metric induced by R3, is an Alexandrov space of curv ≥ 0. More
generally, the boundary of any convex body in Rn, n ≥ 3, is an Alexandrov space of non-
negative curvature. By a result of Buyalo [11, 14], any convex hypersurface N in a complete
Riemannian manifold M with sectional curvature bounded below by k is an Alexandrov
space of curv ≥ k.

Gromov–Hausdorff limits. The limit of a Gromov–Hausdorff convergent sequence of compact
Alexandrov spaces with curvature bounded below by k is itself an Alexandrov space of
curv ≥ k.

Cartesian products. Let (X, dX) and (Y, dY ) be Alexandrov spaces with curvature bounded
below by k. Motivated by the Pythagorean theorem, we define the product metric d on the
Cartesian product X × Y by letting

d((x1, y1), (x2, y2)) =
√
dX(x1, x2)2 + dY (y1, y2)2

for all x1, x2 ∈ X and y1, y2 ∈ Y . The space X × Y equipped with the product metric is the
direct metric product of X and Y and is an Alexandrov space with curv ≥ k.
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Cones. Let (X, d) ∈ Alexn(1) and let C(X) = X × [0,∞)/X × {0} be the cone over X. We
define the Euclidean cone metric dC on C(X) by letting

dC((p, s), (q, t)) =
√
s2 + t2 − 2st cos(d(p, q))

for all (p, s), (q, t) ∈ C(X). Since curv(X) ≥ 1, the Bonnet–Myers theorem implies that
diam(X) ≤ π. This ensures that dC is indeed a metric on C(X) (see, for example, [12,
Propsition 3.6.13]). The metric space (C(X), dC) is the Euclidean cone over X and is an
Alexandrov space with curv ≥ 0. In particular, the Euclidean cone over the unit round sphere
Sn(1) is isometric to Rn+1. Note that C(X) contains an isometric copy of X consisting of
all the points at distance one from the vertex of C(X).

Suspensions. Let (X, d) ∈ Alexn(1) and let

Susp(X) = X × [0, π]/{X × {0}, Y × {π}}
be the suspension of X. Motivated by the spherical law of cosines, we define the spherical
suspension metric dS on Susp(X) by

dS((p, s), (q, t)) = cos−1 (cos(s) cos(t) + sin(s) sin(t) cos(d(p, q))

for all (p, s), (q, t) ∈ Susp(X). The space (Susp(X), dS) is the spherical suspension of X
and is an (n + 1)-dimensional Alexandrov space with curv ≥ 1. In particular, the spherical
suspension of Sn(1) is isometric to Sn+1(1). Note that Susp(X) contains an isometric copy of
X consisting of the set of points at distance π/2 from either vertex of the spherical suspension.
In analogy with the sphere, we may think of this set as the equator of the suspension and of
the vertices as the poles.

Joins. The join of two topological spaces X, Y is the space

X ∗ Y = (X × Y × [0, π])/ ∼,
where ∼ is the equivalence relation given by

(x, y, 0) ∼ (x, y′, 0) for all x ∈ X and y, y′ ∈ Y,
(x, y, π) ∼ (x′, y, π) for all x, x′ ∈ X and y ∈ Y.

If (X, dX) and (Y, dY ) are Alexandrov spaces with curv ≥ 1, then we may define a spherical
join metric dJ on X ∗ Y so that (X ∗ Y, dJ) is an Alexandrov space with curvature bounded
below by 1 and dimension dimX+ dimY + 1. We outline the definition of dJ , following [45].
Since X and Y are Alexandrov spaces with curv ≥ 1, the Euclidean cones C(X) and C(Y )
are Alexandrov spaces with curv ≥ 0 and hence the product C(X)×C(Y ) is an Alexandrov
space with curv ≥ 0. Let oX and oY denote, respectively, the vertices of the cones C(X) and
C(Y ). The set of points at unit distance from (oX , oY ) in C(X) × C(Y ) is an Alexandrov
space with curv ≥ 1 which can be naturally identified with the join X ∗ Y . The join X ∗ Y
contains isometric copies of X and Y in such a way that all points in X are at distance π/2
from all points in Y . Moreover, if A ⊂ X and B ⊂ Y are Alexandrov spaces isometrically
embedded in X and Y , then A ∗ B is isometrically embedded in X ∗ Y . We may use this
observation to calculate distances between points in X ∗ Y as follows. First, note that any
point in X ∗ Y \ (X ∪ Y ) has a unique coordinate representation as (x, t, y) with x ∈ X,
y ∈ Y , t ∈ (0, π/2). Now, given two points in the join, let A be a geodesic joining the
x-coordinates and let B be a geodesic joining the y-coordinates. Note that we may think of
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A and B as being isometrically embedded in S1(1), since their length is at most π. Then
the distance between the original points can be computed in A ∗B ⊂ S3(1) = S1(1) ∗ S1(1).
Note that when Y is the two point set, X ∗ Y is isometric to the spherical suspension of X.
The spherical join of two unit round spheres Sn(1) and Sm(1) is isometric to Sn+m+1(1).

Quotients. Let X be an Alexandrov space and let G be a group acting by isometries on X
with closed orbits. The orbit space X∗ has a metric given by

dQ(p∗, q∗) = inf {d(x, y) : x ∈ G(p), y ∈ G(q) }
for all p∗, q∗ ∈ X∗. If X ∈ Alexn(k), then X∗ is also an Alexandrov space with curv ≥ k.
This is a consequence of the fact that the orbit projection map pr : X → X∗ is a submetry,
i.e., the image under pr of a metric ball of radius r > 0 and center p ∈ X is a metric ball in
X∗ with radius r and center p∗ ∈ X∗.

Doubles and glued spaces. Let X1, X2 ∈ Alexn(k) with non-empty boundary (for the defini-
tion of boundary see section 2.4 below) and let f : ∂X1 → ∂X2 be an isometry. The space
X = X1 ∪X2/(p ∼ f(p)) has a metric with curv ≥ k given by

d(p1, p2) = inf { d1(p1, q) + d2(f(q), p2) : q ∈ ∂X1 } .
This was first proved for doubles of Alexandrov spaces with boundary by Perelman [77]. The
general gluing result was obtained by Petrunin [81]. It follows from these results that the
double disc, i.e., the gluing of two copies of a disc in R2 along their isometric boundaries,
is an Alexandrov space with non-negative curvature whose underlying topological space is
homeomorphic to a 2-sphere.

We may use the preceding constructions to generate Alexandrov spaces that are neither
topological manifolds nor orbifolds. Consider, for example, the complex projective plane
CP 2. Equipped with its canonical Fubini–Study metric, CP 2 is a Riemannian manifold
with sec ≥ 1 and is, therefore, an Alexandrov space with curv ≥ 1. Hence the spherical
suspension Susp(CP 2) is again an Alexandrov space with curv ≥ 1 and is homeomorphic
neither to a topological manifold nor to an orbifold. Further examples of Alexandrov spaces
with curvature bounded below include certain warped products [2, 4] and stratified spaces
[8].

2.4. Local structure. The local structure of an Alexandrov space is determined by the
space of directions. To define this space, we first define angles between geodesics. The angle
between two geodesics [pq], [pr] in an Alexandrov space X is defined as

∠qpr = lim
q1,r1→p

{∠q1pr1 : q1 ∈ [pq], r1 ∈ [pr]}.

Geodesics that make an angle zero determine an equivalence class called tangent direction.
The set of tangent directions at a point p ∈ X is denoted by Σ′p and, when equipped with the
angle distance ∠, the set Σ′p is a metric space. This space may not be complete, however,
as one can see by considering directions at a point in the boundary of a unit disc in the
Euclidean plane. The completion of

(
Σ′p,∠

)
is called the space of directions of X at p and

is denoted by Σp. It corresponds, in Alexandrov geometry, to the unit tangent sphere in
Riemannian geometry. The space of directions Σp is an Alexandrov space with curv ≥ 1
and dimension dimX − 1. Moreover, Σp is isometric to the unit round sphere Sn−1(1) on a
dense set RX , called the set of (metrically) regular points. The set SX = X \ RX is the set
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of (metrically) singular points. The following example shows that the set SX may be dense
in X.

Example 2.6 (Otsu–Shioya [75, p. 632]). Let P be a convex polyhedron in R3. For any
vertex p ∈ P , let ∠(P, p) be the sum of all inner angles at p of faces of P having p as a
vertex. Since P (equipped with the length metric induced by R3) is an Alexandrov space
of non-negative curvature, ∠(P, p) ≤ 2π and the space of directions Σp is a circle of length
∠(P, p). Thus, a vertex p ∈ P is a metrically singular point if and only if ∠(P, p) < 2π.
We now define inductively a Hausdorff-convergent sequence {Xk}∞k=1 of convex polyhedra in
R3 with limit X. Since Hausdorff convergence implies Gromov–Hausdorff convergence, X
will be an Alexandrov space of non-negative curvature. We define the Xi so that the set
of metrically singular points in X is dense. Let X1 be a regular tetrahedron in R3 whose
barycenter is the origin o ∈ R3. Assume that Xk for some k > 1 has been defined. Let us
define Xk+1. Let {εi}∞i=1 be a monotone decreasing sequence of positive numbers converging
to zero. Assume that 0 < εi < 1 for all i and let ε = Π∞j=1(1−εj); note that, by construction,
ε > 0. Take the barycentric subdivision of Xk and push all the new vertices outward slightly
along rays emanating from o while keeping the original vertices of Xk to obtain the convex
tetrahedron Xk+1. We may assume that

2π − ∠(Xk+1, p) ≥ (1− εk)(2π − ∠(Xk, p))

for any vertex p of Xk. Define X ⊂ R3 to be the Hausdorff limit of {Xk}. Then X is a
non-negatively curved Alexandrov space. For any k and any vertex p of Xk, we obtain

lim
i→∞

(2π − ∠(Xi, p)) ≥ Π∞i=1(1− εk+1)(2π − ∠(Xk, p))

≥ ε(2π − ∠(Xk, p))

> 0.

The length of the space of directions of X at p is limi→∞∠(Xi, p) < 2π. Thus any vertex of
Xk for any k is a singular point of X. Since the maximal length of all the edges of Xk tends
to zero as k →∞, the set SX of singular points is dense in X.

Example 2.7. Let M be a complete Riemannian manifold with sectional curvature bounded
below by k. Recall that, if G is a compact Lie group acting effectively and isometrically on
M , then the orbit space M∗ is an Alexandrov space with curv ≥ k. In this case the space of
directions Σp∗ at p∗ ∈M∗ consists of geodesic tangent directions and is isometric to S⊥p /Gp,

where S⊥p is the unit normal sphere to the orbit G(p) at p ∈M .

Definition 2.8. Let X be an Alexandrov space and fix p ∈ X. The tangent cone of X at a
p is the Euclidean cone over the space of directions of X at p. We will denote it by TpX.

By construction TpX is an Alexandrov space with curv ≥ 0 and dimTpX = dimX. Note
that the tangent cone of a complete Riemannian manifold at any one of its points is the
usual tangent space and is isometric to a Euclidean space.

The local structure of Alexandrov spaces is given by the following theorem (see [77]).

Theorem 2.9 (Conical Neighborhood Theorem (Perelman)). If X is an Alexandrov space,
then every p ∈ X has a neighborhood pointed-homeomorphic to TpX.

Remark 2.10. It is conjectured that the homeomorphism in the preceding theorem should
be bi-Lipschitz.
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The conical neighborhood theorem implies that the local topology of an Alexandrov space
X at a point p is determined by the space of directions Σp. Thus, since Σp is an Alexan-
drov space with curvature bounded below by 1, it is important to determine the possible
homeomorphism types of such Alexandrov spaces. In dimensions 2 and 3 this classification
is complete (see the next section). In dimensions n ≥ 4, however, the classification problem
is open in full generality, even in the case of Riemannian manifolds (see [101] and references
therein).

Having defined the space of directions at a point, we may now define the boundary of an
Alexandrov space X. If dimX = 1, then X is a manifold (possibly with boundary). We
define the boundary of an Alexandrov space inductively by letting

∂X = {p ∈ X : ∂Σp 6= ∅}
if dimX > 1. The boundary ofX is a closed subset of codimension 1. Note that if dimX ≤ 2,
then X is a topological manifold (possibly with boundary).

An Alexandrov space is an Alexandrov manifold if it is homeomorphic to a topological
manifold. We will say that an Alexandrov space is topologically regular if every space of
directions is homeomorphic to a sphere. Clearly, a topologically regular Alexandrov space is
an Alexandrov manifold, but the converse is not necessarily true, as the following example
shows.

Example 2.11. Recall that the Poincaré homology sphere, which we denote by P 3, is diffeo-
morphic to a quotient of the 3-sphere by a free smooth action of the binary icosahedral group
I∗. Thus P 3 = S3/I∗ is a compact non-simply-connected 3-manifold without boundary and
with the same integral homology groups as S3. We may assume that I∗ acts orthogonally on
the unit round 3-sphere, which implies that P 3 inherits a Riemannian metric with constant
sectional curvature one. In particular, P 3 is an Alexandrov space of curv ≥ 1 and, hence,
its the double spherical suspension (Susp2(P 3), d) is a 5-dimensional Alexandrov space with
curv ≥ 1. By the Double Suspension Theorem of Edwards and Cannon, Susp2(P ) is homeo-
morphic to S5 (see [15, 24, 23]). It follows that (Susp2(P ), d) is a five-dimensional Alexandrov
manifold. On the other hand, (Susp2(P ), d) is not topologically regular, since the spaces of
directions at the poles of the double suspension are homeomorphic to Susp(P ), which is not
a manifold.

Definition 2.12. Let X ∈ Alexn(k). A subset E ⊂ X is extremal if, for p ∈ X and q ∈ E
with d(p, q) = d(p, E), one has Σq = B(p′, π

2
), where p′ ∈ Σq is the direction of a geodesic

from q to p.

A point p in an Alexandrov space X is extremal if and only if diam(Σp) ≤ π/2. Observe
that ∂X is extremal. By work of Perelman and Petrunin [78], each extremal set E ⊂ X can
be decomposed into a disjoint union of topological manifolds; along with an n-dimensional
open set, this determines a stratification of X into topological manifolds.

2.5. A Riemannian digression. Alexandrov spaces play an important role in Riemannian
geometry and arise, for example, in the following context. Recall that, equipped with the
Gromov–Hausdorff distance dGH defined in section 2.1, the collection X of isometry classes
of compact metric spaces is itself a metric space. A key fact is that the class of (isometry
classes of) compact Riemannian n-manifolds

MD
k (n) = { (Mn, g) : sec(Mn) ≥ k, diam(Mn) ≤ D } ⊂ (X , dGH)
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is precompact under the Gromov–Hausdorff topology for all n ∈ N, k ∈ R and D > 0 (see
[12, Ch. 7]. Moreover, the points in the closure of MD

k (n) are Alexandrov spaces:

Theorem 2.13 (Burago, Gromov, and Perelman [13]; Grove and Petersen [44]). The closure

MD

k (n) consists of Alexandrov spaces with curv ≥ k, diam ≤ D, and dim ≤ n.

Alexandrov spaces therefore naturally appear as limit spaces of Riemannian manifolds.
It is not known, however, if every compact Alexandrov space is the limit of a sequence of
compact Riemannian manifolds with sectional curvature uniformly bounded below. In the
case where the sequence is non-collapsed, i.e., where the limit space has the same dimension
as the elements of the sequence, it follows from Perelman’s stability theorem that the limit
space must be a topological manifold (see [57, 79]).

Theorem 2.14 (Stability Theorem (Perelman)). Let X, Y be compact n-dimensional Alexan-
drov spaces of curv ≥ k. Then there exists an ε = ε(X) > 0 such that, if dGH(X, Y ) < ε,
then Y is homeomorphic to X.

This theorem, in combination with theorem 2.13, implies the following well-known finite-
ness result in Riemannian geometry (see, for example, [42]).

Theorem 2.15 (Riemannian Homeomorphism Finiteness Theorem). For each n ∈ N , k ∈
R, and D, v > 0, the class MD

k,v(n) of compact Riemannian n-manifolds with diam ≤ D,
sec ≥ k, and volume vol ≥ v, contains at most finitely many homeomorphism types.

Note that a similar finiteness result holds for Alexandrov spaces. Although the class of
compact Alexandrov spaces with lower curvature bound k is closed in the Gromov–Hausdorff
topology, collapse may occur, that is, it is possible for a Gromov–Hausdorff converging
sequence of spaces in Alexn(k) to have a limit of dimension less than n. We may observe
this phenomenon by considering, for example, a flat torus T n and rescaling its Riemannian
metric by 1/i with i = 1, 2, . . .. In this way we get a sequence of flat n-dimensional tori T ni
whose diameter converges to zero as i→∞. In this case, the sequence {T ni }∞i=1 collapses to
a point. Collapse imposes strong restrictions on the structure of Riemannian manifolds; for
more information we refer the reader to [42, 87]. We will discuss the topology of collapsed
3-dimensional Alexandrov spaces in section 7.

3. Three-dimensional Alexandrov spaces

In this section we discuss the basic topology and geometry of closed (i.e., compact and
without boundary) three-dimensional Alexandrov spaces (or, for short, closed Alexandrov
3-spaces). We will focus our attention on those that are not homeomorphic to 3-manifolds,
as this is where new phenomena arise. The symbol “≈” will denote homeomorphism between
topological spaces.

3.1. Basic structure. Let us first consider the topological structure of closed Alexandrov
3-spaces, following [29]. We refer the reader to [51] for basic results in 3-manifold topology.

Recall that a closed Alexandrov space of dimension one must be homeomorphic to a circle.
Then, by Perelman’s conical neighborhood theorem, a 2-dimensional Alexandrov space must
be homeomorphic to a topological manifold, possibly with boundary. The topological clas-
sification of closed, positively curved Alexandrov spaces of dimension two follows now from
the Bonnet–Myers theorem, which implies that the fundamental group of a closed, positively
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curved Alexandrov space must be finite. Therefore, any closed two-dimensional Alexandrov
space with curv ≥ 1 is homeomorphic to S2 or to RP 2. It follows that S2 and RP 2 are the
only possible spaces of directions of an Alexandrov 3-space without boundary. Hence, by the
conical neighborhood theorem, an Alexandrov 3-space X without boundary is a topological
3-manifold if and only if each one of its points has space of directions homeomorphic to S2

i.e., if X is topologically regular).
Let X be a closed Alexandrov 3-space and assume that X is not a topological manifold.

Hence at least one point in X has space of directions homeomorphic to RP 2. Since X
is compact, the conical neighborhood theorem implies that there are finitely many points
in X whose space of directions is RP 2. After removing from X sufficiently small open
neighborhoods of these topologically singular points we get a compact non-orientable 3-
manifold Xo with a finite number of RP 2-boundary components where we glue in cones over
RP 2. It is not difficult to see that Xo must have an even number of boundary components
(cf. [51, Proof of Theorem 9.5]) or, equivalently, that X must have an even number of
topologically singular points. Let D(Xo) be the double of Xo and consider the natural
decomposition of D(Xo) as the union of two copies of Xo glued along ∂Xo. From the Mayer–
Vietoris sequence for this decomposition of D(Xo) we obtain that

χ(D(Xo)) = 2χ(Xo)− χ(∂Xo).(3.1)

Since D(X0) is a closed 3-manifold, its Euler characteristic is zero. Hence, equation (3.1)
implies that χ(∂Xo) is even. Since each connected component of ∂Xo is a real projective
space and χ(RP 2) = 1, it follows that Xo has an even number of boundary components.
Therefore, X has an even number of topologically singular points.

Example 3.1. The real projective plane RP 2, equipped with its canonical Riemannian
metric of constant sectional curvature 1, is a closed 2-dimensional Alexandrov space with
curv ≥ 1. Thus, its spherical suspension Susp(RP 2) is a closed Alexandrov 3-space with
curv ≥ 1 with exactly two topologically singular points, namely, the poles of the suspension.
In this case, Xo ≈ RP 2 × [0, 1] and we obtain Susp(RP 2) after capping off each boundary
component of Xo with a cone over RP 2. We may also obtain the spherical suspension
Susp(RP 2) as a quotient of the unit round 3-sphere S3(1) as follows. Recall first that S3(1)
is isometric to the spherical suspension of the unit round 2-sphere S2(1). Consider now the
involution ι : S3(1)→ S3(1) corresponding to the suspension of the antipodal map on S2(1).
This involution is an orientation-reversing isometry of S3(1) and its metric quotient S3(1)/ι is
isometric to the spherical suspension of RP 2. Note that the involution ι : S3(1)→ S3(1) has
exactly two isolated fixed points; these fixed points project down to the poles of Susp(RP 2),
giving rise to the two topologically singular points of this space.

The preceding example illustrates a general situation. Given a topologically singular
Alexandrov 3-space X, there is a closed, orientable 3-manifold Y and an orientation reversing
involution ι : Y → Y with only isolated fixed points such that X ≈ Y/ι. It is important to
note that ι : Y → Y is conjugate to a smooth involution on Y . Hence X is homeomorphic
to a smooth non-orientable 3-orbifold. The preceding properties imply that X is the base of
a two-fold branched cover pr : Y → X whose total space Y is a closed, orientable 3-manifold
and whose branching set is the set of points with space of directions homeomorphic to RP 2.
In sum, up to homeomorphism, any closed Alexandrov 3-space is either a 3-manifold or
a quotient of a closed orientable 3-manifold by and orientation reversing smooth involution
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with only isolated fixed points. Note that the latter spaces are homeomorphic to the singular
3-manifolds (without boundary) introduced by Quinn in [85] (see [54, 55] as well as [64, Open
Problem 6], which asks to develop a theory for such spaces).

The construction of the orientable double branched cover pr : Y → X relies only on the
topology of X. The following theorem brings the geometry of X into play, allowing us to
lift the metric of X to Y and turning the double branched cover pr : Y → X into a metric
object compatible with the geometry of X, as illustrated in Example 3.1.

Theorem 3.2 ([29]). Let X ∈ Alex3(k) be topologically singular and let Y be the orientable
double branched cover of X. Then the following hold:

(1) The metric in X can be lifted to Y , so that Y ∈ Alex3(k).

(2) The involution ι : Y → Y is an isometry.

(3) The space of directions Σp′Y ≈ S2 at a fixed point p′ of the involution ι : Y → Y is
the canonical Alexandrov double cover of Σp′X ≈ RP 2.

A detailed proof of the preceding theorem would take us beyond the introductory treatment
of Alexandrov spaces in this survey. Thus we will only discuss the main ideas in the proof;
we refer the reader to [20, Section 2.1] for more details (cf. [46, Sections 2 and 5] and [50]).
The initial point in the proof of Theorem 3.2 is the observation that the set Xo ⊂ X of
topologically regular points of X is convex in X. Letting dX0 = dX |X0

be the restriction
of the metric on X to Xo, the convexity of Xo implies that the space (Xo, dXo) is a non-
complete length space that is also a k-domain, i.e., the comparison property Tk holds for
any geodesic triangle in (Xo, dXo). Since Xo is a non-orientable topological 3-manifold, it
has an orientable double cover Yo and we may lift the metric dXo to a metric dYo on Yo. By
construction, the metric space (Yo, dYo) is a length space locally isometric to (Xo, do) (see
[12, Chapters 2.2 and 3.4]). Thus (Yo, dYo) has curvature locally bounded below by k and
its metric completion is homeomorphic to the two-fold branched cover Y of X. One then
shows, using work of Li [60], that (Y, dY ) also has curvature bounded below by k. This then
implies that the involution ι : Y → Y is an isometry. Along the way one constructs the
space of directions for Y at a fixed point of the involution ι : Y → Y , showing part (3) of
the Theorem. We refer the reader to [38] for further explicit examples, besides Example 3.1,
of spaces arising from orientation-reversing involutions on closed orientable 3-manifolds.

4. Spaces with positive or non-negative curvature

We now turn our attention to the topological classification of Alexandrov 3-spaces with
positive or non-negative curvature. In the Riemannian category this classification follows
from Hamilton’s classification of closed 3-manifolds with positive or non-negative Ricci cur-
vature [48, 49].

Recall that positively curved Alexandrov spaces arise as spaces of directions and deter-
mine the local topology of Alexandrov spaces via the conical neighborhood theorem (see
section 2.4). Thus the classification of positively curved spaces is of fundamental impor-
tance. This is, however, a challenging problem which has only been solved in dimensions 2
and 3, even in the Riemannian case. We refer the reader to [43, 101] for more information
on positively curved Riemannian manifolds.

Recall that, by the Bonnet–Myers theorem, closed Alexandrov spaces with positive curva-
ture have finite fundamental group. Thus, as we have previously seen, a closed 2-dimensional
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Alexandrov space of positive curvature is homeomorphic to the 2-sphere or to the real pro-
jective plane.

The topological type of Alexandrov 3-spaces with positive curvature is given by the fol-
lowing theorem (see [29, 50]). Our presentation follows [29]. Recall that a spherical 3-
manifold is a 3-manifold homeomorphic to S3/Γ, where Γ is a finite group acting freely and
orthogonally on the 3-sphere. Note that every spherical 3-manifold is homeomorphic to a
three-dimensional spherical space form, i.e., a closed Riemannian 3-manifold with constant
positive sectional curvature. Conversely, every three-dimensional spherical space form is a
spherical 3-manifold.

Theorem 4.1 (Alexandrov 3-spaces of positive curvature). A closed Alexandrov 3-space of
positive curvature is homeomorphic to a spherical 3-manifold or to Susp(RP 2).

Proof. Let X be a closed Alexandrov 3-space with positive curvature. We may assume, after
re-scaling the metric if necessary, that curvX ≥ 1. Suppose first that X is a manifold.
Then, by the Bonnet–Myers theorem, X has finite fundamental group. It follows then from
Perelman’s proof of the Poincaré Conjecture and Thurston’s Elliptization Conjecture that
X must be homeomorphic to a spherical manifold, including the 3-sphere.

Suppose now that X is not a topological manifold and let X ′ be the set of points in X
whose space of directions is homeomorphic to RP 2. By hypothesis, X ′ is nonempty and, by
the conical neighborhood theorem, each point in X ′ has a neighborhood homeomorphic to
the Euclidean cone C0(RP 2). Since X is compact, the set X ′ is finite.

Let p1, . . . , pk be the points in X ′. After removing a neighborhood of each pi homeomorphic
to C0(RP 2) we obtain a topological 3-manifold Xo whose boundary consists of k copies of
RP 2.

Let pr : Y → X be the two-fold branched cover over X with branching set X ′. Let
qi = pr−1(pi), i = 1, . . . , k, and let Y ′ = { q1, . . . , qk }. By theorem 3.2, Y is an Alexandrov
space with curv ≥ 1. Hence, by theorem 2.5, Y has finite fundamental group. On the other
hand, π1(Y ) ' π1(Y \ Y ′), since Y ′ is a finite set of points in Y . Since pr : Y \ Y ′ → X \X ′
is a regular two-fold cover, pr∗(π1(Y \ Y ′)) is a subgroup of index 2 in π1(X \ X ′). Hence,
π1(X \X ′) is finite. It follows from Epstein’s theorem (see [51, Chapter 9]) and Perelman’s
proof of the Poincaré Conjecture, that X \X ′ is homeomorphic to RP 2× [0, 1]. Thus, k = 2
and we conclude that X is homeomorphic to Susp(RP 2), as desired. Observe that Y is
homeomorphic to S3 and, by work of Hirsch, Smale [52] and Livesay [61], the action of Z2

corresponding to the two-fold branched cover is equivalent to a linear action given by the
suspension of the antipodal map on S2 (cf. Example 3.1). �

Corollary 4.2. A closed, simply-connected three-dimensional Alexandrov space of positive
curvature is homeomorphic to S3 or to Susp(RP 2).

Corollary 4.3. The space of directions of a 4-dimensional Alexandrov space without bound-
ary is homeomorphic to Susp(RP 2) or to a spherical 3-manifold.

Corollary 4.4. A closed 4-dimensional Alexandrov space of curvature bounded below by 1
and diameter greater than π/2 is homeomorphic to the suspension of a spherical 3-manifold
or to Susp2(RP 2), the double suspension of RP 2.

Corollary 4.2 follows from Perelman’s proof of the Poincaré Conjecture. Corollary 4.3
follows from the fact that the space of directions at any point of an n-dimensional Alexandrov
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space is isometric to a compact (n−1)-dimensional Alexandrov space with curvature bounded
below by 1. Note that corollary 4.3 implies that 4-dimensional Alexandrov spaces without
boundary are, locally, orbifolds without boundary. Finally, corollary 4.4 follows from the
fact that an n-dimensional Alexandrov space of curvature bounded below by 1 and diameter
greater than π/2 is homeomorphic to the suspension of a compact (n − 1)-dimensional
Alexandrov space of curvature bounded below by 1.

Corollary 4.5. Let Xn be an n-dimensional Alexandrov manifold. If n ≤ 4, then Xn is
topologically regular.

Proof. If n ≤ 3, the conclusion follows from the fact, recalled at the end of Section 2,
that every 1- or 2-dimensional Alexandrov space must be homeomorphic to a topological
manifold. Suppose now that n = 4 and let X4 be an Alexandrov 4-manifold. By the
conical neighborhood theorem, any sufficiently small neighborhood U of a point p ∈ X4

is homeomorphic to the cone over the space of directions Σp at p. Since a cone over a
non-simply-connected 3-manifold cannot be homeomorphic to the 4-ball D4, the only case
we need to consider is when ΣpX is homeomorphic to Susp(RP 2). In this case, a simple
calculation using the long exact sequence in homology of the pair (U,U − p) implies that
some homology group Hk(U,U − p) is not isomorphic to Hk(D

4,S3). Thus X cannot be a
topological manifold. �

Corollary 4.5 is optimal, since, by Example 2.11, Alexandrov n-manifolds, n ≥ 5, are not
necessarily topologically regular.

The ideas in the proof of Theorem 4.1 can also be used to provide a complete description
of closed Alexandrov 3-spaces of non-negative curvature. We denote the non-orientable S2-
bundle over S1 by S2×̃S1, and the suspension of RP 2 by Susp(RP 2). Given two Alexandrov
3-spaces X, Y , we denote their connected sum by X#Y , i.e., X#Y is the space obtained by
removing an open 3-ball from X, an open 3-ball from Y , and then identifying the boundaries
of the resulting topological spaces.

Theorem 4.6 (Alexandrov 3-spaces of non-negative curvature [29]; cf. [20]). Let X3 be a
closed, non-negatively curved Alexandrov 3-space.

(1) If X3 is a topological manifold, then one of the following holds:

• X3 is homeomorphic to a spherical space form,
• X3 is homeomorphic to S2 × S1, RP 2 × S1, RP 3#RP 3 or S2×̃S1; or

• X3 is isometric to a closed, flat three-dimensional space form.

(2) If X3 has a point with space of directions homeomorphic to RP 2, then either:

• X3 is homeomorphic to Susp(RP 2), Susp(RP 2)# Susp(RP 2), RP 3# Susp(RP 2)
or

• X3 is isometric to a quotient of a closed, orientable, flat three-dimensional man-
ifold by an orientation reversing isometric involution with only isolated fixed
points.

Let us briefly discuss the proof of this theorem. Let X be a closed Alexandrov 3-space
with curv ≥ 0. As in the proof of theorem 4.1, we consider two possibilities, depending on
whether or not X is a topological manifold.
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Suppose first that X is a topological manifold. We have two possibilities: either the fun-
damental group π1(X) is finite or not. If π1(X) is finite, then, as in the proof of theorem 4.1,
X is homeomorphic to a spherical space form, by Perelman’s resolution of Thurston’s ellip-
tization conjecture.

Suppose now that π1(X) is infinite. Then, the splitting theorem for non-negatively curved
Alexandrov spaces [12, Theorem 10.5.1] implies that X̃, the universal cover of X, is isometric
to a product R× Ỹ , where Ỹ is a simply-connected Alexandrov 2-space with curv ≥ 0.

Kwun and Tollefson [59], and Luft and Sjerve [63], classified the involutions with only
isolated fixed points on closed, orientable, flat three-dimensional space forms and their orbit
spaces have been classified. These orbit spaces are the spaces in the second item of part (2)
of theorem 4.6 above.

4.1. Spaces with positive or non-negative Ricci curvature. One can generalize the-
orems 4.1 and 4.6 to closed Alexandrov 3-spaces with an arbitrary lower curvature bound
and with positive or non-negative Ricci curvature in the sense of Lott–Sturm–Villani (see
[62, 95, 96]). In this case one obtains the same list of spaces as in the case of positive or
non-negative curvature in the triangle comparison sense (see [20]).

Theorem 4.7 (Alexandrov 3-spaces of positive Ricci curvature [20]). Let X3 be a closed
CD∗(2, 3)-Alexandrov space.

(1) If X3 is a topological manifold, then it is homeomorphic to a spherical space form.
(2) If X3 is not a topological manifold, then it is homeomorphic to Susp(RP 2).

Theorem 4.8 (Alexandrov 3-spaces of non-negative Ricci curvature [20]). Let X3 be a closed
CD∗(0, 3)-Alexandrov space.

(1) If X3 is a topological manifold, then one of the following holds:
• X3 is homeomorphic to a spherical space form,
• X3 is homeomorphic to S2 × S1, RP 2 × S1, RP 3#RP 3 or S2×̃S1; or

• X3 is isometric to a closed, flat three-dimensional space form.
(2) If X3 is not a topological manifold, then

• X3 is homeomorphic to Susp(RP 2), Susp(RP 2)# Susp(RP 2), RP 3# Susp(RP 2)
or

• X3 is isometric to a quotient of a closed, orientable, flat three- dimensional
manifold by an orientation reversing isometric involution with only isolated fixed
points.

Observe that, since X is closed, then its Hausdorff measure H3(X) is finite. Hence, the
equivalence of the CD and CD∗ conditions for (essentially non-branching) spaces with finite
measures due to Cavalletti–Milman (see [17, Corollary 13.7]) implies that Theorems 4.7 and
4.8 are still valid for CD(2, 3)- and CD(0, 3)-Alexandrov spaces, respectively.

5. Topological results

5.1. Geometrization. In view of Perelman’s resolution of Thurston’s geometrization con-
jecture, geometric 3-manifolds can be considered the building blocks of arbitrary 3-dimensional
closed manifolds. It is then natural to ask about the corresponding notion for Alexandrov
spaces. Recall that the eight Thurston geometries are S3, E3, H3, S2 × R, H × R, Nil, Sol
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and S̃L2(R) (see [88]). A closed Alexandrov 3-space X3 is geometric if it can be written
as a quotient of one of the eight Thurston geometries by some cocompact lattice. We say
that X3 admits a geometric decomposition if there exists a collection of spheres, projective
planes, tori and Klein bottles that decompose X3 into geometric pieces. The following result
is proved using the existence of the double branched cover, outlined in the preceding section,
in combination with Dinkelbach and Leeb’s work on equivariant Ricci flow [21].

Theorem 5.1 (Geometrization of Alexandrov 3-spaces [29]). A closed Alexandrov 3-space
admits a geometric decomposition into geometric Alexandrov 3-spaces.

The proof of this theorem relies in a key way on the Ricci flow for smooth Riemannian
metrics on 3-manifolds. It would be interesting to determine whether it is possible to define
Ricci flow for general Alexandrov 3-spaces with no regularity assumptions on the metric.

5.2. Simply-connected spaces. In the sense of topology, the simplest spaces that one can
consider are contractible spaces in which, a fortiori, all homotopy groups vanish. However, it
is easy to show that, as in the manifold case, no closed n-dimensional Alexandrov space X,
n ≥ 2, is contractible. Indeed, on the one hand, if X is orientable, then the top homology
group Hn(X;Z) ∼= Z (see, for example, [65, Theorem 1.8]). Then, the Hurewicz theorem
readily implies that πn(X) 6= 0. If, on the other hand, we assume that X is non-orientable,
then [65, Corollary 5.7] gives that Hn−1(X;Z) 6= 0, and another application of the Hurewicz
theorem grants again that X cannot be contractible. Thus, if one aims at a deeper under-
standing of the topology of Alexandrov 3-spaces, a natural step is to consider other simple
(topologically speaking) classes of spaces, such as simply-connected spaces.

By Perelman’s proof of the Poincaré conjecture, a closed, simply-connected 3-manifold
must be homeomorphic to the 3-sphere. By Poincaré duality and the Hurewicz theorem,
a closed 3-manifold is simply-connected if and only if it is a homotopy sphere. This is no
longer the case for Alexandrov 3-spaces, as one sees by considering Susp(RP 2). One can
still show, however, that a closed Alexandrov 3-space that is also a homotopy sphere is
homeomorphic to S3, thus obtaining an analogue for Alexandrov 3-spaces of the Generalized
Poincaré Conjecture (see [29, Proposition 1.4]). On the other hand, there exist closed,
geometric, simply-connected Alexandrov 3-spaces that are not homeomorphic to the 3-sphere

if and only if the corresponding Thurston geometry is not one of Nil, S̃L2(R) or Sol. To rule

out the Nil, S̃L2(R) and Sol geometries, one proves that there are no orientation-reversing
involutions with only isolated fixed points on closed geometric 3-manifolds with one of these
geometries.

A complete topological description of closed, simply-connected three-dimensional Alexan-
drov spaces seems currently beyond reach. A naive conjecture would be that any such space
is the connected sum of S3 and suspensions over projective planes. This is true under the
presence of an action of a compact Lie group of positive dimension (see the results in the
next section). In general, however, there exist simply-connected Alexandrov 3-spaces that
are not homeomorphic to these connected sums (see [29, Remark 4.1]). A more feasible
goal could be to classify the topological type of non-manifold simply-connected Alexandrov
spaces with a given number of topological singularities. In this spirit, we recall the following
question:
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Question 5.2 (Topological finiteness [34]). Does the class of closed, simply-connected
Alexandrov 3-spaces with curv ≥ −1 and diam ≤ D, for fixed D > 0, contain finitely
many homeomorphism types?

5.3. Aspherical spaces and the Borel conjecture. We have considered simply-connected
spaces in the previous section, providing a view of the phenomena that can occur under this
assumption in three-dimensional Alexandrov geometry. In a similar way, it is natural to try
to understand the topology of other topologically simple classes of spaces such as aspherical
spaces. Recall that a topological space is aspherical if all of its higher homotopy groups van-
ish. One could, in a certain sense, think of the class of aspherical spaces as complementary
to the class of simply-connected spaces.

The theorems we present in this subsection provide a basic picture of the topology of closed
and aspherical Alexandrov 3-spaces. One of the main fundamental results in 3-manifold
topology is the Borel conjecture. Recall that the Borel conjecture asserts that if two closed,
aspherical n-manifolds are homotopy equivalent, then they must be homeomorphic. The
proof of this conjecture for three-dimensional manifolds is a consequence of Perelman’s proof
of Thurston’s geometrization conjecture (see [84, Section 2.6]). As we have pointed out in
a previous section, a geometrization theorem is available for closed Alexandrov 3-spaces.
However, it is unclear whether this implies the Borel conjecture in this more general setting.

In [71, Section 6], Núñez-Zimbrón showed that if two closed, aspherical Alexandrov 3-
spaces on which the circle acts effectively and isometrically are homotopy equivalent, then
they are homeomorphic. The proof of this result is based on the decomposition that any such
space X admits as a connected sum of a closed 3-manifold with a finite number of copies
of the suspension of RP 2 (see Theorem 6.4). The argument is based on the observation
that no connected sum Y of copies of Susp(RP 2) can be aspherical, so that a connected
sum of the form M#Y , where M is a closed 3-manifold, is aspherical only if M#Y ≈ M .
Therefore, if X is a closed aspherical Alexandrov 3-space on which the circle acts effectively
and isometrically, then the Borel conjecture holds since X must be homeomorphic to a closed
3-manifold. It is immediate to see that the same argument implies, via the connected sum
decomposition of Theorem 6.6, that if two closed, aspherical Alexandrov 3-spaces which
admit isometric local circle actions (see Section 6 below for the definition) are homotopy
equivalent, then they are homeomorphic.

A different but related result concerning the validity of the Borel conjecture for Alexandrov
3-spaces was obtained by Bárcenas and the second named author in [6]. In their work they
reinforce the condition of asphericity further with a constraint on the Hausdorff measure
of the spaces with respect to their diameters, as well as with a topological condition of
irreducibility, originally defined by Galaz-Garćıa, Guijarro and the second named author in
[30]. A closed Alexandrov 3-space X is irreducible if every embedded 2-sphere in X bounds
a 3-ball and, in the case that the set of topologically singular points of X is non-empty, it
is further required that every 2-sided RP 2 bounds a cone over a real projective plane RP 2.
This definition is fashioned after the definition of irreducibility for 3-manifold, which plays
a central role in 3-manifold topology (see, for example, [51]). With this definition in hand
we recall the main result of [6].

Theorem 5.3 ([6]). For any D > 0, there exists ε = ε(D) > 0 such that, if X is a closed,
irreducible and aspherical Alexandrov 3-space satisfying

• curv(X) ≥ −1,
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• diamX ≤ D and
• H3(X) ≤ ε,

then X is homeomorphic to a 3-manifold.

The preceding theorem immediately implies the following corollary which asserts the va-
lidity of the Borel conjecture for a certain class of Alexandrov 3-spaces.

Corollary 5.4 ([6]). For any D > 0, there exists ε = ε(D) > 0 such that, if X1 and X2 are
closed, irreducible and aspherical Alexandrov 3-spaces satisfying that

• curv(Xi) ≥ −1,
• diamXi ≤ D, and
• H3(Xi) ≤ ε,

for i = 1, 2, then the Borel conjecture holds for X1 and X2, that is, if X1 is homotopy
equivalent to X2 then X1 is homeomorphic to X2.

Corollary 5.4 guarantees that given a homotopy equivalence f : X1 → X2, there exists
some homeomorphism f̃ : X1 → X2. In the manifold case, it is true that the initial map f
is itself homotopic to a homeomorphism. As the proof of the Borel conjecture in the special
case considered in Corollary 5.4 reduces to the Borel conjecture for 3-manifolds, this stronger
statement holds true as well.

We now give a rough outline of the proof of Theorem 5.3. By contradiction, let us assume
that the thesis does not hold. Then, there exists a sequence of closed, irreducible, and aspher-
ical Alexandrov 3-spaces {Xi} with curv(Xi) ≥ −1, with uniformly bounded diameters and
with their 3-dimensional Hausdorff measures converging to 0. Then Gromov’s compactness
theorem (see [12, Theorem 10.7.2]) yields that, possibly after passing to a subsequence, there
exists a compact Alexandrov space Y (possibly with boundary) such that Xi converges to Y
in the Gromov–Hausdorff sense. The Hausdorff dimension of Y must be strictly smaller than
3 as, by the weak convergence of the Hausdorff measures under Gromov–Hausdorff conver-
gence (see [13, Theorem 10.8]), H3(Y ) = 0. At this point we note that, in the terminology
of Section 7, the sequence {Xi} is a collapsing sequence (to Y ). Mitsuishi and Yamaguchi
have classified the topologies of such Xi for large enough i. To proceed with the proof of
Theorem 5.3, we use this classification and a case by case analysis of asphericity to obtain a
contradiction.

In general it is not known whether any two closed, aspherical Alexandrov 3-spaces that
are homotopy equivalent must also be homeomorphic. However, the evidence gathered by
the results in this section seems to point towards the following conjecture, which if true,
would answer this question in the affirmative.

Conjecture 5.1. Every closed and aspherical Alexandrov 3-space is homeomorphic to a
3-manifold.

We conclude this section by pointing out that the geometry and topology of non-compact,
topologically singular, Alexandrov 3-spaces remains to be explored.

6. Alexandrov 3-spaces with compact Lie group actions

Spaces with large groups of isomorphisms are of interest in different areas of mathematics.
In the context of differential geometry, the study of smooth manifolds with smooth actions
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of compact Lie groups is a subject with a long history (see, for example, [56, 58]) that has
brought about further developments in Riemannian geometry. It is therefore natural to con-
sider Alexandrov spaces with isometric group actions and to generalize the theory of compact
transformation groups on manifolds [9] to the case of Alexandrov spaces. As in the smooth
case, a reasonable starting point in the study of closed Alexandrov spaces with isometric
compact Lie group actions is to consider those that support “large” actions. Much work has
been done in the Riemannian setting, where this point of view has led to topological and
equivariant classification results for smooth manifolds with Riemannian metrics of positive
or non-negative sectional curvature, in the context of the Grove program (see [41, 43, 98]).
One can therefore strive for corresponding results in the context of Alexandrov geometry.
There has already been some work in this direction (see, for example, [28, 33, 32, 50, 71])
and we will focus our attention here on results on Alexandrov 3-spaces. For a more general
discussion on group actions on Alexandrov spaces the reader may consult [89]. As in the
preceding section, we will concentrate on the case where the Alexandrov 3-space is not a
manifold.

6.1. Setup. Let X be an Alexandrov space. A bijection f : X → X is an isometry if
d(f(p), f(q)) = d(p, q) for any pair of points p, q ∈ X. We denote the group of isometries
of X by Isom(X). Fukaya and Yamaguchi showed that Isom(X) is a Lie group [26]. The
corresponding result for Riemannian manifolds was proved by Myers and Steenrod [69]. By
a theorem of van Dantzig and van der Waerden [18], if X is compact, then Isom(X) is also
compact. Myers and Steenrod also obtained a sharp upper bound on the dimension of the
isometry group of a Riemannian manifold, namely, if dim(M) = n, then dim(Isom(M)) ≤
n(n+1)/2, and obtained a rigidity statement in the equality case (see [69]; cf. [58]), showing
that such Riemannian manifolds must be isometric to a sphere, a real projective space,
Euclidean space or hyperbolic space. In the context of Alexandrov spaces, Galaz-Garćıa
and Guijarro obtained the same upper bound on dim(Isom(X)) and generalized the rigidity
result, obtaining the same list of spaces as in the Riemannian case (see [28]).

We will consider actions G × X → X of a compact Lie group G on X such that the
restriction of the action to sets of the form {g} × X are isometries of X. In this case, one
says that the action is isometric or that G acts isometrically (or by isometries) on X.

We will denote the orbit of a point x ∈ X by G(x), that is,

G(x) = {gx | g ∈ G} .

It is easy to show that G(x) is homeomorphic to G/Gx, where

Gx = {g ∈ G | gx = x}

is the isotropy subgroup of x in G. The closed subgroup of G given by ∩x∈XGx is called the
ineffective kernel of the action. If the ineffective kernel is trivial, we will say that the action
is effective.

The homeomorphism G(x) ≈ G/Gx for each x shows that there is a correspondence
between orbits and isotropy groups in the following sense. Given an isotropy subgroup
H ≤ G, one says that G(x) is of type (H) if Gx is conjugate to H. The set of orbit
types naturally carries a partial ordering defined as follows. We say that (H) ≤ (K) if K is
conjugate to a subgroup of H. One of the main tools in the theory of compact transformation
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groups is the principal orbit theorem, obtained for Alexandrov spaces by Galaz-Garćıa and
Guijarro in [28], (see [41] for the Riemannian case).

Theorem 6.1 (Principal orbit theorem [28]). Let G be a compact Lie group acting isomet-
rically on an n-dimensional Alexandrov space X. Then there is a unique maximal orbit type
and the orbits with maximal orbit type, the principal orbits of the action, form an open and
dense subset of X.

Given a subset A ⊂ X we denote its image under the orbit projection map π : X → X/G
by A∗. In particular, X∗ = X/G. It was proved in [13] (cf. [12, Proposition 10.2.4]) that
the orbit space X∗ equipped with the distance between orbits is an Alexandrov space with
the same lower curvature bound as X. This is a consequence of the fact that the projection
π : X → X∗ is a submetry, that is, π sends balls of radius r > 0 in X to balls of radius r > 0
in X∗.

Let x ∈ X. Given A ⊂ ΣxX, we define the set of normal directions to A as

A⊥ = {v ∈ ΣxX | ∠(v, w) = diam(ΣxX)/2 for all w ∈ A}.
Let Sx denote the tangent unit space to the orbit G/Gx. If dim(G/Gx) > 0 then the set S⊥x
is a compact, totally geodesic Alexandrov subspace of ΣxX with curvature bounded below
by 1. Moreover, ΣxX is isometric to the join Sx ∗ S⊥x with the standard join metric and
either S⊥x is connected or it contains exactly two points at distance π (see [33]).

The slice theorem is a fundamental result in the theory of compact transformation groups
and provides a canonical decomposition of a small invariant tubular neighborhood of each
orbit as well as more information on how the orbit types are distributed on the space.
Several (a posteriori equivalent) definitions of the notion of slice are available depending on
the generality. Let us recall the definition of a slice from Bredon [9].

A slice at a point x ∈ X is a subset S ⊂ X containing x which is closed in G(S) and that
satisfies the following properties:

• G(S) is an open neighborhood of G(x),
• Gx(S) = S, and
• if (gS) ∩ S 6= ∅, then g ∈ Gx.

The existence of a slice at each point can be shown in high generality. Indeed, Montgomery
and Yang [67] showed that if a compact Lie group G acts on a completely regular topological
space, then there exists a slice at each point. We now state Harvey and Searle’s slice theorem
for Alexandrov spaces.

Theorem 6.2 (Slice theorem [50]). Let G be a compact Lie group acting isometrically on
an Alexandrov space X. Then for all x ∈ X, there exists r0 > 0 such that for all r < r0
there is an equivariant homeomorphism

Φ : G×Gx K(S⊥x )→ Br(G(x)).

It is worth noting that, as the slice theorem shows, in the context of Alexandrov spaces
the slice at each point can be taken as the cone over S⊥x , where Sx is the unit tangent space
to the orbit G/Gx. An important and immediate consequence of the slice theorem is that
Σx∗X

∗, the space of directions at each x∗ ∈ X∗, is isometric to S⊥x /Gx.
One can measure the size of the isometry group Isom(X) of a closed Alexandrov space

X by means of different invariants. Three natural ones are the symmetry degree, given by
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symdeg(X) = dim(Isom(X)), the symmetry rank, given by symrk(X) = rank(Isom(X)), and
the cohomogeneity of the action, defined as the dimension of the orbit space X/ Isom(X).
Here we will discuss isometric actions of compact connected Lie groups on closed Alexandrov
3-spaces from the point of view of the cohomogeneity of the action.

Let X be a closed Alexandrov 3-space with an isometric action of a compact connected
Lie group G. Thus, the cohomogeneity of the action is 0, 1, 2 or 3. We need not consider
the case where the cohomogeneity is three, since this implies that G is the identity.

6.2. Homogeneous spaces. When the cohomogeneity is 0, X must be a homogeneous
space and it follows from work of Berestovskĭı that X is isometric to a Riemannian manifold
(see [7]).

6.3. Cohomogeneity one spaces. Topological manifolds with cohomogeneity one actions
were first studied by Mostert [68] (see also [35]) and classified in dimension three by Mostert
[68] and Neumann [70] (see also [35, 76, 53] for the classification in dimensions at most 7 in
the topological and smooth categories). The structure of general closed cohomogeneity one
Alexandrov spaces is given by the following result, which generalizes the structure result for
closed cohomogeneity-one smooth manifolds:

Theorem 6.3 (Cohomogeneity one Alexandrov spaces [33]). Let X be a closed Alexandrov
space with an effective cohomogeneity one isometric action of a compact connected Lie group
G with principal isotropy H. Then the following hold:

• The orbit space X/G is homeomorphic to a circle or to a closed interval.

• If X/G is a circle, then M is equivariantly homeomorphic to a fiber bundle over S1

with fiber G/H and structure group N(H)/H. In particular, X is a manifold.

• If X/G ≈ [−1,+1], then there is a group diagram (G,H,K−, K+) with

G

K−

j−
==

K+

j+
aa

H
i−

aa

i+

==

where K± are the isotropy groups at ±1 and K±/H are isometric to homogeneous
spaces with sec > 0.
• The space X is the union of two fiber bundles with fiber C(K±/H) and base the

singular orbits G/K±.
• Conversely, any diagram (G,H,K−, K+), such that K±/H is a homogeneous space

of positive curvature determines an Alexandrov G-space of cohomogeneity 1.

In Theorem 6.3, if X is a smooth manifold and the action is smooth, then the fibers of the
double cone bundle decomposition are disks, i.e., cones over spheres. If X is only assumed
to be a topological manifold, then one must consider as fibers, in addition to disks, cones
over the Poincaré homology sphere (see [35]).

Let X be a closed cohomogeneity one Alexandrov 3-space. If X is a 3-manifold, then
it follows from the work of Mostert and Neumann [68, 70] that X must be one of T 3, S3,
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Lp,q, S2 × S1, S2×̃S1, Kl × S1, RP 2 × S1 or A. Here, S2×̃S1 is the non-trivial S2 bundle
over S1, Lp,q denotes a lens space, and Kl is the Klein bottle; the space A is the manifold
Mb×S1∪S1×Mb, where Mb is the compact Möbius band and the halves Mb×S1, S1×Mb
intersect canonically in S1 × S1. If X is not a manifold, then it was proved in [33] that X
must be equivariantly homeomorphic to Susp(RP 2) with the suspension of the transitive
action of SO(3) on RP 2.

6.4. Cohomogeneity two spaces. Let X be a closed Alexandrov 3-space with a cohomo-
geneity two isometric and effective action of a compact connected Lie group. Since the orbits
are one-dimensional, the group acting must be the circle S1. The topological and equivariant
classification in the case where X is a manifold follows from the work of Orlik and Raymond
[73, 86], who classified the effective actions of the circle on any closed, connected topologi-
cal 3-manifold M (see [72]). The orbit space of such an action is a topological 2-manifold,
possibly with boundary and each equivariant homeomorphism type is determined by a set
of invariants

(b; (ε, g, f, t), {(α1, β1), . . . , (αn, βn)}).
Here, b is the obstruction class (in the sense of obstruction theory, see for example [19,
Chapter 7 ]) for the principal stratum of the action to be a trivial principal S1-bundle. The
symbol ε takes two possible values, corresponding to the orientability of the orbit space.
The genus of the orbit space is denoted by g. The number of connected components of the
fixed point set is denoted by f , while t is the number of Z2-isotropy connected components.
The pairs {(αi, βi)}ni=1 are the Seifert invariants (see [72] for the definition) associated to the
exceptional orbits of the action, if any.

Núñez-Zimbrón carried out the topological and equivariant classification of topologically
singular closed Alexandrov 3-spaces with an isometric circle action [71]. Recall that a closed
Alexandrov 3-space X that is not a 3-manifold has finitely many topologically singular
points, i.e., points whose space of directions is homeomorphic to the real projective plane
RP 2. To account for these points, one adds an unordered s-tuple (r1, r2, . . . , rs) of even
positive integers to the the set of invariants in the manifold case. The integer s corresponds
to the number of boundary components in the orbit space that contain orbits of topologically
singular points. The integers ri correspond to the number of topologically singular points
in the i-th boundary component of the orbit space with orbits of topological singularities.
If there are no topologically singular points one considers this s-tuple to be empty. The
classification is then given by the following theorem. Recall that a homeomorphism f : X →
Y between G-spaces X, Y is weakly equivariant if there exists an isomorphism ϕ : G → G
such that f(gx) = ϕ(g)f(x) for all g ∈ G and all x ∈ X.

Theorem 6.4 (Spaces with circle actions [71]). Let S1 act effectively and isometrically on
a closed Alexandrov 3-space X. Assume that X has 2r topologically singular points, r ≥ 0.
Then the following hold:

(1) The set of inequivalent (up to weakly equivariant homeomorphism) effective, isometric
circle actions on X is in one-to-one correspondence with the set of unordered tuples

(b; (ε, g, f, t); {(αi, βi)}ni=1; (r1, r2, . . . , rs))

where the permissible values for b, ε, g, f , t and {(αi, βi)}ni=1, are the same as in the
manifold case and (r1, r2, . . . , rs) is an unordered s-tuple of even positive integers ri
such that r1 + . . .+ rs = 2r.
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(2) X is weakly equivariantly homeomorphic to

M# Susp(RP 2)# · · ·# Susp(RP 2)︸ ︷︷ ︸
r

where M is the closed 3-manifold given by the set of invariants

(b; (ε, g, f + s, t); {(αi, βi)}ni=1)

in the manifold case.

We now outline the main points of the proof of the previous theorem. Observe first that
there are different orbit types, which correspond to the possible isotropy groups of the action.
These in turn, correspond to the closed subgroups of S1: the trivial subgroup {e}, the cyclic
subgroups Zk, k ≥ 2, and S1 itself. In particular, since each orbit is homeomorphic to the
quotient of S1 by the corresponding isotropy group, orbits in X are either 0-dimensional or
1-dimensional. This observation and the finiteness of the set of topologically singular points
of X imply that topologically singular points are fixed by the action.

We let F be the set of fixed points of the action and let RF = F \ SX , the set of
topologically regular fixed points. The points whose isotropy is not S1 are topologically
regular, therefore the notion of local orientation makes sense (see for example the remark
on orientability in [80, p. 124]). We will say that an orbit with isotropy Zk acting without
reversing the local orientation is exceptional ; we will denote the set of points on exceptional
orbits by E. An orbit with isotropy Z2 that acts reversing the local orientation will be called
special exceptional and the set of points on such orbits will be denoted by SE. The orbits
with trivial isotropy will be called principal.

An analysis of the structure of X around each orbit via the slice theorem 6.2 yields the
structure of the orbit space X∗: It is a compact 2-manifold possibly with boundary in which
the interior points correspond to principal orbits except for a finite number (possibly zero) of
points which are associated to exceptional orbits. For each of the boundary components one
of the following possibilities occurs: The component consists entirely of RF -orbits, SE-orbits
or the component can be decomposed as a union of closed non-trivial intervals with SE or
RF isotropy in their interiors and with the endpoints corresponding to orbits of topologically
singular points. Note that this implies in particular that X must have an even number of
topologically singular points, recovering the result mentioned before Example 3.1 above.

At this point one must show that each possible orbit space corresponds exactly to a single
closed Alexandrov 3-space with an isometric circle action up to equivariant homeomorphism.
The main tool is a cross-sectioning theorem asserting the existence of a cross-section to the
action in the absence of exceptional orbits, which we recall below. This theorem extends the
corresponding result of Orlik and Raymond for circle actions on 3-manifolds. Note, however,
that in the manifold case one requires that F 6= ∅ while for non-manifold Alexandrov 3-
spaces this is automatically true as topologically singular points are fixed points.

Proposition 6.5. If S1 acts effectively and isometrically on a closed, Alexandrov 3-space X
with E = ∅ and F 6= ∅, then there exists a cross-section to the action.

This cross-section given by the preceding proposition can be used to build equivariant
homeomorphisms between spaces with isomorphic orbit spaces if no exceptional orbits are
present. If E 6= ∅ one can show that the action is completely determined by the restriction
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of the cross-section to a tubular neighborhood of E coupled with the information given by
the Seifert invariants.

To complete the proof of item (1) in Theorem 6.4 we now must show that each admissible
orbit space X∗ is indeed the orbit space of a closed Alexandrov 3-space with some isometric
circle action. One can easily construct a topological space X with a circle action whose
orbit space is X∗ by gluing together the “building blocks” obtained via the slice theorem.
In other words, each small neighborhood of each orbit type in X∗ can be “lifted” uniquely
(up to equivariant homeomorphism). A more delicate point is to show that this space X
indeed admits an Alexandrov metric. This is achieved by using the branched double cover
construction for X, obtaining a topological 3-manifold X̃ which doubly covers X up to a
finite number of isolated points. The S1 action on X̃ is equivalent to a smooth action by the
work of Orlik and Raymond on circle actions on 3-manifolds. On X̃, then, one can do an
averaging procedure as in [5, Theorem 3.65] to obtain an invariant Riemannian metric which
has bounded sectional curvature by compactness and which, in turn, can be projected down
to X to obtain an orbifold Riemannian metric on X with sectional curvature from bounded
below. We refer the reader to [32] for the details.

The connected sum decomposition of X in item (2) of Theorem 6.4 is obtained by con-
sidering orbit spaces which are homeomorphic to 2-disks in which E = ∅ and with at least
two topologically singular points. Proposition 6.5 and the slice theorem 6.2 are then used
to prove that these orbit spaces correspond to equivariant connected sums of suspensions of
RP 2 with a standard circle action.

6.5. Spaces with local circle actions. A wider class of Alexandrov 3-spaces with sym-
metry results from generalizing the notion of isometric circle action to that of an isometric
local circle action. An isometric local circle action on a closed Alexandrov 3-space X is a
decomposition of X into disjoint, simple, closed curves, which we call fibers, each having
a tubular neighborhood which admits an effective, isometric circle action (with respect to
the restricted metric of X) whose orbits are the curves of the decomposition. We do not
exclude the possibility that some of the curves in the decomposition consist of single points.
In this case the equivariant and topological classification was obtained by the authors in [32],
generalizing the corresponding classifications for closed 3-manifolds obtained by Fintushel
[25] and Orlik and Raymond [74].

Several new invariants must be added to those in Theorem 6.4 to account for the fact
that tubular neighborhoods of each type of (one-dimensional) orbit may not be orientable,
or equivalently, the boundary of such a tubular neighborhood may not be homeomorphic to
a 2-torus but, rather, to a Klein bottle. Let us present the classification theorem, followed
by the explanation of the invariants appearing in it.

Theorem 6.6 (Spaces with local circle actions [32]). Let X be a closed Alexandrov 3-space
with a local isometric S1-action. If X has 2r ≥ 0 topologically singular points, then the
following hold:

(1) Isometric local circle actions (up to equivariant equivalence) are in one-to-one corre-
spondence with unordered tuples

{b; ε, g, (f, k1), (t, k2), (s, k3); {(αi, βi)}ni=1; (r1, r2, . . . , rs−k3); (q1, q2, . . . , qk3)} ,
where the admissible values for b, ε, g, (f, k1), (t, k2) and (αi, βi) are the same
as in the manifold case, and (r1, r2, . . . , rs−k3) and (q1, q2, . . . , qk3) are unordered
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(s − k3)- and k3-tuples of even non-negative integers ri, qj, respectively, such that
r1 + . . .+ rs−k3 + q1 + . . . qk3 = 2r.

(2) There is an equivariant equivalence of X with

M# Susp(RP 2)# · · ·# Susp(RP 2)︸ ︷︷ ︸
r summands

,

where M is the closed 3-manifold determined by the set of invariants

{b; ε, g, (f + s, k1 + k3), (t, k2); {(αi, βi)}ni=1}
in the manifold case.

Let us now explain the invariants appearing in Theorem 6.6. As in the case of global
circle actions, there are several types of fibers, each corresponding to the possible isotropy
groups. The fiber types F , E and SE are defined as in the case of global circle actions in the
preceding subsection. We denote principal fibers by R and orbits of topologically singular
points by SF . Similarly as well, the fiber space X∗ is a topological 2-manifold possibly
with boundary. When present, the boundary is composed of the images of F -, SE- and
topologically singular fibers while the interior of X∗ consists of R-fibers and a finite number
of E-fibers.

A closed Alexandrov 3-space with an isometric local circle action can be decomposed into
the following pieces:

(a) building blocks which arise by considering small tubular neighborhoods of connected
components of fibers of type F , SF , E and SE;

(b) an S1-fiber bundle (composed only of R-fibers) with structure group O(2) over a
compact 2-manifold with boundary, which corresponds to the complement in X of
the union of the building blocks in part (a).

While a similar statement is true in the case of global circle actions, the main differences
in the case of local circle actions are, on the one hand, the possible building blocks that
appear when examining the neighborhoods of each fiber via the slice theorem and, on the
other hand, that in the global case the structure group of the fiber bundle in item (b) can
be reduced to SO(2).

A building block is called simple if its boundary is homeomorphic to a torus, and twisted if
its boundary is homeomorphic to a Klein bottle (see [32, Section 3]). A pair (ε, k) where k is
a non-negative, even integer and ε takes one of six possible symbolic values can be uniquely
associated to the O(2)-bundle of R-fibers, completely characterizing it up to weak equivalence
of bundles (see [25, Section 1]). We denote the genus of X∗ by g ≥ 0. We let f, t, k1, k2
be non-negative integers such that k1 ≤ f and k2 ≤ t, where k1 is the number of twisted
F -blocks and k2 is the number of twisted SE-blocks. The number f − k1 is the number
of simple F -blocks and t − k2 is the number of simple SE-blocks. A non-negative integer
n will denote the number of E-fibers and we let {(αi, βi)}ni=1 be the corresponding Seifert
invariants. The invariant b is a certain obstruction class defined in similar fashion to that
of the global circle actions case (see [74, Section 2] for a precise definition). We let s, k3 be
non-negative integers, where k3 ≤ s is the number of twisted SF -blocks. Hence s− k3 is the
number of simple SF -blocks, and we let (r1, r2, . . . , rs−k3) and (q1, q2, . . . , qk3) be (s − k3)-
and k3-tuples of non-negative even integers corresponding to the number of topologically
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singular points in each simple and twisted SF -block, respectively. The numbers k, k1, k2,
and k3 satisfy k1 + k2 + k3 = k.

It is worth remarking here that all Seifert manifolds admit a local circle action, but not
necessarily a global circle action. Prior to the work of Orlik and Raymond [73, 74], a
classification of Seifert manifolds in terms of symbolic and numeric invariants was obtained
by Seifert in [90]. An analogous classification for generalized Seifert fibered spaces (see
Section 7 below) as defined by Mitsuishi and Yamaguchi [66] is still unknown, as is the
precise relation such a classification would share with that of the local circle actions on
closed Alexandrov 3-spaces of Theorem 6.6.

7. Collapse

We have already mentioned a few instances of collapse in three-dimensional Alexandrov
geometry. Let us recall here the definition of collapse. Let Ank,D be the class of n-dimensional
Alexandrov spaces with lower curvature bound k and diameter bounded above by D. By
Gromov’s compactness theorem (see [12, Theorem 10.7.2]), Ank,D is compact with respect to
the topology induced by the Gromov–Hausdorff distance. Let {Xn

i } ⊂ Ank,D be a Gromov–
Hausdorff converging sequence with limit X. If X is n-dimensional, then, by Perelman’s
stability theorem, the spaces Xn

i and X are homeomorphic for sufficiently large i (see [57,
79]). If the limit X is lower-dimensional, then the sequence {Xn

i } collapses. As noted in
Section 2, the collapse of Riemannian manifolds inMn

k,D ⊂ Ank,D is still not well-understood
and this question can be explored in the context of the larger class Ank,D. Observe that closed

Alexandrov 3-spaces with an effective, isometric circle action fall within the class A3
k,D.

Shioya and Yamaguchi [92, 93] examined the collapse of Riemannian manifolds in M3
k,D

and determined the possible topology of the elements Mi of the sequence {Mi} ⊂ M3
k,D, for

large i, according to the topology of the limit X. More recently, Mitsuishi and Yamaguchi
[66] considered the collapse of Alexandrov spaces in A3

k,D. In the case of collapsing sequences

{Xi} ⊂ A3
k,D, for sufficiently large i, the collapsing spaces Xi can be written in terms of basic

building blocks: so-called generalized Seifert fiber spaces (which are similar to Seifert spaces
but with some possibly singular fibers), generalized solid tori, generalized Klein bottles and
other, more familiar, spaces, such as interval bundles over the Klein bottle. The structure
of collapsed Alexandrov 3-spaces is obtained by a careful analysis of the limit X, which can
be zero-, one- or two-dimensional. It follows that X is a point, a closed interval, a circle
or an Alexandrov surface with or without boundary. As in the case of Alexandrov 3-spaces
with group actions, where the structure of the 3-space can be recovered from that of its
orbit space, the topological and metric structure of X determines the structure of Xi for
sufficiently large i. For example, when X is one-dimensional, i.e., a closed interval, for large
i the spaces Xi are the union of two pieces whose topology can be explicitly determined (see
[66, Theorem 1.8] and compare with Theorem 6.3). The general situation for both collapsed
Riemannian 3-manifolds and collapsed Alexandrov 3-spaces is rather intricate, though, so
we refer the reader to the original articles [66, 92, 93] for precise statements and proofs of
these important structure theorems.

Using Mitsuishi and Yamaguchi’s classification of collapsing Alexandrov 3-spaces of as well
as the classification of local circle actions, Guijarro and the authors obtained a geometrization
result for sufficiently collapsed Alexandrov 3-spaces [30]. Roughly speaking, they showed that
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a closed, irreducible and sufficiently collapsed Alexandrov 3-space X is modeled in one of
the eight Thurston geometries (excluding the hyperbolic geometry H3).

Theorem 7.1 (Geometrization of sufficiently collapsed Alexandrov 3-spaces [30]). For any
D > 0 there exists ε = ε(D) > 0 such that if X is a closed, irreducible Alexandrov 3-space

• curv(X) ≥ −1,
• diam(X) ≤ D and
• H3(X) ≤ ε,

then X admits a geometric structure modeled on S3, S2 × R, H2 × R, S̃L2(R), Nil or Sol.

This result extends part of the work of Shioya and Yamaguchi in [92], formulated in the
manifold case, to Alexandrov spaces. The exclusion of hyperbolic geometry in Theorem 7.1
is granted by a result of independent interest proved in [30, Remark B], namely, that a closed
collapsing Alexandrov 3-space cannot admit hyperbolic geometry. We refer the reader to [30]
and the recent survey [31] for additional details.
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