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Controlled vortex-sound interactions in atomic Bose-Einstein condensates
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The low temperature dynamics of a vortex in a trapped quasi-two-dimensional Bose-Einstein
condensate are studied quantitatively. Precession of an off-centred vortex in a dimple trap, embedded
in a weaker harmonic trap, leads to the emission of sound in a dipolar radiation pattern. Sound
emission and reabsorption can be controlled by varying the depth of the dimple. In a shallow
dimple, the power emitted is proportional to the vortex acceleration squared over the precession
frequency, whereas for a deep dimple, periodic sound reabsorption stabilises the vortex against
radiation-induced decay.
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The superfluid nature of weakly-interacting atomic
Bose-Einstein condensates (BECs) supports quantized
circulation, as observed in the form of single vortices [1],
vortex lattices [2], and vortex rings [3]. Vortices are fun-
damental to the understanding of fluid dynamics, sig-
nalling the breakdown of ordered flow and the onset of
turbulence. Dilute atomic gases enable easy control and
observation of quantized vortices, complimenting vortex
studies in liquid Helium, superconductors, and non-linear
optics. Vortices in superfluids are subject to both ther-
mal and dynamical instabilities. Thermal dissipation in
BECs induces an outward motion of the vortex towards
lower densities [4]. Dynamical dissipation is evident in
superfluids in the limit of low temperature, as manifested
in the temperature-independent crystallisation of vortex
lattices in BEC’s [5], and the decay of vortex tangles in
liquid Helium [6]. In this limit, reconnections and Kelvin
wave excitations of vortex lines leads to dissipation by
sound (phonon) emission [7, 8]. Superfluid vortices are
also unstable to acceleration, in analogy to Larmor radia-
tion induced in accelerating charges. For example, coro-
tating pairs [9], and single vortices performing circular
motion [7, 10], within a two-dimensional (2D) homoge-
neous superfluid are predicted to decay via sound emis-
sion. However, this decay mechanism is not expected to
occur in finite-sized BECs due to the sound wavelength
being larger than the system size [10, 11].

In this Letter we show that a vortex in a trapped quasi-
2D BEC, precessing due to the inhomogeneous back-
ground density, emits dipolar sound waves in a spiral
wave pattern. The quasi-2D geometry ensures that the
vortex line is effectively rectilinear and that Kelvin wave
excitations [12, 13] are negligible. This instability is
closely analogous to the decay of dark solitons in quasi-
1D BECs via sound emission due to longitudinal confine-
ment [14, 15] . Quasi-2D ‘pancake’ BECs have recently
been created experimentally, using tight confinement in
one dimension [16, 17]. Although such systems are prone
to strong phase fluctuations, these effects are suppressed
in the limit of very low temperature [18, 19]. In a har-
monic trap sound reabsorption occurs, stabilising the vor-

tex (in the absence of other decay mechanisms), while, in
modified trap geometries, sound reabsorption can be pre-
vented for times long enough to enable the vortex decay
to be observed and probed. In the latter case, the power
radiated by the vortex is found to be proportional to the
vortex acceleration squared and inversely proportional to
the precession frequency.

Our analysis is based on the Gross-Pitaevskii equation
(GPE) describing the mean-field dynamics of a weakly-
interacting BEC in the limit of low temperature,

i~
∂ψ
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= − ~
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2m
∇2ψ + Vextψ + g|ψ|2ψ − µψ. (1)

Here ψ is the macroscopic order parameter of the sys-
tem, m the atomic mass, and µ = ng is the chemical
potential, where n is the atomic density. The atomic
scattering amplitude g = 4π~

2a/m, where a is the s-wave
scattering length, is taken to be positive, i.e. repulsive in-
teratomic interactions. The external confining potential
Vext is given by,
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FIG. 1: (a) Isosurface plot of the atomic density (n = 0.1n0,
where n0 is the peak density) of a quasi-2D BEC, confined
by the potential of Eq. (2), with a vortex at (x0, 0). In the
x-z plane (y=0), white and black corresponds to high and low
density, respectively. (b) Density (solid line) and potential
(dashed line) along the x-direction (y=0,z=0).
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and consists of a gaussian dimple with waist w0 and depth
V0 embedded within a weaker harmonic trap. This con-
figuration can be realised experimentally by focussing
a far-off-resonant red-detuned laser beam in the cen-
tre of a magnetic trap. Close to the centre, the gaus-
sian dimple is approximately harmonic with frequency
ωd = 2

√
V0/w0. For trap parameters, ωr = 2π × 5 Hz,

ωd = 20ωr, and ωz = 200ωr (we choose ωz ≫ ωr to
suppress excitation in the z direction), the harmonic os-
cillator time is ω−1

d
= 1.6 ms. In this case, the timescale

of dynamical instability due to sound emission is much
shorter than the expected thermodynamic vortex life-
time, which is of the order of seconds [4]. Assuming a
peak density n0 = 1014 cm−3 and a chemical potential
µ = 3.5~ωd, a 87Rb (23Na) BEC has harmonic oscilla-

tor length ld =
√

~/(mωd) = 1.1(2.1) µm, and healing
length ξ = ~/

√
mµ = 0.53ld.

A singly-quantized vortex, initially at position (x0, y0)
in the dimple (illustrated in Fig. 1) is expected to pre-
cess around the trap centre, along a path of constant
potential, as observed experimentally [20]. This can be
interpreted in terms of the Magnus force induced by the
density gradient [21, 22]. However, the acceleration of the
vortex produces sound emission. By varying the depth
of the dimple we show how this emission can be observed
and quantified. Analogous control has previously been
demonstrated for dark solitons [15].

The energy of a precessing vortex, for both deep V0 ≫
µ and shallow V0 < µ dimples, is shown in Fig. 2(a). The
vortex energy is monitored by integrating the GP energy
functional,

E = − ~
2

2m
|∇ψ|2 + Vextψ

2 +
g

2
|ψ|4, (3)

across a ‘vortex region’, defined to be a circle of radius 5ξ
centred on the core, and subtracting off the correspond-
ing contribution of the background fluid. Although the
vortex energy technically extends up to the boundary of
the system, this region contains ∼ 50% of the total vortex
energy at all background densities considered here.

For ωz ≫ ωr and providing lz ≫ a, where lz is
the transverse harmonic oscillator length, the GPE can
be reduced to a 2D form with a modified coefficient
g2D = g/(

√
2πlz) [18, 23]. In Fig. 2(a) we compare the

full 3D GPE (black lines) with the computationally less
demanding 2D GPE (grey lines), where the 2D and 3D
density profiles are matched as closely as possible. The
excellent agreement justifies the use of the 2D GPE for
subsequent results.

For a deep dimple, the emitted sound waves are con-
fined to the dimple region and reinteract with the vor-
tex, and there is no net decay of the vortex energy. The
energy oscillations correspond to a beating between the
vortex mode and the collective excitations of the trapped
condensate. The beating effect is illustrated in Fig. 2(b),
where we plot the Fourier transform of the vortex x-
coordinate (dotted line) and energy (solid line). The two
fundamental frequencies, the effective trap frequency ωd
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FIG. 2: (a) 3D (black) and 2D (grey) energy of an off-centered
vortex, initially located at (0.53, 0)ld, rescaled by the initial
vortex energy. V0 = 10µ (solid lines): sound reabsorbed.
V0 = 0.6µ, ωr = 0 (dashed lines): sound escapes. (b) Fourier
spectrum of the vortex x-coordinate (dotted line) and energy
(solid line) for V0 = 10µ, using the 2D GPE.

and vortex precession frequency ωv, dominate the posi-
tion spectrum, while the energy spectrum highlights the
beat frequencies, (ωv − ωd), (ωv + ωd), and higher order
combinations. Similar beating effects are observed for a
driven vortex [24], and between a dark soliton and the
dipole mode in a quasi-1D BEC [15]. In contrast, for a
shallow dimple, V0 < µ, the radiated sound escapes, and
the vortex energy decays monotonically (dashed line in
Fig. 2(a)).

In an experiment, the vortex energy can be extracted
by measuring its position. The trajectory of the vortex
for both deep (solid line) and shallow (dashed) dimples
is shown in Fig. 3. For V0 ≫ µ, the orbit is essentially
closed, with the vortex remaining in the effectively har-
monic region of the dimple, but features a small modula-
tion due to the interaction with the collective excitations
of the background fluid. In stark contrast, for V0 < µ, the
vortex spirals out to lower densities. A similar outward
motion has recently been predicted for a vortex precess-
ing in a harmonic trap modulated by an optical lattice
[25]. The results presented here are for a homogeneous
outer region ωr = 0. Simulations for ωr 6= 0 are essen-
tially indistinguishable up to a time when the sound re-
flects off the condensate edge and returns to the dimple.
For example, for an outer trap ωr = ωd/20, the emitted
sound begins to reinteract with the vortex at t ∼ 80ωd.
Following this interaction with the reflected sound, the
vortex decay is slowed down, but not fully stabilised, due
to a dephasing of the sound modes in the outer trap.

Weakly anisotropic 2D geometries yield the same qual-
itative results, with vortex precession now occuring in
an ellipse, rather than a circle. In the limit of strong
anisotropy, deviations arise as the system tends towards
the quasi-1D regime, where vortices are not supported.

The continuous emission of sound waves during the
precessional motion is evident by a close inspection of the
surrounding density distribution during the course of the
decay (Fig. 3, insets). The waves are emitted perpendicu-
larly to the instantaneous direction of motion in the form
of a dipolar radiation pattern, while the spiralling mo-
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FIG. 3: Path of a vortex, initially at (0.53, 0)ld. V0 = 10µ
(solid line): mean radius is constant, but modulated by the
sound field. V0 = 0.6µ, ωr = 0 (dashed line): vortex spi-
rals outwards. Insets: Carpet plots of renormalised density
(actual minus background density) for V0 = 0.6µ at times
t = (i) 61.4 and (ii) 63.3 ω−1

d
, showing the emission of pos-

itive (white) and negative (black) sound waves of amplitude
∼ 0.01n0 . Top: Far-field [−50, 50]× [−50, 50]. Bottom: Near-
field [−14, 14]× [−14, 14], with schematic illustration of dipo-
lar radiation pattern.

tion of the vortex modifies this into a dramatic swirling
radiation distribution, reminiscent of spiral waves often
encountered elsewhere in nature [26]. The wavelength
of the emitted sound λ ∼ 25ld agrees well with the the-
oretical prediction of λ ∼ 2πc/ωv = 21.3ld [11], where

c =
√

µ/m is the speed of sound and ωv is the vortex
precession frequency.

The power radiated by the vortex, in the limit of
no reinteraction with the emitted sound (V0 = 0.6µ, is
shown in Fig. 4, as a function of time and radius from the
trap centre. Due to contraints on the size of our compu-
tational grid, this plot was mapped out by a few simula-
tions, with the vortex being started progressively further
from the trap centre. This could also be implemented ex-
perimentally in order to trace out the vortex decay. The
curve can be understood qualitatively by considering the
density inhomogeneity that the spiralling vortex experi-
ences: the emitted power increases in line with the local
radial density gradient up to r ≈ 1.4ξ, where the gradi-
ent of the gaussian potential is a maximum, and subse-
quently tails off as the trap gradient decreases smoothly
to zero. We have additionally considered the case where
the dimple is harmonic instead of gaussian, and find the
same qualitative results, but with enhanced power emis-
sion for a particular ωd, due to the larger precession fre-
quency (see Fig. 5, inset).

A 2D homogeneous superfluid can be mapped on
to a (2+1)D electrodynamic system, with vortices and
phonons playing the role of charges and photons respec-
tively [27]. By analogy to the Larmor radiation for an
accelerating charge and the power emitted from an ac-
celerating dark soliton in a quasi-1D BEC [15], we as-
sume the power radiated P by the spiralling vortex to be
proportional to the square of the local vortex accelera-
tion a. The coefficient of this relation, P/a2, has been
mapped out over a range of dimple strengths, as shown
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FIG. 4: Power radiated as a function of radius from the trap
centre (top axis) and time (bottom axis), as calculated from
the GP energy functional (solid line). Eq. (4) with β = 6.1
(dashed line). Acceleration-squared law with constant coeffi-
cient 26.6(m/ωd) (dotted line).

in Fig. 5. Each data point corresponds to the best-fit
power coefficient and the average vortex precession fre-
quency for that simulation. In a harmonic trap of fre-
quency ω, the vortex precession frequency is predicted
to be ωv = (3~ω2/4µ)ln(R/ξ), where R =

√

2µ/mω2 is
the Thomas-Fermi radius of the BEC [22]. For a har-
monic trap with a cut-off (V = V0 for r > r0), the vor-
tex frequency (Fig. 5 inset, crosses) agrees well with this
prediction. However, for a gaussian dimple of depth V0,
ωv falls short of this prediction, due to the tailing off of
the gaussian potential with radius, as shown in Fig. 5
(inset, circles). Note that there are limitations to the
range of precession frequencies that we can probe, just as
would be experienced experimentally: in the limit of very
tight dimples the vortex escapes almost instantaneously,
whereas for very weak dimples, the vortex motion is too
slow for such effects to be systematically studied. The
data indicates a strong dependence on the inverse of the
ωv, suggesting a modified power law of the form

P = βmn0ξ
2
a2

ωv

, (4)

where β is a dimensionless coefficient. An equation of
this form for circular vortex motion in a homogeneous
2D fluid has been obtained by Vinen [7] using classical
acoustics and Lundh et al. [10] by mapping the superfluid
hydrodynamic equations onto Maxwell’s electrodynamic
equations. Both approaches predict a rate of sound emis-
sion proportional to ω3

v
r2
v
, where rv is the precession

radius, and yield a coefficient, β = π2/2. Despite the
assumptions of perfect circular motion, a point vortex,
and an infinite homogeneous system, there is remarkable
agreement with our findings which indicate β ∼ 6.3±0.9
(one standard deviation), with the variation due to a
weak dependence on the geometry of the system. We
believe that the deviation from the predicted coefficient
arises primarily due to the radial component of the vortex
motion, which is ignored in the analytical derivations.

Also plotted in Fig. 4, alongside the power emission
from the GP energy functional, are an acceleration-
squared law (dotted line) and the modifed acceleration
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FIG. 5: Coefficient of an acceleration squared power law,
P/a2, for a vortex, calculated over a variety of trap strengths
ωd, as a function of ωv (circles), along with the analytical pre-
dictions [7, 10] (dashed line), and best fit line corresponding
to Eq. (4) with β = 6.3 ± 0.86 (solid line). Here frequency is
scaled in terms of ω0

d, defined by µ = 3.5~ω0

d. (The gradient
of the best fit line in log-log plot is found to be −1.04.) Inset:
Variation of ωv with trap strength for a gaussian dimple (cir-
cles) and harmonic trap with a cut-off (crosses), along with
the theoretical prediction [22] (solid line, see text).

squared law of Eq. (4) (dashed line), with the coefficients
being chosen to give a best fit. Both lines give excellent
agreement until the vortex starts to escape the dimple
region at r ∼ 1.4ld. Here the vortex frequency, which

previously remained roughly constant, starts to decrease
due to the form of the local density. This causes the
acceleration-squared law to deviate significantly, while
the 1/ωv term in Eq. (4) corrects for this deviation, giv-
ing excellent agreement throughout the decay.

Sound radiation due to acceleration may be important
in the case of turbulent vortex tangles in liquid Helium,
where evidence suggests that the vortex line length L
(providing a measure of the energy of the system) de-
cays at a rate proportional to L2 [7]. In the limit of low
temperature, this decay is believed to be primarily due
to reconnections and Kelvin wave excitations. We note
that, for a system of many vortices, where the acceler-
ation is induced by the surrounding vortex distribution,
Eq. (4) would also lead to an L2 decay.

In summary, we have shown that a vortex precessing
in a trapped quasi-2D BEC at low temperature emits
dipolar radiation, which becomes modified into a spiral
wave pattern due to the motion of the vortex. The vor-
tex energy decays at a rate proportional to its accelera-
tion squared and inversely proportional to the precession
frequency. For appropriate trap geometries, the sound
emission is experimentally observable via the spiralling
motion of the vortex towards lower densities. An analo-
gous instability may arise in the case of optical vortices,
which also exhibit a fluid-like motion [28]. For harmonic
traps the vortex decay is stabilised by reinteraction with
the emitted sound.
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