
 

 

Chemistry reveals the secrets of the Terracotta Army. 

As the sun rose over the fields of Xi’an, Shaanxi Province on the morning of 29th March 1974, a group 

of farmers set off for another day’s toil unaware of the astounding discovery they were about to 

make.  There had been reports of fragments of terracotta figures in the past but as the farmers dug 

a water-well they uncovered one the greatest archaeological sites in the world. 

One can only imagine the consternation, intrigue and bemusement that the farmers must have felt 

after removing about 5m of the loess sediment that had accumulated over the past two millennia.  

This soil had held its secret for thousands of years but it was now going to be revealed to the world.  

Peering into the gloom, faces could be seen staring back as a few of the estimated 7000 terracotta 

warriors emerged from the necropolis. 

Fast forward nearly 40 years and the Terracotta Army of Xi’an is world famous with sell out tours 

attracting more fans than a One Direction concert.  The Terracotta Army is, in fact, just one part of a 

much larger mausoleum built for Qin Shihuangdi, the First Emperor of China (259-210 BC).  

Ascending to the throne at the age of thirteen, the emperor commissioned its construction and it 

was largely completed by the time of his death.  In less than 40 years, a colossal funerary space was 

created that covers about 56km2.  It includes a funerary pyramid, various pits with life-sized 

servants, acrobats and musicians, water channels with delicate bronze birds, bronze carriages fitted 

with gold and silver implements and lavishly decorated with polychrome pigments.   Thousands of 

workers were involved in the construction of the site.  The main burial chamber, for example, 

involved digging down to a depth of 30-40 m, diverting water courses and arranging a huge number 

of burial goods before covering all of this with a pyramid of over 80 m in height.  The workforce was 

drawn from all over the empire and it included criminals recruited as forced labour.  It is even 

possible that these were killed after completion of the work since many are buried in a cemetery 

near the emperor’s burial chamber. The famous terracotta warriors are distributed in three pits at 

the eastern end of the complex and are thought to be there to protect the emperor in his afterlife 

(see Fig 1.).  Excavation of the largest of these pits (Pit 1) has so far recovered over a thousand 

ceramic warriors in battle formation and eight chariots pulled by horses.  

 



 

 

Fig. 1. Site plan of the First Emperor’s Mausoleum showing the location of the emperor’s tomb 

towards the centre, the Terracotta Army to the east, and other elements of the complex (original 

figure from1 ©Imperial Logistics Project). 

The wealth of knowledge that we now have about this site is down to the diligent work of many 

scholars over the past forty years. Through painstaking recording and investigation much has been 

determined but in more recent years archaeologists have turned to chemistry to help provide new 

evidence about the construction of the Terracotta Army.   

A joint team from the UCL Institute of Archaeology in London and the Emperor Qin Shihuang’s 

Mausoleum Site Museum has been studying the organisation and construction of this vast 

enterprise1,2,3,4.  Led by Dr Marcos Martinón-Torres (UCL), the Imperial Logistics Project brings 

together specialists from several different fields in order to open up entirely new insights into the 

warriors and their world by combining close typological study, materials science and spatial analysis. 

Their latest results focus on investigating the logistics of technology and labour organisation behind 

the construction of the Terracotta Army and its bronze weaponry.  Each of the individually crafted 

warriors was fully equipped with state of the art bronze weapons.  Over 40,000 arrowheads (most 

bundled in groups of 100 and placed into quivers) have been excavated as well as hundreds of 

crossbow triggers, swords, lances, spears and honour weapons.  Detailed measurement and scrutiny 

of the crossbow triggers identified very subtly different subgroups in the collection, which suggested 

the existence of different casting moulds and workshops.  With the arrowheads, however, the 

degree of standardisation was too high to provide a similar indication so the research team turned 

to chemical analysis to investigate the elemental composition of the artefacts.  The use of a portable 

X-ray fluorescence spectrometer (pXRF) allowed the researchers to perform chemical analyses on a 

large number of artefacts quickly, inexpensively and  without removing them from the museum.  All 

the major elements present in pre-modern copper alloys have relatively high atomic numbers and 

can, in principle, be accurately quantified by pXRF even if the analyses are not carried out in vacuum. 

X-ray fluorescence spectrometry works by bombarding the material of interest with short 

wavelength X-rays resulting in ionisation of the component atoms.  The X-rays are sufficiently 

energetic to expel electrons from the inner orbitals of an atom and the electronic structure becomes 

unstable.  Electrons “fall” into the lower energy levels and energy is released as X-ray fluorescence.  

The energy of this X-ray is equal to the difference between the orbitals involved and is therefore 

characteristic of the atoms present (see Fig. 2), while its intensity is relative to the abundance of that 

particular element in the sample. 



 

 

 

Fig. 2. Diagrammatic representation of X-ray fluorescence spectroscopy.   

It was uncertain, however, whether the material would produce meaningful results given that mild 

corrosion and contamination by soil deposits on the surface of the arrowheads has occurred since 

they were manufactured.  This sampling uncertainty means that the results could not be considered 

as fully representative of the overall composition.  There was, however, no alternative as it would be 

unacceptable to damage the artefacts in any way to reveal the original metal underneath. 

Despite this limitation, when the results were analysed some interesting observations were made.  

When the lead and tin contents of the arrowheads were plotted as a scatterplot, each bundle was 

found to form a relatively tight cluster that is marginally different to the others (see Fig. 3). The same 

pattern was observed for the tangs (the part behind the arrow that extends into the shaft), and the 

presence or absence of metal impurities such as antimony and arsenic was generally consistent 

within bundles.  Furthermore, the team analysed 20 arrows from a single bundle, differentiating 

between better preserved arrows and those that were more corroded.  The best preserved 

examples showed a much closer chemical clustering, whereas the more corroded ones scattered 

more widely and showed higher lead and tin levels.  This suggested that the degree of chemical 

similarity between arrows in a bundle was even higher than that detected by pXRF. 



 

 

 

Fig. 3. Scatterplot of the lead and tin values of a sample of arrowheads, discriminated by bundle 

(results from 1 ©Imperial Logistics Project).  Note how different bundles tend to aggregate in 

different areas of the graph. 

 

Based on these results the research team suggest that each bundle represented an individual metal 

batch, probably cast from a single crucible, and each set of tangs would constitute another batch. 

Therefore, bundles would leave the workshop as a finished item and were not mixed with any 

others.  It suggests that relatively small, specialised groups of workers would have cast 100 

arrowhead and tangs and immediately proceeded to finish and assemble them with the wooden 

shaft and feathers, and possibly place them in a quiver, before casting the next two batches.   

Furthermore, comparison of the arrowheads and the tangs  revealed that, with very few exceptions, 

the heads have a higher tin content than the tangs (see Fig. 4).  High tin bronzes are very hard and 

can be polished to a sharp finish, increasing the penetration power of the arrow but at the expense 

of higher brittleness.  The tangs, on the other hand, were made of a lower tin bronze and are 

tougher and less likely to fracture when inserted into the bamboo shaft.  This may also allow for a 

certain degree of flexibility for its oscillation during the arrow’s flight.  The implication is, therefore, 

that the weapon makers consciously optimised the composition of the alloys for the different 

functions of the various arrow parts.  It is likely that the copper, tin (and probably lead) entered the 

workshops as relatively pure metals to be mixed in the preferred proportions by the weapon 

makers.  Adding more tin to the melting crucibles when they were going to cast arrowheads, for 

example. 



 

 

 

Fig. 4. Frequency distribution histogram comparing the tin levels in tangs and heads of all the arrows 

analysed (results from 1 ©Imperial Logistics Project) 

Once the arrowhead had been cast it then it had to be polished and finished.  The researchers used 

vinyl polysiloxane material (as used by dentists for denture impressions) to obtain precise moulds of 

the weapons’ surface.  Under the scanning electron microscope (SEM), these rubber impressions 

displayed densely packed, extremely fine and perfectly parallel, grinding and polishing marks (Fig. 5). 

Such features are diagnostic of the use of rotary mechanical devices for the painstaking polishing 

that ensured the sheen and sharpness of the weapons – the earliest evidence of the use of lathe for 

polishing on an industrial scale. 



 

 

 

Fig. 5.  A bronze lance from the Terracotta Army, with (inset) SEM image of a silicon rubber 

impression taken on a lance blade, showing the fine polishing marks (original image from 2 ©Imperial 

Logistics Project). 

In terms of the production methods used, the researchers state that this evidence suggests a cellular 

production system rather than a continuous production and assembly line.  If the arrows had been 

constructed via an assembly line structured around highly specialised units, each producing one 

part, then it would have been much more likely that different metal batches would be mixed up 

among various bundles.  Instead, in a cellular production model, smaller but more versatile 

production units function in parallel and semi-autonomously, each with all the skills and resources 

they need to produce complete, multi-component items such as arrow bundles.  Most likely, these 

versatile cells could produce different finished weapons as and when needed, adapting their output 

to the progress of the construction of the Terracotta Army. 

The modern parallel to this form of production can be seen in the car industry.  The moving 

assembly line was made famous by Henry Ford and it was utilised to ensure low production costs, 

high productivity and consistent standards.  On the other hand, Toyota has utilised cellular 

production since the 1970s.  Cars are manufactured by smaller production units when demand is in 

place reducing storage costs and overstocking (a production strategy known as “just in time”).  In 

terms of its basic principle and potential advantages, the organisation of labour for the production of 

the Terracotta army is thought to be closer to Toyotism than Fordism. 

The fascinating aspect to these latest results of chemical analysis is that the production of this vast 

army was undertaken with the highest levels of production standards and weaponry was 

manufactured that was not simply a funerary offering but was fully capable of lethal use.  Martinón-

Torres said: “We always talk about chemistry as something helping us shape the future. Here we 

show that the use of chemistry to understand the past can be very rewarding too. A combination of 



 

 

chemistry, geography and computing, together with more traditional archaeological methods, is 

allowing fascinating insight into the logistical organisation of the first Chinese empire. Hopefully our 

work will appeal to students of both humanities and sciences, and it will persuade them that 

speaking of ‘interdisciplinary research’ is not redundant today, as there is simply no other way of 

doing research.” It remains to be seen how chemical techniques can be used in the years to come to 

reveal yet more about the Terracotta Army and the thousands of workers that constructed it over 

2000 years ago. 

References 

1Martinón-Torres, M., Li, X. J., Bevan, A., Xia, Y., Zhao, K., & Rehren, T. (in press). Forty thousand 

arms for a single emperor: from chemical data to the labor organization behind the bronze arrows of 

the Terracotta Army. Journal of Archaeological Method and Theory, early view available online. 

 2Martinón-Torres, M., Li, X. J., Bevan, A., Xia, Y., Kun, Z., & Rehren, T. (2011). Making weapons for 
the Terracotta Army. Archaeology International, 13, 65-75. 
 

3 Li, X. J., Martinón-Torres, M., Meeks, N. D., Xia, Y., & Zhao, K. (2011). Inscriptions, filing, grinding 

and polishing marks on the bronze weapons from the Qin Terracotta Army in China. Journal of 

Archaeological Science 38, 492-501.  

 4 Li, X. J., Bevan, A., Martinón-Torres, M., Rehren, Th., Cao, W., Xia, Y., & Zhao, K. (in press). 

Crossbows and imperial craft organisation: the bronze triggers of China’s Terracotta Army. Antiquity. 

 

By Simon Rees October 2013 


