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Quantum Accelerator Modes from the Farey Tree
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We show that mode-locking finds a purelyquantumnon-dissipative counterpart in atom-optical quantum
accelerator modes. These modes are formed by exposing cold atoms to periodic kicks in the direction of the
gravitational field. They are anchored to generalized Arnol’d tongues, parameter regions where driven nonlinear
classicalsystems exhibit mode-locking. A hierarchy for the rationalnumbers known as the Farey Tree provides
an ordering of the Arnol’d tongues and hence of experimentally observed accelerator modes.

PACS numbers: 05.45.Mt 03.75.Be 32.80.Lg

Precise control of the state and time evolution of quantum
systems is of critical importance in many areas of physics.
Tailoring wave packets in Rydberg systems [1], producing sin-
gle photons on demand [2], creating coherent superpositions
of macroscopic persistent-current states [3], and controlling
the production of multiparticle entanglement [4], are promi-
nent examples of “quantum state engineering”. Although al-
most perfect control has been achieved over these systems,
this can rapidly lose efficiency when influenced by decoher-
ence or noise. Additionally, generic features of strongly cou-
pled quantum systems allow for novel and often robust strate-
gies of quantum control. In such cases, studied in much de-
tail in the area of quantum chaos, peculiar eigenstates emerge
which exhibit unexpected localization properties and dynam-
ics, and are remarkably inert with respect to uncontrolled per-
turbations. Prominent examples are nondispersive wave pack-
ets in periodically driven quantum systems [5], quantum res-
onances [6, 7], and stochastic web states [8, 9]. These “strong
coupling” quantum control schemes rely on underlying classi-
cal dynamics, which in general is mixed regular-chaotic [10].
For such a picture to be meaningful it is in general neces-
sary to approach the semiclassical limit where the classical
actions accumulated along typical eigenmodes of the system
are large compared to~. The quantum system can then “re-
solve” the intricate phase space structure of classically mixed
regular-chaotic dynamics, and classical nonlinear stabilization
phenomena emerge on microscopic scales.

One of the most ubiquitous of such stabilization phenomena
in nonlinear classical dynamics ismode-locking. Eigenmodes
of a periodically driven dissipative system are locked in their
time-evolution onto the phase of an external drive through a
nonlinear resonance phenomenon. It occurs in applications
ranging from frequency-stabilized lasers [11] to plasma con-
finement in fusion reactors [12]. An important question is: is
this necessarily strictly a classical/semiclassical effect? We re-

FIG. 1: Density plot of experimental atomic momentum distributions
(measured in a frame falling freely withg) aftern = 30 pulses asT
is varied in the vicinity ofT2 = 133.3µs, from 124.5µs to 142.5µs
in steps of 0.128µs [13]. The labels (a), (b), and (c) indicate (2,1),
(3,1), and (5, 2) quantum accelerator modes, as predicted by the cor-
responding Arnol’d tongues depicted in Fig. 3. Labels (d) and (e)
indicate (7, 3) and (8,3) modes. White lines are the momenta pre-
dicted by Eq. (3). Inset shows the evolution of a typical (in this case
a (1,0)) QAM as a function of pulse number. The color bar indicates
the population scale.

port that features of mode-locking occur at thequantum level
even far from the semiclassical limit. This was achieved using
quantum accelerator modes (QAMs) of cold atoms kicked by
a pulsed standing wave of light orientated along the Earth’s
gravitational field [13]. In this Letter we show that the modes
observed in these experiments can be classified according toa
number-theoretic construction known as the Farey Tree [14].

We commence by describing the experimental system
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which forms the basis of our analysis [13]. To create quan-
tum accelerator modes in the laboratory, laser cooled cesium
atoms are exposed to a sequence of equally spaced pulses
from a standing wave of light which is far detuned from the
nearest atomic transition. Due to the AC Stark effect, the
atoms experience eachδ-function like pulse as a sinusoidal
potential (spatial periodλ/2) proportional to the intensity of
the light. A QAM is characterized by a momentum transfer,
to a substantial fraction of the atoms, which increases linearly
with the number of pulses. Figure 1 shows the momentum
of the atomic ensemble as a function of pulse periodT with
the accelerator modes highlighted by the labelled curves [13].
The inset plots the momentum distribution of a (1, 0) QAM as
a function of the number of pulses. Note how the width and
amplitude of the accelerator mode (the peak which moves to
the left) remain relatively unchanged and the center momen-
tum increases linearly with pulse number. This can be con-
trasted with the peak near zero momentum which broadens as
pulses are applied. Although the stability of the accelerator
mode from pulse-to-pulse is already somewhat reminiscent of
mode locking behavior, there are other reasons to think of the
accelerator mode in this way.

To see this, we examine the atomic center-of-mass dynam-
ics using the one-dimensionalδ-kicked accelerator Hamilto-
nianĤ = p̂2/2m+mĝz− ~φd[1 + cos(Gẑ)]

∑

n δ(t − nT) [15].
Hereẑ is the vertical position, ˆp the momentum,m the atomic
mass,g the gravitational acceleration,t the time,G = 4π/λ
[16], andφd = U0tp/2~, whereU0 is the maximum AC Stark
shift in the standing wave andtp is the pulse duration. The
special resonant values ofT in the vicinity of which QAMs
occur experimentally areTℓ = 2πℓm/(~G2) = ℓ×66.7µs, with
ℓ any non-negative integer. Hence,ǫ = 2πℓ(T/Tℓ − 1) is a
small parameter. Translating to a frame accelerating withg,
to remove the linear potential, and taking the limitǫ → 0 the
quantum dynamics of the kicked atoms can be modelled by
the classical map [17]:

Jn+1 =Jn − K sin(θn) − sgn(ǫ)2πΩ, (1a)

θn+1 =θn + sgn(ǫ)Jn+1 mod(2π), (1b)

where sgn(ǫ) is positive/negative if the pulse intervalT is
greater/smaller thanTℓ, and

θ =Gz mod(2π) (2a)

Jn =In + sgn(ǫ)[πℓ + βτ − 2πΩ(n+ 1/2)], (2b)

with p/~G = I/|ǫ| + β, K = φd|ǫ|, Ω = gGT2/2π, τ =
2πℓT/Tℓ. Note that the deeply quantum mechanical character
of the atomic dynamics remains hidden in the parametrization
of (1,2) through the quasimomentumβ, 0 ≤ β < 1, since the
limit ǫ → 0 leading to the classical equations (1) leaves the
finite value of~ unaffected. By Bloch theory, subspaces of
different quasimomenta are decoupled.

Mode-locking enters the theory of QAMs via Eq. (1) which
also describes the deterministic motion of a periodically
kicked classical particle on a circle. In this caseθn andJn are
the angle and angular momentum just before thenth kick, K

is the kicking strength, andΩ the unperturbed winding num-
ber. If the classical particle is additionally subject to dissi-
pative forces, the accessible phase space shrinks, and Eq. (1)
reduces (in the long-time limit) to the sine-circle map [18]:
θn+1 = θn − K sin(θn) − 2πΩ, a paradigm in the study of
mode-locking. IfK = 0 andΩ is a rational numberm/p,
any trajectory of the sine-circle map returns to its initialvalue
(modulo 2π) after p iterations. For 0< K < 1, mode-
locking is observed; over a range ofΩ values aroundm/p
(the mode-locking interval) a periodic trajectory with ratio-
nal winding numberm/p persists. This orbit attracts all other
orbits asymptotically in time, such that finally all have this
winding number. The widths of the mode-locking intervals
are exponentially small inp, and increase with increasingK
up until K = 1. The regions thus formed in (Ω,K) parameter
space, terminating atK = 0,Ω = m/p, are known asArnol’d
tongues[19].

Using this formalism, it is now possible to analyze the dy-
namics of the QAM in theǫ → 0 limit. To begin we look
for stable periodic orbits in Eq. (1) such that, if (J0, θ0) is on
an orderp orbit, afterp pulsesJp mod(2π) = J0. If the orbit
is stable, then each of thep points it is composed of is sur-
rounded by a nonlinear resonance island, set in a chaotic sea,
where the motion is predominantly regular; the motion in the
island system approximates that of the periodic orbit. If the
orbit has winding numberm/p, thenJp = J0 + 2πm. Thus,
from Eq. (2),In (and thereforepn) grows linearly with time.
The islands travel in momentum, resulting in acceleration.If
a wavepacket is launched within an island surrounding a sta-
ble periodic orbit, the acceleration of the corresponding QAM
obeys

pn ≃ p0 + n
2π
|ǫ|

(

Ω − m
p

)

~G , (3)

precisely as observed in the inset of Fig. 1. Hence, we can
identify QAMs with nonlinear resonance islands in the clas-
sical phase space generated by (1), what is just another man-
ifestation of the general mode-locking phenomenon we are
describing here. These islands are robust structures, as guar-
anteed by the Kolmogorov-Arnol’d-Moser (KAM) theorem
[20]. A quantum wavepacket initially prepared in the island
travels with it, and decays only slowly by tunneling into the
chaotic surroundings. For sufficiently smallǫ, this tunneling
is exponentially weak, resulting in a stable QAM. More im-
portantly, due to the KAM theorem the island itself is rather
inert with respect to perturbations of the Hamiltonian generat-
ing the map Eq. (1). This robustness is inherited by the QAMs
and shields them against experimental noise [5].

In Fig. 2 we plot a “phase diagram” to represent the regions
(tongues) where stable periodic orbits with different values of
(p,m) are numerically observed in the (Ω,K) parameter plane.
This plot contains the parameter space explored experimen-
tally [13] using values ofT in the vicinity of T2 = 133.3µs.
Close toK = 0, each of the stable periodic orbit regions is
wedge-shaped, with its vertex atΩ = m/p, K = 0. Moving to
higherK inside a tongue, the periodic orbit eventually turns
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FIG. 2: Arnol’d tongues structure. Different colour identify different
tongues associated with different quantum accelerator modes. The
dotted line marks the locus of experimentally explored points when
T ∼ T2; dashed lines bound regions for which (21, 8) and (5, 2) stable
periodic orbits exist, as specified by|K| > 2π

√
p |Ω −m/p|.

unstable. A sequence of bifurcations follows, which breaks
the tongue into fragments. Fragments of different tongues in-
tertwine and overlap in complicated ways. A tongue may be
overlapped by others even before breaking, and such overlaps
persist even at quite small values ofK.

Using a canonical perturbation theory [20, 21, 22] to deter-
mine an existence condition for a stable periodic orbit for Eq.
(1) with a given (p,m), one obtains,|K| > 2π

√
p |Ω −m/p|.

In the form of an equality, this equation accurately bounds the
wedge-shaped (p,m) tongue near its vertex. This is shown for
the (21, 8) and (5, 2) periodic orbits by dashed lines in Fig.
2. Numerical computation and scaling considerations reveal
the “critical region” where a tongue breaks to be roughly lo-
cated at kicking strengthsK ∼ 2πp−3/2 [22]. Thus, the higher
the period of an orbit, the narrower the corresponding tongue,
and the lower the “critical value” ofK at which the tongue
begins to break.

The parameters corresponding to a specific experiment de-
termine a point in the phase diagram. If this point is inside a
tongue then a QAM may be observed. At fixed pulse number
n, Eq. (3) defines a curve of enhanced population in the (T, p)
plot (seen in the data of [13] presented in Fig. 1), due to the
presence of the (p,m) QAM. We explore the phase diagram of
Fig. 2, keeping bothφd andn constant, while varyingT. This
procedure variesǫ, K andΩ. The results of such an exper-
iment are shown in Fig. 1. The locus of the experimentally
explored points in the phase diagram is a curve shown by the
dotted line in Figs. 2 and 3. This curve hits theK = 0 axis at

Ω′ = gGT2
ℓ
/2π, the value ofΩ corresponding to the exactly-

resonant value of the kicking periodT = Tℓ. This is 0.3902
whenℓ = 2.

Perhaps most remarkably, the values ofm and p corre-
sponding to experimentally observable QAM are determined
by the Farey hierarchy of rational numbers [14]. This rep-
resentation of rational numbers is a generic feature of mode-
locking phenomena normally observed in systems with dis-
sipation. In this hierarchy all rational numbers in [0, 1] are
constructed as follows: Start from the pair

(

0
1 ,

1
1

)

. At the sec-

ond level the fraction1
2 =

0+1
1+1 is introduced so that the series

consists of
(

0
1 ,

1
2 ,

1
1

)

. On the next level the fractions13 =
0+1
1+2

and 2
3 =

1+1
2+1 are added. This process is continued so that

if r1 =
m1
p1

and r2 =
m2
p2

are adjacent irreducible fractions at
some level, the first rational to be added between them at the
next level is their Farey mediantr = m1+m2

p1+p2
. At no level can a

rational with a denominator smaller thanp1 + p2 be found be-
tweenr1 andr2. At each level the interval [0, 1] is thus divided
by the Farey fractions into Farey subintervals. As the experi-
mental line approachesΩ′ in Fig. 3, it successively intersects
tongues specified by values of (p,m); these values determine
the observed QAM. The ratiosm/p are increasingly close ap-
proximations toΩ′.

To determine the tongues (and hence QAMs) appearing in
the experiment, we start from orbits with smallp. In Fig. 3A
the (1, 0) and (1, 1) tongues are presented (their vertices, at
K = 0, are outside the boundaries of Fig. 2). These corre-
spond to the first numbers in the Farey hierarchy. The dot-
ted line marking the experimental points intersects (within the
boundaries of the figure) the (1, 0) tongue. In the region of
intersection the stable orbit (1, 0) is found. The corresponding
QAMs exhibit rapid acceleration, and atn = 30 pulses they
move beyond the experimental window shown in Fig. 1. For
higher-order QAMs, higher orders of the Farey hierarchy are
required. At the second level the (2, 1) tongue, shown in Fig.
3B, is introduced, andΩ′ is in the interval [01 ,

1
2]. The exper-

imental line intersects the (2, 1) tongue, so a (2, 1) orbit (and
QAM) is found. Corresponding points are marked by (a) in
Figs. 1 and 3B. The third level (Fig. 3C) introduces the (3, 1)
and (3, 2) tongues. The experimental line intersects both these
tongues, yet only the (3, 1) QAM is observed (intersection re-
gion marked by (b) in Figs. 1 and 3C). This is because2

3 is
further than1

3 fromΩ′, and so the intersection with the (3, 2)
tongue takes place in a region whereK > 2πp−3/2. There are
only narrow remnants of the tongue, and the corresponding
stable island is too small for a QAM to be observable. The
relevant Farey subinterval is now13 to 1

2. The construction
can be continued in similar fashion. In Fig. 3D the (5, 2) and
(5, 3) tongues are introduced. Since both lines have a large
overlap with the (5, 2) tongue (regions marked with (c)), the
corresponding QAM appears on both sides of the resonance.
Proceeding would ideally produce all the Farey subintervals in
whichΩ′ belongs. Faint traces of QAMs that lie outside this
recursion may also be detected, e.g. the white curve (d) in Fig.
1 corresponds to a (7, 3) mode. Note how in the experimental
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FIG. 3: Operation of the Farey recursion, moving from framesA
to D, for determining the experimentally observed (2, 1), (3, 1), and
(5,2) quantum accelerator modes. The dotted line indicates thelocus
of the experimentally explored points, while the labels (a), (b) and
(c) mark the regions in which accelerator modes are observed. The
labels correspond to those used in Fig. 1.

data it is disfavored in comparison with the (8, 3) mode (curve
(e)), as3

8 is closer than3
7 toΩ′.

This construction demonstrates how the Farey tree classi-
fies the complex structure of overlapping tongues according
to those that are most important for the description of QAMs
observed for a specific value ofΩ′. Furthermore, asK → 0,
the value ofm

p
for the QAMs seen in the experiment con-

verges toΩ′. AsΩ′ is determined by the local value of gravity,
we obtain systematically improving rational approximantsof

g. The underlyingclassicalmode-locking mechanism thus
rendersquantumaccelerator modes a robust tool for efficient
quantum state control, deep in the quantum realm.
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