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1. Introduction

In hadron-hadron collisions, the most basic hard process is parton-parton scattering
to form a large transverse momentum jet. The single jet inclusive transverse energy
distribution observed at the TEVATRON and CERN SppS shows good agreement
with theoretical next-to-leading order O (a?) perturbative predictions over a wide
range of jet transverse energies and tests the point-like nature of the partons down
to distance scales of 10717 m. However, data collected in Run I by the CDF collabora-
tion at the TEVATRON indicated possible new physics at large transverse energy [1].
Data obtained by the DO collaboration [2] was more consistent with next-to-leading
order expectations. However, because of both theoretical and experimental uncer-
tainties no definite conclusion could be drawn. The experimental situation may be
clarified in the forthcoming Run II starting in 2001 where increased statistics and
improved detectors may lead to a reduction in both the statistical and systematic
errors.

The theoretical prediction may be improved by including the next-to-next-to-
leading order perturbative predictions. This has the effect of (a) reducing the renor-
malisation scale dependence and (b) improving the matching of the parton level
theoretical jet algorithm with the hadron level experimental jet algorithm because
the jet structure can be modeled by the presence of a third parton. Varying the
renormalisation scale up and down by a factor of two about the jet transverse energy
leads to a 20% (10%) renormalisation scale uncertainty at leading order (next-to-
leading order) for jets with E7 ~ 100 GeV. The improvement in accuracy expected
at next-to-next-to-leading order can be estimated using the renormalisation group
equations together with the known leading and next-to-leading order coefficients and
is at the 1-2% level.

The full next-to-next-to-leading order prediction requires a knowledge of the two-
loop 2 — 2 matrix elements as well as the contributions from the one-loop 2 — 3
and tree-level 2 — 4 processes. In the interesting large-transverse-energy region,
Er > Mmquark, the quark masses may be safely neglected and we therefore focus on
the scattering of massless partons. For processes involving up, down and strange
quarks, which together with processes involving gluons form the bulk of the cross
section, this is certainly a reliable approximation. The contribution involving charm
and bottom quarks is only a small part of the total since the parton densities for
finding charm and bottom quarks inside the proton are relatively suppressed. We
note that the existing next-to-leading order programs [3, 4] used to compare directly
with the experimental jet data [1, 2] are based on massless parton-parton scattering.
Helicity amplitudes for the one-loop 2 — 3 parton sub-processes g9 — 999, G4 — 999,
dq — ¢'q'g, and processes related to these by crossing symmetry, have been computed
in [5, 6, 7] respectively. The amplitudes for the six gluon gg — gggg, four gluon-two
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2 — 4 processes and the associated crossed processes computed at tree-level are also
known and are available in [8, 9, 10, 11].

The calculation of the two-loop amplitudes for the massless 2 — 2 scattering
processes
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has proved more intractable due mainly to the difficulty of evaluating the planar and
non-planar double box graphs. Recently however, analytic expressions for these basic
scalar integrals for massless particle scattering have been provided by Smirnov [12]
and by Tausk [13] as series in € = (4 — D)/2. Associated tensor integrals have also
been solved in [14] and [15] so that generic two-loop massless 2 — 2 processes can in
principle be expressed in terms of a basis set of known two-loop integrals. With the
notable exception of the maximal helicity violating two loop amplitude for gg — gg
which has recently been calculated by Bern, Dixon and Kosower [16]!, the two-loop
matrix elements for the 2 — 2 QCD parton scattering processes are not known. It
is the purpose of this paper to provide dimensionally regularised and renormalised
analytic expressions at the two-loop level for process (1.1) together with the time-
reversed and crossed processes

q+qd —q+4,
¢+7 —q+7,
i+q —q+q.

As is common in QCD calculations, we use the MS renormalisation scheme and
conventional dimensional regularisation where all external particles are treated in D
dimensions. We note that Bern, Dixon and Ghinculov [17] have recently completed
the first full two-loop calculation of physical 2 — 2 scattering amplitudes, the QED
processes ee” — putp~ and ete” — e~et. There is an overlap between their QED
calculation and the QCD results presented here and we expect that the analytic
expressions presented here will therefore provide a useful check of some of their
results.

Our paper is structured as follows. In Section 2 we define our notation while a
brief description of the methodology is given in Section 3. The results are collected in
Section 4 where we provide analytic expressions for the interference of the two-loop
and tree-level amplitudes as series expansions in €. Catani has described the pole

IThis amplitude vanishes at tree level and does therefore not contribute to 2 — 2 scattering at
next-to-next-to-leading order O (o/sl).



structure of generic renormalised two-loop amplitudes [18] and we use his techniques
to isolate the poles in the MS scheme. We find that the pole structure expected in
the MS scheme on general grounds is indeed reproduced by direct evaluation of the
Feynman diagrams. Ultimately these poles must be canceled by infrared singularities
from tree level 2 — 4 and one-loop 2 — 3 processes. The finite remainder of the
two-loop graphs form the main results of our paper and are given in Section 4. Our
findings are summarized in Section 5.

2. Notation
For calculational convenience, we treat all particles as incoming so that
qa(p1) +d(p2) + ¢ (p3) + @' (ps) — 0 (2.1)
where the light-like momentum assignments are in parentheses and satisfy
Py +ph +p5 + Py = 0.

As stated above, we work in conventional dimensional regularisation treating all
external states in D dimensions. We renormalise in the MS scheme where the bare
coupling ay is related to the running coupling a, = a,(u?) at renormalisation scale

a0 S. = ay l1 - % (g‘—W) + (f—§ = %) <§‘—W>2 +0 (oﬁ)] . (2.2)

In this expression

[ via

Se = (4m)e™, v = 0.5772... = Euler constant (2.3)

is the typical phase-space volume factor in D = 4 — 2¢ dimensions, and (3, 3; are the
first two coefficients of the QCD beta function for Ny (massless) quark flavours

110, — 4T Np  17C% = 10C4Tg Np — 6CxTr Np

2.4
ﬁO 6 ’ ﬁl 6 ( )
For an SU(N) gauge theory, where N is the number of colours
N? -1 1
=) =N T 25)
The renormalised four point amplitude in the MS scheme is thus
M) = dra, [|MO) + <O‘—> MDY+ <%>2 M) +0 (o) (2.6)
3 27 27 AN '

where the |M®) represents a colour space vector describing the i-loop amplitude.
The dependence on both renormalisation scale p and renormalisation scheme is im-
plicit.



We denote the squared amplitude summed over spins and colours by
(MIM) = A(s, t,u), (2.7)
where the Mandelstam variables are given by
s=(+p)?  t=(+ps)’  u=(p+ps) (2.8)

For the physical processes, the spin and colour averaged amplitudes are related to A
by

Y IM@+T—T+ )P = ﬁ A(s, t,u) (2.9)
N Mlg+q —q+¢)? = ﬁ Alu,t, s) (2.10)
S Mt =@+ P = 1y Alts,) (211)
S M@ 7 — 1+ DF = g Al t,5). (2.12)

The summed and squared amplitude has the perturbative expansion

_ 2 2| 44 s\ 6 Qs 28 3
A(s,t,u) = 16m°a; [.A (s, t,u)+ (2#) A°(s,t,u) + (27r> A°(s,t,u)+ O (as)] )
(2.13)
In terms of the amplitudes
2 2

Al(s,t,u) = (MOIMO) = 2(N? — 1) (t :‘2“ - e> : (2.14)
Al(s,tu) = ((MOIMD) + (MOIMO)) (215)
A¥(s, t,u) = ((MOIMD) + (MOIME) + (MO|MD)) . (2.16)

Expressions for A°® are given in Ref. [19] using dimensional regularisation to isolate
the infrared and ultraviolet singularities.

Here we concentrate on the next-to-next-to-leading order contribution A% and
in particular the interference of the two-loop and tree graphs.

3. Method

Massless two-loop integrals for 2 — 2 scattering can be described in terms of a basis
set of scalar master integrals. The simpler massless master integrals comprise the
trivial topologies of single scale integrals which can be written as products of Gamma

Sunset(s) = —@— (s)

functions:



Glass(s) = —@— (s)
Tri(s) = {Z (s)

the less trivial non-planar triangle graph [20],

Xtri(s) = ~<<9)

and two scale integrals that are related to the one-loop box graphs [21, 22],

Abox(s, t) = :IZ (s,1)

Cbox(s,t) = (s,t).

The planar double box [12] and non-planar double box [13]

Pbox(s,t) = (s,t)

Xbox, (s, ) = : X (s,1)

involve multiple Mellin-Barnes integrals and are much more complicated to evaluate

as series expansions in €. Expressions for these integrals valid through to O (¢°) are
given in [12] and [13] respectively.

It turns out that for the two latter topologies, integrals involving loop momenta in
the numerator cannot be entirely reduced in terms of the simpler integrals mentioned
above and an additional master integral is required in each case. Reference [14]
describes the procedure for reducing the tensor integrals down to a basis involving
the planar box integral

Pboxy (s, t) = ¢ (s,1),

where the blob on the middle propagator represents an additional power of that
propagator, and provides a series expansion for Pbox, to O (€). However, as was
pointed out in [23], knowledge of Pbox; and Pboxs to O (¢°) is not sufficient to
determine all tensor loop integrals to the same order. A better basis involves the
tensor integral,

Pb0X3(87 t) = ® (87 t)a

where (D represents the planar box integral with one irreducible numerator associ-
ated with the left loop. Symmetry of the integral ensures that,

@ (s,t) = @ (s,0).




Series expansions for Pboxs are relatively compact and straightforward to obtain and
are detailed in [24, 25]. Pbox, can therefore be eliminated in favor of Pboxs. We
note that this choice is not unique. Bern et al. [17] choose to use the Pbox; and
Pbox, basis, but with the integrals evaluated in D = 6 — 2¢ dimensions where they
are both infrared and ultraviolet finite.

Similarly, the tensor reduction of the non-planar box integrals [15] also requires
a second master integral,

Xboxy(s,t) = :' g (s,1),

where the blob again denotes an additional power of the propagator. For the non-
planar graphs there are no complications as in the planar case and all tensors to O (€°)
may be described in terms of the series expansions of Xbox; and Xboxs through to
O (%) [13, 15].

In general tensor integrals are associated with scalar integrals in higher dimension

and with higher powers of propagators. This connection can straightforwardly be
achieved using the Schwinger parameter form of the integral and is detailed in [22]
where explicit expressions for generic two-loop integrals with up to four powers of
loop momenta in the numerator are given?. Systematic application of the integration-
by-parts (IBP) identities [27] and Lorentz invariance (LI) identities [28] is sufficient
to reduce these higher-dimension, higher-power integrals to master integrals in D =
4 — 2e. Some topologies that occur in Feynman diagrams such as the pentabox [22]
are immediately simplified using the IBP identities and collapse to combinations of
master integrals. However, the tensor integrals directly associated with the master
integrals usually require more care. Explicit identities relevant for the tensor integrals
of the Abox and Cbox topologies are given in [22], for Pbox; and Pboxs integrals
in [14] while those for the Xtri, Xbox; and Xbox, integrals are detailed in [15]. Using
these identities, we have constructed MAPLE and FORM programs to rewrite two-
loop tensor integrals for massless 2 — 2 scattering directly in terms of the basis set
of master integrals.

The one-loop integrals are much better known. There are only two master inte-
grals, the scalar bubble graph,

Bub(s) = —( - (s) .

and the one-loop scalar box graph,

Box(s,t) = (s,t).

2A method to reduce tensor integrals constructing differential operators that change the powers
of the propagators as well as the dimension of the integral was presented in Ref. [26].



We treat the tensor integrals in the same way as the two-loop integrals: shifting both
dimension and powers of propagators and then using IBP to rewrite the integrals as
combinations of Bub and Box. We note that this is not a unique choice for the
master integrals. The one-loop bubble graph is proportional to the one-loop triangle
graph with one off-shell leg. Another common choice is to replace the one-loop box
in D = 4 — 2¢ by the finite one-loop box in D = 6 — 2¢, Box®.

The general procedure for computing the amplitudes is therefore as follows. First
the two-loop Feynman diagrams are generated using QGRAF [29]. We then project by
tree level, perform the summation over colours and spins and trace over the Dirac
matrices in D dimensions using conventional dimensional regularisation. It is then
straightforward to identify the scalar and tensor integrals present and replace them
with combinations of master integrals using the tensor reduction of two-loop integrals
described in [14, 15, 22] based on integration-by-parts [27] and Lorentz invariance [28]
identities. The final result is a combination of master integrals in D = 4 — 2¢ which
can be substituted for the expansions in € given in [12, 13, 14, 15, 21, 22, 24, 25].

4. Results

In this section, we give explicit formulae for the e-expansion of the two-loop contribu-
tion to the next-to-next-to-leading order term A%(s, ¢, u). To distinguish between the
genuine two-loop contribution (M©|M®@)) + (ME|M©@) and the squared one-loop
part (MM|MD) we decompose A® as

.A8 :.A8 (2x0) +.A8 (1><1). (41)

The one-loop-square contribution A% <1 is vital in determining A% but is relatively
straightforward to obtain. For the remainder of this paper we concentrate on the
technically more complicated two-loop contribution A8 (X9,

We divide the two-loop contributions into two classes: those that multiply poles

in the dimensional regularisation parameter € and those that are finite as € — 0
A8 X0 (5 t ) = Poles + Finite. (4.2)

Poles contains both infrared singularities and ultraviolet divergences. The latter
are removed by renormalisation, while the former must be analytically canceled by
the infrared singularities occurring in radiative processes of the same order. The
structure of these infrared divergences has been widely studied and, as has been
demonstrated by Catani [18], can be largely predicted.

4.1 Infrared pole structure

In the notation of Section 2, the universal infrared divergences present in a one-loop
amplitude are given by the factorization formulae

M) = IO M) 4| MO, (13)



where | MM ) is finite as ¢ — 0 and the singular dependence is determined by the
colour-charge operator I'Y)(e) that acts on the tree-level colour vector |[M©). For
the n parton process we sum over all possible colour antennae with colour operators
T, - T; acting on the state |[M©) to obtain

1 e€7 n o n 1 o 2€—i)\ij7r €

IV(ey=2_— T, T <_ _Z> r= 4.4

(€) 2I(1 —¢) ;; 7 \e2 * € 2p;.p; (44)

and where \;; = —1 if 7 and j are both incoming or outgoing partons and A;; = 0
otherwise and the constants v; are given by

3 Bo
f— e -, f}/ = —. 45
Ta = Vq 5 97 Ol (4.5)

Similarly at the two-loop level there is a factorisation of the infrared singularities
M) = 10 (0) M) 4+ I (0) M) + | M2 (16)

where now

I®(e) = —%I(l)(e) <I<1>(e) + 2@) + e—ﬂirr((ll__i? (% + K) IW(2¢) + H®(e)

(4.7)

where the constant K is

67 10
K=|—=-2")C4— =Tx Np. 4.
(18 6>CA g for (4.8)

The function H® contains only single poles and is process dependent. For the case
of the quark form factor (in the MS scheme) it is given by

1 ee-y ,U,2€_i)\127r 2e
H®(e) = — H® 4.
(€) 12eT(1—e < 2p1.ps ) ’ 9
with
1 5! 28 16
H® = Yot 3CFK + 5(2/30017 - ?ﬁOCF - (5 - 7<3) CrCa (4.10)

where ¢, is the Riemann Zeta function, (, = 72/6, (3 = 1.202056 . .. and

Ty = (34216 — 486) Chr (5 — 26+ 216) CeCat (5 +5.G) CrTu N,

(4.11)
We expect that in the four-quark two loop amplitude, we might obtain contributions
from H® for each of the six colour antennae.



Applying the formalism to the case at hand, we find that the pole structure of
the two-loop amplitude interfered with tree level has the following structure

Poles = 2Re %(M(O)|I(1)(e)I(1)(e)|M(O)> — % (MOTD ()| M)

MO MO

oo (ﬁ - K) (MO10 (20| M)

ey
e ['(1—¢)

+ (M<°>|H<2>(e)|/\/l<°>>] . (4.12)

The colour algebra is straightforward and we find

<M(0)|I(1)(G)IM(O)> — <M(0)|M(0)>
e L 3N[1 [ w2\ 2( w®\° N>=2( u%\*
i (2t 5) [N (‘:) ‘N(T) T <_7H<4.13>

(MOITD () IV () MDY = (MO|MO)

2 <l+i>2 N'—3N?*+3 [ 2\*  N*+3( 2\*
(1 —e)2 \e?  2¢ N2 t N2 u

|
R () 2 () ()
. % <_%2> <_%2> - % <J§>2] (4.14)

ey
(MO IO ()| MDEiny = __© < L i)

X

E r(1 —65) e 2 E
()05 () e
\ l% <_%2> _ % <_“72H (N? — 1)f2(s,t,u)} (4.15)

and

(MOITH® ()| M@y = (MO MO

s (2] o

where the square bracket in Eq. (4.16) is a guess simply motivated by summing
over the antennae present in the quark-quark scattering process and on dimensional
grounds. Different choices only affect the finite remainder.



The functions F; and F» appearing in Eq. (4.15) are finite functions and are
obtained from projection of I onto the one-loop amplitude. We find

Falstu) = S [(NV? = 2) flstu) + 25, 1)
—26(31_ 20 [NN_ ! (6 —Te — 262) — % (1062 — 463)] Bub(s) (M| M)
ey 1 o3N[1 /[ 2\ 2( w*\° N*—=2( p*\* Ot (0
g ) v (5) —w (8) ) e
£ 2 Tty (MOLMO) (417
Fals, t,u) = Nﬂ; L sty 0) = F(s,u,8)]

DR A

where the function f(s,¢,u) is written in terms of the one-loop box graph in D =
6 — 2¢ and the one-loop bubble graph in D =4 — 2¢

4(u® + t*) — 2¢(3ut + 6t + 5u?) — 2s(7t + 5u) [ Bub(s) — Bub()
f(S7 t7 u) = 2
s €
24 9u2 362
fu (1 — 20 T2 T3 B, (4.19)
s

These expressions are valid in all kinematic regions. However, to evaluate the pole
structure in a particular region, they must be expanded as a series in €. We note
that in Eq. (4.12), these functions are multiplied by poles in € and must therefore be
expanded through to O (€?). In the physical region v < 0, t < 0, Box®(u, ) has no
imaginary part and is given by [17]

Box®(u, 1) = zg (i f ;)e (<11—_ 266))2 (%2) E (2o = L)) +77)
iy <L L Lis() — %Lf; _ ?L )
<L14 + L,Liz(x) — §L;Li2(x) - %Li - 6LiL + 4L§L§
—ZL2 7; L,L, — Z—Q) + (u— t)] +0 (), (4.20)

where v = —t/s, L, = log(z) and L, = log(1 — z) and the polylogarithms Li, () are
defined by

Lin(2) = /0 %Lin_l(t) for n = 2, 3,4 (4.21)

Lis(2) = — /0 " o1 1), (4.22)

10



Analytic continuation to other kinematic regions is obtained using the inversion
formulae for the arguments of the polylogarithms (see for example [22]) when x > 1

. . /1 1. w2
Lis(x 4+ 10) = —Li, (—) — =log*(z) + — + imlog(x)

x 2 3
. . . 1 1 3 7T2 T 2
Liz(z +140) = Li (—) — —log”(z) + — log(z) + —log”(x)
T 6 3 2
) e At 1 4 T, 7 7 S
Lis(z + i0) = —Lis (;) — o log'(@) + T log(e) + T+ T log(a). (4.23)
Finally, the one-loop bubble integral in D = 4 — 2¢ dimensions is given by
e T (1+6)T(1—e? [ p?\°
Bub(s) = —— . 4.24
ub(s) T(2—2¢)¢ s (424)

Our explicit Feynman diagram reproduces the anticipated pole structure exactly
and provides a very stringent check on the calculation. We therefore construct the
finite remainder by subtracting Eq. (4.12) from the full result.

4.2 Finite contributions

In this subsection, we give explicit expressions for the finite two-loop contribution to
A8, Finite, which is given by

Finite = 2Re(M O | M@ i) (4.25)

For high energy hadron-hadron collisions, we probe all parton-parton scattering pro-
cesses simultaneously. We therefore need to be able to evaluate the finite parts in
the s-, t- and u-channels corresponding to the processes

q+7—7+¢
4+q7 —q7+q
¢+q¢ —q+4,

respectively. In principle, the analytic expressions for different channels are related
by crossing symmetry. However, the Xbox has cuts in all three channels yielding
complex parts in all physical regions. The analytic continuation is therefore rather
involved and prone to error. We therefore choose to give expressions describing
A8(s,t,u), A8(t,s,u) and A%(u,t,s) which are directly valid in the physical region,
s > 0 and u,t < 0, and are given in terms of logarithms and polylogarithms that
have no imaginary parts.

In general the expansions of the two-loop master integrals [12, 13, 14, 15, 22, 24,
25] contain the generalised polylogarithms of Nielsen

(—1)nrt /ld log™ ! (t) log? (1 — at)
(n—1)!'p! Jo t ’

Snp(T) = n,p>1, <1 (4.26)
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where the level is n + p. Keeping terms up to O (€) corresponds to probing level
4 so that only polylogarithms with n 4+ p < 4 occur. For p = 1 we find the usual
polylogarithms

Sn—1.1(%) = Li,(2). (4.27)

A basis set of 6 polylogarithms (one with n +p = 2, two with n + p = 3 and
three with n + p = 4 is sufficient to describe a function of level 4. At level 4, we
choose to eliminate the S5, Si3 and S5 functions using the standard polylogarithm
identities [30] and retain the polylogarithms with arguments z, 1 —z and (z — 1)/,
where

t U v x—1

R z, P (4.28)

For convenience, we also introduce the following logarithms

—t —
L, = log (?> . L, =log (%) . L.—log (%) (4.29)

where p is the renormalisation scale. The common choice p? = s corresponds to
setting L, = 0.

For each channel, we choose to present our results by grouping terms according
to the power of the number of colours N and the number of light quarks Ny so that
in channel ¢

| N
Finite, = 2(N2 _ 1) (NzAc 4 Bot 5Ce+ NNpDo+ —LE, + NI%FC) . (4.30)

4.2.1 The s-channel process q7 — ¢'¢

We first give expressions for the s-channel annihilation process, ¢¢ — ¢'¢'. We find
that

3 xT
121 11 2 1 1 4
+— L2+ ( —L2+11Lx—ﬁ>Ls+6L§+<§Ly—1—g>L§;

18 3 = 27
11, 5, 197 47 95
L,—2n? S e s ~ 2L,

+(6 6" " 18) ( 3T T 06 24)

1, 409 U3, T, 197 23213

kgt B el B S labaptt kil
+<247T = 216) v 720” 6" Ta6 @t 2592] l ]

—1

2 2 2 6 6

1 13 32 7 3 44
Lyn? — — 7% — Lo+ |-L,—>n* L?
+<2 g oG 9) +<4 v 47T+9>

1 7 1 11 11
—|—3LxLig(y)+< L2+ - L,+ = W)ng(x)+<——L2+ Lx>LS
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1 49 7 47 12 — u? t3
—L,— — |3 — gt 4+ —x2+2 3L%| —
42y39m e W+@H$2yq 2| £

r—1

5 1 11 1 1 1
L, — —n*|Liy(x) = — L, L, + - L* ——L,+-|L3
+<2 27T> 2(2) — i ”( 2 y+3> :

5 1 1 1 7 32
SLy4-nt 42| L2 —— L, — 7?43 =L,
+<4 y+47r+6> x+< 5 Ly 67r+§3+9

1 11
+— 7t — 4 (4.31)

22 22 22
By = [— 6 Lis(z) — — Lis(y) + <_ 3L, — ?Lw - ELy +27T2> Liz (2)

22 22 22
+<6Lw+ ?) Liz(x) + (ELi —22L, — ELj +22L, — §> L

1 125 1, 31
S Y (R e I (L Y Y g 5
2 ”( v 18) ”(2 e AR T R

31, 4, 9 307 49
+<——Ly+<—§ﬂ' +§>Ly+ﬁﬂ- +C3__>Lm

1, T, 2, 689 , 73 275
+_Ly__Ly+<‘§” +%>Ly+ TR T

+ T (3+ 613

720 727 7 36 52

79 55 443 30659] ltz + uj

+ l — 12Lis(y) 4 3 Liy(z) — 8Li4<$ ; 1) + (2 L,+ 8) Lis(y)
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27 81 9 9* 52

We can check some of these results by comparing with the analytic expressions
presented in Ref. [17] for the QED process ete™ — p™p~. Taking the QED limit
corresponds to setting C'y = 0, Cr = 1, T = 1 as well as setting the cubic Casimir
Cs = (N? — 1)(N? — 2)/N? = 0. This means that we can directly compare F(cx
CrTr Nr) and Fy(ox T3 N2) but not C, which receives contributions from both Cs
and C%. We see that (4.35) and (4.36) agree with Egs. (2.38) and (2.39) of [17]
respectively.

The other coefficients, Ay, By, Cs and D, are new results.

4.2.2 The t-channel process ¢+ ¢ — ¢+ ¢

The t-channel process, ¢ + ¢ — q + ¢ is fixed by A8(¢,s,u). We find that the finite
two-loop contribution in the ¢-channel is given by Eq. (4.30) with

11 11 2
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4.2.3 The u-channel process ¢ +q¢ — ¢+ ¢

The u-channel process, ¢ +¢ — ¢+ ¢ is determined by A%(u,t,s). We find that the
finite two-loop contribution in the u-channel is given by Eq. (4.30) with
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5. Summary

In this paper we presented the two-loop QCD corrections to the scattering of two
distinct massless quarks. Throughout, we have used conventional dimensional regu-
larisation and the MS scheme to compute the interference of the tree and two-loop
graphs summed over spins and colours. The pole structure is given in Eq. (4.12)
while expressions for the finite parts are given for each of the s-, - and u-channels
in Secs. 4.2.1, 4.2.2 and 4.2.3 respectively.

The leading infrared singularity is O (1/€?) and it is a very strong check on
the reliability of our calculation that the pole structure obtained by computing the
Feynman diagrams agrees with that anticipated by Catani through to O (1/¢). For
the finite Ng/N and N2 contributions, we agree with prior QED calculations.

These results form a crucial part of the next-to-next-to-leading order predictions
for jet cross sections in hadron-hadron collisions. However, they are only a part of
the whole and must be combined with the tree-level 2 — 4, the one-loop 2 — 3 as
well as the square of the one-loop 2 — 2 processes to yield physical cross sections.
For the most part, the matrix elements themselves are available in the literature.
Each of the contributions is divergent in the infrared limit and a systematic proce-
dure for analytically canceling the infrared divergences needs to be established for
semi-inclusive jet cross sections. Here again, some progress has been made by ex-
amining the limits of tree-level matrix elements when two particles are unresolved
[31, 32] and the soft and collinear limits of one-loop amplitudes [33, 34]. The some-
what simpler case of ete~™ — photon + jet at next-to-leading order which involves
the triple collinear limit of tree-level matrix elements as well as the collinear limit of
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one-loop amplitudes has already been studied [35] and indicates that the technical
problems are not insurmountable. Another technical difficulty will be to isolate the
initial state singularities and correctly absorb them into the parton density functions
at next-to-next-to-leading order. Recent progress towards the three-loop splitting
functions [36, 37, 38] together with accurate parameterisations in z-space [39, 40]
suggest that the factorisation can be achieved. Modifications to the global fits to
provide parton density functions appropriate for next-to-next-to-leading order cal-
culations are already underway [41]. In summary, we are therefore confident that
these problems will soon be overcome thereby enabling the analytic cancellation
of the infrared divergences and the construction of numerical programs to provide
next-to-next-to-leading order QCD estimates of observable scattering cross sections.
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