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Abstract

A guide to the composition of the enigmatic f0(980) and a0(980) states is their for-
mation in φ-radiative decays. Precision data are becoming available from the KLOE
experiment at the DAΦNE machine at Frascati, as well as results from SND and
CMD-2 at VEPP-2M at Novosibirsk. We show how the coupling of the f0(980) to
this channel can be extracted from these, independently of the background provided
by σ production. To do this we use the fact that the behaviour of both the f0(980)
and σ cannot be determined by these data alone, but is strongly constrained by ex-
perimental results from other hadronic processes as required by unitarity. We find
that the resulting coupling for the φ → γf0(980) is ∼ 10−4 GeV with a background
that is quite unlike that assumed if unitarity is neglected. This provides an object
lesson in how unitarity teaches us to add resonances. Not surprisingly the result is
crucially dependent on the pole position of the f0(980), for which there are still size-
able uncertainties. At present this leads to an uncertainty in the φ → f0γ branching
ratio which can only be fixed by further precision data on the f0(980).

1

http://aps.arXiv.org/abs/hep-ph/0303200v1


1 Introduction

Much has been written about the possible nature of the f0(980) and a0(980) states. Are

they conventional qq scalars, or KK molecules, or 4 quark states? Are these two states with

almost degenerate masses closely related, or is the degeneracy just an accident?

A clue to the composition of these states is provided by the way they appear in φ-radiative

decays. The φ provides us with a clean ss system, which picks out the components of each of

these states that couples to strangeness, even though their masses are below KK threshold.

Consequently, the f0(980), in particular, appears as a peak in the ππ decay distribution, as

seen in ψ → φ(ππ) or Ds → π(ππ), while in channels in which the f0(980) is produced from

predominantly non-strange quarks, as in ππ → ππ scattering or in central dipion production

with pion or proton beams, it appears as a dip or a shoulder.

The absolute values of the branching ratio for φ → f0/a0γ, as well as the ratio of these

ratios, has been advertised in the past as a guide to distinguish nn from ss from KK and

qqqq systems, as summarised in Table 1 [1, 2].

Composition BR(φ→ γf0(980))

qqqq O(10−4)

ss O(10−5)

KK < O(10−5)

Table 1: Predictions for the absolute rate for φ → γf0(980) depending on the
composition of the f0(980) [1, 2].

According to this, the first results from the two VEPP-2M experiments at Novosibirsk [3, 4, 5]

indicate a four quark composition. However, it is now known that the strong suppression of

the φ→ f0γ branching ratio in the molecular models indicated in Table 1 is wholly because

of over-simplified modelling of the decay process in this case, as pointed out by Oller [6], so

any conclusion about a four quark composition is far from certain.

The ηπ-channel by which the a0 is identified is clean with very little background, either

background from competing 7γ final states, but also from other hadronic states — none are
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nearby. In contrast the f0(980) → π0π0 decay gives a final state that has an experimental

background from ρ0π0, where the ρ0 → π0γ, as well as a significant contribution from

the production of σ → π0π0. These backgrounds mean that the extraction of the φ →
f0(980)γ signal depends on our ability to separate the different components. The ρπ signal

is characterised by a different angular dependence than that for f0γ. The former is flat in

cos θ, while the latter has a (1 + cos2 θ) distribution. The KLOE data [7] reveal that the ρπ

component is essentially negligible and we will take that as read. To separate the different

scalar ππ components, in particular the σ from the f0(980), models of these two states are

used. Since the φ-radiative decay data alone cannot determine the masses and widths of

these resonances, their key parameters are taken to be fixed by other experiments.

For instance, the KLOE collaboration have made a determination of the BR(φ → f0γ)

from their own data and found this to be 4.5 · 10−4. So why is the reanalysis presented

here necessary? Firstly, the KLOE group adjust the f0(980) mass and width to give the

best fit to their data. This results in a mass of 969 MeV with a width of 150 − 250 MeV.

This width is, as we shall recall shortly, far larger than other determinations of the f0(980)

width, which are typically 50 MeV (see for example Ref. [8]). Consequently, their f0

peak sweeps in a larger range of ππ production and this inevitably leads to a very large

value for the BR(φ → f0γ). Clearly a more conventional f0 width would mean that the

significant production of two pions with mass of 800−900 MeV must come from some other

source than the f0(980). Having adjusted the parameters to maximize the agreement with

their data, the KLOE group then add a σ contribution, where the parameters for this low

mass ππ enhancement is taken from the maximum likelihood fit by Fermilab-E791 to their

D → 3π data. The E791 analysis is cast into doubt by the implied phase of their S-wave

ππ production amplitudes not being consistent with the phase determined in the ππ elastic

scattering. Moreover, KLOE just add this contribution to that of their broad f0(980) with

no regard for the quantum mechanical bound that probabilities must not exceed 100%, i.e.

they violate unitarity. The KLOE data alone cannot determine the parameters of both the σ

and of the f0(980). Consequently, we embark on a new determination of BR(φ→ f0γ) which

automatically embodies coupled channel unitarity and is in accord with meson scattering

information on ππ and KK production. We than use the φ radiative decay datasets to fix

the relevant couplings.

If the resonant states that contributed to the decay φ→ γππ were narrow and well-separated

then the branching ratio to any of these could be established by simply fitting data with
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appropriate Breit-Wigner forms. However, the scalar f0(980) overlaps with the notoriously

broad f0(400 − 1200) (or σ), and couples strongly to the KK channel that opens within its

width. Moreover, since below 1 GeV the ππ channel is effectively the only open hadronic

channel, unitarity is a particularly powerful constraint. This requires all processes in which

a dipion system is produced to have closely related final state interactions. A relationship

embodied in Watson’s famous theorem. Consequently, the S−wave ππ system produced in

φ−radiative decay is already exposed in other hadronic processes, particularly high energy

reactions where the di-pions are either peripherally or centrally produced. Only if the states

in this system were narrow and well-separated would fitting be a matter of taking Breit-

Wigners with couplings to be determined as the KLOE group do.

The coupling of a resonance is only determined independently of any other resonance with

which it may overlap, or independently of any non-resonant background, by continuing the

resulting φ → γππ amplitude into the complex s plane to the f0 pole on the appropriate

unphysical sheet. The residue of the pole gives the coupling and this is the only model-

independent parameter that can be determined. In the case of a narrow isolated resonance

this coupling given by the pole residue is directly related to a branching ratio. Where

states are not narrow, or overlap with each other or with strongly coupled thresholds, the

branching ratio is only related to this coupling in a model-dependent way, unless one has

data of infinite precision. Consequently the φ → γππ branching ratios we quote are (like

those of all authors) subject to model dependence of the f0 line shape.

2 Unitarity and underlying hadronic amplitudes

Unitarity has to be respected. The natural way to ensure this is to represent the purely

hadronic scattering amplitudes with definite angular momentum by the T -matrix and express

this in terms of a real K-matrix. Then with ρ the diagonal phase space matrix, we have

T = K (I − i ρK)−1 . (1)

The amplitude F describing the production of the same final state with the same quantum

numbers is then related to the T -matrix, provided the “production” process has no other

strongly interacting final states, or as in an isobar picture one assumes only isobar interac-

tions with negligible 3 or more body interactions. The relation between F and T is then

implemented using either the P -vector or Q-vector (here called equivalently the α−coupling
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vector), so that

F = P (I − i ρK)−1 = αT . (2)

There are constraints on P and α, which have to be satisfied. Firstly,

• P and α are real vectors,

• If the K-matrix elements have poles, then these must also appear in the P -vector.

• While the latter constraint is automatically built into the coupling vector representa-

tion, care must instead be taken of the zeros of the T -matrix elements. Thus α has

poles to remove any real zeros of the T -matrix, or its determinant.

The P−vector and α−vector formulations are, of course, equivalent. They each embody

the universality that demands that poles of the S-matrix transmit to all processes with the

same quantum numbers in exactly the same position. That this is a fundamental S-matrix

principle has been questioned in a series of papers by the Ishidas [9], as being incompatible

with quark dynamics. However the principle of universality is a consequence of causality and

the conservation of probability for hadronic reactions totally independently of the underlying

dynamics of the supposed constituents of hadrons. This universality is not an optional

constraint or a matter of debate. It is a rigorous consequence of fundamental principles

that define what is meant by the hadron spectrum. This universality of strong interactions

applies to φ-radiative decay, since the photon-hadron interaction is electromagnetic, and the

φ and π are presumed to have negligible strong interactions.

Though the P−vector and α−vector formulations are equivalent and translatable one-to-

one, one form may be easier to implement in practice than the other. We will use the

coupling vector formulation. In the energy range accessed in φ radiative decay, the only

hadronic intermediate states that can possibly enter into ππ production are ππ and KK.

Consequently we introduce two functions α1 and α2, which represent the coupling of the

φ to γππ and γKK, respectively. Provided these functions are real for ππ energies above

threshold, then 2-channel unitarity is satisfied by construction.

The amplitude, F , for S−wave dipion production in φ radiative decay is thus related to the

two hadronic scattering amplitudes, T11 for ππ → ππ, and T12, for ππ → KK. ‘1’ labels

the ππ channel and ‘2’ the KK, and time reversal invariance implies that T12 = T21. Each

amplitude and coupling function depends on s the square of the mass of the dipion system.
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Then unitarity requires:

F (s) = α1(s) T11(s) + α2(s) T12(s) . (3)

The hadronic elements Tij typically have real Adler zeros at s = sij , and the two channel

determinant T11 T22 − T 2
12 may have a real zero at s = sT . These zeros do not in general

transmit to the decay or production amplitude, being process specific. The Adler zeros of

the hadronic amplitudes are, in the analyses we use, taken to be at the same position so

s11 = s12 = s22 = s0. Moreover, the decay amplitude for φ → γ(ππ) is expected to have

its own (process-dependent) Adler zero at s = sA. Consequently, the coupling functions are

parametrised to incorporate this zero, while eliminating those in the underlying T -matrix

elements and their two channel determinant, in the following straightforward way:

α1(s) =
(s− sA)

(s− s0)

{

p1(s) +
β

(s− sT )

}

,

α2(s) =
(s− sA)

(s− s0)

{

p2(s) − β rT

(s− sT )

}

, (4)

where β is a dimensionful constant, rT = T11(sT )/T12(sT ) and the pi(s) are expected to be

represented by low order polynomials — all real.

For the hadronic T -matrix we will use a K-matrix analysis of meson production by Morgan

and Pennington which updates the AMP analysis of Ref. [10] with the constraints on near

KK threshold production of Ref. [11]. This is referred to as the ReVAMP analysis. The

hadronic amplitudes embody the information we have on the structure of the f0(600) (or σ)

and the f0(980). Even though this is an old analysis, the features of the embedded f0(980)

(pole position, mass and width) are in excellent agreement with the most recent data on Ds

decays into pions. The interpretation of these in terms of possible quark structure is then

to be elucidated by the coupling of the φ→ γf0.

Later we will compare the fits obtained using this set of underlying amplitudes with those

found by using a second input, from a much more complete and much more recent analysis

of a wide range of di-meson production data by Anisovich and Sarantsev [12]. This we

reference as the AS analysis. The two sets of hadronic amplitudes, ReVAMP and AS have

quite different parameters for the f0(980), see Table 2, and this difference leads to distinct

φ→ γf0 couplings, as we will discuss in Section 5.
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ReVAMP AS

Pole (MeV) ER = (989 − i · 22) ER = (1024 − i · 43)

gπ (MeV) 163 328

gK (MeV) 173 398

Γπ (MeV) 25 98

ΓK (MeV) 3 36

Table 2: Pole position, ππ, KK couplings and widths relative to the f0(980)
embedded in the two different schemes ReVAMP [11] and AS [12]. Note that in
the AS underlying amplitudes the f0(980) is a much broader resonance than in
the ReVAMP amplitudes.

It is important to appreciate that hadronic data may well be fitted equally well by sev-

eral K-matrix parametrisations. The resulting T -matrix elements will be identical within

experimental uncertainties and should provide the same poles of the T -matrix. However,

depending on how the underlying K-matrix is described in terms of poles alone, or poles

plus some background, the poles of the K-matrix may be quite different in number and

in quite different positions. This is of no physical consequence. However, it clearly does

have consequences for those that identify the poles of the K-matrix with underlying bare

states [13]. It is important to realise that this is a modelling, that may or may not accord

with QCD. Having a range of K-matrix parametrisations of the same data recognises that

we cannot yet calculate in detail the strong physics aspects of QCD. Only if one desires to

imbue the K-matrix elements themselves with significance is it necessary to ensure that the

K-matrix elements have the correct left hand cut analyticity, whilst fitting along the right

hand cut. If the elements are just a convenient way of parametrising data along the unitarity

cut, then approximating distant left hand cut effects by poles and a polynomial background

is sufficiently general.

Though the hadronic amplitudes ReVAMP and AS are the results of fits to similar datasets

on ππ and KK production data, they have quite different parameters for the f0(980) as

indicated by the pole positions, see Table 2. (The precise definition of the quantities gπ,Γπ

and gK ,ΓK will be explained later.) To understand the differences in these two versions of
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Figure 1: The ππ underlying amplitudes as obtained from the ReVAMP parametrisation (solid
line) and from the AS parametrisation (dashed line) are compared to two sets of experimental
data. In the upper picture the modulus of the isospin zero amplitude T11 is plotted on top of
the results of the Ochs-Wagner analysis of the CERN-Munich data [14]. In the lower picture the
modulus squared of the ππ S-wave (which includes the contribution from the I = 2 channel [17])
is plotted on top of the BNL-E852 data of Ref. [15]. On both plots the low energy data (circles)
correspond to the BNL-E865 measurement of K+

e4 decays [16]. Differences between the data and
the ππ amplitudes is attributed to non-pion exchange contributions to di-pion production, which
are markedly different in the two cases.
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the f0(980) we show the underlying ππ amplitude T11 as computed in the ReVAMP and in

the AS scheme, compared with the CERN-Munich [14], BNL-E852 [15] and BNL-E856 [16]

data. By comparing the solid and dashed lines it is immediately apparent that the f0(980)

embedded in the AS amplitudes, which is responsible for the dip in the I = J = 0 ππ → ππ

cross-section, is a much broader resonance than in the ReVAMP amplitudes. Moreover, as

we can see in Table 2, in the AS scheme the f0(980) corresponds to a pole situated above

KK threshold and has a mass larger than the mass of the φ, ReER > mφ, as opposed to

the ReVAMP’s f0. These differences will critically influence the calculation of the φ → γf0

coupling, obtained by continuing the amplitude F (s) into the complex energy plane on the

second sheet to the f0(980) pole, as will be evident in Section 5.

3 The Fit

Based on Eqs. (3-4), our simultaneous fits to the experimental data are performed using the

expression
dΓ(φ→ f0γ)

dE
= ρ(s) |F (s)|2 , (5)

which relates the experimental decay rate to the amplitude F (s). Here
√
s = E = Mππ is

the invariant mass of the di-pion system; ρ(s) is the appropriate three-body phase space for

the decay φ→ γ(ππ)

ρ(s) =
π2

2m3
φ

(m2

φ − s)
√

s− 4m2
π , (6)

and F (s) is the complex amplitude, which is related by unitarity to the hadronic amplitudes

T11(s) and T12(s) through Eq. (3). The data, of course, know about gauge invariance of the

photon field and so the fits require the coupling functions αi(s) to have a zero at s = m2
φ.

However, the fitting is aided by building in this consequence of gauge invariance from the

start and so we introduce a factor of (1 − s/m2
φ), where mφ here is the value of the c.m.

energy to which the initial e+e− beams are tuned (see Ref. [18] for details). Consequently

we construct the decay amplitude of Eq. (3) using

α1(s) =
(s− sA)

(s− s0)

{

p1(s) +
β

(s− sT )

} (

1 − s

m2
φ

)

,

α2(s) =
(s− sA)

(s− s0)

{

p2(s) − β rT

(s− sT )

} (

1 − s

m2
φ

)

, (7)

where β together with the coefficients of the polynomials p1(s) and p2(s) are the parameters of

the fit. The AS hadronic amplitudes have no zero in their two channel T -matrix determinant.

Consequently, in this case β = 0, or equivalently sT → ∞.
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Figure 2: Simultaneous fits to KLOE [7] and SND [5] data as obtained by using
the ReVAMP [10, 11] set of underlying amplitudes, with constant pi(s).

The position of the Adler zero required by chiral dynamics is expected to be sA = O(m2
π).

However, our fits prove insensitive to its exact position, so we simply fix sA = 0.

The polynomials pi(s) are in general to be as little structured as possible consistent with the

fitting of the data. Using the ReVAMP set of underlying hadronic amplitudes, a satisfactory

fit is obtained by simply using pi(s) of zeroth order in s, i.e. constant

p1(s) = a1 ,
p2(s) = a2 .

(8)

The line shape obtained from this fit, labeled by ReVAMP-0 (where 0 indicates the order

of the polynomial in the α’s) is shown in Fig. 2, together with the data points from KLOE

[7] and from a recent reanalysis of SND [5]. All the fits are performed by integrating the

thoretical expression over each experimental mass bin. This is important where the ampli-

tude and phase space are varying rapidly within a given experimental bin. The values of χ2

and free parameters determined by this fit are shown in the first column of Table 3.
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ReVAMP-0 ReVAMP-II AS-II

χ2/d.o.f. - KLOE 1.60 0.82 1.28

χ2/d.o.f. - SND 0.52 0.62 0.59

a1 · 102 0.27 0.51 0.22

b1 · 102 – -1.19 -3.08

c1 · 102 – 0.83 4.89

a2 · 102 -0.07 -3.44 -10.09

b2 · 102 – 11.94 28.43

c2 · 102 – -10.45 -14.24

β · 102 0.21 0.13 –

Table 3: Values of the free parameters as determined by our fits to KLOE + SND
data corresponding to the ReVAMP and AS parametrisation for the underlying
amplitudes T11 and T12, and to α polynomials of either zeroth or second order.

In contrast, when underlying amplitudes from the AS set are used, second order pi(s) poly-

nomials are needed to reach a quality comparable to that of the ReVAMP-0 fit:

p1(s) = a1 + b1 s+ c1 s
2 ,

p2(s) = a2 + b2 s+ c2 s
2 ,

(9)

as χ2/d.o.f. is still as big as 4 for first order pi’s.

The ReVAMP amplitudes provide an excellent fit to the radiative φ decay data, far better

than the comparable fits using the latest AS amplitudes. On chi-squared grounds alone

the latter would be ruled out as quite improbable. However, we are aware that the AS

amplitudes are the result of studying a far more comprehensive set of hadronic data than

the older analysis included in ReVAMP and it is for this reason and that alone that we

include the results using the AS amplitudes. Since the AS and ReVAMP differ significantly
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Figure 3: Simultaneous fits to KLOE [7] and SND [5] data as obtained by
using the ReVAMP [11] (solid line) and the AS [12] (dashed line) underlying
amplitudes, with pi(s) polynomials of second order in s.

for complex values of energy away from the real axis where our fits are performed, see Fig. 5,

these differences have an appreciable effect on the coupling gφ of φ→ γf0, as we will discuss

in more detail in the Section 5.

In the second and third rows of Table 3 we compare the values of χ2/d.o.f. and of the

free parameters as determined by our second order fits relative to each choice of underlying

amplitudes, indicated as ReVAMP-II and AS-II, and in Fig. 3 the line shapes obtained from

these fits are compared with the experimental data from KLOE [7] and SND [5].

Notice that global fits to all four sets of available data on φ radiative decay, KLOE [7],

SND [4, 5] and CMD-2 [3] are dominated by the smaller error bars from KLOE and the

reanalysed SND [5], so that these fits are indistinguishable from those of Fig. 2 and 3.
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4 Determination of the Couplings

The coupling gφ, which governs the decay of φ into f0(980), is calculated by continuing the

amplitude F (s) into the complex s plane to the position of the f0 pole (which is determined

by the underlying amplitudes’ denominator). This procedure ensures the absence of any

background contamination. The pole residue is then evaluated from the strong interaction

amplitudes T (s), and the radiative decay amplitude F (s), which are both pole dominated

in the neighbourhood of the resonance pole itself, i.e. for s ∼ sR

T11(s) =
g2

π

sR − s
(10)

F (s) =
gφ gπ

sR − s
(11)

Thanks to the parametrisation of the T ’s in terms of theK-matrix, we know their numerators

and denominators

T11(s) =
Nπ(s)

D(s)
, T12(s) =

NK(s)

D(s)
, (12)

and consequently we have

F (s) =
α1(s)Nπ(s) + α2(s)NK(s)

D(s)
. (13)

In the region nearby s = sR we can write a Taylor expansion of the function D(s) truncated

at the first order

D(s ∼ sR) ∼ D(sR) +D′(sR) (s− sR) = D′(sR) (s− sR) , (14)

since D(sR) = 0 at the resonance pole. By substituting this into Eq. (12) and comparing

with Eqs. (10) and (11), we find

gπ =

√

√

√

√

Nπ(sR)

D′(sR)
, (15)

gφ =
1

gπ

α1(sR)Nπ(sR) + α2(sR)NK(sR)

D′(sR)
. (16)

Knowing the φ → f0γ coupling gφ is the key result of our analysis shown in Table 4. It

is this that is model-independent and so can be compared with predictions from different

modellings of the make-up of the f0(980).
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ReVAMP-0 ReVAMP-II AS-II

gφ · 104 (GeV) 6.21 6.50 18.66

BR(φ→ f0γ) · 104 0.31 0.34 1.92

Table 4: Values of the branching ratio BR(φ→ f0(980)γ) and of the gφ couplings
corresponding to different fits to KLOE and SND data using the ReVAMP [11]
and AS [12] underlying hadronic amplitudes. Note that BR(φ → f0γ → π0π0γ)
has been multiplied by a factor three to obtain BR(φ → f0(980)γ) to take into
account the contribution of the charged pions decay mode of the f0(980).

4.1 Suppression effect of the photon momentum

There is one delicate but crucial point we want to underline. What we are studying here is

the radiative decay of the φ. This means that the corresponding amplitude F (s) includes

a factor given by the momentum of the radiated photon k ∝ (1 − s/m2
φ), which we have

included in the α coefficients, see Eq. (7). Now, it is easy to see how this factor produces

a very strong suppression in F (s) in the energy region around 1 GeV, exactly where one

calculates the value of the φ→ f0γ coupling gφ. To make it clear we construct the amplitude

F (s) which one would obtain if the photon momentum factor was divided out of the α’s.

The plots in Fig. 4 illustrate this suppression. Let’s see the details. F (s) is constructed

from T11(ππ → ππ) and T21(KK → ππ) with weights given by the coupling functions

α1 and α2 respectively, according to Eq. (3). In the region around 1 GeV, the amplitude

|T11|, Fig. 4(a), has a sharp dip, whereas |T12|, Fig. 4(b), shows a pronounced peak (both

structures signal the presence of the f0(980)). Because of the peak in the 1 GeV energy

region of the φ → f0γ spectrum, one expects the couplings α1, α2 make the contribution of

|T21(KK → ππ)| dominate over |T11(ππ → ππ)| in that region. Though F (s) seen in Fig. 4c

shows the dominance of α2T21, QED gauge invariance strongly suppresses the amplitude for

small photon energy. This leads to a relative enhancement of the α1T11 contribution away

from the narrow f0(980) peak that is essential for obtaining a good fit, as seen by comparing

Figs. 4c and 4d.

This same photon momentum effect impacts on the determination of the value of the coupling

gφ and of BR(φ→ f0γ), making them both extremely sensitive to the exact position of the

f0(980) pole, as we emphasise in the next section.
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Figure 4: These diagrams illustrate the suppression of the φ → γππ decay
amplitude, F (s), as a function of dipion mass

√
s due to photon emission. Plots

(a) and (b) show the ReVAMP hadronic amplitudes |T11| and |T12| from which
F (s) is constructed, according to Eq. (3). Plot (c) shows the amplitude |F (s)|
one would obtain if the photon momentum factor k ∝ (1 − s/m2

φ) was divided
out from the α1,2. Plot (d) shows the amplitude |F (s)| itself, as determined
by our fit using the parametrisation of Eq. (7) for the α1,2 coefficients. It is
immediately clear that the photon momentum dramatically changes the dipion
mass distribution. Its effect is particularly striking in the region around 1 GeV,
where the peak in F (s) is very narrow and spiky. Moreover, while |F (s)|, slopes
down gently beyond 1 GeV, |F (s)| plummets to zero as k → 0. This illustrates
why the exact position of the f0(980) pole has such a strong effect on the coupling
and branching ratio for φ→ γf0(980).
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5 Widths and Branching Ratios

Most authors, instead of specifying the φ→ f0γ coupling, quote the partial widths and finally

the branching ratio BR(φ → f0γ). Then to calculate widths and branching ratios one has

to rely on model dependent assumptions about the resonance line-shape. For instance, one

could simply assume

Γφ =
1

mR

ρφ(m
2

R) |gφ(sR)|2 (17)

using the value of gφ as determined by the pole residue, where the pole position is parametrised

by sR = m2
R − imRΓt. Nevertheless, to take into account the features of F (s) in the neigh-

bourhood of the f0 resonance pole (in particular its finite width), we use a more refined

formula which expresses the width Γ as an average of the product of the phase space ρφ

times the square of the gφ coupling integrated over the f0 resonance density

Γφ =
Γt

π

∫ m2
φ

sππ

ds
ρφ(s) |gφ(sR)|2

|s− sR|2
, (18)

where sππ is the ππ threshold value of s, and for s < m2
φ (cf. Eq. (7))

ρφ(s) =
π2

2m3
φ

(m2

φ − s)
√
s . (19)

This would be the obvious procedure for integrating over the finite width of a resonance, if

the resonance was isolated. But here the tail of the f0 is not given by any Breit-Wigner shape,

since it is intrinsically linked with the σ as required by unitarity for overlapping resonances.

Consequently, data never show a pure f0 line shape. So in this case the definition of widths

and branchings involving the f0 introduce a strong model dependence in the calculation.

Once again we stress that it would be wiser to compare values of the the φ→ f0γ coupling

calculated in different schemes as the residue of the resonance pole rather than relying on

the branching ratio.

Notice also that whether one uses the definition of decay width from Eq. (17) or from Eq. (18)

is optional for the fits based on ReVAMP amplitudes, but the choice of Eq.(18) is inevitable

when AS underlying amplitudes are used, since there the f0 pole occurs at an energy larger

than mφ, where ρφ(s) = 0. A suitable normalization has to be chosen for the integral in

Eq. (18): we use the Γt defined from the imaginary part of the pole position for the f0(980),

which ensures consistency in calculating all the relevant partial widths in this process: Γφ,

Γπ and ΓK . We do not renormalize our partial widths so that the sum of Γπ +ΓK so defined

equals Γt from the pole position as, for example, the authors of Ref. [12] do.
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Table 4 shows the branching ratio corresponding to the pole-determined couplings, gφ, of

the two different fits. To understand why the values differ so much, even though the fits

look very similar, we have to take a step back and understand the differences between the

ReVAMP and the AS underlying amplitudes.

There the pole position relative to the f0(980) resonance is identified by continuing the T

amplitudes into the complex plane, whereas the partial widths are obtained from formulae

analogous to Eq. (18)

Γπ =
Γt

π

∫

sππ

ds
ρπ(s) g2

π(sR)

|s− sR|2
, (20)

ΓK =
Γt

π

∫

sKK̄

ds
ρK(s) g2

K(sR)

|s− sR|2
, (21)

where sππ and sKK denote the ππ and KK threshold values of s, and

ρπ(s) =
√

1 − 4m2
π/s , (22)

ρK(s) =
1

2

[

√

1 − 4m2
K0/s+

√

1 − 4m2
K+/s

]

. (23)

As we discussed in Section 1, the f0(980) is a much broader and heavier object in the AS

amplitudes than in ReVAMP’s. Now, the effect of such a broader resonance in the AS

scheme is not that evident on the real axis, but becomes very relevant when moving into the

complex s plane past the pole. This effect is transmitted to F (s) = α1T11 + α2T12. On the

real axis, where the fits to experimental data are performed, the F (s) amplitudes obtained

in the two different schemes look very similar, but the similarities fade away as soon as

we leave the real axis to move into the complex plane, where the couplings are computed.

This is demonstrated in Fig. 5 where the modulus of F (s) is plotted against the real and

imaginary part of E =
√
s in a 3-dimensional plot. Slices of |F (E)| at constant values of

ImE show the profile of |F | when moving further and further into the second Rieman sheet,

as the pole corresponding to f0(980) takes shape and becomes the dominant feature in that

energy range. By comparing the two plots one can readily see the differences between the

two cases: for ReVAMP the pole is narrow and spiky and it occurs below the mass of the φ,

very close to KK threshold and not very far into the complex E plane. On the contrary, the

AS pole is a much broader structure, which occurs at energies higher than mφ and twice as

far from the real axis. These crucial differences explain why the couplings gφ and branching

ratios BR(φ → ππγ) (shown in Table 4) calculated with two sets of underlying amplitudes

differ so much.
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Figure 5: Three-dimensional representation of the amplitude |F | as a function of energy,
E. This plot shows how the amplitude changes when continued to complex values of E past
the f0(980) pole on the second Rieman sheet. Note that in the AS scheme (lower diagram)
the f0(980) appears as a broad and pronounced peak, which shows up over more than one
slice. On the same scale, the ReVAMP f0(980) corresponds to a much narrower and lighter
resonance with a much more localized effect in the |F (E)| profile (upper diagram).
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We can now compare the values for the gφ coupling and the φ→ f0γ branching ratio we find

from our analysis to the numbers obtained by various modellings of the φ decay into f0γ.

First we consider the decay as if it only occurred through KK loops, i.e. φ→ KKγ → f0γ,

as computed in the models of Ref. [1, 2, 19, 20, 21, 6]. By applying the earlier models of

Ref. [1, 2], in correspondence to the f0 pole positions given by ReVAMP and AS, one would

indeed find very small values of the φ→ f0γ branching ratio, of order < O(10−6), consistent

with Table 1. In a more recent K+K− loop calculation, Markushin presents a study of

φ → ππγ decay in a coupled-channel model containing the ππ, KK and qq channels [20].

There he finds an f0(980) dynamically generated pole (i.e. a pole which disappears in the

large Nc limit) corresponding to a molecular-like KK state. Nevertheless, the branching

ratio he quotes is BR(φ → π0π0γ) = 3.5 · 10−4, of the same order of magnitude that older

calculation would ascribe to a four-quark state ! Similarly, in Ref. [6] Oller presents the

latest update of a calculation of the φ → f0γ branching ratio [21] based on a KK loop

model for φ decays into two pseudoscalar mesons unitarising Chiral Perturbation Theory.

In this paper though [6], a φγK0K
0

contact vertex is added to the KK loop diagrams and

finite widths effects of the intermediate resonance are taken into account. This leads him

to find a branching ratio BR(φ→ f0γ) even larger than Markushin’s value. However, Oller

notes, as we have, that the cubic dependence of the decay width on photon momentum can

alter the branching ratio by a factor two if the resonance mass is varied by just 5 MeV!

Our analysis is more general than these specific meson loop calculations, since it does not

restrict φ to decay through a particular channel, but it allows for any possible decay mech-

anism. Nevertheless, in the limit in which only the T21(KK → ππ) underlying amplitude

is used in Eq. (3) for constructing F (s), we can expect our calculation to somehow reflect

Refs. [1, 2, 19, 20, 21, 6] modelling. In this particular case, we find BR(φ→ f0γ) = 0.6 ·10−4

for ReVAMP and BR(φ → f0γ) = 1.9 · 10−4 for AS, cf. Table 4. Although the fits do not

appear too bad when plotted against the data, their χ2/d.o.f. are in the range of 4 − 5, so

they are not included in Table 5.

Finally, we compare our results to those reported in the data analyses by the KLOE [7]

collaboration at DAΦNE and by the CMD-2 [3] and SND [4, 5] collaborations at VEPP-

2M. These are summarised in Table 5. KLOE, CMD-2 and SND approach to the problem is

based on fitting dBR(φ→ π0π0γ)/dMππ data with some appropriate Breit-Wigner forms for

the f0 and the σ resonances. The branching ratio is then computed as the area underneath

the curve determined by the fit. All their evaluations give similar results because they all
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BR(φ→ f0γ) · 104

KLOE (4.47 ± 0.21)

CMD-2 (2.90 ± 0.21 ± 1.54)

SND (3.42 ± 0.30 ± 0.36)

SND – reanalysis (3.5 ± 0.3+1.3
−0.5)

ReVAMP-0 (fit to KLOE+SND data) 0.31

ReVAMP-II (fit to KLOE+SND data) 0.34

AS-II (fit to KLOE+SND data) 1.92

Table 5: Values of the branching ratio BR(φ → f0γ) as calculated by the
KLOE [7], CMD-2 [3] and SND [4, 5] collaborations compared with those obtained
in our determination using the ReVAMP [11] and AS [12] underlying hadronic
amplitudes.

closely follow the same prescription, Ref. [19]: again, φ decays into f0γ are modelled as if

they proceed through K+K− loops only. The mass spectrum is represented as a sum of three

terms, one representing the decay of φ in two pions through a scalar resonance, one taking

into account the ρπ background and one corresponding to the interference between them.

The mass of the f0 together with the gφK+K− and gf0π+π− couplings are free parameters

to be determined by the fit, whereas the mass and width of the σ are fixed. Once again

we stress that modelling the ππ S-wave spectrum, characterized by wide overlapping and

interfering resonances, with a Breit-Wigner model is totally inconsistent with unitarity. In

fact, the values of the gφK+K− and gf0π+π− couplings they find are very large, leading to a

disproportionately wide f0(980): Γππ ∼ 150 − 250 MeV!
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6 Conclusions

We have shown that there is a model independent way to determine the φ→ f0γ coupling gφ,

which we believe is the only rigorously correct way to treat S-wave interactions, where the

underlying resonances are far from Breit-Wigner like. It is based on unitarity, which gives

strong constraints below 1 GeV where the ππ channel is effectively the only open channel

and it ensures universality of dipion final state interactions through Watson’s theorem. The

results for gφ are given in Table 4 and for the branching ratio in Table 5.

φ-radiative decay to the f0(980) in principle provides a way of determining the internal

composition of this enigmatic scalar. Models give quite different predictions for a qqqq or

ss state, with a range of predictions for a KK molecule. Long before experimental data

on φ-radiative decays became available, Achasov [1] stressed that they would reflect QED

gauge invariance with the decay distribution being proportional to the cube of the photon

momentum. He further emphasised that models must incorporate this behaviour too [18].

We have seen that these momentum factors make φ-radiative decay a very difficult tool for

unravelling the structure of the f0(980). The strong suppression as ππ mass approaches mφ

makes the φ → γf0 coupling, gφ, very strongly dependent on the f0(980) mass and width.

At present, analyses of the underlying hadronic processes allow sizeable variation in these

parameters (see Table 4). This is particularly so because of our poor knowledge ofKK → ππ

scattering, as emphasised long ago, for instance in [11].

Nevertheless, the underlying dynamics of the decay is clear. ππ and KK are the only

hadronic intermediate states relevant to spin zero interactions below the φ-mass. Conse-

quently, the decay φ→ γππ can only proceed either by the coupling α1 of φ→ γππ followed

by ππ interactions or the coupling α2 for φ→ γKK followed by the KK system producing

a ππ final state. Given the fact that the φ is overwhelmingly an ss system, we expect the

coupling α2 that picks out the KK → ππ scattering component to dominate. That it does

is perfectly illustrated in Fig. 4. Recall Fig. 4c shows F (s), the φ→ γππ amplitude with the

photon momentum divided out. This is seen to look very like T12, the KK → ππ amplitude,

particularly in the 0.95 to 1 GeV region. The ππ → ππ component, T11, is small but not

negligible below 900 MeV. Multiplying the amplitude F (s) by the photon momentum factor

k ∝ (1−s/m2
φ) (required by QED gauge invariance) to get the full amplitude suppresses the

contribution of the KK → ππ component with its spiky peak close to 1 GeV and enhances

lower masses where ππ → ππ interactions dominate. For instance, the photon momentum
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enhances the region at 900 MeV by nearly a factor 3 relative to the peak at 980 MeV, and so

in the decay distribution, where the photon momentum appears cubed, by a relative factor

of 24. Looking at the underlying hadronic amplitudes displayed in Figs. 4a,b shows why the

peak in the φ-radiative decay distribution in the ππ channel is so much wider than the 50

MeV of the f0(980). Thus models that neglect the φ → γ(ππ → ππ) contribution fail to

reproduce the decay distribution accurately.

The KLOE experimental integrated branching ratio is BR(φ → γπ0π0) = (1.49 ± 0.07) ·
10−4. An f0(980) with conventional parameters of mass 989 MeV and width 44 MeV, as

incorporated in the ReVAMP amplitudes, gives BR(φ→ γf0 → γπ0π0) = 0.11 · 10−4 which

is only 10% of this total distribution. The remaining 90% is from the decay through the

broad f0(400 − 1200) (or σ). This is large wholly because of the larger phase space and

the photon momentum factors. The coupling to this intrinsically non-strange system is

comparable to that expected from the branching ratio of φ→ ρπ. In this case, the coupling

of the φ→ γf0 is much smaller than predicted in models with qqqq structure for the f0(980),

but rather in agreement with an ss structure or within the newly extended range for a

KK molecule [6]. In contrast, the underlying AS amplitudes, which embed a wider and

heavier f0, give BR(φ → γπ0π0) = 0.64 · 10−4 which is 40% of the experimental branching

ratio and closer to that for a qqqq composition, but the χ2 for these fits are significantly

worse (Table 3).

Present φ-decay data do favour the conventional narrow f0(980). Nevertheless, we do need

to fix T11(ππ → ππ) and T12(ππ → KK) in the 1 GeV region very accurately before we can

reach definite conclusions about the φ→ γf0 coupling and its consequences for the structure

of the f0(980). Further direct information on T11 and T12 is unlikely, so to achieve the required

precision we need either a careful and exhaustive analysis of the Ds-decay data, which are

presently being accumulated, or yet higher statistics results on φ-radiative decay with fine

resolution close to 1 GeV. In either case, these data can only fix the f0(980) parameters if

they are analysed in a way consistent with all other sources of information in harmony with

unitarity. The necessary data are at last becoming available. How to analyse these has been

described here. The outcome should be clear within 12 months.
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