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STRING GRADIENT WEIGHTED MOVING FINITE
ELEMENTS FOR SYSTEMS OF PARTIAL DIFFERENTIAL
EQUATIONS

Abigail Wacher, Ian Sobey & Keith Millerf

Moving finite element methods resolve regions containing steep gradients using
a manageable number of moving nodes. One such implementation is Gradient
Weighted Moving Finite Elements (GWMFE). When applied to a single PDE with
one space variable z, the solution u(x,t), is viewed as an evolving parameterized
manifold, u = [z(7,t),u(r,t)], where 7 is a parameter along the manifold. Miller
(1997) derived the “normal motion” of the manifold in [z, u] space and discretised
in space by making the manifold piecewise linear. For systems of PDEs, he used a
separate manifold for each dependent variable but with shared nodes.

However, Miller also proposed a “second GWMFE formulation for systems
of PDEs”. In the case of two dependent variables u(z,t) and v(z,t), instead
of determining the separate normal motion of two manifolds, [z(7,t),u(,t)] and
[x(T,t),v(T,t)], using shared nodes, he suggested examining the normal motion of a
single manifold [z(,t), u(7,t),v(7,t)], a “string” embedded in [z,u, v] space . This
method, called String Gradient Weighted Moving Finite Elements (SGWMFE),
has not previously been implemented and tested.

In this paper we revisit the SGWMFE method, deriving a general form of
the equations for normal motion using a projection matrix and implementing the
method for the one dimensional shallow water equations and for Sod’s shock tube
problem.
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1 Introduction

A Second Gradient Weighted Moving Finite Element formulation for systems of PDE’s was
originally proposed by Miller (1997). The formulation is a variation of the Gradient Weighted
Moving Finite Element (GWMFE) method which was developed in detail in Carlson and Miller
(1998a) and Carlson and Miller (1998b) for one and two dimensional problems. The one-
dimensional version of the second formulation is called the String Gradient Weighted Moving
Finite Element Method (SGWMFE). This method has not previously been implemented or
tested.

In this paper we develop the SGWMFE for a system of PDE’s in one dimension using a
projection matrix in a way which can be easily generalized to arbitrary number of equations and
multiple space dimensions, although all the results presented in this paper are for one space
dimension. We first describe the general structure of the gradient weighted finite element
method, then we develop the necessary details of applying the SGWMFE method to two
particular systems of partial differential equations, the shallow water equations and the Euler
equations for a shock tube, the example we consider being Sod’s Shock Tube problem.

For both systems we use an added diffusion in the PDE’s, with a small diffusion coefficient,
€. We emphasize that the PDE’s without diffusion are incomplete. No classical solution exists;
it is diffusion (no matter how small the coefficient €) which prevents infinite gradient, prevents
multivalued fold over, transmits flux and dissipates energy in the steep portions and essentially
causes the shocks as € — 0 (see section 2.5 and figures 6.3 and 6.10 of Carlson and Miller (1998a)
for example). Moreover, even within the setting of “weak solutions” additional information
involving ”entropy” or the ”zero diffusion limit” must be invoked to avoid non-uniqueness.
Thus we compute with very small e (as small as we can handle numerically because of the
resulting exceedingly thin shocks) in order to approximate the desired ”zero diffusion limit”
weak solution.

2 Gradient weighted, moving finite elements

2.1 GWMEFE for a single PDE in one dimension

Consider a single time evolving PDE,
ut = L(u), (2.1)

where L is a first or second order nonlinear differential operator on the one dimensional spatial
interval . This is the equation for the vertical motion u; of the graph of the solution u(x,t).
GWMFE instead treats the solution graph as an evolving one-dimensional parameterized man-
ifold embedded in two dimensions based on the equations for the normal (rather than vertical)
component of the motion of that manifold.

Consider any parameterization of the evolving solution manifold by

u(r,t) = (X(r,t),U(t,1t)), (2.2)

where 7 is a one dimensional parameter. Here X (7,t) is any smoothly increasing function of
7 and the corresponding U(7,t) is given in terms of the original u(z,t) by

U(r,t) = u(X(7,t),t). (2.3)



Thus u represents the two-dimensional position on the evolving manifold of the parameterized
point with fixed parameter 7 and

u(r,t) = (X(r,t),U(r,t)), (2.4)

represents the two-dimensional motion (or velocity) of that parameterized point, where the
dots denote time differentiation with 7 fixed. By the chain rule in (2.3), we have

U=uyX —uy, (2.5)
and thus obtain the familiar formula for w,
w =U —u, X. (2.6)

To avoid proliferation of notation (as is common when using the chain rule and changes of
parameterization) we replace the U and X in (2.1)-(2.6) by simply v and z. Thus we replace
the notation in (2.1)-(2.6) respectively by

u(z,t), x(1,t), wu(r,t) =u(z(r,t),t), u(r,t) = (x(r,t),u(r,t)),
so that
u(r,t) = (&(r,t),u(r,t)), and wu; =10 — uyd.

Moreover, we will just speak of ’the evolving solution manifold u” whether it is in function
form u(z,t) or parameterized form (2.2).

At each point on the evolving manifold we divide the motion vector . = (&,%) into its
tangential part, [a|r and its normal part [a]y. Since the tangential part of this motion makes
no change to the manifold itself, we are interested only in getting the correct normal motion,
[a]ny. Note that

[uly = (0-n)n, (2.7)
where

n(r 1) = ———(—ug, 1),

VARRT

is the upward normal to the graph at each point and P(7,t) = nn" is the orthogonal projection
matrix onto the normal direction.
The original PDE, (2.1), was the equation for the vertical motion (0, ;) of the manifold,

()= (ot ) &

Note that because (z,u(z,t)) is one parameterization of the solution manifold (with z = 7
unchanging in t), we automatically have the same normal motion

(), = (), a9



for any other parameterization. Thus the equation for the normal motion is
z 0
. = ) 2.10
(i), (et ), (210

(0-n)n = K(u)n, (2.11)

where u;/+/1 +u2 = (a-n) and K(u) = L(u)/+/1 + u2. These, (2.10) or (2.11), are a system

of two PDE’s which must be satisfied by the two unknown functions, u(7,t) and z(7,t) of our
parameterization. Of course this system is degenerate because the tangential motion [a]r is
left completely free by these equations.

The GWMFE method is a discretisation of the normal motion equations, (2.10) or (2.11).
Once again, to avoid proliferation of notation, we use the same symbols for the numerical
solution as for the exact solution. The GWMFE approximation is allowed to be an evolving
piece-wise linear one-dimensional manifold with its two-dimensional nodal positions,

or

wj(6) = (a(1), uj (1)),

all treated as unknowns and with the natural linear parameter 7, 0 < 7 < 1, on each cell.
The position u(r,t) and motion a(7,t) of the parameterized points are thus given by linear
interpolation from nodal positions, u;(¢) and nodal motion, 1;(t), that is

u(r,t) =Y ol (tu;(t), () =D o (H)i(b), (2.12)
i i

where o/ (t) is the usual ' ”hat function” which falls linearly from one at the 5 node to zero
at adjacent nodes.

Miller (1997) introduced a mechanical interpretation for the derivation of the GWMFE
ODEs for the motion 1, of the nodes. He interpreted the normal motion equations, (2.10)
or (2.11), as being a balance of distributed viscous drag forces and applied forces per unit
arclength on the manifold, all in the normal direction. The GWMFE manifold cannot satisfy
that force balance at every point; instead it concentrates those distributed forces onto the
nodes by the law of leverage and requires that the concentrated forces in (2.11) balance at the
nodes. This yields

/(I'J.-n)najds = /K(u)najds, (2.13)

at the 5" node, where s is arc length along the manifold and where the hat functions o/ can
be recognised to be the leverage factors for this concentration onto the nodes.

Hence equation (2.13), a system of ordinary differential equations for the nodal positions
u;(t), states that the GWMFE manifold chooses its nodal motions ;(¢) at each instant such
that the distributed viscous drag forces (- n)n and applied forces K (u)n, when concentrated
onto the nodes by the law of leverages, exactly balance at each node.

GWMPFE can also be considered to be a conventional piecewise linear Galerkin discretisation
of the degenerate system (2.10) or (2.11) for the unknown functions z (7, t) and u(7,t), but with
the important distinction that we do not integrate with respect to measure d7 in parameter



space as would be conventional but with respect to the arc length measure ds on the evolving
piecewise linear manifold.

The original variational interpretation for the GWMFE ordinary differential equations was
also described in Miller (1997) and Carlson and Miller (1998b). One sees easily that the
equations, (2.13), are the variational equations obtained by requiring that the nodal motions
{u;} be chosen at each instant so as to minimise the functional

¢:/“(§>N‘<L?u>>1v

where this Lo integral of the residual in the normal motion of the PDEs, (2.10 or(2.11), is
taken over the GWMFE manifold.

The mechanical interpretation, (2.13), seems somewhat more natural than the variational
interpretation, (2.14) for PDEs whose operator L(u) involves second order terms such as t;.
In that case the second derivative of our piecewise linear approximation is singular at the nodes
and hence the Ly residual function 1) in (2.14) is infinite. This difficulty was resolved in earlier
papers, Miller and Miller (1981), Miller (1997), Carlson and Miller (1998b) by the technique of
mollification or smoothing of the piecewise linear approximation near the nodes and the taking
the limit in the variational equations for this minimisation as the mollification radius tends
to zero. However the mechanical interpretation, starting from the concentrated force balance
equations, (2.13), seems more natural here because one is used to handling concentrated delta-
function type forces in mechanical situations.

At the j*® node where the adjacent unit normals n;_; and n; are non-parallel, the viscous
drag forces (- n)n on the left in (2.13) resist motion of the node in both these normal
directions and hence somewhat resist motion in all the two-dimensional directions. However,
when adjacent normals are parallel there is absolutely no resistance to tangential motion of
the node. Provided adjacent cells are not parallel and provided the cell arc length remains
non-zero, the symmetric mass matrix of the system (2.13) remains positive definite. To remove
possible degeneracies of the mass matrix one adds ’internodal viscosity’ forces which penalise
against relative motion of the nodes and which are sufficiently small that they essentially come
into play only in the case of adjacent nodes which are nearly parallel.

2dsE/|1’J.-n—K(u)|2ds, (2.14)

2.2 GWMEFE for systems of PDEs in one dimension

Consider the example of a system of PDE’s,
u = Ly (u,v), vy = Lo(u,v), (2.15)

for the two unknown functions u(z,t) and v(z,t) on a one-dimensional spatial interval €2. Here,
as in (2.1), Ly and Ly are first or second order nonlinear differential operators.

Our GWMFE approximants, u, v will be piecewise linear functions with moving nodes. For
a great variety of reasons (which were discussed at length in Miller (1997), Carlson and Miller
(1998a) and Carlson and Miller (1998b), one uses a common grid for the two functions. We
therefore have three unknowns (z;,u;,v;) at the j' node.

The usual GWMFE method for systems (which is used in all previous codes, and which
Miller in Miller (1997) calls the first GWMFE formulation for systems) involved treating the u
and v graphs as two independent evolving two-dimensional manifolds evolving in three dimen-
sions, that is as (z,u(z,t),0) and (z,0,v(x,t), as shown in figure 1(a). Under reparameter-



ization with a shared moving z(7,t) these two manifolds have parameterized representations
u(r,t) = (a(r, £}, u(r, £),0) and v(r,) = (w(r,1),0,0(r,1)).

The u manifold has ’vertical’ forces F; = (0, f1,0) and the v manifold has ’vertical’ forces
F, = (0,0, f2) from the PDEs where f1 = L; —u; and fy = Ly —v;. One then forms the normal
parts [F1]y and [Fa]n of these two forces. These represent normal forces per unit arclength
ds; = /1 +u2dz and dsy = /1 + v2dz upon the two manifolds. An exact manifold solution
of the system ( 2.15) would then satisfy the three-dimensional force balance equations

F=[Fi]y + [Fo]y =0, (2.16)

at every parameterized point (7,t).

It is these force balance equations (analogous to (2.10) and (2.11)) which GWMFE discre-
tises. Once again, one concentrates these forces onto the nodes, integrating times the leverage
factors o/ to yield concentrated forces Fi; and Fa; on the jth node of the u and v PDEs
respectively. Then, since these two ;' nodes are rigidly connected at that zj coordinate, we
get the GWMFE force balance equations

F]’ = Fl:j + FQ’]' =0, (217)

at every j*' node.
It is easily seen that (2.17) are variational equations for choosing the nodal motions
{Z;,7;,0;} at each instant so as to minimise

Y =11+ ¢, (2.18)

where 11 and 1 are the Lo residuals for the u and v normal motion equations,

wz/Manm, w=/ﬂmmﬁm (2.19)

2.3 String gradient weighted moving finite elements

This is the second GWMFE formulation for systems, introduced and sketched out in Miller
(1997) on one and two space dimensions, but never investigated in detail or implemented
numerically. Now we treat the solution graphs for the system (2.15) as a single evolving one
dimensional manifold (a ’string’) immersed in three dimensions, that is as (z,u(z,t),v(z,t)),
as shown in figure 1. Here figure 1(a) and 1(b) should make abundantly clear the distinction
between the first and second formulations.

Under reparameterization with a moving z(7,t), our string becomes an evolving parame-
terized one dimensional manifold immersed in three dimensions with the representation

u(r,t) = (z(7,t),u(r,t),v(r,t)), (2.20)

for the evolving reparameterized points.

At each parameterized point on the evolving manifold we divide the motion vector u =
(#,4,v) into its tangential, [a]r, and its normal, [u]y, parts. The original system (2.15) was
the equation for the ’vertical’ motion (0,wuy,v¢) of the manifold

0 0
w | =1 Li(u,v) |. (2.21)
Ut LZ(“?”)



(a) (b)

Figure 1: Sketch of piecewise linear representation (a) using GWMFE (b) using SGWMFE

Note that because (x,u(z,t),v(z,t)) is one parameterization of the solution manifold we au-
tomatically have the same normal motion

T 0
a | = w |, (2.22)
v/ N Ut/ N

T 0
a | =1 | , (2.23)
v N Ly N

which is a system of three PDEs for the three unknown functions z(7,t),u(7,t),v(7,t) (a
degenerate system since the tangential component of the motion is left completely free).

It is convenient to use here the projection matrix P which projects any given vector, F, into
its normal part, [F]x at a given point on the ’string’, (z,u(z),v(x)). The tangential projection
is given by

[F]r = tt'F, (2.24)

where t = (1,ugz,v5)/y/1 + u2 + v2 is the unit tangent vector to the manifold at this point.
Hence

[F]ly = F — [F]y = (I - ttT)F = PF, (2.25)
where
1 (u2 +v2) —Ug —Uyg
=— —u (14+v2)  —ugv (2.26)
1+ u2 +02 ¢ v e

—y —vgty (14 u%)



Once again we interpret these equations, (2.23) mechanically, as a balance of viscous drag
forces and applied forces per unit arc length of the string, all in the normal direction. We discre-
tise the force balance equations, (2.23), by letting our SGWMFE approximant be an evolving,
piecewise linear manifold with its three dimensional nodal positions u; = (z;(t),u;(t),v;(t)) as
unknowns. We proceed as in (2.12) and (2.13), concentrating these distributed normal forces
onto the nodes and thus arriving at the balance of three dimensional forces

x‘ . 0 .
/ U odds = / L, o’ ds, (2.27)
0 Lo

N N

at each node, much as in (2.13)

This, (2.27), is a system of ODEs for the nodal positions u;(¢). Once again, one sees easily
that these ODEs are the variational equations obtained by requiring that the nodal motions
{u;} be chosen at each instant so as to minimise

0 2

i
¢:/ a | —| L ds, (2.28)
v N

Ly ]

where this is the Ly integral of the residual of the normal motion PDEs, (2.23).

Thus at a j*® node where the adjacent unit tangent vectors are parallel there is no resistance
in the left sided forces of (2.27) to tangential motions of the node, but absent this parallelism
and absent cells of zero arc length then the symmetric mass matrix of the ODEs (2.27) remains
positive definite. Once again, to remove such possible degeneracies of the mass matrix one adds
"internodal viscosity’ forces which penalise against relative motion of the nodes and which are
sufficiently small that they essentially only come into play in the case of nodes with near
parallelism.

3 Implementation

In implementing SGWMFE, as with GWMFE, we repeatedly use the result that after piecewise
linear discretisation, spatial derivatives u, and v, are constant on each cell. In addition, values
of the manifold on a cell are found by linear interpolation between the ends of the cell. Thus, for
example, on the first cell, let u,, u; be the position vectors on the manifold at the corresponding
left and right end points of the cell. Further we have the corresponding velocity vectors at
these same points: 4y, %,. Then intermediate values of v and % on the cell are obtained using
the hat functions o’ and o' together with the values at either end of the cell. In applying
leverage factor o’ to concentrate forces onto the i*" node one naturally has integrals which
range over two adjacent cells, cell; and cell; ;. In the following we describe the part of the
concentrated forces for the i node from cell;; there will be an analogous part from cell; 1 on
the ith node.



3.1 Time derivative terms

Using equation (2.27) the time derivatives (the left hand side of our PDE system) in cell; are
concentrated onto the 7™ node by:

/ w | a'ds= / Pl 4 |a'ds. (3.1)
cell; vy N cell; 0

The resulting ‘force’ from the cell onto it’s i*" node is obtained exactly by using Simpson’s
quadrature as,

; 1 1
/ Pua'ds = P(=10; + =uj—1)As;, (3.2)
cell 3 6

where

ASZ' = Huz — ui,1H2 = \/(:L‘Z — 371'71)2 + (uz — ui71)2 + (Ui — Ui,1)2. (33)

3.2 Flux terms

At this point we restrict the non-linear operators L; and Lo to have a particular form, that of a
flux function combined with an artificial diffusivity term, so that in the case of two dependent
variables,

ur = _fx(uav)+€uwxa

vy = —gx(u,v) + €Uz, (34)

and e determines the magnitude of the artificial diffusion (and note that this is applied equally
to both equations).

It will be useful to define the following notation. For a scalar function f(z,u(x),v(z)) we
denote by fi its value at the i'" node and by [f];, the average over the cell. Thus f; = f(z;, u;, v;)
a’nd Aml fcell fdx

The force contributions from the flux terms in cell; onto the i*" node are obtained using
ds = /1 + u2 + v2dz so that the contribution from the first of the convective terms can be
written

0 0
/ Pl —f, |a'ds = P| 1 / —fratds (3.5)
cell; 0 0 cell;
B OO T (3.6)
v, ) V1T u2 +v2
—u, .
I T W ) (3.7)

z 2 2
- V14 us + vz

Similarly the flux contributions from the —g, term:
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i+1

Y

o=l1

Figure 2: Mollification: the value of u, on cell; is m;, the value of u, on cell;_1 is m;_1 and
the value of u, on cell;11 is m;11. The value of u, is assumed to vary smoothly in a small
neighborhood of each end of the cell of width 26 and then § — 0.

o) ) hi-s
/ Pl 0 |dds=| —uw, | === (3.8)
cell; —s 1+u% \/1+HX+VX

3.3 Diffusion terms

Using piecewise linear basis functions means that diffusive terms vanish in the interior of
any cell but are undefined at nodes. One way of dealing with this problem is to use formal
integration by parts but an equivalent and easily understandable way is to use the mathematical
technique of mollification. The first derivative, while being constant over the main body of the
cell, is assumed to vary smoothly between cell values in a small neighborhood of width 24 at
each node (see figure 2). Then we take the limit 6 — 0. Thus in any integral involving diffusion
terms we only need to take into account the small neighborhoods near each node since uy,
and v, are still identically zero for most part of each cell. The details are presented below for
SGWMFE but see also Carlson and Miller (1998a), Miller (1997) or Baines (1994) for further
details on how mollification has been carried out for the MFE and GWMFE methods in one
dimension.

Denote the values of u,, v, on cell; as m;, m; respectively. For the present method we
mollify by defining a variable o(z) and then, for instance at the right end of the cell, map a
neighborhood of width 26 of z; to —1 < o(z) < 1, map uy to m; < uy < m;i1, and map v, to
m; < vy < Mmjy1. Then the normal force on the ith node due to diffusive terms is:
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) 0 ) ) 1 —UgUgy — VgUgx
e/ Pl ug |o'ds= e/ —_— (14 v2) Uy — UpVpVps dx+ O(d), (3.9)
—5 5o /1+uZ+vZ\ _ 1+ o2
Uz VgpUgUgy + ( + 'fo)v:v:v

where the term of order O(d) is due to replacing o by 1 in the neighborhood of z;,
The integral is now rewritten using the mappings

Uy = Me~+ Ameo(x) (3.10)
vy = e+ Ameo(z), (3.11)

In the first component of (3.9), let

0
UgUgy + VgpUzy X
5 \/14+u2+v2

It is important that we have mollified the jumps in u, and v, equally, that is using the same
function o(z) for both.
Substituting equations (3.10)-(3.11) into (3.12), so that

Iy = (3.12)

Ugppdr = —u, do, Vppdr = —u, do,
do do

then under change of variable for the integral, the neighborhood size falls out and we have the
following expression for 14 in terms of the parameter o:

L (me + Ameo)Amg, + (e + Atneo) A,
Iy= — = d (3.13)
—1 1+ (me + Ameo)? + (. + Amneo)?
Let
ag = 1+m?+m? (3.14)
bo = 2myoAm.+ 2m.Amyg, (315)
co = AmZ+Am2, (3.16)
then
by [* d ! d
Iy==2 ? +%/ oo . (3.17)
2 J_1Vag + byo + cyo? _1 Vag + byo + cyo?
If we make further substitutions we may write /4 in a more compact form.
b
Letting vp = —0, ,83 = C—O, we have:
ao ao
b c
I = g5==(Ri(70,60) + R1(=0, o)) + —2=(Ra(70, o) = Ra(—0, fo))- (3.18)

PN Vao
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where
! do
Ri(v,B) = /0 e (3.19)
1 28147+ B2 +28% 4y
= Blog( 2F 1 ) (3.20)
and

Ry(v,8) = (3.21)

/ ! odo
0 V1+~vy0+ p%0?
1 Y
_ \/172 —11= LR 3.22
52[ ++ 8% —1] 22 1(7,8) (3.22)
Despite knowing analytic expressions for these integrals, they can be subject to severe roundoff
errors and great care has to be taken in their evaluation.

3.4 Regularisation terms

As we have explained, in moving finite element methods it is necessary to prevent the mass
matrix from becoming singular. This can be avoided by adding small terms to the matrix
which have a negligible effect on the solution but which prevent the mass matrix being truly
singular. This is called regularisation and has an associated parameter which scales the added
terms. As in the GWMFE approach, we add similar regularisation terms using internodal
viscosities as suggested in Miller (1997). These terms remove any degeneracies which occur in
the original system of ODE’s which may arise when the solution has two consecutive cells with
the same slope or when two nodes run into each other or overlap. Each of these cases would
result in at least two rows of the mass matrix to be linearly dependent and hence the matrix
being singular, see Miller (1997) for a detailed explanation of the possible degeneracies. In
order to remove the possibility of this happening, Miller and Miller (1981) show that adding a
particular positive definite matrix to the mass matrix removes the degeneracies.

As in GWMFE, see equation (3.11) Miller (1997), we add forces on the i*" node whose
component in the x,u,v directions are:

A2 " cijiy, (3.23)
J
A2 ey, (3.24)
J
A2 ey (3.25)
J
The ¢;; coefficients used are:

e Jor j=i—1

¢j=| am T Jori=i |, (3.26)

A;ilﬂ for j=1+1
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In the calculations that follow, we use a regularisation parameter A of relative size suggested
in Miller (1997), that is, we use a value that is of the size 2 to 5 times the size of the relative
local truncation error tolerance for the non-linear integrator, which in practice has been set to
1073.

4 Definition of model problems

In order to illustrate implementation of the SGWMFE method in one space dimension we
consider two model problems. One is Sod’s shock tube problem, see for instance Sod (1978),
which involves three dependent variables; while our discussion has focussed on two dependent
variables, as explained, the results generalise to more dependent variables in an easy and
obvious manner. The second problem is shallow water flow, where there are two dependent
variables. We define the two model problems in this section and discuss computed results in
the next section.

4.1 Sod’s shock tube problem

The shock tube problem we consider was introduced as a model problem by Sod (1978) and
takes a fixed length of closed tube in which the gas at one end is at one pressure and the gas
at the other end is at a different pressure. At time zero the gas in the two halves is allowed
to come into contact. If the left end is at higher pressure, a shock propagates to the right and
an expansion wave propagates to the left. The solution is complicated in that a second shock
forms in the density profile, called the contact discontinuity. An aim of a computed solution
is to capture the various shock strengths and their propagation speed correctly.
The system of equations which we solve are

U+ fr = €Uy, (4'1)
Vt+ 9z = €Uy, (4'2)
wy+hy = €Wy, (4.3)

where 0 < z < 1, time ¢t > 0 and u,v,w, f, g, h are defined in terms of the primitive variables
for density, p, velocity ¢, pressure p = (y — 1)(e — %qu) and total specific energy e by

u=p, v=pc, w=e, p=(y-—1)(w—-:—),
and

2

v (w+ p)v
v, g=p+—, h=-—"D0
f=v g=p u u

Sod’s shock tube problem asks for the “zero diffusion limit” weak solution of (4.1)-(4.3)
with the initial conditions

. . . i < 0.
(1.0,0.0,2.5), if x_05,} (4.4)

(1, v, w) = { (0.125,0.0,0.25), if > 0.5.

This is a Riemann problem with a well known similarity solution until such time as the
disturbances reflect off the boundary. As in Carlson and Miller (1998a) we use v = 1.4 and
reflection boundary conditions, v, = 0, v = 0, w; = 0 imposed at both ends of a tube.
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4.2 Shallow water equations model problem

The shallow water equations provide a second model problem to test SGWMFE. For these
equations the “dam-break problem” is another Riemann problem with an analytic similarity
solution for the “zero diffusion limit” weak problem. We choose instead to study a problem
with smooth initial conditions and observe the structure develop. In this problem a "hump’ of
stationary water is released at time zero, as the hump subsides under gravity, a wave propagates
away and the wave front steepens, forming a shock in the absence of viscosity. In this problem
a simulation should capture the shock formation, wave height and front speed.

The shallow water equations (with addition of artificial diffusion) in one dimension for the
flow of a fluid with density p = 1 and a gravitational constant of 1 over a flat bottom can be
written as follows:

ur+ fo = €ugg, (4.5)
Vt+ gz = €Ugy,
where 0 < z < 1, time t > 0, u is the height of the fluid from the flat bottom, and v is the

fluid momentum in the z direction.
The initial conditions considered for this model problem are given by:

u = 02+4e %, (4.7)
v = 0. (4.8)
(4.9

The boundary conditions are u; = 0 and v = 0 at both boundaries(z = 0 and z = 1).
In this case

5 Results

We now consider results from applying SGWMFE to the two model problems. For each problem
the time integrator is a ’simplification’ (with the diagonal preconditioning and other special
treatment of the mass matrix eliminated) of that described in Carlson and Miller (1998a),
but extended to handle the residual and Jacobian of the '2-cell’ terms required by the more
complicated SGWMFE diffusion expressions.

For the Shallow Water equations we compute with rather a large ¢ = 5(10)~% because for
smaller ¢ we have to use tiny inverse quadratic pressures in the cells to regularize the nodal
positioning, much as described in Section 2.7 of Carlson and Miller (1998b) for GWMFE. For
Sod’s shock tube problem we also compute with a relatively large ¢ = (10) 2, though we can
achieve e = O((10)~%) if we use these added pressures. For SGWMFE these added pressure
forces in each cell are in the outward tangential direction and of magnitude C?/ ds? where
ds is the length of the cell and C' is a tiny constant. If we need to make computations for
smaller € the coefficient C' needs to be chosen much as described in the order of magnitude type
argument presented in Section 2.5 of Miller (1997) and in earlier GWMFE papers. For larger
€ ,such as 5(10)~2 for the Shallow Water Equations and (10)~3 for Sod’s shock tube problem,



15

such internodal pressures were not needed at all. We also note that it is important to have
a good initial distribution of nodes to resolve structure which develops near steep gradients.
This is discussed to some extent in earlier GWMFE papers and is a key issue currently under
investigation.

With a fixed mesh (and refinements of a fixed mesh), comparison between solutions is
straight forward at predetermined set of space points. Unfortunately, with moving meshes the
situation is not so simple since the solution is computed at different space points and so the
only way to compare results is to interpolate, either from one moving mesh onto another or
from moving meshes onto fixed, predetermined points. This, of course, means an interpolation
error will occur but when we have interpolated solutions, we have used high enough order
interpolation for any errors introduced to be of smaller order than errors in the solution.
For this study we choose evenly spaced points and use piecewise cubic Hermite interpolation.
We found that using interpolation for visualizing the error of exact solution and numerical
solution for Sod’s shock tube problem to be useful when graphing one solution on top of the
other. However, we obtain the same results both when interpolating the moving mesh solution
onto a given fixed mesh as we do when comparing values at the moving mesh points.

To examine behavior of the computed solution as € and the number of nodes are varied
using the SGWMFE method we start by using Sod’s shock tube problem and comparing with
the ’zero diffusion limit’ solution. We then look at the results for the shallow water equations
using ideas suggested from the study of the Sod shock tube problem.

5.1 Shock Tube Problem

The first system of PDEs, Sod’s shock tube problem in one dimension, gave results as expected,
see figure 3. It is well known that diffusion results in a shock of width of O(e) and a contact
discontinuity of width O(y/et) and both features are reproduced in the computed solution.
A solution to the ’zero diffusion limit’ using the code from Anderson (1984) has been used
to monitor the behavior of the SGWMFE solution as € is varied, see figure 4, where the
difference between the SGWMFE solution with artificial diffusion, €, and the ’zero diffusion
limit’ solution is plotted as € is varied at a fixed time, ¢ = 0.1. This shows that the SGWMFE
solution approximates the ’zero diffusion limit’ solution as e decreases. Note that we would
expect the difference to be dominated by the O(y/et) spreading of the finite diffusion solution
near the contact discontinuity.

This is a problem where a complicated structure arises immediately out of nothingness
(particularly the immediate spike in the momentum). Thus the initial placement of nodes in
the initial ramp is critical; there must be nodes in the right places to resolve the immediate
structure. We have used an initial placement similar to that shown in figure 7.3 of Carlson
and Miller (1998a) for this same test problem.

5.2 Shallow Water Equations

Example results for the second problem, shallow water flow, are shown in figure 5 and are
as expected from published solutions using other methods. As the initial hump of water falls
under gravity, a jump occurs and is propagated to the right boundary where it is reflected.
One method to examine the convergence of solutions for moving mesh methods has been to
overlay the solution using varying number of points and reducing € until the difference on the
graphs is smaller than some tolerance. Often “converged” means that there is no difference
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Figure 3: SGWMFE solutions for Sod’s shock tube problem using 72 cells. € = (10) 3. Density
= p, velocity = ¢, momentum = pc, total energy = e. Figures show plots of the solutions for
times ¢ = 0.1.28.288.296.4
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Figure 4: L; measure of difference between SGWMFE solution for Sod’s shock tube problem
at time ¢ = 0.1 and the zero diffusion limit problem as artificial diffusion, €, is varied.
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Figure 5: SGWMFE solutions for the Shallow Water Equations. Solution using 80 cells for
times ¢ = 0,2,3,4,5,6,7,8,9,10,11,12,13,14. € = 5(10)~3
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Figure 6: SGWMFE solutions for shallow water equations at ¢ = 0.7. Bottom: 160 cells versus
80 cells for the same artificial diffusion, ¢ = 5(10)3; thus the solution for this fixed e seems
quite accurate with 80 or fewer cells. Top: the solutions (both probably quite accurate) with
different artificial diffusion, e = 5(10) 3 and € = 5(10) 2. The larger artificial diffusion widens
the shock but leaves its position largely unchanged.
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Figure 7: Shallow water equations at ¢ = 0.7: Ly difference between solution using 160 cells
and € = 5(10)~3 and solutions using 80 cells and varying e.

in graphs to the naked eye. For example, in the lower part of figure 6 we show the numerical
solution using 80 nodes and the solution with 160 nodes for fixed artificial diffusion,e = 5x 1073,
In the upper part of 6 we show the effect of varying the artificial diffusion, with e = 5 x 1072
and € = 5 x 1073, Both solutions are thought to be accurate solutions.

In the case of the shallow water equations, we show in figure 7 the L1 norm of the difference
between the solution for € = 5 x 1072 with 180 nodes and solutions using 80 nodes and varying
€, all at fixed time ¢t = 0.7, showing that for this case, where the shock is of thickness O(e),
linear decrease in difference as e decreases.

6 Summary

In this paper we have set out the string or second gradient weighted finite element method
for one space dimension using a very general formulation in terms of a projection matrix.
All of the ideas presented generalise straightforwardly to multiple equations. In a subsequent
work, we will examine the generalisation to multiple space dimensions, but that too follows
the ideas outlined here. The SGWMFE method is an alternative formulation to the GWMFE
method. While it is simpler and more elegant for extension to larger numbers of equations,
we cannot say that it has significant computational advantages for the model problems we
consider here beyond perhaps being able to achieve solutions for smaller artificial diffusion.
We have examined convergence as the number of nodes increases (for fixed artificial diffusion)
and then as the artificial diffusion tends to the zero limit. However the initial distribution
of nodes is also extremely important for certain problems. Moving finite element methods
remain techniques where considerable tuning, particularly of the initial mesh, is required:
but for classes of problems described as convection-diffusion like, implementing the SGWMFE
method is straightforward and provides considerable fidelity using remarkably few mesh nodes.
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