
A Bayes Linear Approach to Systems Biology

I R Vernon, M Goldstein

September 23, 2010

Abstract

As post-genomic biology becomes more predictive, the inference of rate parameters
that feature in both genetic and biochemical networks becomes increasingly important.
Here we present a novel methodology for inference of such parameters in the case of
stochastic networks, based on concepts from the area of computer models combined
with Bayes Linear variance learning methodology.

We apply these techniques to a simple, analytically tractable Birth-Death pro-
cess model, followed by a more complex stochastic Prokaryotic Auto-regulatory Gene
Network.

1 Introduction

Traditionally, chemical reaction networks have been modelled by sets of ODE’s. How-
ever, for intracellular reaction networks, especially those concerning gene transcription,
the discrete number of molecules involved and the inherently stochastic behaviour of
the network becomes important. These networks can be accurately model by stochas-
tic processes (namely continuous-time Markov processes), that possess many unknown
rate constants representing all the various reactions involved.

The goal of this study is to be able to perform inference on the underlying rate
parameters x that feature in such stochastic models of systems biology, using the
available data which is often incomplete, measured infrequently and has substantial
measurement error. While some models, such as the Birth-Death model considered
in section 6, are fast enough so that we could understand them to a high degree
of accuracy simply by simulating the process thousands of times for many different
values of the inputs x, many more realistic networks take far longer to run and have
large numbers of input parameters. This means that such an exhaustive exploration
of the model quickly becomes impossible. While an MCMC approach has very many
attractive features in this context, it too is limited at a level of complexity which
is currently significantly lower than the majority of biological systems of interest.
Because of this we are interested in techniques for inference that will ‘scale up’ to
models of significantly higher complexity, and believe the methods presented in this
paper should achieve this goal.

We present in this article, novel methodology based around the concept of emula-
tion: a popular technique in the Computer Model area (see for example Craig et al.
(1997), Craig et al. (2001), Rougier (2009), Kennedy and O’Hagan (2001), O’Hagan
(2006)). Specifically, we demonstrate how to construct emulators for the variance and
mean surfaces of a stochastic computer model, using Bayes Linear variance learning.
We then show how such emulators can be combined with implausibility measures to
cut out areas of the input or parameter space that are highly inconsistent with the
observed data. These techniques are applied to a simple Birth-Death process model
(that has the benefits of analytical tractability) and then to the more challenging
Prokaryotic Auto-regulatory Gene Network model (see wilk).

1

The report is organized as follows: in section (2) we develop the techniques re-
quired to perform a Two Stage Bayes Linear Update on a variance and then mean
surface. Section (3) describes the emulation process where we attempt to mimic the
behaviour of both the mean and variance of the stochastic model output at various
time points as a function of the inputs x. In section (4) we discuss the all important
implausibility measure that identifies regions of the parameter space that are unlikely
to correspond to some observed process. In section 5 we described the stochastic ki-
netic biochemical reaction networks that motivate this work, and introduce the two
models used. In section 6 we apply our techniques to the Birth-Death model and
compare to analytical results. Section 7 contains the main application: that of the
Prokaryotic Auto-regulatory Gene Network model, and we conclude in section 8.

2 Two Stage Bayes Linear Update

We consider a stochastic computer model, of which the stochastic kinetic biochem-
ical reaction networks are an example, which has a choice on input (or rate) pa-
rameters x and produces at time T an output Y (t). As the model is stochastic,
repeated evaluation with the same inputs x would yield a sequence of different values
Y1(t), Y2(t), ..., Yk(t). Essentially, in this section we will use a Bayes Linear strategy to
emulate (and therefore mimic) the mean and the variance of this sequence of outputs
{Yk(t)}. We begin by developing a representation of the mean and variance of this
type of process Yk(t), within the Bayes Linear context. As we will mainly be analysing
different time points univariately, we will often drop the explicit time dependence of
Yk.

2.1 Representation of the Mean and Variance Surfaces

Setting the random quantity Y = Y (t), we explicitly show the dependence on the
input or rate parameters x by writing Y (x). We then say that for fixed x, the se-
quence Y (x) = Y1(x), Y2(x), ... forms an infinite exchangeable sequence of discrete ran-
dom quantities with E(Yk(x)) = µ(x), Var(Yk(x)) = σ2(x), and Cov(Yk(x), Yj(y)) =
γ(x, y). We can then use the exchangeability representation to write:

Yk(x) = M(Y, x) + Rk(Y, x), k = 1, 2, ..., (1)

where the sequence R1(Y, x),R2(Y, x), ..., is uncorrelated and we have,

E(Rk(Y, x)) = 0 (2)
Var(Rk(Y, x)) = σ2(x) − γ(x) = VR(x) (3)

E(M(Y, x)) = µ(x) (4)
Var(M(Y, x)) = γ(x, x) = γ(x) (5)

Cov(M(Y, x),M(Y, x′)) = γ(x, x′), (6)

with all other covariances equal to zero. As we are dealing with stochastic models, and
are planning to update the variance surface first, before updating the mean surface,
we now need a representation for the population variance. Thus, let

[Rk(Y, x)]2 = (Yk(x)− µ(x))2 = Vk(x), (7)

and we make the judgement that the sequence V1(x), V2(x), ... is also second-order
exchangeable. We therefore have the representation

[Rk(Y, x)]2 = Vk(x) = M(V, x) + Rk(V), (8)

2

where similar to before, the sequence R1(V, x),R2(V, x), ..., is uncorrelated and we
have,

E(Rk(V, x)) = 0 (9)
Var(Rk(V, x)) = VR(V)(x) (10)

E(M(V, x)) = VR(x) (11)
Var(M(V, x)) = VM (x) (12)

Cov(M(V, x),M(V, x′)) = C(x, x′) (13)

Note that each Rk(V, x) is uncorrelated with M(V, x), and that M(V, x) represents
the population variance.

2.2 Updating the Variance

The problem we now face is that as M(Y, x) is always unknown, we cannot measure
Vk(x) directly. Say for example we create a design and run our model at several
different values of x = x1, x2, ..., and at each of these values we run the model n
times where n = n1, n2, ..., then the data we obtain (which is sufficient in terms
of Bayes Linear Updating of the variances and the means), are the sample means
(ȳ(x1), ȳ(x2), ..., ȳ(xd)) and sample variances S = (s2n1

(x1), s2n2
(x2), ..., s2nd

(xd)).
We therefore need to build a representation of s2n(x) in order to be able to update

the expectation and variance of M(V, x). With the usual definition,

s2n(x) =
1

n− 1
Σnk=1(Yk(x)− Ȳn(x))2 (14)

we can then derive:
s2n(x) = M(V, x) + T (x), (15)

where from equation (8),

T (x) =
1
n

ΣkRk(V, x) − 2
n(n− 1)

Σk<jRk(Y, x)Rj(Y, x). (16)

A reasonable assumption to make at this point is that the residuals Rj(Y, x) satisfy
the following forth-order uncorrelated properties:

Cov(M(V, x),Rk(Y, x)Rj(Y, x)) = Cov(Ri(V, x),Rk(Y, x)Rj(Y, x)) = 0, (17)

and that if k > j,w > u, and provided k 6= w and j 6= u:

Cov(Rk(Y, x)Rj(Y, x),Rw(Y, x)Ru(Y, x)) = 0. (18)

The following important properties of T (x) can now be derived from (16,17, 18):

E(T) = 0 (19)

VT (x) = Var(T (x)) =
1
n
VR(V)(x) +

2
n(n− 1)

[VM (x) + V 2
R(x)] (20)

Cov(M(V, x), T (y)) = 0. (21)

As we intend to update M(V, x) using the collection of sample variances of our model
runs S = (s2n1

(x1), s2n2
(x2), ..., s2nd

(xd)), we need expressions for E(S), Var(S) and
Cov(M(V, x), S). Using equations (15,17,18) these are found to be:

E(S) = (VR(x1), VR(x2), ..., VR(xd)) (22)

Var(S) =


VM (x1) + VT (x1) Cov[M(V, x1),M(V, x2)] ... Cov[M(V, x1),M(V, xd)]

... VM (x2) + VT (x2)

...

... VM (xd) + VT (xd)


Cov(M(V, x), S) = (Cov(M(V, x),M(V, x1), ...,Cov(M(V, x),M(V, xd)).

3

The form of Cov[M(V, x1),M(V, x2)] and indeed E(M(V, x)) will be determined in
section (3) where we discuss the emulation of the variance surface and the decisions
that feed into this process. Leaving these aside, it now remains to specify the form
of VM (x) (the variance of M(V, x)) and VR(V)(x) (the variance of Rk(V, x)) in order
to have all that is needed to perform a Bayes Linear Update on the expectation of
M(V, x).

2.3 Prior Choices for VM(x) and VR(V)(x)

VR(V)(x) is a forth order quantity and reflects our judgement as to the shape of the
distribution of Y . In order to understand this quantity and to make sensible decisions
about it we assume that the population variance acts as a scale parameter in that:

Ri(Y, x) =
√
M(V, x)Zi(x), (23)

where Z1(x), Z2(x), ... are independent, have expectation zero and variance one, and
are independent of the value ofM(V, x). This implies thatRi(V, x) =M(V, x)(Z2

i (x)−
1) which means that VR(V)(x) can be written in terms of the kurtosis of Zi as:

VR(V)(x) = Var(Ri(V, x)) = (VM (x) + V 2
R(x)) Var(Z2

i (x)) (24)

= (VM (x) + V 2
R(x))(Kur(Zi(x))− 1). (25)

We are free at this stage to make an assessment of the kurtosis of Zi, for example
(if we assume its dependence on x is negligible) we can set Kur(Zi) equal to 3 if we
believe Y has a normal distribution, 3(ν − 2)/(ν − 4) for a t-distribution (with ν > 4
degrees of freedom), or 1.8 for a uniform distribution (this in fact is the lower bound
on the kurtosis of any regular unimodal symmetric distribution).

In the current case where we have a collection of runs of our systems biology
model, we also have another possibility: to assess the kurtosis using information from
the models runs themselves. In section (3) we will make initial assessments of kurtosis
and use the data as a check to test if our prior value seems reasonable (and to test
the assumption of negligible x dependence). Note that the correct approach would be
to Bayes Linear Update the kurtosis.

The final quantity we need is VM (x) = Var(M(V, x)). This represents the weight
we give to our prior value of VR(x) = E(M(V, x)), compared to that of the data in the
Bayes Linear Update. For a particular value of x, higher values of VM (x) will mean
that we give little weight to our prior and the update will be dominated by s2n(x). If
there is no s2n measured exactly at x the situation is more complicated (as is discussed
in section (3)) but the principle is still the same.

A possible approach is to set VM (x) = c(x)VR(x)2 and to examine the effect of
the update due to different values of c(x). This is in fact the same as the ‘equivalent
sample size’ approach in which we propose that the prior information at x is worth a
notional sample size m(x). The approaches are linked by the equation (with κ(x) =
[(n(x)− 1)Var(Z2

i) + 2]/n(x))),

c(x) =
κ(x)n(x)

m(x)(n(x)− 1)− κ(x)n(x)
(26)

In the simple case of updating a variance VR using a single sample variance s2n where
there is no x dependence, the above concepts are clearly defined. However, in the
current case we will be updating a variance surface defined over x, using multiple
sample variances evaluated at different values of x. This makes the assessment of
VM (x) more difficult, however, possible simple choices are: setting c(x) equal to a
constant c such that 0 < c < 1; setting m(x) equal to a constant m such that m <
min(n(x)); or setting VM (x) equal to a constant related to the emulation process
described below which is the strategy we choose.

4

With the above prior information specified, we are now able to update the expec-
tation and variance of the collection M(V, xg) (where xg = (xg1, ..., xge)T) having
observed S = (s2n1

(x1), s2n2
(x2), ..., s2nd

(xd))T (with xs = (x1, ..., xd)T), using the Bayes
Linear Update formula:

ES [M(V, xg)] = E[M(V, xg)] + Cov[M(V, xg), S] Var−1[S] (S − E(S)) (27)
= VR(xg) + Cov[M(V, xg),M(V, xs)] Var−1[S] (S − VR(xs)) (28)

VarS [M(V, xg)] = Var[M(V, xg)] − Cov[M(V, xg), S] Var−1[S] Cov[S,M(V, xg)] (29)
= VM (xg) − Cov[M(V, xg),M(V, xs)] Var−1[S] Cov[M(V, xs),M(V, xg)].(30)

This is the technique we will use to update the variance surface and it is very similar
to the mean update that is described in the next section.

2.4 Updating the Mean

In the Two Stage Bayes Linear Update we first update the variance surface represented
by M(v, x) with respect to the sample variances S = (s2n1

(x1), s2n2
(x2), ..., s2nd

(xd))T ,
and hence obtain the updated expectation of M(V, x) which we shall write as:

ES(M(v, x)) = V ∗R(x), (31)

with the * representing an updated quantity. We now go on to update the mean
surface represented by M(Y, x) with respect to the collection of sample means D =
(ȳn1(x1), ȳn2(x2), ...,ȳnd

(xd)), but now using the new V ∗R(x). As before we have the
representation:

Yk(x) = M(Y, x) + Rk(Y, x), k = 1, 2, ..., (32)

where we will obtain the terms E(M(Y, x)) = µ(x) and Cov(M(Y, x1),M(Y, x2)) =
γ(x1, x2) after discussion of the emulation process below. As we only measure the
sample means we need to use equation (32) to represent them in the form:

ȳni
(xi) = M(Y, x) +

1
ni

Σn1
k=1Rk(Y, x). (33)

This is the equivalent equation to that of (15) and (16) which give the slightly more
complicated representation of s2ni

(xi). Before we can commence with the update of
M(Y, x) by the collection of the sample means D, we first need to calculate E(D),
Var(D) and Cov(M(Y, x), D). Using equation (33) combined with the uncorrelated
and zero expectation properties of R(Y, x) we find that (writing γ(x1, x1) ≡ γ(x1)):

E(D) = (µ(x1), µ(x2), ..., µ(xd)) (34)

Var(D) =


γ(x1) + 1

n1
V ∗R(x1) γ(x1, x2) ... γ(x1, xd)

. γ(x2) + 1
n2
V ∗R(x2)

.

. γ(xd) + 1
nd
V ∗R(xd)


Cov(M(Y, x), D) = (γ(x, x1), ..., γ(x, xd)).

Now all that remains is to consider the form of γ(x): the variance of M(Y, x), which
is the weight given to our prior value of µ(x) = E(M(Y, x)). γ(x) is equivalent to the
VM (x) discussed in the previous section. As before there are several possible methods
we could use to assess γ(x), however the situation here is significantly simpler: if
we say our prior information about µ(x) has again weight m(x) then the equivalent
sample size approach gives the obvious result that,

γ(x) =
1

m(x)
V ∗R(x). (35)

5

Of course we are now still free to choose the size of m(x) and indeed the specific form
of its x-dependence, but we can now choose this to be consistent with the assessment
of VM (x) (and the choice of m(x)) in the previous section.

Again with the above prior information now specified, we are able to update the
expectation and variance of the collection M(Y, xg) (where xg = (xg1, ..., xge)T)
having observed D = (ȳn1(x1), ȳn2(x2), ..., ȳnd

(xd)) (with xs = (x1, ..., xd)T), using
the Bayes Linear Update formula:

ED[M(Y, xg)] = E[M(Y, xg)] + Cov[M(Y, xg), D] Var−1[D] (D − E(D)) (36)
= µ(xg) + γ(xg, xs) Var−1[D] (D − µ(xs)) (37)

VarD[M(Y, xg)] = Var[M(Y, xg)] − Cov[M(Y, xg), D] Var−1[D] Cov[D,M(V, xg)](38)
= µ(xg) + γ(xg, xs) Var−1[D] γ(xs, xg). (39)

We now have the necessary techniques to be able to perform updates upon a variance
surface, followed by a mean surface. These are required for our treatment of the
systems biology models as we will emulate both the variance and mean surfaces of the
model, for which such updating is essential. The emulation process is described in the
next section.

3 Emulation of Mean and Variance

Many methods of performing inference on the rate parameters of a stochastic network
model, such as MCMC, can be both computer intensive and generally do not scale up
well to networks of realistic size. For this reason we have developed a more tractable
Bayes Linear approach to the problem and in this section we describe one of its main
features: the emulation of the mean and variance surfaces. As was mentioned in the
previous section, if we do a design of runs of our model at several different values of x =
x1, x2, ..., and at each of these values we run the model n times where n = n1, n2, ...,,
we will only have information about the sample mean and variance at each of the points
x = x1, x2, ...,. Assuming that we have not totally covered our input space with a large
numbers of runs, we therefore need to use emulation to represent our beliefs about the
output of the process at a new point x. As describing the probability density of the
output Y = Y (T) given x is overly complicated, we restrict ourselves to looking at the
expectation and variance of the output (and our corresponding uncertainties about
these quantities) given x. These were denoted previously as M(Y, x) and M(V, x)
and are defined by equations (1) and (8).

We describe our beliefs about the behavior of M(Y, x) and M(V, x) (defined by
equations (1) and (8)), via two emulators:

M(V, x) = βTV gV (x) + εV (x), (40)
M(Y, x) = βTY gY (x) + εY (x), (41)

where the gV (x) and gY (x) are known simple functions of x that we feel have a linear
effect on M(V, x) and M(Y, x) respectively, and the ε(x) terms are residual terms
from the simple linear fit, with zero expectation and variance structures that will
be discussed below. The emulators are not an attempt at a physical model for the
relation between the inputs and outputs of the process, instead they are a convenient
tool that allow us to represent our subjective beliefs about the mean and variances
of the process and their dependence upon the input parameters given by x. Note
that as we will be dealing with the relatively low dimensional Birth-Death process
(and then a reduced dimension Prokaryotic model) we write equation (40) in terms of
both input parameters λ and µ as x = (λ, µ)T . When dealing with more complicated
models that have many input parameters we would assess which subset of these are
the most significant for each output in question (called the active inputs) and write

6

(40) in terms of only those. The point being that as the model gets more complicated,
our emulators do not increase significantly in complexity, although they will gain an
extra discrepancy term related to the ignored extra input parameters.

We choose the following form for both the functions gV (x) and gY (x):

gV (x) = gY (x) = (1, λ, µ, λµ, λ2, µ2), (42)

a decision made to ensure an accurate linear fit in the emulators. The ε(x) terms
express our belief thatM(V, x) andM(Y, x) cannot be described purely by quadratic
surfaces. Clearly the ε(x) terms must be strongly correlated for neighbouring values
of x and so we impose a prior covariance structure over εV (x) of the form:

Cov(εV (x), εV (x′)) = σ2
εV exp

[
−θV (x− x′)T (x− x′)

]
, (43)

with a similar structure for εY (x). The terms σ2
εV and θV (and σ2

εY and θY) are
constants to be chosen (motivated by the emulation construction process). Once
these choices have been made, the first emulator then gives:

VR(x) = E(M(V, x)) (44)
VM (x) = Var(M(V, x)) (45)
C(x, x′) = Cov(M(V, x),M(V, x′)) (46)

while the second emulator gives:

µ(x) = E(M(Y, x)) (47)
γ(x) = Var(M(Y, x)) (48)

γ(x, x′) = Cov(M(Y, x),M(Y, x′)) (49)

and we would now have everything we need to update the variance surface followed
by the mean surface.

There are choices at this stage over the specific manner in which we construct the
emulator. For example, should we use the equivalent sample size approach described
in the previous section (to find e.g. VM (x) first, then obtain σ2

εV), or should we
obtain such information about σ2

εV and σ2
εY from linear modelled fitting of the run

data? In line with previous emulation experience (Vernon et al. (2010)), we choose the
latter approach and choose the remaining unspecified quantities to be consistent with
simple linear model fits of S and D. See Vernon et al. (2010) for further discussion of
emulation strategies.

We now have all we need and can perform the Bayes Linear Update of M(V, x)
by the sample variance data S using the techniques given in section (2.2). Hence we
obtain the updated expectation and variance of the variance surface, with respect to
S:

V ∗R(x) = ES(M(V, x)), (50)
V ∗M (x) = VarS(M(V, x)), (51)

where the * implies updated value. In a similar manner we now do the second stage
of the two stage Bayes Linear Analysis, and use V ∗R(x) to updateM(Y, x) and obtain
the updated expectation and variance for the mean surface:

µ∗(x) = ED(M(Y, x)), (52)
γ∗(x) = VarD(M(Y, x)). (53)

These can now be used in implausibility measures discussed in the next section.

7

4 Implausibility Measures

A useful concept for identifying areas of the input parameter space that are highly
unlikely to give rise to a certain set of observations, is that of an Implausibility Measure
(Craig et al. (1997) and Vernon et al. (2010)). We can apply this concept to both the
variance and mean of the stochastic computer model as follows. Let f(x) represent
either M(V, x) or M(Y, x), and say we have observed measurements of the mean
or variance process given by z and we are interested in which values of x could be
consistent with z.

We say that z can be written as:

z = yT + e (54)

where yT is the actual real world process mean or variance, e is an observational error
term which is uncorrelated with yT prior to observing z. We then say that yT is linked
to our model f(x) by:

yT = f(x+) + d, (55)

where x+ represents the choice of input parameters we would make if we had perfect
knowledge of the real biological process, and d represents the difference between our
model of the process and the real biological process (known as the model discrepancy).
There are some subtleties regarding the definition of (55) which we will ignore here
(see Goldstein and Rougier (2009) for details).

As we have now linked observations in the real world to our model f(x) and
therefore to x we can now define the Implausibility Measure:

I(x)2 =
ED(f(x)− yT)2

VarD(f(x)− yT)
(56)

=
(ED(f(x))− z)2

VarD(f(x)) + Var(e) + Var(d)
. (57)

Remember that f(x) here represents either the varianceM(V, x) or the meanM(Y, x),
and D represents either S or D respectively. Note that high values of I(x1) imply
that it is very unlikely that we would find that f(x) is close to yT in the vicinity of
x = x1, whether low values of I(x) are due to two reasons: either we expect that
running the simulator at x will give a close match between f(x) and yT , or because
we are so uncertain about f(x) − yT that there could be a good match at x but we
can’t tell.

The implausibility measure is an extremely useful tool as applied to computer
models as it can be used to cut out all implausible areas of the input parameter space,
and it has been used is several areas of application (Craig et al. (1996); Cumming and
Goldstein (2009); Bower et al. (2009); Vernon et al. (2010)). It can also be used to
design the next set of simulator runs in a sequential design. We will use this measure
extensively in sections 6 and 7 where we apply it to the Birth-Death process model
and to the Prokaryotic network model respectively.

4.1 Fully Bayesian Approach: MCMC Discussion

The nature of the problem of performing inference on rate parameters of systems biol-
ogy models, suggests that a fully Bayesian Markov-chain Monte Carlo approach would
be worthwhile. Indeed the MCMC methods currently employed for problems of this
type have many attractive features and can sensibly deal with issues such as partially
observed data (where not all of the chemical species are measured) and measurement
error. These techniques require the use of Diffusion Models to represent the system.
Although the behavior of such models can be quite different from the true discrete
model, diffusion models are accurate enough for the purpose of performing inference.

8

Other issues such as observations only being made at infrequent discrete, regular time
intervals can also be overcome through the use of a technique known as data aug-
mentation which for each MCMC step simulates additional data points between the
observed data. This is done to ensure the accuracy of the Euler approximation which
requires a small distance between data points, but presents its own challenges related
to the mixing of the MCMC algorithm.

The main problem with approaches of this form is that they are computationally
extremely intensive even for moderately sized systems, and this complexity grows
rapidly with system size. As the sizes of networks that are of current interest to
Biologists are an order of magnitude larger than those that can be handled using such
MCMC techniques, more tractable approaches such as the Bayes Linear emulation
approach presented here are urgently required for use in this area.

5 Stochastic Kinetic Biochemical Network Models

5.1 Chemical Reaction Networks

Consider the simple chemical reaction

Y1 + Y2 −→ Y3 (58)

which represents a single molecule of species Y1 combining with one molecule of species
Y2 to produce a single molecule of Y3. The rate or hazard of this reaction will be
constant in time (as shown by Gillespie (1977)), and the law of mass action asserts
that the hazard will be proportional to Y1Y2, that is the product of the numbers of
molecules of each chemical species. The proportionality constant is known as the
reaction rate constant, and is denoted x. Learning about such rate constants x (which
are viewed as the inputs to a stochastic computer model) is the main aim of this
article.

The general form of a reaction network, which we will study two examples of,
involves k species of chemical Y1, Y2, ..., Yk and r reactions R1, R2, ..., Rr, occurring in
thermal equilibrium inside some fixed volume (see Golightly and Wilkinson (2005)).
We can write this set of reactions as:

R1 : u11Y1 + u12Y2 + ...+ u1kYk −→ v11Y1 + v12Y2 + ...+ v1kYk (59)
R2 : u21Y1 + u22Y2 + ...+ u2kYk −→ v21Y1 + v22Y2 + ...+ v2kYk (60)

...
...

... (61)
Rr : ur1Y1 + ur2Y2 + ...+ urkYk −→ vr1Y1 + vr2Y2 + ...+ vrkYk (62)

The arrow −→ represents the conversion of Reactants to Products and may summarise
more complicated intermediate steps in the reaction (which may be of no interest at
the current level of modeling). Here uij is the stoichiometry of the jth reactant of
the ith reaction, and similarly vij is the stoichiometry of the jth product of the ith
reaction. Each of the possible reactions Ri has an associated rate constant xi and
a reaction hazard hi(Y, xi) with Y = (Y1, Y2, ..., Yk)T being the current state of the
system. The form of the hazards are determined by mass action kinetics, and depend
on the order of the reaction Ri as is described in detail in appendix A. For example,
the hazard corresponding to equation (58) would be h(Y, x) = xY1Y2 (see Wilkinson
(2006)).

A popular method of describing such a network is by defining a Petri Net N , which
is a list of five objects that define the state of the system, and all the possible reactions.
Here N = {C, T, U, V, Y }, where C is a vector of chemical names, T = (R1, ..., Rr)T is
a vector of reactions, U and V are r × k matrices that give the number of molecules
used and produced in each reaction, having elements uij and vij respectively, and Y is

9

a vector of the number of molecules that are currently in the system (the state vector).
Note that the actual effect of each reaction is encapsulated by the net effect reaction
matrix A = V − U . Knowledge of N and the form of the hazards hi(Y, xi) is all that
is required to simulate realisations from such reaction networks as we describe in the
next section.

5.2 Continuous Time Discrete State Markov Process Model

The behaviour of such reaction networks described in section 5.1, is often analysed
in terms of the “Chemical Master Equation”. This is a differential equation for the
probability that the system is in a state Y at time t, which we denote P (Y ; t), and is
given by:

∂

∂t
P (Y ; t) =

r∑
i=1

{hi(Y −Ai, xi)P (Y −Ai; t)− hi(Y, xi)P (Y ; t)} (63)

This can be derived from consideration of the number of ways the system can arrive
in state Y at time t (see Wilkinson (2006) and Gillespie (1977) for details). The
master equation is an exact description of the system, however, it can only be solved
analytically in a small number of cases (one of which is the Birth-Death process
described in section 5.3). To analyse the larger, more realistic networks of interest
to biologists, discrete event simulation algorithms such as the Gillespie algorithm are
used. Details of the full Gillespie algorithm are given in appendix B, but its basic
structure is as follows.

As the hazard for a reaction of type i is hi(Y, xi), we know that the hazard for a
reaction of some type is given by:

h0(Y, x) =
r∑
i=1

hi(Y, xi) (64)

and therefore the time to the next reaction will be Exp(h0(Y, x)). Also, this reaction
will be of random type i, with probability proportional to the ith hazard and hence
given by hi(Y, xi)/h0(Y, x). Therefore, to simulate the time and type of the next
reaction is simple, requiring only standard techniques. See appendix B, Golightly and
Wilkinson (2005), Gillespie (1977) and references therein for more detailed summaries.

In essence the Gillespie algorithm, with a suitably defined network, is the stochastic
computer model referred to throughout this article. Its outputs (realisations of the
state of the system at various times Y (t)) and their dependence on the inputs or rate
constants x, are the subject of the Bayes Linear two stage emulation strategy described
in sections 2 and 3. Specifically, we emulate the expectation and variance of Y (t) in
order to compare with observed data using the implausibility measures described in
section 4.

5.3 Example: Birth-Death Process

We have chosen to initially examine the simple birth-death model in order to help
develop our techniques. This model is basic in that it has only one species of ‘chemical’
the number of which at time T we write as Y (T). Hence Y is discrete, taking only
integer values but is dependent on a continuous time parameter T . This system has
the simple rules that Y can change due to two types of reaction:

Y → Y + 1, with rate λY, (65)
Y → Y − 1, with rate µY. (66)

We write the rate parameters as x = (λ, µ)T and represent the above reactions by the
vector of reaction hazards h(y, x) = (λ, µy) and the reaction matrix A = (1,−1)T (or

10

0 10 20 30 40

0
20

40
60

80
10

0

20 Runs of Birth−Death Process

Time

N
o.

 m
ol

ec
ul

es

λ = 0.17, µ = 0.22
λ = 0.01, µ = 0.04

0 10 20 30 40

0
50

10
0

15
0

20
0

Mean and Variance of Birth−Death Process

Time

M
ea

n
an

d
V

ar

λ = 0.17, µ = 0.22
λ = 0.05, µ = 0.07
λ = 0.01, µ = 0.04

Figure 1: The Birth-Death Process.

equivalently the stoichiometry matrix S = AT = (1,−1)). We take as initial condi-
tions Y (0) = 100. This system can easily be simulated using the Gillespie algorithm
described in appendix B, and figure 1 (left panel) shows 20 realisations of the process
for two choices of the inputs λ and µ, as the blue and black lines. The right panel of
figure 1 shows the sample means and variances of 500 realisations of the process, for
three different choices of the inputs. It can be seen that the variances contain very
different information about the inputs compared to the means (which only depend on
the difference λ−µ). This will be seen in the implausibility plots of section 6.2. Note
that using the Master Equation (equation 5.2) we can derive and solve differential
equations for both the mean and variance of Y (T), and we use these for emulator
diagnostics in section 6.1.1.

5.4 Example: Prokaryotic Auto-regulatory Gene Network

The prokaryotic auto-regulatory gene network has been often studied as it represents
a network which exhibits gene self-repression: a common feature in many biological
networks. Here transcription of a gene g results in the production of an mRNA
molecule r. The mRNA molecule causes production of a protein P (a process referred
to as Translation). Two P molecules form the dimer P2, which represses the gene by
binding to a regulatory site upstream of the gene. This can be written as:

g + P2 ⇐⇒ g.P2 Repression (67)
g −→ g + r Transcription (68)
r −→ r + P Translation (69)

2P ⇐⇒ P2 Dimerisation (70)
r −→ ∅ mRNA degradation (71)
P −→ ∅ Protein degradation (72)

This is a necessarily simplified version of a true prokaryotic system, but is very useful
to study as it exhibits many of the features found in real systems. See Wilkinson
(2006) for descriptions of other related processes: e.g. Translation, Degradation and
Transport.

11

The Prokaryotic Auto-regulation network has Petri Net:

P =


g.P2

g
r
P
P2

 , T =



Repression
Reverse Repression

Transcription
Translation

Dimerisation
Dissociation

mRNA degradation
Protein degradation


(73)

Pre =



0 1 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0


, Post =



1 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 2 0
0 0 0 0 0
0 0 0 0 0


, M =


10
0
0
0
0


(74)

If we combine the above Petri Net with stochastic kinetic rules stating the rate of
each reaction, we then have everything needed to simulate the network, which can be
performed using the Gillespie algorithm given in appendix B. The Reaction Matrix A
is defined as

A = Post− Pre =



1 −1 0 0 −1
−1 1 0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 −2 1
0 0 0 2 −1
0 0 −1 0 0
0 0 0 −1 0


(75)

A has rows that represent the effect of individual reactions on the state of the network.
Similarly, the Stoichiometry Matrix S is defined as S = AT .

Figure 2 shows a single realisation of the Prokaryotic Network, simulated over
200 seconds with inputs or rate parameters set to x = (1, 10, 0.01, 10, 1, 1, 0.1, 0.1).
Note that the P2 molecule still exhibits highly stochastic behaviour even though the
numbers of P2 molecules are often high. It should also be understood that g.P2 and
g are related by a conservation law as will be discussed further below.

6 Application to the Birth-Death Model

6.1 Variance and Mean Emulation

Here we apply the techniques of sections 2 and 3 to the Birth-Death model, in order
to construct emulators of the variance and mean surface. As this model is analytically
solvable, we then compare the emulators with the exact results.

We examine the area of input space defined by: 0 < λ < 0.08 and 0.04 < µ < 0.13
and begin by using the Gillespie algorithm described above to perform a d = 15 input
point maximin latin hypercube design, with n = 40 repetitions at each point. We
use these runs to construct mean and variance emulators for the model output at 4
different time points T = (2, 8, 18, 30). Figure 3 shows the expectation of the variance
emulator (that is V ∗R(x) = ES(M(V, x))) for time point T = 8 (top-left panel) and

12

0 50 100 150 200

0
2

4
6

8
10

Time

g.
P

2

0 50 100 150 200

0
2

4
6

8
10

Time

g

0 50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

Time

r

0 50 100 150 200

0
5

10
15

20

Time

P

0 50 100 150 200

0
10

30
50

70

Time

P
2

Figure 2: A single realisation of the Prokaryotic Network, simulated over 200 seconds
with inputs (or rate) parameters set to x = (1, 10, 0.01, 10, 1, 1, 0.1, 0.1). The panels show
the numbers of g.P2, g, r, P and P2 molecules respectively. Note that the P2 molecule
still exhibits highly stochastic behaviour even though the number of P2 molecules are
often high. This model is emulated and inference performed with respect to its inputs in
section 7.

13

0

50

100

150

200

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 20

 2
0

 2
5

 3
0

 35

 40

 45

 5
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

 8
5 9

0
 9

5
 1

00

 1
05

 1

10

 1
15

 1

20

 1
25

 1

30

●

Variance Emulator Expectation: T = 8, Out = 1

lambda

m
u

0

50

100

150

200

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 25

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5 6

0
 6

5

 7
0

 7
5

 8
0

 8
5

 9
0

 9
5

 1
00

 1

05

 1
10

 1

15

 1
20

 1

25

 1
30

 1

35

 1
40

Exact Variance: T = 8

lambda

m
u

0

50

100

150

200

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60 65

 70 75

 80 85 90 95

 100 105

 11
0

 11
5

 120
 12

5

 13
0

 13
5

 14
0

 15
0

 15
5

 16
0

 17
0

 18
5

●

Mean Emulator Expectation: T = 18, Out = 1

lambda

m
u

0

50

100

150

200

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75
 80

 85

 90

 95

 100

 10
5

 11
0

 11
5

 12
0

 12
5

 13
0

 13
5

 14
0

 14
5

 15
0

 15
5 17

0

Exact Mean: T = 18

lambda

m
u

Figure 3: Example emulators compared with exact solutions. The expectation of the
variance emulator ES(M(V, x)) is shown for time point T = 8 (top-left panel) and the
analytically exact solution for the variance surface found from equation 5.2 (top-right
panel). Also shown is the expectation of the mean emulator ED(M(Y, x)) for time point
T = 18 (bottom left panel) and the corresponding exact solution found from the Master
Equation (bottom right panel)

the analytically exact solution for the variance surface found from equation 5.2 (top-
right panel). Also shown is the expectation of the mean emulator (that is µ∗(x) =
ED(M(Y, x))) for time point T = 18 (bottom left panel) and the corresponding exact
solution found from the Master Equation (bottom right panel).

In both cases, and for the remaining emulators at the other time points, it is seen
that their expectations do mimic the behaviour of the exact solution to a reasonable
degree of accuracy. We then perform more rigorous diagnostics described in the next
section.

6.1.1 Diagnostics

As we have the exact solution for the mean and variance surface for the Birth-Death
model, derived from equation 5.2, we can perform exhaustive diagnostics over the
whole input space. Writing the exact solutions as Vexact(x) and µexact(x) for the
variance and mean respectively, we examine the following diagnostic quantities Dv(x)

14

−10

−5

0

5

10

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12
 0

 0

●

Variance Diagnostics: T = 2

lambda

m
u

−10

−5

0

5

10

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 −
1

 −1

 0

 0

 0

 1

 1

●

Variance Diagnostics: T = 8

lambda

m
u

−10

−5

0

5

10

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 −
5

 −
3

 −
2

 −
1

 −1
 −1

 −
1

 0

 0

 0

 0

 1 2

 3

 4

●

Variance Diagnostics: T = 18

lambda

m
u

−10

−5

0

5

10

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 −
4

 −
1 0

 0

 0

 0

 1

●

Variance Diagnostics: T = 30

lambda

m
u

−10

−5

0

5

10

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 −1

 0

 0

 1

 1

 2

 2

●

Mean Diagnostics: T = 2

lambda

m
u

−10

−5

0

5

10

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12 −2

 −1

 −1

 0

 0

 1

 2

●

Mean Diagnostics: T = 8

lambda

m
u

−10

−5

0

5

10

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 −1

 −1

 0

 0

 0

 0

 0

 1

 1

●

Mean Diagnostics: T = 18

lambda

m
u

−10

−5

0

5

10

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12
 −2

 −1

 −1

 −1

 −1

 0

 0

 0

 0

 1

 1

 1

 1

 1

 2

 2

●

Mean Diagnostics: T = 30

lambda

m
u

Figure 4: Contour plots of the diagnostic measures for the variance and mean emulators
Dv(x) and Dm(x) respectively (top row and bottom row), for each of the four time points
T = (2, 8, 18, 30) considered. Note that, in general, the diagnostics behave well and are
mainly smaller than expected.

and Dm(x):

Dv(x) =
ES(M(V, x))− Vexact(x)√

VarS(M(V, x))
=

V ∗R(x)− Vexact(x)√
V ∗M (x)

(76)

and

Dm(x) =
ED(M(Y, x))− µexact(x)√

VarD(M(Y, x))
=

µ∗(x)− µexact(x)√
γ∗(x)

(77)

which represent the distance the emulator mean is from the exact solution, standard-
ised by the emulator variance. Contour plots of these diagnostic measures Dv(x) and
Dm(x) are shown in figure 4 for all four time points considered. As can be seen, in
general, the diagnostics proved to be comfortably acceptable, with the vast majority
of input space satisfying |Dv(x)| < 2 and |Dm(x)| < 2. For time point T = 18 there
is one area of input space where Dv(x) does get larger than expected (the red area
in figure 4). Further investigation showed that this is due to a combination of the
exact variance surface exponentially increasing at the corner of the input space and
distorting the emulator polynomial, and there being no model runs close to the prob-
lem region to correct for this. As shown later, this effect is not large enough to pose
a problem.

6.2 Implausibility

We now use the Implausibility measures described in section 4 to learn about inputs to
the model that may give rise to outputs that are in agreement with observed data. We
first created some simulated data as follows. We chose values for the inputs λ = 0.05
and µ = 0.08 and simulated 500 runs of the model using the Gillespie algorithm as

15

0 10 20 30 40

0
20

40
60

80
10

0

Time

Y
(t

)

mean
variance
kurtosis
chosen outputs

Figure 5: The (simulated) observed data of the Birth-Death process against time: the
mean and variance are the black and red lines respectively, with their observational errors
given by the dashed lines. Also shown are the 4 time points T = (2, 8, 18, 30) considered
as the vertical green lines, and the sample kurtosis in blue.

before. We took the sample mean and sample variance to be the observed mean and
variance data (alternately represented by z), and the sample error on these quantities
was used as the observational error e discussed in section 4. We also included a small
model discrepancy d on each of the mean and variance quantities.

The observed data is shown in figure 5 with the mean and variance as the black
and red lines respectively, with their observational errors given by the dashed lines.
Also shown are the 4 time points considered as the vertical green lines, and the sample
kurtosis is in blue.

We now use the implausibility measures given by equation 57, combined with the
emulators for the mean and variance surface, to examine the input space of the Birth-
Death model, and specifically to rule out regions of the input space that are deemed
inconsistent with the observed data described above.

Figure 6 shows the implausibility measures I(x) obtained from equation 57 using
either the variance (left column) or mean (right column) emulators, for each of the 4
time points considered (the four rows). The red areas represent high implausibility
and these inputs would be considered highly unlikely to produce outputs consistent
with the observed data of figure 5, and would be discarded from further analysis.
The green areas may produce good fits to the observed data, or may warrant further
investigation. The “true” input used to generate the observed data is shown as the
blue dot.

As can be seen from the right column of figure 6, the mean process of the Birth-
Death model can resolve uncertainty about the inputs x along the λ − µ direction
only. In order to learn about the λ + µ direction we need information from the
variance (left column), specifically at early times. This is of course, in agreement with
known analytical properties of the Birth-Death process (which was chosen for analysis
for precisely this reason).

We can combine such implausibility measures in many ways; possibly the simplest
is to maximise I(x) over the different cases. In figure 7 we show the implausibility
obtained from maximising I(x) over the 4 variance cases (left panel) corresponding

16

0

2

4

6

8

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 0.5

 0.5

 1

 1

 1.5

 1.5

 2

 2

 2.5

 2.5

 3

 4

 5

●

Variance Implausibility: T = 2, Out = 1

lambda

m
u

0

2

4

6

8

10

12

14

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 0.5

 0.5

 1

 1

 1.5

 1.5

 2

 2

 2.5

 2.5

 3

 3

 4

 4

 5

 5

 6

 6

 7

 8

●

Mean Implausibility: T = 2, Out = 1

lambda

m
u

0

2

4

6

8

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 0
.5

 0
.5

 1

 1

 1.5

 1
.5

 2

 2

 2.5

 2.5

 3

 3

 4

 4

 5

 5

 6

 6

 7

●

Variance Implausibility: T = 8, Out = 1

lambda

m
u

0

5

10

15

20

25

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 0.5

 0.5

 1

 1

 1.5
 1.5

 2

 2

 2.5

 2.5

 3
 3

 4

 4

 5

 5

 6

 6

 7
 7

 8

 8

 9

 9

 15

 15

●

Mean Implausibility: T = 8, Out = 1

lambda

m
u

0

5

10

15

20

25

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 0
.5

 0

.5

 1
 1

 1
.5

 1

.5

 2
 2

 2
.5

 2

.5

 3

 3
 4

 4

 4

 5

 5

 6

 6

 6

 6

 7

 7

 7

 8

 8

 9

 15

●

Variance Implausibility: T = 18, Out = 1

lambda

m
u

0

10

20

30

40

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 0.5

 0.5

 1
 1

 1.5
 1.5

 2

 2

 2.5
 2.5

 3

 3

 4

 4

 5

 5

 6

 6

 7

 7

 8

 8

 9

 9

 15

 15

 15

 15

 25

●

Mean Implausibility: T = 18, Out = 1

lambda

m
u

0

2

4

6

8

10

12

14

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 0.5

 0.5

 1

 1

 1

 1

 1.5

 1.5

 1.5

 2
 2.5

 3
 4

 5

 6

 7
 8

 9

●

Variance Implausibility: T = 30, Out = 1

lambda

m
u

0

10

20

30

40

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 0.5

 0.5

 1
 1

 1.5

 1.5

 2

 2

 2.5

 2.5 3

 3

 3

 4

 4

 4

 4

 4

 5

 5

 5

 5

 5

 5

 6

 6

 6

 6

 6

 7

 7

 7

 7

 7

 8

 8

 8

 8

 9

 9

 9

 9

 9

 15

 15

 25

●

Mean Implausibility: T = 30, Out = 1

lambda

m
u

Figure 6: The implausibility measures I(x) obtained from equation 57 using either the
variance (left column) or mean (right column) emulators, for each of the 4 time points
considered (the four rows). The red areas represent high implausibility and these inputs
would be considered highly unlikely to produce outputs consistent with the observed data
of figure 5, and would be discarded from further analysis. The “true” input used to
generate the observed data is shown as the blue dot.

17

0

5

10

15

20

25

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 0
.5

 1

 1
.5

 2

 2.5

 3

 4

 4

 4

 5 5

 6

 6

 6

 6

 7
 7

 7

 7

 8

 8

 9

 15

●

Maximum Implausibility: Variance, Out = 1

lambda

m
u

0

10

20

30

40

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 1

 1

 1.5

 1.5

 2
 2 2.5

 2.5

 3

 3 4

 4

 5

 5 6

 6

 7 7

 8

 8
 9

 9

 15

 15

 15

 25

●

Maximum Implausibility: Mean, Out = 1

lambda

m
u

0

10

20

30

40

0.00 0.02 0.04 0.06 0.08

0.04

0.06

0.08

0.10

0.12

 1

 1.5

 2

 2
.5

 3

 4

 5

 5 6

 6

 7

 7 7

 8

 8
 9

 9

 15

 15

 15

 25

●

Maximum Implausibility: Both, Out = 1

lambda

m
u

Figure 7: The implausibility obtained from maximising I(x) over the 4 variance cases (left
panel), over the 4 mean cases (middle panel) and over all cases (right panel). The “true”
input value is given by the blue dot. Red/orange areas of the input space would be ruled
out as inconsistent with the data.

to the left column of figure 6, over the 4 mean cases (middle panel) corresponding
to the right column of figure 6, and over all cases (right panel). Again the “true”
input value is given by the blue dot. It can be seen that, using such Bayes Linear
emulation analysis, we can rule out most of the input space, and that the green area
of the right panel of figure 7 is consistent with the true input value. It is also clear
that information from the variance of the Birth-Death model was vital in this process.
We now go on to apply these techniques to the more complex Prokaryotic model.

7 Application to the Prokaryotic Auto-regulatory
Gene Network

7.1 Variance and Mean Emulation

Similar to the above analysis of the simple Birth-Death model, we now apply our two
stage Bayes Linear update strategy to the more complex Prokaryotic Auto-regulatory
Gene Network described in section 5.4. This model is of far more interest, as it exhibits
complex behaviour and is used to study features of gene regulation that occur within
cells.

We restrict our attention to a 2-dimensional surface within the full 8-dimensional
input space of the Prokaryotic model, defined by parameterising the inputs as: x =
(1, 10, 0.01, 10, 1, λ, µ, 0.01), with 0 < λ < 7 and 0.05 < µ < 0.4. Hence we explore
the rate parameters corresponding to the reverse dimerisation reaction and the mRNA
degradation discussed in section 5.4, and leave a full study of the input space to future
work. As in section 6.1, we begin by using the Gillespie algorithm to perform a d =
15 point maximin latin hypercube design, with n = 40 repetitions at each input point.
We use these runs to construct mean and variance emulators for the model output at
3 different time points T = (2, 8, 18).

The model produces 5 outputs at each time point, corresponding to the 5 chemical
species g.P2, g, r, P and P2, that feature in the network. This means that we construct
5 variance and 5 mean emulators at each time point. Full analytic solutions to this
network are not available, so we leave discussion of diagnostics of stochastic models
such as this to a future work.

18

0 5 10 15 20

0
2

4
6

8
10

Time

mean
variance
kurtosis
chosen outputs

0 5 10 15 20

0
2

4
6

8
10

Time

Y
(t

)

mean
variance
kurtosis
chosen outputs

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Time

mean
variance
kurtosis
chosen outputs

0 5 10 15 20

0
5

10
15

20
25

Time

Y
(t

)
mean
variance
kurtosis
chosen outputs

0 5 10 15 20

0
50

10
0

15
0

20
0

25
0

mean
variance
kurtosis
chosen outputs

Figure 8: The (simulated) observed data for the g.P2, g, r, P and P2 against time (panels
from left to right, top to bottom). Means and variances are in black and red (solid lines)
with the dotted lines representing observational errors plus model discrepancy. The green
lines show the time points considered, and the sample kurtosis is in blue.

7.2 Implausibility

We simulate observed data, as in section 6.2, by evaluating the Prokaryotic network
model for a chosen input with λ = 2 and µ = 0.15, using the Gillespie algorithm with
500 repetitions. We took the sample mean and sample variance to be the observed
mean and variance data z, and the sample error on these quantities was used as
the observational error e, and we also included a small model discrepancy d on each
of the mean and variance quantities, as in section 6.2. This observed data for the
g.P2, g, r, P and P2 against time, is shown in figure 8. Means and variances are in
black and red (solid lines) with the dotted lines representing observational errors plus
model discrepancy. The green lines show the time points considered. Note that the
first two panels (top row) show the g.P2 and g molecules which are related by a
conservation law (which can be derived from the reaction matrix A). This will be seen
in the implausibility plots.

As we now have 5 chemicals, 3 time points and a choice of variance or mean

19

emulator, there are now a total of 30 possible implausibility plots that would be
produced using equation 57. For each chemical, we take the variance implausibility
and maximise it over all 3 time points. This produces the 5 plots show in the left
column of figure 9. We then do the same for the mean implausibility, which produces
the 5 plots in the middle column of figure 9. Maximising over both the mean and
variance plots, produces the right column.

The 5 plots in the right column of figure 9 show what parts of the input space
we learn about from measuring the 5 chemicals that feature in the network. The
left and right columns show whether this information comes from the variance or the
mean of the process. We can see that the first two chemicals g.P2 and g give exactly
the same information: this has to be true as they are linked via a conservation law.
They are highly informative and we gain information from the variance and the mean.
The mRNA molecule r is relatively uninformative about these inputs even though the
second input µ controls its degradation. The forth and fifth chemicals, the proteins P
and P2, are both highly informative, with information coming from the mean for P2,
but both mean and variance for P . Considerations of this form regarding the possible
information gaining from the measurement of each chemical species would help inform
the design of some future biological experiment.

If we maximise the implausibility I(x) over all 30 possible plots, we obtain the plot
shown in figure 10 (left panel), where again red/orange areas (with I(x) > 3) would
be discarded as implausible and the blue point represents the “true” inputs used to
generate the observed data. This represents all the information we learn from all 5
chemicals over 3 time points, using both mean and variance information. It can be
seen that the analysis work well: we can resolve much of the uncertainty as regards the
inputs, and the non-implausible area (yellow/green) contains the true value. The right
panel of figure 10 shows the same maximised implausibility plot, but for a case where
we used a far greater number of model evaluations. Here, 20 input points were used in
the design, with 200 repetitions at each point. This resulted in emulator uncertainties
of comparable size to the model discrepancy and observational errors. This shows how
much more of the input space we could resolve if allowed significantly more computer
run time. A solution to this is to use a iterative strategy, and to perform more runs
inside the current non-implausible region such as is employed in Craig et al. (1997)
and Vernon et al. (2010).

8 Conclusions

We have developed a novel technique for analysing the input space of a stochastic
computer model, based on a two stage Bayes Linear update emulation strategy that
allows emulation of both variance and mean surfaces over the input space x. This is
combined with the use of implausibility measures to discard regions of the input space
inconsistent with observed data. This methodology was applied to a simple, analyt-
ically tractable Birth-Death model, and then to a more complex Prokaryotic Auto-
regulatory Gene Network of current interest to the modelling community (Wilkinson
(2006)). We have restricted our analysis to the emulation of the means and variances
of individual univariate quantities at fixed time points, as this relates to one type of
experimental technique whereby the contents of hundreds of cells can be measured at
a single time point, but the cells are simultaneously destroyed.

There are many future directions such analysis can take including: multivariate
emulation including the emulation of the full covariance structure of the model it-
self; incorporation of the incomplete, infrequent but essentially dynamic data that
is become possible using certain fluorescence experimental techniques; design of ex-
periments including choosing the number of repetitions at each input point (see for
example Boukouvalas et al. (2009)); and the iterative reduce of the input space of
which the work presented here can be viewed as the first iteration or wave (Bower

20

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 1

 1.5

 2

 2.5

 2.5 3

 3

 4

 4

 5

 6

 7

 8 9

●

Maximum Implausibility: Variance, Out = 1

lambda

m
u

0

2

4

6

8

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 0.5

 1

 1.5

 2

 2.5

 3

 3

 4 4

 5

 5

 5

 6

 7

●

Maximum Implausibility: Mean, Out = 1

lambda

m
u

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 1

 1.5

 2

 2.5

 3

 4

 5

 5

 6

 7

 8 9

●

Maximum Implausibility: Both, Out = 1

lambda

m
u

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 1

 1.5

 2

 2.5

 2.5 3

 3

 4

 4

 5

 6

 7

 8 9

●

Maximum Implausibility: Variance, Out = 2

lambda

m
u

0

2

4

6

8

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 0.5

 1

 1.5

 2

 2.5

 3

 3

 4 4

 5

 5

 5

 6

 7

●

Maximum Implausibility: Mean, Out = 2

lambda

m
u

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 1

 1.5

 2

 2.5

 3

 4

 5

 5

 6

 7

 8 9

●

Maximum Implausibility: Both, Out = 2

lambda

m
u

0

2

4

6

8

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 0.5

 0.5

 1

 1

 1.5

 1.5

 2
 2

 2

●

Maximum Implausibility: Variance, Out = 3

lambda

m
u

0

2

4

6

8

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 0.5 0.5

 1

 1

 1.5

 1.5

 2

 2

 2

 2.5

 2.5

●

Maximum Implausibility: Mean, Out = 3

lambda

m
u

0

2

4

6

8

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 0.5
 1

 1

 1.5

 1.5

 2

 2

 2

 2.5

 2.5

●

Maximum Implausibility: Both, Out = 3

lambda

m
u

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 1

 1

 1.5

 1.
5

 1
.5

 1.5

 2

 2

 2

 2
.5

 2.5

 2.5

 3

 3

 4

 4

 4

 5

 5

 6

 6
 7

 8 9
●

Maximum Implausibility: Variance, Out = 4

lambda

m
u

0

5

10

15

20

25

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 1

 1.5

 1.5

 2

 2
.5

 2

.5

 3

 3

 3

 4

 4

 4

 5

 5

 5 6

 6

 6

 7

 7

 7

 8

 8

 8
 9

 9

●

Maximum Implausibility: Mean, Out = 4

lambda

m
u

0

5

10

15

20

25

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 1.5

 1
.5

 2

 2
.5

 2

.5

 3

 3

 4

 4

 4

 5

 5

 5 6

 6

 6

 7

 7

 7

 8

 8

 8

 9

 9

 9
●

Maximum Implausibility: Both, Out = 4

lambda

m
u

0

2

4

6

8

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 1

 1.5

 2

 2

 2.5

 2.5
 3

 3
 4 5

 6

 7

●

Maximum Implausibility: Variance, Out = 5

lambda

m
u

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 0
.5

 1

 1.5

 2
 2.5

 3

 4

 5

 5

 5

 6

 6

 6

 6

 7

 7

 7

 7

 8

 8

 8 8

 8 9

 9

 9

●

Maximum Implausibility: Mean, Out = 5

lambda

m
u

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 1.5

 2 2.5

 3

 4

 5

 5

 5

 6

 6

 6

 6

 7

 7

 7

 7

 8

 8

 8 8

 8 9

 9

 9

●

Maximum Implausibility: Both, Out = 5

lambda

m
u

Figure 9: Implausibility plots maximised over the 3 time points for the variance (left col-
umn), mean (middle column) and maximised over both variance and mean (right column).
The 5 rows represent the 5 chemical species g.P2, g, r, P and P2. Red indicates input
space that we discard as implausible. The “real” input used to generate the observed data
is given by the blue point.

21

0

5

10

15

20

25

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 2

 2.5

 3

 4

 5

 6

 7

 7

 7
 8

 8

 8

 9

 9

 9
●

Maximum Implausibility: Both, Out = 5

lambda

m
u

0

5

10

15

20

25

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 2.5

 3

 4

 5
 6

 6

 7

 8

 8

 9

 9

 9

 15

 1
5

 15

●

Maximum Implausibility: Both, Out = 5

lambda

m
u

Figure 10: The implausibility maximised over all 3 time points, 5 chemical species and
both mean and variance choices for the original design of 15 inputs with 40 repetitions
(left panel). Again red/orange areas (with I(x) > 3) would be discarded as implausible
and the blue point represents the “true” inputs used to generate the observed data. The
right panel shows the same plot, but generated using far more model runs: a design of 20
input points with 200 repetitions at each point.

et al. (2009); Vernon et al. (2010)).

Acknowledgements

IRV and MG acknowledge the support of the Basic Technology initiative as part of the
Managing Uncertainty for Complex Models project. IRV acknowledges the support of
an EPSRC mobility fellowship.

References

Boukouvalas, A., Cornford, D., and Stehlk, M. (2009), “Approximately Optimal Ex-
perimental Design for Heteroscedastic Gaussian Process Models,” MUCM Technical
Report 09/06.

Bower, R., Vernon, I., Goldstein, M., et al. (2009), “The Parameter Space of Galaxy
Formation,” MUCM Technical Report 10/02, to appear in Mon.Not.Roy.Astron.Soc.

Craig, P. S., Goldstein, M., Rougier, J. C., and Seheult, A. H. (2001), “Bayesian fore-
casting for complex systems using computer simulators,” Journal of the American
Statistical Association, 96, 717–729.

Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A. (1996), “Bayes linear
strategies for history matching of hydrocarbon reservoirs,” in Bayesian Statistics 5,
eds. Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M., Oxford,
UK: Clarendon Press, pp. 69–95.

— (1997), “Pressure matching for hydrocarbon reservoirs: a case study in the use of
Bayes linear strategies for large computer experiments,” in Case Studies in Bayesian

22

Statistics, eds. Gatsonis, C., Hodges, J. S., Kass, R. E., McCulloch, R., Rossi, P.,
and Singpurwalla, N. D., New York: Springer-Verlag, vol. 3, pp. 36–93.

Cumming, J. A. and Goldstein, M. (2009), “Bayes linear uncertainty analysis for oil
reservoirs based on multiscale computer experiments,” in Handbook of Bayesian
Analysis, eds. OHagan, A. and West, M., Oxford, UK: Oxford University Press.

Gillespie, D. T. (1977), “Exact stochastic simulation of coupled chemical reactions,”
Journal of Physical Chemistry, 81, 2340–2361.

Goldstein, M. and Rougier, J. C. (2009), “Reified Bayesian modelling and inference for
physical systems (with Discussion),” Journal of Statistical Planning and Inference,
139, 1221–1239.

Golightly, A. and Wilkinson, D. J. (2005), “Bayesian Inference for Stochastic Kinetic
Models Using a Diffusion Approximation,” Biometrics, 61, 781–788.

Kennedy, M. C. and O’Hagan, A. (2001), “Bayesian calibration of computer models,”
Journal of the Royal Statistical Society, Series B, 63, 425–464.

O’Hagan, A. (2006), “Bayesian analysis of computer code outputs: A tutorial,” Reli-
ability Engineering and System Safety, 91, 1290–1300.

Rougier, J. (2009), “Formal Bayes methods for model calibration with uncertainty,”
in Applied Uncertainty Analysis for Flood Risk Management, eds. Beven, K. and
Hall, J., Imperial College Press / World Scientific.

Vernon, I., Goldstein, M., and Bower, R. (2010), “Galaxy Formation: a Bayesian Un-
certainty Analysis,” MUCM Technical Report 10/03, submitted to Bayesian Analy-
sis.

Wilkinson, D. J. (2006), Stochastic Modelling for Systems Biology, Taylor and Francis
Group, LLC: Chapman and Hall.

A Mass Action Stochastic Kinetics.

We consider the general system which has k species Y1, Y2, ..., Yk and r reactions
R1, R2, ..., Rr, and we assume the structure of the Reaction network can be described
by a Petri Net (C, T, U, V, Y) where C = (Y1, .., Yk)T and T = (R1, ..., Rr)T . We assert
that each reaction has a reaction rate or Reaction Hazard hi(y, xi) = λi, where xi is
the Reaction Rate Constant and y = (y1, ..., yk) is the current state of the system, and
that for reaction type Ri, in the absence of any other reaction the time to the next Ri
reaction occurring is Exp(hi(y, xi)). When a reaction Ri occurs it changes the state
vector y according to y → y + A(i), where A(i) is the ith row of the reaction matrix
A. Note that the notation of this appendix is distinct to and should not be confused
with that of section 2.

The possible types of Reaction Hazards hi(y, xi) are defined as follows, using mass-
action kinetics, which states that the hazard of each reaction type will be proportional
to the number of possible combinations of reactant molecules:

1. Zeroth Order Reaction (e.g. Immigration Process):

Ri : ∅ −→ B (78)

has a constant reaction rate so:

hi(y, xi) = xi. (79)

23

2. First Order Reactions:
Ri : Yj −→ B (80)

Reaction proportional to the number of molecules of Yj so reaction hazard is:

hi(y, xi) = xiyj . (81)

3. Second Order Reactions (two types):
Type 1: different chemicals combining.

Ri : Yj + Yk −→ B (82)

Reaction proportional to the number of molecules of Yj and Yk so reaction hazard
is:

hi(y, xi) = xiyjyk. (83)

Type 2: Same chemical combining.

Ri : 2Yj −→ B (84)

Reaction proportional to the number of possible pairs of Yj molecules which is(
yj

2

)
so reaction hazard is:

hi(y, xi) = xi
yj(yj − 1)

2
. (85)

A very useful quantity is the Combined Reaction Hazard h0(y, x) defined as:

h0(y, x) =
v∑
i=1

hi(y, xi), (86)

where x = (x1, x2, ..., xr).
This is all we need to simulate a Stochastic Chemical Reaction Network using the

Gillespie algorithm described in the next section.

B The Gillespie Algorithm.

We can now simulate the behaviour of a Stochastic Chemical Reaction Network de-
scribed by any Petri Net (C, T, U, V, Y) with Reaction Rate Constants x = (x1, x2, ..., xr)
using the Gillespie Algorithm as follows:

1. Start the system at time t = 0, with Reaction Rate constants x = (x1, ..., xr)
and initial numbers of molecules for each species y = (y1, ..., yk).

2. For each i = 1, 2, ..., r calculate hi(y, xi) based on the current state y.
3. Calculate the Combined Reaction Hazard h0(y, x) =

∑v
i=1 hi(y, xi) for the cur-

rent state y.
4. Simulate the time to the next event t′ as a Exp(h0(y, x)) random quantity.
5. Put t = t+ t′.
6. Simulate the reaction index, j, of the type of reaction that has occurred as

a discrete random quantity with probabilities P (j = i) = hi(y, xi)/h0(y, x),
i = 1, 2, ..., r.

7. Update the state vector y according to reaction Rj . That is, put the new y =
y+S(j), where S(j) denotes the jth column of the Stoichiometry matrix S = AT .

8. Save values of x and t.
9. If t < Tmax, return to step 2.

All runs of the model discussed in sections 5, 6 and 7 were performed using the
above algorithm.

24

