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Abstract.

In many scientific disciplines complex computer models are used to understand
the behaviour of large scale physical systems. An uncertainty analysis of such a
computer model known as Galform is presented. Galform models the creation and
evolution of approximately one million galaxies from the beginning of the Universe
until the current day, and is regarded as a state-of-the-art model within the cos-
mology community. It requires the specification of many input parameters in order
to run the simulation, takes significant time to run, and provides various outputs
that can be compared with real world data. A Bayes Linear approach is presented
in order to identify the subset of the input space that could give rise to acceptable
matches between model output and measured data. This approach takes account
of the major sources of uncertainty in a consistent and unified manner, includ-
ing input parameter uncertainty, function uncertainty, observational error, forcing
function uncertainty and structural uncertainty. The approach is known as History
Matching, and involves the use of an iterative succession of emulators (stochastic
belief specifications detailing beliefs about the Galform function), which are used
to cut down the input parameter space. The analysis was successful in producing
a large collection of model evaluations that exhibit good fits to the observed data.
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1 Introduction

Current theories of cosmology suggest that the Universe began in a hot, dense state
approximately 13 billion years ago, and that it has been expanding rapidly ever since.
However, observations of galaxies imply that there must exist far more matter in the
Universe than the visible matter that makes up stars, planets and us. This is referred to
as ‘Dark Matter’ and understanding its nature and role in the evolution of galaxies is one
of the most important problems in modern cosmology. The Galform group, based at the
Institute of Computational Cosmology, Durham University, is the world leading group
in the study of Galaxy Formation in the presence of Dark Matter. Over the last 13 years,
they have developed a detailed computer model, known as Galform, which simulates
the creation and evolution of approximately one million galaxies from the beginning of
the Universe until the present day. The simulation produces various physical features
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of each of the galaxies which can be compared to observed galaxy survey data.

The Galform model requires many input parameters to be specified in order to run
the simulation. It is therefore necessary to explore the input parameter space and find
the set of all input configurations that give rise to acceptable matches between model
output and observed data. As the model run time is significant, this is a challenging
task. Further, even to assess what constitutes an acceptable match, we must consider
all of the uncertainties that are involved in the comparison between model and reality,
including input parameter uncertainty, function uncertainty, observational error, forcing
function uncertainty and structural uncertainty. Such a detailed level of uncertainty
quantification has never been attempted for such a cosmological model.

This case study describes a collaboration between members of the Statistics group
and the Galform group, at Durham, to carry out such an uncertainty analysis for Gal-
form. Our aim is to identify all choices of input parameters that generate consistent
physical models in the sense that they would yield sufficiently good matches to certain
important features of observational data, when we have taken into account all relevant
sources of uncertainty. In particular, it is of fundamental interest to know whether this
set of acceptable inputs is non-empty.

In order to treat all uncertainties in a consistent and unified manner, we use general
techniques related to the Bayesian treatment of uncertainty for computer models for
large scale physical systems. In addition to the uncertainty associated with the Galform
function itself, we elicit all of the other sources of uncertainty which must be addressed
in order to make meaningful comparisons between Galform output and observational
measurements, in particular, making expert assessments for the structural uncertainty
which arises due to the inherent limitations of the physical model.

Our approach is based on the construction of an emulator for Galform, this being
a stochastic function that represents our beliefs about the behaviour of the simulator.
We use the emulator and the model uncertainties to define implausibility measures over
the input parameter space for Galform, based on a Bayes Linear analysis. High values
of the implausibility measures suggest that we should consider that it is very unlikely
that an acceptable match to the chosen observational features would be obtained by
evaluating the model at the corresponding input values, and hence we can exclude
regions of input space by imposing cutoffs on our implausibility measures. We proceed
iteratively, making function evaluations over the full range of the input space, emulating
Galform over this space, using implausibility measures to remove a part of the space,
making a further collection of evaluations of Galform in the reduced space, re-emulating
within the reduced space, re-evaluating our implausibility measures over this subspace
and therefore removing a further portion of the space and continuing in this fashion.
We have performed this cycle four times, in each case making a substantial further
reduction to the allowable input space. Our final stage was to make a further set of
runs to check that we did indeed have a large number of acceptable matches between
Galform output and observations over a range of input parameter choices within the
final reduced space.

This is a significant contribution toward understanding the Galform model, as pre-
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viously no knowledge of the shape and extent of the acceptable region of input space
existed. Further, the previous best matches to the primary data set of interest were not
compatible with other secondary, but important, observational data sets. Our analysis
demonstrates that, by making realistic assessments of structural uncertainty, we are
indeed able to simultaneously match data sets that were previously thought to be in-
compatible, contradicting authors who suggested the Universe is ‘anti- hierarchical’ and
such a match impossible. Thus this work should be viewed as supporting the hypothesis
that galaxies formed in the presence of large amounts of Dark Matter, and in particular
via hierarchical merging.

This collaboration began in an informal fashion. Members of the statistics group
were interested in applying various techniques that they had developed for the analy-
sis of large scale computer models, aspects of which were reported in a Case Studies
meeting at Pittsburgh (Craig et al. (1997)). The Galform group offered the use of their
model and some of their computing facilities. Over time, and after many discussions
and preliminary explorations, it became clear that such an analysis was a useful tool for
understanding various scientific issues related to the model, and merited a serious col-
laborative effort to pursue these questions. This account is a description of the results
of the collaboration, described more or less as it has evolved.

The Case Study paper is structured as follows. In section 2 we discuss the physical
motivation for the study of galaxy evolution and give a general description of the Gal-
form model. Section 3 describes the Computer Model methodology that we will employ,
and highlights all the relevant uncertainties that must be considered. The details of the
Galform Model necessary for an uncertainty analysis are given in Section 4, along with
further physical description, and in section 5 we describe the construction of the Wave 1
emulator. In section 6 we assess all remaining uncertainties relevant to the analysis and
in section 7 we perform the first iteration of the History Matching process. Section 8
deals with the second, third and final iterations, and the results are reported in section
9. We conclude with discussions regarding physical insight gained in section 10.

2 A universe full of galaxies

The night sky is full of stars. Yet the stars that are visible to the human eye are only
an unimaginably tiny fraction of the stars in the universe as a whole. Equipped with
telescopes, we discover that at great distances beyond our own galaxy lie millions of
millions of other galaxies, each with their own populations of stars.

Galaxies come in great variety of shapes and forms. Our own Milky Way galaxy is
one of the larger spiral type galaxies. Spiral galaxies are dominated by a flat disk of stars,
often with prominent spiral arms. In addition to stars, spiral galaxies contain significant
amounts of gas and dust that can be seen to fuel the birth of further generations of
stars. Although spiral galaxies are the most numerous, the most massive galaxies have
a very different appearance. Largely devoid of gas and dust, they have a 3-dimensional
ellipsoidal appearance. Hubble (1936) established a well defined system for classifying
the appearance of galaxies, referred to as Hubble’s “tuning fork”. Based primarily on
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the significance of the bulge component and the prominence of spiral arms, the Hubble
sequence is often better viewed as a sequence of star formation rates and galaxy colours.

With modern telescopes, it has become possible to study galaxies at greater and
greater distances from earth. Because of the finite speed of light, such distant galaxies
are seen when the universe was much younger. Astronomers can use this time delay
to observe the build up and formation of galaxies. The most distant galaxies identified
to date are seen only 109 years after the big bang, when the universe was less than
1/10th of its current age. These observations have revealed some, at first sight, puzzling
results. The “natural” sequence for the formation of galaxies is through a process of
hierarchical aggregation: small galaxies form early in the history of the universe, build-
ing larger and larger galaxies through gravitational collapse. This picture is a natural
consequence of the Cold Dark Matter model that describes the large scale properties of
the COSMOS well. The picture is however at odds with observational studies that find
a large proportion of the most massive galaxies are present quite early in the history of
the universe. Explaining the tension between the prima-face theoretical expectation and
the observational evidence was one of the key motivation for developing the theoretical
model that is discussed below.

2.1 Understanding our place in the cosmos

The aim of galaxy formation studies is to understand why the universe appears as it does.
We wish to explain the characteristic properties of galaxies, such as their distribution
of luminosities, colours and ages. In doing so, we are understanding what makes the
universe tick. This purpose is part of an age old quest to understand our origins in the
deepest sense. It is obvious that, without stars, there could be no life. Yet it is equally
true that without the large accumulations of stars that we know as galaxies we could
not exist.

As we will describe below, the present problem is not so much to understand why
galaxies form, but to understand why they are relatively few and far between. By
understanding this, we hope also to explain why galaxy formation appears to proceed
very differently to that expected in the simplest theories. The basic ingredients have
been in place for some time (the force of gravity and radiative cooling of baryonic
matter), but we are only now beginning to understand how the formation of galaxies
is regulated. The surprising result is that the black holes (the densest objects in the
universe) appear to play a key role in this.

2.2 Galaxy Formation - a beginners Guide

So how do galaxies form? Why is the universe filled with such objects? In principle,
it is a straightforward consequence of the dominance of the gravitational force. Since
all matter makes a positive contribution to the gravitational force, the clumping of the
universe’s mass is a run away process. As the condensations of matter become denser,
they become more effective as attractors. These matter concentrations are referred to
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as haloes.

The observational evidence shows that most of this mass, however, is not normal,
“baryonic”, matter (that you and I are made from) and that the universe is dominated
by ”Cold Dark Matter” (CDM): massive particles that interact very weakly. The CDM
particles may be associated with super-symmetric extensions of the standard model of
particle physics. Recent observations have also shown that a vacuum energy contribution
is required.

The CDM particles explain the collapse and growth of the gravitating dark matter
haloes, but to describe the formation of the luminous galaxies, we must turn to the
astrophysics of the baryonic matter. Our everyday experience suggests what happens.
As the baryons are pulled together by the collapse of the dark matter halo, they heat
up and start to resist further compression. The baryonic gas (but not the collisionless
dark matter) radiate this energy and cool leading to a run-away contraction that is
only stopped by the conservation of angular momentum. The baryons form thin, cold
spinning disks of gas. Further condensing leads to the formation of stars, and empirical
measurements show that the rate of formation of stars is proportional to the surface
density of gas (for current theoretical models, this empirical calibration is entirely suf-
ficient).

In this scenario, small haloes are able to convert almost all their baryonic component
into stars, but this does not accurately reflect the universe we live in. In contrast to our
initial model, the fraction of the baryonic material that is observed to form into stars is
rather small, only about 10% of the total baryonic content of the universe. The origin
of this discrepancy is a key cosmological puzzle, and astronomers appeal to “feedback”
to resolve the discrepancy: somehow the formation of stars must inject energy that
prevents further gas cooling. One of the key aims of the GALFORM project is to
identify the feedback schemes that are needed to account for the observed universe.
In small galaxies, we believe that the primary regulation mechanism is supernovae:
the energetic explosions that massive stars undergo at the end of their life. In weak
gravitational potentials, these are capable of driving gas out of the galaxy.

The strength and importance of feedback is best assessed by comparing the observed
galaxy mass function (the numbers of galaxies in a given mass per unit volume) with the
halo mass function. If star formation were uniformly efficient, there would be a constant
offset between the two. However, a comparison shows that they differ dramatically in
shape: the dark matter mass function has far more small haloes than are observed
to host dwarf galaxies in the universe and lack a sharp cut-off at high masses. While
supernovae may solve the problem with faint galaxies, it cannot explain the sharp cutoff
at high masses. Of the solutions proposed, the current front runner is a form of feedback
associated with the accretion of gas on to black holes.

This form of “AGN” feedback is at first sight rather exotic. Black holes are the
smallest objects in the universe, their size (measured as their Schwarzschild radius) is
only 1.5×108 km. It is surprising that an object so small can heat a volume with radius
1011 times larger. Yet this is just what is observed in clusters of galaxies. Clusters
are gravitationally bound systems containing 1000s of galaxies and 1015 solar masses



6 Galaxy Formation: an Uncertainty Analysis

of (largely) dark matter. Gas at the centres of these systems is dense enough that it
should cool, promoting the formation of stars in the central object. Yet, little cooling is
observed. Instead these systems host a powerful radio galaxy — a galaxy with a central
black hole (or AGN) that is the source of a jet of magnetised high energy plasma.
Although the details are not yet clear, relativistic particle jets from the black hole are
capable of replacing the energy that is lost as cooling, keeping the central gas hot and
starving the central galaxy of fuel for star formation. The frequency of the discovery of
such objects is also remarkable - they seem to occur everywhere the run away cooling
process would generate a problem. It is now widely accepted that it provides an essential
ingredient for models that explain the formation of galaxies.

2.3 Modelling Galaxy Formation

There are essentially two approaches to modelling the formation of galaxies. These are
usually referred to as “numerical simulation” and “semi-analytic modelling”.

The idea of “numerical simulation” is simple and direct. A powerful computer
is programmed with the fundamental physical equations that describe the growth of
fluctuations of dark matter, the hydrodynamical response of the intergalactic gas and
its loss of energy through key atomic cooling processes. However, as we have described
above, the equations are missing some key components of galaxy formation physics and,
if left to themselves, massively over-produce the abundance of stars. Unfortunately, such
codes have no hope of directly following the formation of stars or the winds they may
generate at their death, and are many more orders of magnitude from being able to
track the formation of black holes or the processes that generate the jets that regulate
the formation of bright galaxies.

“Semi-analytic modelling” represents the alternative approach. Rather than tackling
the whole problem in a single numerical integration, we break it down into its separate
components. Of course, we must make some level of approximation by doing this, but we
hope to create a model that encompasses the main physical processes with a minimum
of complexity. For example, one component of the model is the growth and merging of
dark matter haloes. This can be computed through an analytic approximation or by
running a numerical calculation that only includes the force of gravity. In terms of the
behaviour of the dark matter, this approximation is extremely good. We must then add
components to describe such features as the collapse and cooling of gas; the formation
of stars; the growth of black holes; merging of galaxies; the feedback effect of supernova
explosions and jets from black holes, and then link them together through a network
of interactions. Adding further components complicates the model but may improve
its physical realism and ability to match the data. Each component is based on the
results of a targeted set of simulations - or, failing this, on physically plausible scaling
relations. In many cases, however, the physical process is not completely understood
or characterised: to cope with this we introduce a number of parameters to account for
this uncertainty. The result is a network of equations (or algorithms) whose behaviour
is driven by the underlying growth and merging of the dark matter haloes, and whose
response is governed by a number of adjustable input parameters. Because of the
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intrinsic complexity of the galaxy formation problem, “semi-analytic models” currently
offer the best avenue for progress.

2.4 The Galform model

The GALFORM code is a world-leading semi-analytic galaxy formation model. The
code separates the physical processes involved in galaxy formation into modules. The
principle modules track:

1. the gravitational collapse and build-up of dark matter haloes;

2. the cooling and accretion of gas; the formation of stars, stellar evolution and
“feedback” from supernova explosions;

3. galaxy mergers and instabilities in stellar disks;

4. the formation of black holes and the associated feedback;

5. the effects arising from re-ionisation of the universe by the ultra-violet radiation
field.

The computer code for each of these sections implements astrophysically motivated
algorithms, each process drawing on the inputs provided by each of the other modules.
The modules link together to form a network of non-linear equations that are integrated
in time to trace the evolving properties of the galaxy population. The coding of each
individual module is quite complex. In total the model uses over 50,000 lines of computer
code. Further details of the modules are described in section 4.2. Baugh (2006) presents
a suitable introduction to the internal workings of the code.

Each module has associated input parameters, which define the working of each
module. For example, they specify the rate at which cold gas is converted into stars;
or the energy generated in supernova feedback and its dependence on galaxy mass. In
order to run the code, the astrophysicist must specify values for each of these param-
eters. Some parameters are quite well defined by numerical experiments or targeted
observational data, but others are highly uncertain. Conventionally, the astrophysicist
makes an educated guess at plausible values of the parameters, and then adapts the
values to converge slowly on an acceptable solution. Clearly this is an area which could
be hugely improved by applying systematic methods for uncertainty analysis to explore
the input parameter space, and this provides the motivation for this Case Study.

3 Uncertainty Analysis for Computer Simulators.

3.1 Uncertainty in complex models

Our aim in this case study is to identify that region of the input space of the Galform
simulator for which certain aspects of Galform output match closely to measurements
that have been made in the observable universe. As such, this study falls within the
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general area of the analysis of uncertainty arising when we study complex physical sys-
tems by means of mathematical models typically implemented as computer simulators.
The general version is as follows. A computer simulator f takes as input the vector
x, which represents certain physical properties of a system of interest. The simulator
output vector, f(x), corresponds to certain aspects of the behaviour of the system. For
a given choice of inputs, this behaviour is determined, in principle, by a series of equa-
tions embodying all of the relevant theoretical knowledge relating system properties to
system behaviour. This approach is common to many areas of science. The reason
that we can talk of an emergent methodology is that, despite the enormous differences
between each of the individual models, all such problems of physical modelling confront
a similar collection of basic uncertainties.

[1] Parameter uncertainty. We do not know the appropriate values of the inputs
to the simulator. In some cases, we may not even know whether there is any appro-
priate choice for the inputs. Galform is a case in point. If we have misrepresented
the underlying physics, for example if it turns out that the current view of the role of
Dark Matter is not supported by the weight of observational evidence, then the basic
meaning of the model and the interpretation of the parameters will be called into ques-
tion. In particular, were we to discover that there were no choices of inputs for which
Galform output matched observations in our universe, then that might provide part of
the evidence which would call the current account of cosmology into question.

[2] Simulator uncertainty. For any choice of inputs, x, the output f(x) is a de-
terministic computer function. However, many computer simulators are very expensive,
in time and resources, to evaluate, for any choice of inputs. In practice, it is appropriate
to consider that the output values of such a simulator are unknown except at the input
choices at which the simulator has been evaluated. An important stage in the anal-
ysis, therefore, is the construction of a statistical representation or emulator for the
simulator. The emulator represents our uncertainty about the value of the function at
each possible input choice, and therefore acts both as an approximation to the function
and as an assessment of the uncertainty introduced by the approximation. Much of the
literature on computer experiments is concerned with efficient methods for building
emulators; see for example Sacks et al. (1989); Santner et al. (2003); Currin et al. (1991).
For our Galform investigations, we have been able to make a large number of evalua-
tions of the simulator. Even so, emulation has proved to be a key step in extending
our uncertainty description from the function evaluations to the remainder of the input
space.

[3] Structural uncertainty. However carefully we have constructed our model,
there will always be a difference between the system and the simulator. Inevitably,
there will be simplifications in the physics, based on features that are too complicated
for us to include, features that we do not know that we should include, mismatches
between the scales on which the model and the system operate, and simplifications and
approximations in solving the equations determining the system. Often, understanding
this structural uncertainty will be one of the most challenging aspects of the analysis.
The interweaving of the emulation technology developed within the computer experi-
ment literature and the careful consideration of structural uncertainty is, in our view,
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the driving force for this new area of statistical methodology. We pay close attention to
structural uncertainty in the current study.

[4] Observational error. This type of uncertainty arises when we consider the
match of our model to system observations. Measurement errors are familiar, in prin-
ciple, to statisticians. However, it is often the case, in complex physical systems, that
the observations are themselves somewhat indirect, being assessed on the basis of ex-
tensive preprocessing based on various additional theoretical constructs. Further, the
measurements may not directly correspond to the outputs of the simulator and therefore
require an extra layer of interpretation and analysis before the model predictions and
the system observations can be compared. The observational error in Galform is of a
particularly complex form, requiring considerable processing to transform the system
observations to a comparable spatio-temporal resolution to the simulator outputs.

[5] Initial condition and forcing function uncertainty This corresponds to all
of the other aspects of the simulator which need to be specified before the model may
be evaluated. For example, the Galform simulator requires a full spatial specification of
the arrangement of Dark Matter at all times in the development of the universe, and so
we need to account for the uncertainty introduced as we do not know this configuration.

In this study, we will describe how we address each of these sources of uncertainty
for the Galform project. We aim to be careful and thorough, but we must also recognise
that, for a complex model such as Galform, uncertainty modelling is a process which
is similar in many ways to the physical modelling process on which we are building.
Quantifications of uncertainty depend on complex scientific judgements over which dif-
ferent experts may have different views. Further, while there is much expert knowledge
that is available and relevant, this information is held collectively over a wide commu-
nity of experimenters, observationalists, theoreticians and modellers. Therefore, it is as
misleading to talk of a definitive assessment of the uncertainty associated with Galform
as it would be to talk of a definitive form for the Galform model itself. Assessment of
uncertainty is an ongoing process for models which are, themselves, undergoing contin-
uous development. Our account documents one iteration in this ongoing process, albeit
one for which the uncertainty analysis is carried out to a much greater level of detail
than is usual in this field (or indeed in most analyses of complex physical models in any
area of application of which we are aware).

3.2 Linking the simulator with the system

We now introduce the general structure that we shall use to describe the relationship
between the computer simulator and the physical system. We will describe this link
in terms of the Galform simulator, but the ingredients are common to a wide variety
of computer simulator analyses. We denote by z the vector of observations that we
shall use for this study. Our choice for z will be the observed numbers of galaxies of
various degrees of luminosity, assessed separately for younger and for older galaxies and
expressed on the log scale. We describe the relationship between the observations, z,
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and the true physical system values, y, as

z = y + εobs (1)

where εobs is the experimental error, which we take to be uncorrelated with y.

Is the theoretical understanding of Galaxy formation, as embodied in Galform, con-
sistent with observations z? Galform is represented as a function, which maps the inputs
x to the outputs f(x). The theoretical description involves the notion that when we
evaluate Galform at the actual system properties, x∗ say, then we should reproduce the
actual system behaviour y. This does not mean that we would expect perfect agreement
between f(x∗) and y. Although Galform is a highly sophisticated simulator, it still of-
fers a necessarily simplified account of the evolution of galaxies, and approximates the
numerical solutions to the governing equations. The simplest way to view the difference
between f∗ = f(x∗) and y is to express this as

y = f∗ + εmd, (2)

where we consider that εmd is uncorrelated with f∗. Expressing our judgements about
the likely size of the model discrepancy, εmd, determines how close a fit between model
output, f∗, and observation y we require for an acceptable level of consistency between
theory and observation.

We search for choices of input x for which the output f(x) is sufficiently close to
y that we would declare the observed output to be compatible with the predictions of
the model, when we allow for model discrepancy. In practice, all that we can compare
is f(x) and z, which we do by combining (1) and (2). Achieving an acceptable match,
for a particular input choice x, does not mean that the model is ”correct” or that a
choice of parameter values which achieve the match corresponds to the ”true” value of
the parameters, but simply that this version of the model will have met the challenge
of reproducing an important observational aspect of the galaxy formation study within
our agreed tolerance level. Similarly, identifying the whole collection of possible choices
of inputs x which achieve an acceptable match is informative in identifying the ranges
of parameter choices which are compatible with the given model and observations.

The form (2) is simple and intuitive, and is widely used in computer modelling
studies. In our case, this corresponds to the natural approach in which we ask whether
we could view Galform, with appropriate choice of inputs, as adequately reproducing the
observed universe, within the tolerance set by the model discrepancy. In this account, we
therefore ignore all of those additional aspects of our uncertainty modelling which would
correspond to a more sophisticated analysis of model discrepancy, based, for example,
on informed expert judgements as to the ways in which the Galform simulator is likely to
evolve over the coming years. A detailed specification of such features would potentially
be highly insightful, and might result in a much richer correlation structure across the
elements of the discrepancy vector; see Goldstein and Rougier (2009). However, we
have made the simplifying judgement that, as a first attempt to quantify uncertainties
for Galform, it was better to focus on the most important large scale components of
uncertainty. We shall describe in detail how we decompose structural uncertainty into
its leading ingredients.
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3.3 Bayes Linear Analysis

In this case study, we follow the Bayes linear approach to uncertainty quantification and
analysis. This approach is relatively simple in terms of belief specification and analysis,
as it is based only on mean, variance and covariance specifications which, following
de Finetti, we take as primitive; see De Finetti (1974, 1975). In this formulation, the
probability of an event is the expectation of the corresponding indicator function. The
appropriate updating rules for expectations and variances for a vector y, given a vector
z are

Ez[y] = E(y) + Cov(y, z)Var(z)−1(z − E(z)), (3)
Varz[y] = Var(y)− Cov(y, z)Var(z)−1Cov(z, y). (4)

Ez[y] and Varz[y] are termed the adjusted mean and variance of y given z. Bayes
linear adjustment may be viewed as an approximation to a full Bayes analysis, or,
more fundamentally, as the “appropriate” analysis given a partial specification based
on whichever expectations we are both able and willing to specify. For a detailed
treatment, see Goldstein and Wooff (2007). There are many areas of similarity between
full Bayes and Bayes linear analyses. In particular, a full Gaussian specification for all
of the relevant quantities would lead to similar updating formulae.

We have two basic reasons for choosing the Bayes linear approach for this study.
Firstly, meaningful full prior probabilistic specification would be potentially very com-
plex. For example, in relations (1) and (2), we have imposed the requirement that the
two terms on the right hand side of each equation are uncorrelated. This already is a
strong assertion, and we might well be reluctant to extend this to a judgement of full
probabilistic independence between the corresponding terms. More generally, it may be
reasonable to suppose that we can make expert judgements about the order of magni-
tude of the model discrepancy terms which are sufficient for us to make variance and
covariance assessments across the various components. However, it seems unrealistic to
imagine that we would be able to make the fine level probabilistic specifications over all
model discrepancy outcomes required for a full Bayesian analysis.

Our second reason for making this choice is to simplify the calculations required for
a fully probabilistic analysis. The technical heart of our calculations is the iterative
re-emulation of the Galform simulator within subspaces of the input parameters which
are increasingly constrained by a series of complicated and highly non-linear boundaries.
In order to render these calculations tractable, it is helpful to exploit the simplifications
of a Bayes linear analysis.

3.4 Emulation

We are interested in the behaviour of the Galform model over the whole of its specified
input space. The substantial run time and the high dimensional input space combine
to make direct exploration by model runs alone infeasible. We express our beliefs about
the outputs of the model at locations in the input space that have not been previously
evaluated by constructing an emulator. An emulator is a stochastic belief specification
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for a deterministic function (Craig et al. (1996, 1997); O’Hagan (2006); Oakley and
O’Hagan (2002); Conti et al. (2009); Higdon et al. (2004)). The emulator is much
faster to evaluate than the simulator, so that we may explore the input space using the
emulator, while taking into account the extra uncertainty that we have introduced by
substituting emulator evaluations for simulator evaluations.

We construct our emulator for output i of the function f(x) to have the form

fi(x) =
∑
j

βij gij(x) + ui(x), (5)

where B = {βij} are unknown scalars, gij are known deterministic functions of x and
u(x), uncorrelated with B, is a weakly stationary stochastic process with constant vari-
ance. The regression term on the right hand side of equation (5) expresses the global
behaviour of the function, i.e. those aspects of the function about which we may learn
by making a collection of function evaluations over a widely spaced, and roughly orthog-
onal design. The process u(x) represents localised deviations from this global behaviour
near to x, and expresses those aspects of the behaviour of the function that we may
only learn about by making function evaluations for which the inputs are close to x.

In the Bayes Linear approach, the emulator specification requires a mean vector and
a variance matrix for B and values for the mean, variance and correlation function of u.
A simple specification for u(x) is to suppose, for each x, that ui(x) has zero mean with
constant variance and where Corr(ui(x), ui(x′)) is a function of ‖x−x′‖. The emulator
is used to evaluate the expectation and variance of the function, for any input x and
the covariance between the values of f at any pair of points x, x′. From (5), these are

µi(x) = E(fi(x)) =
∑
j

E(βij) gij(x) + E(ui(x)), (6)

κi(x, x′) = Cov(fi(x), fi(x′)) = Cov(
∑
j

βij gij(x),
∑
j

βij gij(x′)) + Cov(ui(x), ui(x′)).

With high dimensional input spaces, it is common to find, for any output, fi say, that
a subset, x[i] say, of the inputs has the most influence in explaining the variation in the
value of fi(x), where the subset x[i] may vary with i. We may reform the emulator as

fi(x) =
∑
j

βij gij(x[i]) + ui(x[i]) + wi(x), (7)

where ui(x[i]) has constant variance, and correlation function depending on ‖x[i]−x′[i]‖,
and wi(x) is a “nugget term” with constant variance over x, with Cov(w(x), w(x′)) = 0
for x 6= x′. The collection x[i] is often called the active variables for fi, and wi(x)
expresses all of the variation in f(x) which arises if we view the emulator f(x) simply
as a function of x[i].

There is some debate in the computer experiment literature as to whether it is
preferable to put a lot of effort into constructing the regression terms in the emulator
or whether it is better to construct a simple mean function and to place more weight
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on the residual process u(x). Obviously, the best strategy is highly problem dependent.
However, in this study and more generally, we prefer where possible to put as much
detail as is feasible into the mean function, for the following reasons.

[1] Many physical models, and Galform in particular, exhibit strong and physically
interpretable monotonicities which are naturally expressed through the mean function.

[2] It is easier for the expert to assess whether the emulator formulation is consis-
tent with informed scientific judgement about the behaviour of the function if a large
proportion of the variability is expressed through regression terms.

[3] If much of the structure of the emulator is encoded in the regression function,
then this simplifies various of the calculations that we need to make when comparing
the model to observations and suggests very cheap approximations to calculations which
would otherwise be very expensive if carried out using the full emulator across the whole
of the input space.

[4] In our experience, the form of local process, u(x), can be difficult to assess, even
with large numbers of function evaluations. Partly, this is because there is a funda-
mental confounding between the location of the mean function, the size of the residual
variance and the strength of the residual correlation. Partly, also, this is because any
form of correlation function that we fit necessarily approximates the different degrees of
smoothness of the function across different areas of the input space, and many methods
of estimating smoothness parameters are potentially non-robust when applied to pro-
cesses which do not fit exactly to the assumptions that are used to generate the fitting
algorithms. Therefore, we prefer to model as much of the variation in the function as we
can by the regression form, to reduce the residual variance as much as is feasible, and
then to be fairly conservative in choosing the length of correlation that we shall impose.
This has the effect of somewhat increasing our uncertainty away from the sampled input
values, but, if the regression terms explain a sufficient proportion of the variation, then
this does not have a large effect on our inferences.

In general computer experiments, we choose our form for the emulator by a com-
bination of expert judgement based on physical intuition and experience with earlier
versions of the model and, where appropriate, by preliminary experiments with fast
approximate version of the simulator. In our case, we were able to make a collection of
evaluations of the simulator, based on a Latin Hypercube design, which was sufficiently
large to allow us to fit the emulator directly from our functional evaluations. Therefore
we proceeded as follows, for each output that we chose to emulate.

Firstly, we carried out statistical model fitting, given the collection of runs, to select
the deterministic functions gij , to assess the values of the coefficients B and to assess
the residual variance and covariance function, u(x) and, where appropriate, to identify
active subsets x[i]. We then checked that the form of the emulator was physically
meaningful. Finally, we carried out a diagnostic analysis on our emulator. We will give
details of each of these stages in the construction of our emulators below.
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3.5 History Matching

The aim of this study is to estimate the set of input values X ∗ for which the evaluation
of f(x) gives an acceptable match to the observations z, by identifying all x for which
there is good reason to suppose that we would obtain an acceptable match were we to
make such an evaluation of f(x), along with obtaining a substantial collection of realised
evaluations of the function which actually do yield acceptable matches and which may
then be used to explore the match between other aspects of the Galform output and
the corresponding observational information.

We refer to the process of identifying the collection X ∗ as history matching. This
terminology is common in various applications, and in particular in oil reservoir mod-
elling, where it refers to the process of adjusting the inputs to a simulator of an oil
reservoir until the output closely reproduces features such as the historical oil produc-
tion and pressure profiles at all of the wells. The emphasis on identifying all of the
possible matches to observation is ours. Pragmatically, reservoir engineers often stop
when a few matches, or even just one, have been obtained.

History matching may be compared to the more familiar problem of model calibra-
tion in which we suppose there is a single ”true but unknown” value x∗ and our objective
is to make probabilistic statements as to this value, based on a prior specification for
x∗, the collection of model evaluations and the observed history. While calibration and
history matching are thematically related, they are fundamentally different. For exam-
ple, calibration will always result in a proper posterior distribution over the input space,
while history matching might lead to the conclusion that the collection of acceptable
matches was empty. It would be of great interest to find that the set X ∗ was empty in
the Galform study, as that might suggest possible defects in the general theory under-
lying the simulation process. However, in this study, we do find a collection of good fits
to the observations.

Our general view is that history matching is always of interest for assessing com-
puter models and calibration sometimes is. Even when we wish to carry out a model
calibration, we consider that it is often good practice first to carry out a history match,
partly to see whether such a match is achievable, and partly to reduce the size of the
input space over which the calibration exercise will need to be performed.

Our approach to history matching is based on the assessment of certain implausibility
measures as we now describe. An implausibility measure is a function defined over the
input space which, when large, suggests that the match between model and system
would exceed our stated tolerance. We may build this up as follows, for a single output
fi(x). For a given choice, x∗, we would like to assess whether the output fi(x∗) differs
from the system value yi by more than the tolerance that we allow in terms of model
discrepancy. Therefore, we would assess the standardised distance

(yi − fi(x∗))2

Var(εmd:i)

In practice, we cannot observe yi and so we must compare fi(x∗) with the observation



Vernon, Goldstein and Bower 15

z, introducing measurement error, with corresponding standardised distance

(zi − fi(x∗))2

Var(εmd:i) + Var(εobs:i)
(8)

However, for most values of x, we are not able to evaluate f(x) so we use the emulator
and compare zi with E(fi(x)). Therefore, the implausibility function is defined as

I2
(i)(x) =

(E(fi(x))− zi)2

Var(E(fi(x))− zi)
=

(E(fi(x))− zi)2

Var(fi(x)) + Var(εmd:i) + Var(εobs:i)
(9)

When I(i)(x) is large, this suggests that, even given all the uncertainties present in
the problem, we would be unlikely to view as acceptable the match between model
output and observed data were we to run the model at input x. Therefore, we consider
that choices of x for which I(i)(x) is large can be discarded as potential members of
the set X ∗. We discard regions of the input space by imposing suitable cutoffs on the
implausibility function.

In our comparisons, we have a separate implausibility function for each output that
we use for history matching. We may either choose to make some intuitive combination
of the individual implausibility functions as a basis of eliminating portions of the input
space, or we may construct the natural multivariate analogue, of the form

(z − E(f(x)))T (Var(z − E(f(x))))−1(z − E(f(x))) (10)

The multivariate form is more effective for screening the input space, but it does require
careful consideration of the covariance structure for the various quantities.

History matching is an iterative process. We begin by emulating Galform over the
whole input space. We evaluate our implausibility measures over the whole space and
remove from the space all input choices for which the implausibility measure is large.
We then re-sample within the remaining input space and re-emulate Galform within
the reduced space. This is termed refocusing. We then recalculate the implausibility
measures over the reduced space and again remove those parts of the subspace for
which the new implausibility measure is large. We re-sample within the further reduced
space, re-emulate and again re-assess the implausibility measures, further reduce the
input space and continue in this fashion until we run out of time, budget or ability to
further reduce the input space, at which time we look to generate a large number of
acceptable runs from the remaining space. The reasons that we may hope to further
reduce the acceptable space at each iteration are firstly that we produce a higher relative
density of runs at each stage, so that emulation is more effective, secondly that we may
expect the function to become smoother and so easier to emulate as we reduce the
area of the input space, and thirdly because, when we have accounted for much of the
uncertainty related to the most important active variables, then variables which did
not account for much of the variability in the original emulation may take on larger
importance and therefore allow us to resolve more of the uncertainty of the function.
In this study, we refocused four times, and then carried out a fifth set of evaluations
which produced a large number of runs which gave good matches to observations. This
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continued refocusing is very useful, but it also brings its own complications, as the
only way in which we can determine whether an input value lies within our retained
collection of potential history matches is by applying each implausibility function in
turn and seeing whether each such evaluation is small enough for the input choice to
be retained. This raises practical computational issues, which makes it important to
have fast approximate methods to screen the input space, and also raises basic questions
about practical visualisation methods to help us to represent and interpret the shape of
the input space which we have retained.

4 The Galform Model

Here we discuss further aspects of the Galform model, including the Dark Matter forcing
function, the various Galform modules, and the inputs and outputs used in this analysis.

4.1 Galform and Dark Matter

In order to run, Galform requires a forcing function that represents the merger histories
of the Dark Matter Haloes. This is extracted from the Millennium simulation (a large
Dark matter simulation described in section 4.2), and with it, Galform can then model
the far more complicated behaviour of baryonic (i.e. normal) matter. It is the baryonic
matter that is responsible for the more intricate processes involved in galaxy formation.

As the Millennium simulation covers a substantial volume (1.63 billion light years)3,
its results are split into 512 sub-volumes, each of which can be used as a forcing function
to the Galform model. This splitting of the total volume was performed to increase
computational efficiency as it allows simple parallelization of the Galform model across
multiple processors. The run time for one evaluation of the Galform model on a single
sub-volume is approximately 30 minutes. After discussions to initiate the collaboration,
the Galform group provided shared access to a cluster of 256 processors (composed of
128 dual processor Sunfire V210s, each processor being an UltraSparc IIIi with a clock-
speed of 1 GHz and with 1 GByte of RAM per processor). Previous attempts by the
cosmologists to calibrate Galform focussed on the first 40 sub-volumes out of 512, and
we follow this approach here while taking account of the uncertainty this generates.
Examining the differences between Galform output from different sub-volumes allows
an assessment of this uncertainty as is described in section 6.1.

4.2 Galform: Physical Details

We now outline some relevant technical details of the GALFORM code. For an extended
description and discussion of the Galform implementation see Baugh (2006). In essence,
the model consists of a set of modules, each having associated input parameters.

1. Dark matter merger trees. These are extracted from the “Millennium” dark
matter simulation (Springel et al. (2005)). This is a full numerical simulation of the



Vernon, Goldstein and Bower 17

growth of dark matter structures in the universe from cosmological initial conditions.
The initial spectrum of density fluctuations is set to be consistent with the WMAP satel-
lite observations of the cosmic microwave background (Spergel et al. (2003)). The subse-
quent evolution involves solving the gravitational N-body problem for a collection of 1010

particles. The computations took several months on state of the art super-computers at
the Max Planck Society’s Rechenzentrum in Munich, Germany. Fortunately, this part of
the model need only be solved once, and the main part of the GALFORM code can then
be applied to populate the dark matter haloes with galaxies. This approach improves
accuracy over previous analytic approximations to gravitational structure growth, but
means that we must fix the cosmological parameters for our model. In future, improved
analytic modelling of the merger trees will allow us to include the uncertainty in the
cosmological parameters. For now, cosmological parameters are fixed to the canonical
year 3 observations of WMAP in which Ωb = 0.045, ΩM = 0.25, Λ = 0.75 and σ8 = 0.9
at the present day. The model assumes H0 = 0.73, although we quote luminosities and
space densities in term of h = H0/100kms−1 so that this dependence is explicit.

2. Gas Accretion and Cooling. As dark matter haloes grow, the gas that they
contain cools and flows to the centre. This occurs at different rates depending on the
mass of the halo, and the rate at which the halo mass grows. The supply of gas is
determined by computing the mass of gas for which the cooling timescale is less than
the halo, and the mass of gas which has had sufficient time to cool and fall to the centre
(Cole et al. 2001; Baugh 2006). The newer version of the code (referred to as B06),
which is considered in this case study, made several important advances (Bower et al.
(2006)). One of these is to emphasise the distinction between haloes for which the gas
supply is limited by the rate of cooling (henceforth “hydrostatic” haloes) and those
haloes for which the free-fall timescale is the limiting factor (henceforth “rapid cooling”
haloes). In the B06 model, it is assumed that energy from the central black hole can
only offset the cooling in hydrostatic haloes. The parameter αcool determines the exact
ratio of timescales at which this distinction is made.

3. Star Formation. As the hot gas cools or is accreted by a halo, it builds up a
reservoir of cold gas in the central galaxy. This gas provides the fuel for the formation of
further stars. The code assumes that the star formation rate is related to the dynamical
timescale of the galaxy, and its mass of gas, giving

ṁ∗ = ε?

(
mcold

τdisk

)( vdisk

200kms−1

)α?

where ṁ∗ is the star formation rate, mcold is the mass of cold gas, τdisk is the disk
dynamical time and vdisk is the disk rotation speed. α? and ε? are parameters that
control the rate of star formation and its dependence on galaxy mass.

In B06, an additional mode of star formation is also considered. If the disk becomes
too massive, it becomes susceptible to warps that grow, funnelling gas to the centre of the
galaxy. Such secular evolution may generate many of the bulges that are observed. In
the model it is assumed that instabilities occur if the disk’s gravity exceeds the stabilising
gravity of the halo. The threshold at which this occurs is set by the parameter fstab, at
which point the disk stars are added to the galaxy’s bulge and the disk gas is consumed
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in a burst of star formation.

4. Feedback - from supernovae. Soon after the most massive stars form, they
explode in powerful supernova explosions. These are thought to be responsible for
preventing the efficient formation of stars in small galaxies - as the stars form, gas is
driven out of the system by the supernovae. We model feedback from supernovae by
assuming that the ratio of material expelled from the galaxy into the halo to that formed
into stars is given by the ratio β, where

β = (vdisk/vhot)
−αhot (11)

where vhot and αhot are poorly constrained parameters. We allow vhot to take different
values for quiescent and burst star formation which we denote as Vhot,burst and Vhot,disk.

The gas that is driven out of galaxies flows into the halo, but does not immediately
become available for cooling. The timescale on which the gas becomes available is
determined by the parameter αreheat. If this is unity, and cooling is efficient, ejected gas
will be allowed to fall back into the galaxy on the dynamical timescale.

5. Galaxy mergers. When dark haloes collide, the galaxies at their centres do
not immediately merge. Rather their relative motion slowly decays due to dynamical
friction. This process is discussed extensively in Cole et al. (2001). The merging time
is set by an overall normalisation parameter fdf .

If the time since the halo was accreted is less than the merging time, the galaxy from
the “satellite” galaxy orbits inside the larger one. Such satellite galaxies do not collect
any gas from the halo, and so star formation quickly subsides as the cold gas reservoir
is exhausted. If the time since accretion exceeds the merging timescale, the galaxy
mergers with the central galaxy in the parent halo. If the mass ratio of the galaxies
exceeds fellip, this can cause disturbance to the underlying galaxy, transforming it from
a spiral type galaxy to an elliptical one. This morphological transformation may be
associated with a burst of star formation. If the mass ratio exceeds fburst, there is no
morphological transformation, but a burst of star formation still occurs.

6. Black holes and their feedback. The model assumes that black holes grow
through three distinct channels: (i) by black hole - black hole mergers when the parent
galaxies merge; (ii) by accretion of gas that is funnelled to the galaxy centre during
bursts of star formation (these being driven either by mergers or disk instabilities);
(iii) by diffuse gas accretion from hydrostatic haloes (i.e., as a result of “radio mode”
feedback).

The star burst driven accretion results in luminous quasars, but the current model
assumes that these events do not contribute to the feedback. The parameter Fbh controls
the amount of gas that is accreted by the black hole in these events. The feedback
from “radio mode” accretion is, however, of key importance. The mass growth of the
black hole is determined from the energy output required to counter-balance cooling
of the halo, i.e. we implicitly assume that the mass accretion rate increases until the
net cooling rate decreases to zero. However, accretion onto black holes, although an
abundant source of energy has limits. We limit the maximum energy output to be less
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than εEddLEdd where LEdd is the Eddington luminosity of the black hole and εEdd is an
adjustable parameter. Current models for black hole accretion suggest that εEdd is of
order 1%.

7. Reionisation At very early times, the majority of gas in the universe is neu-
tral (and the universe is opaque to ultra-violet light). As stars and quasars form in
abundance, the universe quickly ionizes. This creates an additional form of heating
that may be extremely important in very low-mass galaxies. The details of this process
are very important for understanding the paucity of dwarf galaxies that orbit in the
milky-way halo. However, we are here concentrating on the properties of much more
massive systems where these effects are less significant and it is sufficient to parame-
terise this process by two parameters, zcut and vcut. Here, zcut defines the redshift at
which re-ionisation occurs: at lower redshifts, gas cooling is prevented in haloes with
circular velocity below vcut.

4.3 Inputs

The Galform model has a total of 17 inputs that relate to various uncertain physical
processes involved in galaxy formation which were described in section 4.2. All 17 inputs
along with their considered ranges are shown in table 1. Also shown are the variables
that are initially considered, and those varied in Wave 1 of our analysis: this will be
discussed in section 5.3. To make one evaluation of the Galform model, single values
for each of the 17 inputs must be chosen. We write this vector of 17 inputs as x.

4.4 Outputs

Galform provides several different sets of output data related to various physical char-
acteristics of the simulated galaxies. Observational data of differing degrees of accuracy
are available for comparison with the Galform model output, the most important of
these being the bj and K Luminosity Functions. These Luminosity functions give the
number of galaxies of a certain luminosity, per unit volume, as a function of luminosity,
with the bj function representing bluer (mainly younger) galaxies and the K function
redder (mainly older) galaxies. The ‘bj’ and ‘K’ are purely labels identifying the wave-
length or colour of the light measured (blue and infrared respectively).

Figure 1 shows the bj and K luminosity function data (black dots) along with all
relevant uncertainties discussed in section 6, on a log10 scale. The y-axis gives the log
of the number of galaxies per unit volume, while the x-axis represents the luminosity
with brighter galaxies at higher values. Figure 1 also shows the outputs of the first 993
runs of the Galform model (the coloured lines). Note that none of the 993 runs gave
acceptable matches to both the bj and K luminosity output data.

The Luminosity Function data set represents the most accurately measured observa-
tional data available and is seen as the benchmark by which models of galaxy formation
are judged. Even if a particular galaxy formation model performs well with respect to
other data sets, if it does not match the Luminosity function to an acceptable level then
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Input Parameters symbol min max Initial Varied in Process
Variables W1 (x[B]) Modeled

vhotdisk Vhot,disk 100 550 x x SNe feedback
vhotburst Vhot,burst 100 550 x x ·
alphahot αhot 2 3.7 x ·
alphareheat αreheat 0.2 1.2 x x ·
alphacool αcool 0.2 1.2 x x AGN feedback
epsilonSMBHEdd εEdd 0.004 0.05 ·
epsilonStar ε? 10 1000 x x Star Formation
alphastar α? -3.2 -0.3 ·
yield pyield 0.02 0.05 x ·
tdisk tdisk 0 1 ·
stabledisk fstab 0.65 0.95 x x Disk stability
tau0mrg fdf 0.8 2.7 Galaxy Mergers
fellip fellip 0.1 0.35 ·
fburst fburst 0.01 0.15 ·
FSMBH Fbh 0.001 0.01 ·
VCUT vcut 20 50 Reionisation
ZCUT zcut 6 9 ·

Table 1: Table of Parameter Ranges (which were converted to -1 to 1 for the analysis),
including the initial variables considered and those that are possibly active and analysed
in Wave 1 (referred to as x[B]). Parameters are grouped by physical process.

that model will be discarded. For these reasons, it was decided to focus our analysis
on identifying the regions of input space that give rise to matches between the model
output and the bj and K observed luminosity functions. Additional data sets could then
be used at a later date to restrict the input space further.

5 First Wave Analysis

5.1 General Designs for Computer Model Experiments

We have to explore the high-dimensional input space of the Galform model; a model
which takes a significant amount of time to run. Therefore the design for the set of in-
put configurations where evaluations of the model will be performed is very important:
this is a general problem that arises in most Computer Model analyses (Currin et al.
1991; Sacks et al. 1989; Santner et al. 2003). The design should be both space-filling
(as we want to maximise coverage of the space), and approximately orthogonal (where
possible) as we will be fitting various polynomials to the outputs when constructing the
emulator. Various designs have been discussed in the Computer Model literature (Sant-
ner et al. 2003), with a popular choice being the Maximin Latin hypercube design. An
n point Latin Hypercube design is constructed by dividing the range of each of the
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Figure 1: The observed bj (left) and K (right) Luminosity Functions giving the number
of galaxies of certain luminosity, per unit volume. The data are shown as the black
points, along with 2 sigma intervals representing all relevant uncertainties identified in
section 6. The coloured lines are the Galform outputs from 993 Wave 1 runs of the model
described in section 5.2. The vertical lines show the 7 outputs chosen for emulation also
described in section 5.2.

input variables into n equal intervals. Points are placed so that one point will occupy
each of the n intervals, for each input variable. Maximin Latin Hypercube designs are
constructed by generating many Latin Hypercube designs and selecting the one that
has the maximum ‘minimum distance’ between points. They are approximately orthog-
onal designs and suffer no projection issues as any lower dimensional projection remains
a Latin Hypercube. They are therefore of use for Computer Model experiments such
as Galform, where large batches of runs are to be evaluated, and we expect to fit the
emulator within appropriate subspaces of the full input space.

5.2 The Wave 1 Design

The first stage in the collaboration concerned History Matching using a smaller number
of input variables than were present in the full Galform model, in order to demonstrate
the methodology in a simplified version of the problem. As the collaboration progressed
we extended our aims to include an analysis of the full model with all 17 input param-
eters. This evolution in priorities has had an impact on the general structure of the
analysis, as will be noticeable from the initial design choices described here.

When considering the initial design, expert judgements were used to identify a subset
of the 17 inputs which would have either significant effects on the bj and K luminosity
function outputs, or be of physical interest to the cosmologists (expert judgements
in this study were made by Richard Bower). These 6 inputs are shown in the ‘Initial
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Figure 2: Main effects plots found by plotting the 993 bj outputs (corresponding to
luminosity = 17, i.e. the first vertical line in the bj luminosity plot of figure 1) obtained
from the Wave 1 runs, against the 993 values of each of the 8 possibly active inputs.
Note the clear effect of inputs vhotdisk and alphahot.

Variables’ column of table 1. When the Galform project began, it was impossible to run
the model while varying more than 11 input parameters simultaneously due to technical
issues with the code. Therefore, we constructed two maximin Latin Hypercube designs:
the first over the 6 inputs identified as important, and the second over the 11 inputs
thought to be less significant. Consideration of the two sets of runs provided useful
insights into features of the model that would be used when performing the full analysis
over all 17 inputs. An initial analysis of the first set of runs, suggested that acceptable
matches could, most likely, only be found for extremely low values of the 5th input
parameter epsilonStar, with the Galform function decreasing rapidly at such values.
This made intuitive sense as the relevant physical process is dependent upon the inverse
of epsilonStar (see section 4.2). We therefore reparameterised this input as epsilonStar−1

for all subsequent analysis. Comparison of the variance of the outputs in each data set
implied that one parameter (alphahot) out of the 11 initially discarded inputs, had a
clearly significant effect on the luminosity functions, and after careful consultation, this
input was promoted into the active group. At this point, the cosmologists requested
that the parameter “yield” also be promoted, as recent physical evidence had suggested
that the value assigned to this parameter in previous analyses (0.02) was too low, and
hence the cosmologists were interested in finding acceptable matches with a higher yield
value. This meant that for the Wave 1 analysis the inputs were now divided into a group
of 8 possibly active and 9 inactive variables respectively, as is shown in table 1.

Once these initial investigations were complete, we were ready to proceed with the
analysis of the full Galform model. After consideration of available computational re-
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sources, we constructed two 1000 point Latin Hypercube designs: the first over the
8 possibly active variables, and the second over the 9 inactive variables. The first of
these was used to construct the Wave 1 emulator (see the next section), and the sec-
ond was required to assess the uncertainty due to the set of 9 inactive parameters (see
section 6.1). Due to runs crashing (for computational reasons), only 993 of the first
batch of runs were completed, while all 1000 of the second batch finished successfully.
For illustration, Figure 2 shows the main effects plots for the bj outputs at luminosity
17, for the first batch of 993 runs against the 8 possibly active input parameters. Note
the clear effect of inputs vhotdisk and alphahot (one of the promoted inputs): these
along with epsilonStar, alphareheat and vhotburst were eventually chosen as the active
variables for this output (see section 5.3).

We are performing a History Match for Galform. For such a match we do not need
to analyse every output of the model. At each stage, it is sufficient to remove parts
of the parameter space if the outputs fail to match a carefully chosen subset of the
observations. At the final stage, we will need to check that our acceptable matches
are also in adequate agreement with those features of the output which haven’t been
used to achieve the history match. Therefore, we chose a subset of 7 of the outputs
that are straightforward to emulate at a sufficient accuracy, are informative regarding
the inputs in that they can be used to discard large regions of the input space, and
that captured the main features of the luminosity function. These are shown as vertical
lines in figure 1 along with the full bj and K luminosity outputs from the first batch of
993 runs over the 8 active parameters. The specific luminosity values of each of the 7
outputs are given in the top row of table 2. In later waves of the analysis, more outputs
were used.

5.3 The Wave 1 Emulator

As discussed in section 3.4, our emulator gives an expectation and variance of the func-
tion: E(fi(x)) and Var(fi(x)). Following section 3.4, we now describe the construction
of the 7 univariate emulators corresponding to the 7 luminosity outputs identified in
the previous section. As we have many runs, we construct our emulator using data
analytic techniques, checked against physical intuition. These emulators are used in the
first wave of analysis to define the Wave 1 implausibility measures that are required to
reduce the input space.

As in section 5.2, the collection of 17 input parameters was split into a group of 8
possibly active parameters (referred to as xB and shown in table 1) and a group of 9
inactive parameters (xBc). 993 runs for each of the first 40 sub-volumes were completed
from a Latin Hypercube design over the group xB , and these were used to construct
the wave 1 emulators. The quantity of interest is the mean output over the first 40
subvolumes. Writing f (j)

i (x) as the ith output from the jth sub-volume, we define:

fi(x) =
1
40

40∑
j=1

f
(j)
i (x). (12)
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Our approach involves emulating fi(x) using only the xB inputs. We add the uncertainty
due to sampling only 40 sub-volumes, and the uncertainty due to the remaining 9
parameters xBc in section 6.1. We use the following form for the emulator of each
fi(xB) similar to that of equation (7),

fi(xB) =
∑
j

βij gij(x[Ai]) + ui(x[Ai]) + wi(xB), (13)

where the active variables x[Ai] are a subset of xB . In choosing the x[Ai] the aim is to
explain a large amount of the variance of fi(x) using as few variables as possible. For
each of the 7 outputs, the set xB was initially reduced by backwards stepwise elimination,
starting with a model containing the 8 linear terms. At this stage individual inputs were
discarded in turn based upon the size of their main effect. Before an input would be
discarded, a third order polynomial was fitted to see the extent of variance explained
with the current set of active variables. It was found that 5 active variables could
explain satisfactory amounts of the variance of fi(x) for each output i (see table 2),
based on the adjusted R2 of the polynomial fits. In each case, more than 5 variables
yielded little extra benefit (compared to the increase in the size of the input space),
while less than 5 led to substantially worse fits. Once the set of active variables x[Ai]

Output bj 17 bj 21 bj 22.25 K 21 K 22.25 K 24.75 K 25.75
vhotdisk x x x x x x x
aReheat x x x x x x x
alphacool x x x x
vhotburst x x x x x x x
epsilonStar x x x
stabledisk x x x x
alphahot x x x
yield
Adj R2 0.92 0.59 0.70 0.87 0.75 0.72 0.80

Table 2: Wave 1 Active variables and adjusted R2 for the bj and K luminosity emulator.

has been determined, the full set of regression terms gij(x[Ai]) can be chosen. This was
done by forward stepwise selection starting with a model containing the linear terms
in the active variables, and adding possible terms from the full 3rd order polynomial
in the active variables, using standard stepwise routines in R, based on criteria such
as AIC. When the regression terms have been chosen for each output fi(x), estimates
for the B = {βij} coefficients can be obtained using Ordinary Least Squares, assuming
uncorrelated errors. We have a sufficiently large collection of model evaluations that such
data analytic techniques will result in small variances on the regression coefficients and
generally acceptable results from OLS fitting. Therefore, we would expect such results
to overwhelm prior judgements. However, any substantial contradictions between the
data and the qualitative form of such judgements requires further investigation.

As the ui(x[Ai]) represent local deviations from the regression surface we assume
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that there will be a large correlation between ui at neighbouring values of the active
inputs x[Ai], and need to specify this correlation structure. Various choices are avail-
able, such as the Gaussian or Matern functions and each choice usually involves certain
parameters related to the width and shape of the correlation function. Estimation of
these parameters can be a difficult task. However, these parameters are representations
of our subjective assessment of the smoothness of the function and precise assessment
of them is not necessarily meaningful, and nor is it required in order to construct an
emulator of sufficient accuracy for our needs. Here we choose to specify the following
Gaussian covariance structure:

Cov(ui(x[Ai]), ui(x
′
[Ai]

)) = σ2
ui

exp(−||x[Ai] − x
′
[Ai]
||2/θ2i ), (14)

where σ2
ui

is the point variance at any given x[Ai], θi is the correlation length parameter
that controls the strength of correlation between two separated points in the input
space (for points a distance θ apart, the correlation will be exactly exp(−1)), and || · ||
is the Euclidean mean. As the nugget process wi(xB) represents all the remaining
variation in the inactive variables, it is often small and we treat it as uncorrelated
random noise with Var(wi(xB)) = σ2

wi
. We consider the point variances of these two

processes to be proportions of the overall residual variance of the computer model given
the emulator trend: σ2

i , and write that σ2
ui

= (1−wi)σ2
i and σ2

wi
= wiσ

2
i for some small

wi. Various techniques for estimating the correlation length and nugget parameters θi
and wi from the data are available (for example variograms, REML); however, these
estimation procedures can often be non-robust as the output from a computer model
rarely behaves exactly like an actual Gaussian Process. An alternative is to specify the
θi parameters a priori (Craig et al. 1996) followed by an approximate assessment of the
nugget term wi, which is the approach we adopt here.

It is possible to provide approximate order of magnitude values for the correlation
length parameters θi, by appealing to the simple heuristic that the regression residu-
als may be viewed as deriving from a polynomial of order one higher than the fitted
polynomial, as they correspond to the first order of terms which are neglected by the
regression fit. Here this implies that values of θi should be chosen corresponding to the
shape of a 4th order polynomial. In such a case, we would not want the correlation
length to be greater than the average distance between roots of a 4th order polynomial:
approximately 0.25 of the range of the input. Alternatively it can be argued that there
should be positive correlation between outputs at the turning points and the adjacent
roots of the polynomial, and that the correlation length must therefore be greater than
this distance: approximately 0.125 of the range of the input. This argument tends to
give more conservative (i.e. smaller) specifications for the correlation length compared
to maximum likelihood or variogram methods. As we have scaled all inputs to the range
[−1, 1], this argument suggests that a working estimate of θi might lie between 0.25 and
0.5, and therefore we selected the same value for all θi of 0.35, checked by emulator
diagnostics discussed in section 5.4.

The value of the nugget parameter wi represents the proportion of residual variance
due to the inactive variables. We obtained a working assessment of wi by examining
the variance explained by the inactive variables for each of the seven outputs, and
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comparing this to the residual variance from the active variable polynomial fit. These
considerations led to a conservative value of 0.2 for all wi acknowledging a reasonable
contribution from the inactive variables at each output. Provided conservative choices
are made and are combined with analysis of the emulator diagnostics, such specifications
lead to emulators of sufficient accuracy for the task of providing a first stage reduction of
the input space, while avoiding the complex and often misleading problem of estimating
such parameters from the data alone. At this stage, we only require a relatively simple
emulator in order to make an initial reduction of the input space, while leaving the
construction of more detailed emulators to subsequent waves of the analysis.

Once the above covariance specifications have been made, the 993 model runs can be
used to update the emulator expectation and variance for each of the 7 outputs, using
equations (3), (4), (13) and (14). It is the updated emulator expectation and variance
that are used in each of the implausibility measures described in section 7.1.

Emulator construction should be performed in conjunction with physical considera-
tions of the model in question. The emulator should reproduce, to a reasonable degree
of accuracy, the outputs of the model, and should therefore share the physical features
of the model. Careful expert assessment regarding the choice of the active variables and
the form of the polynomial fit for each output was made to ensure that the emulators
were consistent with insight into the physical interpretation of the model. For example,
the polynomial for the first bj output has large (negative) contributions from terms in-
volving vhotdisk and alphahot including a strong interaction between them. Both these
parameters are used in the SNe feedback module of the Galform model and increasing
either will decrease the luminosity function at the faint end. They are known to interact
in the model, and therefore the form of the terms in the polynomial that they feature
in makes physical sense.

5.4 Emulator Diagnostics

When constructing an emulator, it is essential to perform diagnostics to ascertain
whether the emulator is sufficiently accurate for the desired task (Bastos and O’Hagan
2008). At each wave of the analysis, and for each emulator, we performed several types
of diagnostic test including: examining the residuals from the polynomial fits; evaluating
200 diagnostic runs of the model (at each wave) and analysing the emulator’s predictive
diagnostics for these runs; and examining the implausibility measure diagnostics (as
shown in figure 5 and discussed in section 7.2). At each wave the emulators were found
to be sufficiently accurate to allow substantial reduction of the input space.

6 Quantification of Uncertainty

We now discuss the assessment of all of the remaining uncertainties relevant to link-
ing the Galform Model to the real Universe. These uncertainties can be divided into
two classes. The first corresponds to the Model Discrepancy εmd which describes the
possible deficiencies of the model and this has three contributions. The second class of
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uncertainties is that of the observational errors: the luminosity function data has been
heavily processed and this leads to several important error contributions.

6.1 Model Discrepancy

We now quantify the Galform model discrepancy. As with most complex models of
physical systems, modelling assumptions and approximate solutions to known physical
equations imply that Galform’s output will only be an approximation to what would
occur in the real Universe. Further, Galform does not model specific galaxies that exist
within our Universe: instead it simulates around a million galaxies from a ‘possible’ uni-
verse that should share statistical properties with our own. These statistical properties
will also suffer from approximations inherent in the Galform modelling process.

As in section 3.2, the model discrepancy εmd links the system y to the model output
evaluated at the actual system properties f∗ = f(x∗) via the equation y = f∗ + εmd.
We decompose εmd into three uncorrelated contributions:

εmd = ΦIA + ΦDM + ΦE . (15)

where ΦIA represents the discrepancy due to the nine inactive parameters, ΦDM is the
discrepancy due to the unknown Dark Matter configuration of the real Universe and
ΦE summarises the structural deficiencies of the full Galform model itself. The first two
contributions can be assessed using additional runs of the model, while the third requires
expert assessment as we describe in the next three sections. Quantification of εmd is
fundamental to our approach as we cannot determine which inputs x are acceptable
without such judgements.

Uncertainty Due to Inactive Variables: ΦIA

As we were unable to run the Galform model while varying all 17 inputs simultaneously,
we did not model the effect of the remaining 9 inactive variables in detail (a problem
that was resolved before Wave 4 occurred). Therefore, we treat the effect of the 9
variables as initially contributing an extra term ΦIA to the model discrepancy; a term
which is dropped in the Wave 4 analysis. Note that, for the first three waves, we are
essentially running a reduced model (using only 8 inputs), and therefore must use ΦIA
to account for the fact that the Galform model output may not match the observed
data due to incorrect settings used for the remaining 9 inputs.

Quantification of ΦIA was performed as follows. We assumed that there would be
no overall bias due to the extra 9 inputs and set E(ΦIA) = 0. Recall that these variables
have already been checked for main effects as discussed in section 5.2. Assessing the
magnitude of the variance of ΦIA was relatively straightforward as we had performed
1000 runs across the 9 inactive variables (with the original 8 inputs set at their default
values) over the first 40 sub-volumes as is described in section 5.2. We took the mean of
the first 40 sub-volumes for each of these runs, and set the Var(ΦIA) to be equal to the
sample variance of the collection of 1000 means. Note that by making this approximate



28 Galaxy Formation: an Uncertainty Analysis

●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

● ● ● ●

14 16 18 20 22

−
6

−
5

−
4

−
3

−
2

−
1

bj Luminosity: Inactive Variables

bj Luminosity

lo
g(

N
o.

 G
al

ax
ie

s 
pe

r 
un

it 
V

ol
um

e) ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

● ● ● ●

●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

● ● ● ●

●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

● ● ● ●

14 16 18 20 22

−
6

−
5

−
4

−
3

−
2

−
1

bj Luminosity: Dark Matter

bj Luminosity

lo
g(

N
o.

 G
al

ax
ie

s 
pe

r 
un

it 
V

ol
um

e) ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

● ● ● ●

Figure 3: Left panel: the bj luminosity outputs from a sample of 500 runs of the model
where only the 9 inactive parameters have been varied. Green and black lines represent
the model output when tdisk is off or on respectively. It can be seen that varying the
inactive parameters causes a small variance in the model output compared to the 8
active parameters (the effects of which are shown in figure 1). Right panel: The bj and
K luminosity function output of the first 40 sub-volumes of the Dark Matter simulation,
for two (blue and red) Wave 1 runs. This source of uncertainty was treated as a model
discrepancy term, assumed to have constant variance across all runs.

assessment we are treating as negligible any interactions between the 9 inactive variables
and the choice of subvolume, and with the 8 original variables. In figure 3 we show the
first 500 out of the set of 1000 runs performed across these 9 inputs, with the 8 active
variables set at the default value (which corresponds to the cosmologists’ best match:
a run which is borderline acceptable according to our matching criteria). Figure 4
compares the standard deviation of all uncertainties discussed in this section, at every
point on the bj luminosity function graph given in figure 1 (the K luminosity function has
similar uncertainties which we do not show here). The three bj points that were chosen
for emulation are given by the black dashed lines.

√
Var(ΦIA) for all bj luminosity

outputs is shown as the light blue line in figure 4.

Note the similarity between the nugget term denoted wi(xB) in the Wave 1 emulator
of equation (13), which describes the effects of the 3 inactive variables for each output,
and the model discrepancy term given by ΦIA. Both are treated as independent of x,
have expectation zero and constant variance. Treating these terms in this manner is an
initial simplification that makes subsequent calculations far more tractable and allows a
straightforward reduction of the input space in the first wave of analysis. In subsequent
waves, we model these effects in more detail. This is a typical feature of our approach:
we use the minimum level of complexity to ensure that substantial amounts of input
space will be discarded at each wave.
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Dark Matter Uncertainty: ΦDM

We now assess the uncertainty due to the unknown Dark Matter configuration of the
real Universe. As is discussed in section 4, the Millennium Simulation provides 512
possible forcing functions, each representing a possible configuration of dark matter to
be used by the Galform model. For practical reasons, it was decided to perform runs
using only the first 40 sub-volumes out of the full 512. This choice was also made to
facilitate comparison between our study and a previous attempt to find an acceptable
match by the cosmologists. While using a larger number of sub-volumes would be more
accurate, the extra run time would allow fewer evaluations of points in the input space.
As is described in section 5.3, we have therefore emulated the mean of the function
output over these 40 sub-volumes given by fi(x). Figure 3 shows the luminosity output
from all 40 sub-volumes for two runs of the model (given by the collection of red and
blue lines).

The processing of the observational data and associated errors has effectively elevated
the data to represent the density of galaxies as measured over a much larger volume of
the Universe than is defined by the 512 sub-volumes of the Galform model. We take
this volume to be effectively infinite and represent the uncertainty due to analysing
the mean of only 40 sub-volumes as the model discrepancy term ΦDM . We assessed
ΦDM by first assuming no overall bias and set E(ΦDM ) = 0. We then used the outputs
f

(j)
i (x) for each of the 40 sub-volumes for the 993 runs performed in Wave 1 to derive

an approximate value for the variance of ΦDM as follows. For each of the 993 runs we
calculated the standard error of the mean output over 40 sub-volumes, and averaged
this over all 993 runs. This was done for each of the 7 outputs. While this is a relatively
straightforward assessment, given the important simplifying assumption that ΦDM is
independent of x, it was felt that this captured the main source of uncertainty without
going into detail that would be unwarranted at this stage of the analysis. A more
careful treatment would model the outputs of the sub-volumes individually, as has been
performed in House et al. (2009), using exchangeable computer model techniques. In
order to check that the first 40 sub-volumes are representative of the full set of 512, we
ran a small design of 100 runs at the same x input locations as the first 100 runs of the
original Wave 1 design, but now choosing 40 random sub-volumes out of the set of 512
instead of the first 40. We found that the variance across the random 40 sub-volumes
was not significantly different from the original 40 and so did not alter the assessment
for the Var(ΦDM ) described above. The size of ΦDM for all bj luminosity outputs (not
just the 3 outputs chosen for emulation) is shown as the dark blue line in figure 4. Note
that the relative size of ΦDM is small compared to other sources of uncertainty, so that
it was considered unnecessary to model its effect in more detail at this stage.

Full Galform Model Discrepancy: ΦE

As we have identified 7 outputs from the bj and K luminosity functions to be emulated,
the model discrepancy term ΦE is a 7 vector, the components of which need to be
assessed from expert judgements. In the first wave of our analysis we perform only a



30 Galaxy Formation: an Uncertainty Analysis

univariate analysis of each of the 7 outputs, hence we required a univariate assessment of
each of the components of ΦE . In waves 3 and 4, multivariate analyses were performed
and hence a more detailed multivariate assessment of ΦE was required. We describe
here the full multivariate elicitation.

As we are employing a Bayes Linear analysis, we only require specification of ex-
pectations and variances over all quantities of interest. Subjective assessment of each
value E(ΦE) and Var(ΦE) is still a difficult task. Expert assessment for beliefs regard-
ing deficiencies of the model was that discrepancy judgements were symmetric in that
E(ΦE) = 0. For the multivariate case, assessment of Var(ΦE) was required which is
now a 7x7 matrix. The structure of this matrix came from Richard’s opinion as to the
deficiencies of the model as follows.

For Galform, there are two major physical defects that can be identified. The first
is the possibility that the model has too much (or too little) mass in the simulated
universe, possibly due to incorrect choices for the cosmological parameters used in the
Millenium simulation (see section 4.2). This would lead to the 7 luminosity outputs all
being too high (or too low), and would lead to positive correlation between all outputs in
the Var(ΦE) matrix. The second possible defect is that the model incorrectly calculates
the colour of the galaxies, due to inaccurate modeling of stellar populations or dust.
This would lead to an apparent increase/decrease in the number of red galaxies and
decrease/increase in the number of blue galaxies. This is represented as contributing a
smaller negative correlation between the bj and K luminosity outputs. To respect the
symmetries of these possible defects, the multivariate Model Discrepancy was parame-
terised in the following (3+4)x(3+4) block form:

Var(ΦE) = a2



1 b b c c c c
b 1 b c c c c
b b 1 c c c c
c c c 1 b b b
c c c b 1 b b
c c c b b 1 b
c c c b b b 1


(16)

where now a2 is the univariate variance of the model discrepancy; b is the correlation be-
tween outputs of the same luminosity graph (either bj or K luminosity) and c is the cross
graph correlation. While Richard was satisfied with the form of the parameterisation of
Var(ΦE) as given by equation (16), he was cautious about specifying exact quantities
for the parameters a, b and c. He was, however, willing to provide the following ranges
for a, b and c:

3.76× 10−2 < a < 7.52× 10−2, 0.4 < b < 0.8, 0.2 < c < b. (17)

This assessment involved examining the difference between Galform and a competing
model of similar complexity, consideration of the above possible physical defects to
the model, and from his previous years of experience coding and running such galaxy
formation models. The maximum value of a = 7.52× 10−2 is shown as the black line in
figure 4, where it is assumed that

√
Var(εmd:i) = a for each of the i univariate outputs.
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Figure 4: Left panel: the Elicitation Tool used to confirm the multivariate model dis-
crepancy assessment represented by equations (16) and (17). It allows the expert to
construct and adjust fictitious luminosity functions, and to explore the response of the
implausibility measures to changes in a, b and c (see section 8.1). Right panel: the sd
of each contribution from the various sources of uncertainty for the full range of the bj
luminosity function (the x-axis is the same as figure 1). The vertical lines represent the
three bj outputs chosen for emulation in Wave 1. The green line represents the total
uncertainty due to all contributions, and it is this value that is used in all bj luminosity
plots such as figure 1. The K luminosity results are similar.

After the initial assessment we constructed an elicitation tool in order for Richard
to confirm that his specification agreed with his intuition regarding the outputs of the
luminosity function. A picture of this elicitation tool is shown in Figure 4, and it
possesses the following features. The top two panels of the tool show the bj and K
luminosity functions, with observational data points in black, error bars representing
all uncertainties, dotted lines giving the 11 outputs of interest (additional outputs were
used in later waves), and constructed (or fictitious) luminosity model output given by
the red lines. The constructed model output lines can be controlled by the user with the
first 11 controls on the left (grey) panel labelled b1-b6 and K1-K5. These controls allow
independent adjustment of each of the 11 outputs (by varying increments controlled by
the ’ste’ button) in order to represent any possible luminosity function output. The
bottom two panels show the number of standard deviations that each output is from
the observed data, with the furthest away in red. Above the bottom right panel the
values of the two implausibility measures ‘MaxImp’ (IM (x)) and ‘MVImp’ (I(x)) are
given, calculated using the current constructed luminosity output (see section 7.1 for
definitions of these measures). The user can specify, when starting the tool, which
uncertainties to consider in the implausibility calculation (e.g. use all observational
and model discrepancy uncertainties, or purely the ΦE component). This elicitation
tool allows the user to experiment with various possible luminosity functions and see
the corresponding values for the two implausibility functions IM (x) and I(x). Most
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importantly, the values of the multivariate model discrepancy parameters a, b and c
can be controlled by the ‘am’, ‘bm’ and ‘cm’ buttons, with current values shown above
the bottom left panel (a is given in terms of multiples of Richard’s original assessment).
This allowed Richard to experiment with different specifications of a, b and c and to see
the response of the implausibility measures. This is useful for the expert to get a feel
for the behaviour of a multivariate implausibility measure, understand the ramifications
of the assumed structure of Var(ΦE) and also to check that intuitively acceptable runs
would not be ruled out by the current specification.

Obviously it is possible to build in far more structure into Var(ΦE) if required. The
aim here was to account for the main sources of model discrepancy, while maintaining a
relatively simple structure of the Var(ΦE), as the more detailed the structure, the more
difficult eliciting expert information becomes.

As we have ranges for the parameters a, b and c we will incorporate this into our
analysis when we reduce the input space using various implausibility measures. Effec-
tively we perform a sensitivity analysis, and rule out parts of the input space only if
they fail certain implausibility cutoffs for all values of a, b and c within the above ranges.
This will be discussed further in later sections.

6.2 Observational Errors

The generation of the observational data shown as the black points in figure 1, is an ex-
tremely intricate task. It involves data from several sky surveys, which is processed using
both information from various simulations and additional theoretical and experimental
knowledge related to the evolution of the Universe. Due to this, the observational errors
εobs defined in equation (1) are complex. Due to space limitations we only summarise
the four contributions to Var(εobs) here; see Cole et al. (2001) for more details.

The Luminosity Zero Point Error - this is derived from the difficulty of defining
the Luminosity Zero Point: that is the point on the x-axis of the luminosity graph (see
figure 1) corresponding to a galaxy of ‘zero’ brightness. This results in a correlated
error on every output point (grey line in figure 4).

The k+e error - a perfectly correlated error on all output points due to necessary
corrections for two effects (i) Galaxies being so far away it takes light billions of years
to reach us and (ii) Galaxies moving away from us so quickly their light is redshifted
(purple line in figure 4).

The Normalisation Error - The data on galaxies comes from measurements made
in our local vicinity and it is possible that we live in a relatively under/over populated
part of the Universe. This error attempts to account for this using theoretical knowledge
about variation in mass density in the Universe on large scales (yellow line in figure 4).

Galaxy Production Error - Bright/faint galaxies can be measured up to relatively
large/short distances from our Milky Way. This error represents the uncertainty due to
this effect and uses assumptions as to the shape of the mean luminosity function (red
line in figure 4).
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It is clear that significant contributions to the observational errors come from un-
certainties related to the processing of the data (i.e. the k + e, Normalisation and
Production Errors). These are distinct from measurement errors and are derived from
complex theoretical and modeling uncertainties, and hence could be referred to as model
discrepancy terms as opposed to observational errors. However, the calculations involved
in determining these errors are intricate and rely upon specialist knowledge of Astron-
omy. Although it would be desirable to disentangle some of these errors, due to time
constraints it was felt that this was impractical at the current stage.

7 First Wave History Match

7.1 Implausibility Measures

We use Implausibility Measures in order to learn about the values of x that will give
rise to acceptable matches between model output and observed data, and hence identify
the set of all possible x values X ∗. Following section 3.5, for each output we define a
univariate Implausibility Measure I(i)(x) over the input space given by equation (9).
High values of I(i)(x) imply that evaluating the Galform function using inputs x is
unlikely to yield an acceptable match between the model output and the observational
data, and suggest that these values may be discarded from consideration. Note that
I(i)(x) can give a low value for two possible reasons: either we expect that evaluating the
function f(x) at x will produce an output that is close to the observations (if Var(f(x))
is low), or because we are uncertain about the output of f(x) at this point (if Var(f(x))
is high). Therefore low values of the Implausibility Measure suggest values of x that
it would be desirable to use for future runs of the Galform model, as at these values
we will either obtain acceptable runs, or we will learn about parts of the space where
previously our uncertainty was high. In this way, the Implausibility Measure can be
seen as a simple tool to generate a second stage design, a strategy that will be discussed
in section 7.3.

Various summary Implausibility Measures can be defined, from the univariate mea-
sures defined by (9). The simplest of these is obtained by maximising over the 7 outputs
and we define the Maximum Implausibility Measure IM (x) as:

IM (x) = max
i
I(i)(x). (18)

This measure is used in later waves of our analysis and it represents a major part of the
definition of an acceptable match. It is, however, sensitive to problems concerning the
inaccuracies of individual emulators, and so we define the Second and Third Maximum
Implausibility Measures I2M (x) and I3M (x) as:

I2M (x) = max
i

( {I(i)(x)} \ IM (x) ), (19)

I3M (x) = max
i

( {I(i)(x)} \ {IM (x), I2M (x)} ), (20)

that is defining I2M (x) and I3M (x) to be the second and third highest value out of the
set of univariate measures Ii(x) respectively. These were used in wave one as they were
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thought to be relatively safe measures in that they were less sensitive to the possibility
that one of the emulators was inaccurate.

7.2 History Matching via Implausibility

History Matching is the process of identifying the set of acceptable matches X ∗. Iden-
tifying X ∗ is a difficult task, as often it represents a complicated object in a high
dimensional space. X ∗ could also be comprised of disconnected volumes, possessing
non-trivial topology. In many applications X ∗ occupies an extremely small fraction of
the original input space.

We iteratively discard values of x that are highly unlikely to yield acceptable matches
by applying a cutoff on the Implausibility Measures. As the Implausibility Measures are
constructed using the emulator, they are fast to evaluate and therefore we can efficiently
identify values of x that will be discarded. In Wave 1, we use both I2M (x) and I3M (x)
to discard values of x that do not satisfy both:

I2M (x) < Icut2 and I3M (x) < Icut3, (21)

where Icut2 and Icut3 are the corresponding implausibility cutoffs.

The choices made for the individual cutoffs come from a combination of examination
of diagnostics (such as shown in figure 5), consideration of the amount of space cut out,
and unimodality arguments which are employed as follows. Regarding the size of the
individual univariate Implausibility Measures I(i)(x), if we consider that for fixed x the
appropriate distribution of (E(fi(x∗)) − z) is both unimodal and continuous, then we
can use the 3σ rule (Pukelsheim 1994) which implies quite generally that if x = x∗,
then I(i)(x) < 3 with a probability of greater than 0.95. Values higher than 3 would
suggest that the point x could be discarded. We need to specify values for Icut2 and
Icut3, and while the unimodal argument suggests using cutoffs of 3 or higher (depending
on the correlation between outputs), consideration of figure 5 shows that this might
be unnecessarily conservative. In response to this we choose cutoffs of Icut2 = 2.7 and
Icut3 = 2.3 (shown as vertical lines in figure 5), recognising the fact that we want to
balance a conservative cutoff with the amount of space that can be removed at Wave 1.
These cutoffs resulted in approximately 85.1 percent of the input space being ruled out
due to the Wave 1 analysis.

Figure 5 shows diagnostic plots regarding the choice of cutoffs Icut2 and Icut3. It
shows the maximum data implausibility IdataM (x) (that is the implausibility evaluated
at a known run, given by equation (8)) across the 7 outputs for a latin hypercube of
200 diagnostic runs (y-axis), against I2M (x) (left panel) and I3M (x) (right panel), the
criteria that are used to reduce the input space. The vertical lines are the cutoffs that
will be imposed, implying that the red points would be discarded. Note that most
points are some distance above the diagonal y = x line, suggesting that IdataM (x) will
generally be higher than I2M (x) and I3M (x) as expected. Also note that the discarded
points do indeed have high IdataM (x) (significantly higher than the 2.7 cutoff shown as
a horizontal line), and hence suggest the space cutout in Wave 1 does not contain any
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Figure 5: Implausibility diagnostics for the Wave 1 univariate emulators. Plots show
‘maximum data implausibility’ which is defined to be IM (x) evaluated using known
diagnostic runs, against the implausibility measures I2M (x) (left panel) and I3M (x)
(right panel) which are calculated using the emulator. The vertical lines show the
cutoffs imposed at this Wave, with the red points belonging to parts of the input space
deemed implausible.

inputs of interest.

In figure 6 we show various 2-dimensional projections (top 3 panels) of values of the
Implausibility Measures, with red areas representing high implausibility and green areas
low, which were constructed as follows. For each plot we evaluated the emulator at a set
of inputs specifically designed to produce a 2-dimensional projection in the appropriate
input plane. For example, in the top left panel the projection is in the vhotdisk -
alphareheat plane, and the emulator was evaluated on a (2d grid)x(5d latin hypercube)
design, where the 2d grid was over the vhotdisk - alphareheat plane (and of size 152)
while the latin hypercube was defined over the remaining 5 active inputs at Wave 1
(and was of size 1500). For each point on the grid, we then minimised the implausibility
over the corresponding 1500 points at that grid location, the results of which provide
the plots shown. This allows the following interpretation: a red area in one of these
implausibility projection plots implies that even given all relevant uncertainties, and all
possible choices for the other input parameters, it is highly unlikely that an acceptable
match will be found at this point in the vhotdisk - alphareheat plane (for example).
Such plots present serious computational complications as a large number of emulator
evaluations are required for each projection. To generate these plots we have exploited
novel Bayes Linear calculations that greatly improve efficiency, and we will report on
these techniques in more detail elsewhere.

The bottom 3 panels of figure 6 show depth projection plots: these are constructed
by calculating at each grid point, the fraction of the corresponding 1500 points of the
latin hypercube that survive the implausibility cutoffs, given by equation (21). This
gives information as to the ‘optical depth’ of the the 7 dimensional non-implausible
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Figure 6: The top three panels give Wave 1 implausibility projection plots: the red
region indicates high implausibility for all values of the remaining inputs: here input
points will be discarded. Note that the yellow and green regions occupy only 15% of the
input space (the non-implausible region), even though they take up much larger areas
of the 2-dimensional projection. The bottom three panels give the ‘optical depth’ plots:
these show the fraction of the hidden 5 dimensional volume (spanned by the remaining
active variables) that satisfies the implausibility cutoff, at that grid-point.

volume when observed in a direction perpendicular to the vhotdisk - alphareheat plane
(for example). They provide complimentary information to the implausibility projec-
tions. Consider the middle top and bottom panels of figure 6, where the implausibility
projection (top panel) shows that non-implausible choices of alphareheat and alphacool
exist over much of the alphareheat-alphacool plane. The depth plot demonstrates that
the majority of the non-implausible volume is found at low values of alphareheat.

These images give physical insights into the nature of the Galform model: in the
top right panel of figure 6 we see that simultaneously low values of both vhotdisk
and alphahot are ruled out, and that high values of both these parameters are possibly
preferred. These parameters are involved in the same Galform module: that of Feedback
from Supernovae (see equation (11) and section 4.2), and increasing their size should
increase the amount of material expelled from certain galaxies as opposed to being
used to form stars. This will reduce the luminosity function at the faint end, and, as
most of the Wave 1 runs are higher than the observed data, it makes physical sense
that parameter choices that lower the luminosity function will be preferred. These
physical features are also seen in the polynomial terms for the outputs bj 17 and K 21
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(which are at the faint end of the luminosity function), specifically we find large and
negative coefficients for the vhotdisk, alphahot and their interaction terms. The Wave
1 emulators are quite approximate, so there is a limit as to the physical insight they,
and the corresponding implausibility measures, can provide.

7.3 Refocusing

Equation (21) defines a volume of input space that we refer to as non-implausible after
Wave 1 and denote X1. In the first wave of the analysis X1 will be substantially larger
than X ∗, as it will contain many values of x that only satisfy the implausibility cutoff
given by equation (21) because of a substantial emulator variance Var(f(x)). If the
emulator was sufficiently accurate over the whole of the input space that Var(f(x)) was
small compared to the Model Discrepancy and the Observational Error variances, then
the non-implausible volume defined by X1 would be comparable to X ∗ and the History
Match would be complete. However, to construct such an accurate emulator would
require an infeasible number of runs of the model. Even if such a large number of runs
were possible, it would be an extremely inefficient method: we do not need the emulator
to be highly accurate in regions of the input space where the outputs of the model are
clearly very different from the observed data.

This is the main motivation for our iterative approach: in each wave we design a
set of runs only over the current non-implausible volume, emulate using these runs,
calculate the implausibility measure and impose a cutoff to define a new (smaller) non-
implausible volume. This is referred to as refocusing. Our method can be summarised
as follows. At each iteration or Wave:

1. A design for a set of runs over the current non-implausible volume Xi is created,
using a latin hypercube design with a rejection strategy based on each of the
preceeding implausibility measures.

2. These runs are used to construct a more accurate emulator defined only over the
current non-implausible volume Xi.

3. The implausibility measures are then recalculated over Xi, using the new emulator.

4. Cutoffs are imposed on the Implausibility measures and this defines a new, smaller
non-implausible volume Xi+1 which should satisfy X ∗ ⊂ Xi+1 ⊂ Xi.

5. Unless the emulator variance is now small in comparison to the other sources of
uncertainty, return to step 1.

As we progress through each iteration the emulator at each wave will become more
and more accurate, but will only be defined over the previous non-implausible volume
given in the previous wave. This improvement in accuracy (discussed in section 3.5)
occurs due to improvements in the polynomial fitting, the stationary process (due to
the increased density of runs) and in the selection of active variables. This last reason
is especially important in Wave 4 as it was at this point that we were able to perform
function evaluations across all 17 inputs simultaneously. Increasing the number of active
variables allows more of the function’s structure to be modelled by the third order
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polynomials, and has the effect of reducing the nugget term wi(xB) (and in Wave
4, the Var(ΦIA) term). As the input space is reduced, it not only becomes easier to
accurately emulate existing outputs but also to emulate outputs that were not considered
in previous waves. Outputs may not have been considered previously because they were
either difficult to emulate, or because they were not informative regarding the input
space. In Wave 2 four additional outputs were emulated.

8 Analysis of Waves 2 - 4

8.1 Wave 2 to 4: Design and Emulation

We apply the refocussing technique iteratively, and here we describe the designs and
emulators used in waves 2 to 4. The design for the set of Wave 2 model evaluations
was derived as follows. We first constructed a large maximin Latin Hypercube design
containing 9500 points defined over the 8 dimensional input space corresponding to the
8 input variables explored in Wave 1. We then used the Wave 1 emulator and Implausi-
bility measures to evaluate the implausibility of each proposed point in the design. Any
points that did not satisfy the implausibility cutoffs, as given by equation (21), were
discarded from further analysis. This left a design of 1414 points which were then eval-
uated using the Galform model, the results of which were used to construct the Wave 2
emulator. The Wave 3 design of 1620 points was constructed in a similar manner.

Between Waves 3 and 4, the problems preventing simultaneous varying of all 17
parameters in the Galform model were resolved. Hence, the Wave 4 design came from
a large latin hypercube defined over the full 17 dimensional input space. Again, only
points that satisfied all of the previous 3 wave’s implausibility cutoffs remained in the
design, leaving a total of 2011 points. The number of design points was deliberately
increased at each wave in anticipation of fitting more complex polynomials.

Choosing More Outputs

As the input space has been reduced after the Wave 1 analysis, it became easier to
emulate all model outputs for reasons discussed in section 7.3. Therefore more outputs
become informative regarding the input space, and warrant inclusion in the analysis.
Consideration of the 1414 Wave 2 runs led to 4 additional outputs being included,
specifically the bj outputs with luminosity 18.75, 20 and 21.75, and the K output with
luminosity 23.5. These are shown in figures 12 and 13 along with the original 7 outputs,
as the dotted vertical lines.

Wave 2 to 4: Univariate Emulation

The Wave 2 to 4 univariate emulators were constructed using similar methods as were
used in Wave 1, as described in detail in section 5.3. Here we give a summary of their
construction, highlighting the differences with the Wave 1 case.
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Wave Runs Act IM I2M I3M IMV % Space
1 993 5 - 2.7 2.3 - 14.9 %
2 1414 8 - 2.7 2.3 - 5.9 %
3 1620 8 - 2.7 2.3 26.75 1.6 %
4 2011 10 3.2 2.7 2.3 26.75 0.26 %

Table 3: The fraction of parameter space deemed non-implausible after each wave of
emulation. Column 1: the wave; Column 2, the number of model runs used to construct
the emulator; Column 3: the number of Active Variables; Column 4-7 the implausibility
thresholds; Column 8: the fraction of the parameter space deemed non-implausible.

Recall that for Waves 1-3 we only explored 8 of the input parameters, which were the
set of proposed active variables described in section 5.2 and shown in table 1, with the
effect of the remaining 9 inputs being described by the model discrepancy term ΦIA (see
section 6.1). The selection of Wave 2 and 3 Active Variables proceeded as for Wave 1,
and it was found that all 8 input parameters were required as active in these cases.
Therefore, the only difference to the form of the Wave 1 emulator given by equation (7),
is that now there is no nugget term wi(xB). The selection and fitting of the polynomial
terms was performed as in section 5.2, and a similar Gaussian covariance function to
equation (14) was assumed.

In Wave 4, it was found that improved polynomial fits could be obtained using 10
active variables, composed of the 8 variables used in Wave 1-3 (and given in table 1) with
the addition of the inputs alphastar and tau0mrg. The remaining 7 inputs were found
to have little impact on the 11 luminosity function outputs considered. As the effect of
all 17 inputs are represented by the Wave 4 emulator, the ΦIA model discrepancy term
(representing the 9 previously inactive variables) was dropped at this stage. Table 3
summarises the number of runs used at each wave, along with the number of active
variables required. At each wave, cluster analysis was performed to check that the non-
implausible volume was simply connected (which was found to be the case), as separate
emulators would have been required for unconnected volumes.

Wave 3 and 4: Multivariate Emulation

In Waves 1 and 2 univariate emulators were used, which allow only the use of univariate
implausibility measures to reduce the input space. Therefore, at Wave 3 we constructed
a multivariate emulator in order to develop the corresponding multivariate implausibility
measure I(x) introduced in section 7.1. I(x) will be of use as it measures different
aspects of the model output compared to the univariate implausibility measures, namely
it is sensitive to the shape of the luminosity function.

Constructing a tractable multivariate emulator can be a challenging task. An emu-
lator that utilizes a weakly stationary process (such as ui(x) in equation (14)) suffers
from what is referred to as the (nq)3 problem (Rougier (2008)), where n is the number
of model evaluations and q is the number of outputs to be emulated. The process of
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updating the emulator with the n model evaluations generally requires the inverting
of a matrix of size nq × nq, a computation that scales as (nq)3. At Wave 4 say we
have n = 2011 and q = 11, leading to a problematic matrix inversion of size 22121.
However, by specifying covariance structures of suitably symmetric form this problem
can be avoided.

The wave 3 emulator has the same form as that of wave 2, where again we use all
8 inputs as Active Variables (that is x[Ai] = xB), and we consider the same set of 11
outputs. Again the gij(xB) and βij terms were chosen by model selection techniques
and OLS fitting respectively: we compare these polynomials to those of previous waves
in the next section. We then assume the following separable multivariate covariance
structure for the process ui(xB):

Cov(ui(xB), uj(x′B)) = Σij exp(−||x[B] − x′[B]||
2/θ2), (22)

where the i and j indices denote each of the 11 outputs, Σ is an 11 × 11 covariance
matrix and note we have removed the i index on θ as we have assumed the same
correlation length for each output. We assess the matrix Σ by taking the covariance
matrix of the 11 sets of residuals from each of the polynomials. The separable form of
equation (22) allows the above problematic matrix to be written as a direct product,
which greatly simplifies the calculation of its inverse. See Rougier (2008) for further
discussions regarding calculations for multivariate emulators.

The construction of a multivariate emulator allows the use of a Multivariate Implau-
sibility measure which can be defined as (using equation (10)):

I2(x) = (E(f(x))− z)T (Var(f(x)) + Var(εmd) + Var(εobs))−1(E(f(x))− z). (23)

I(x) is a useful measure to consider as it captures the shape of the luminosity function
output. It will allow the discarding of inputs corresponding to runs that satisfy the
univariate matching criteria and hence are close to the data points, but that have an
unphysical shape in either bj or K luminosity function.

8.2 Comparing Emulators

At each wave the emulator accuracy increases. Therefore, it is instructive to compare
the emulators in order to understand which features lead to this improvement. As the
Wave 4 emulator is considerably different (as it involves all 17 input parameters) we
leave discussion of it until section 9.1.

Figure 7 (left panel) shows the estimated value of the residual standard deviation
σui

for each of the first three waves, for all 11 emulated outputs (for completeness we
show all 11 outputs for Wave 1 even though 4 of these were not considered at that
stage). There are significant drops in σui from Wave 1 to 2 across all outputs, with even
more substantial drops from Wave 2 to Wave 3, especially for the K luminosity outputs
(outputs 7 to 11). The right panel of figure 7 shows the adjusted R2 for each of the 11
emulators, for each of the 3 waves. It shows the improvement in percentage of output
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Figure 7: Plots showing the residual standard deviation σ for waves 1 to 3 (left panel)
and the Adjusted R2 for wave 1 to 3 (right panel).

variance explained in Waves 2 and 3 compared to that of Wave 1. Note that although
the Wave 3 adjusted R2 is sometimes below that of Wave 2, this is to be expected:
as the variance of the Wave 3 run outputs is less than that of the Wave 2 runs (as it
has been restricted), we would expect that the Wave 3 emulators may not be able to
explain more of this variance than their Wave 2 counterparts, even though they are
more accurate.

Further confirmation of the difference between the Wave 2 and 3 polynomials is
given by figure 8. As the Wave 2 and 3 polynomials have been fitted using highly
non-orthogonal designs of input points, it is not trivial to compare their polynomial
coefficients directly, in order to determine any differences between them. They could
possess noticeably different polynomial terms, but still be equivalent in terms of giving
comparable results over the design space of interest. In figure 8 (left panel) we show the
R2 and adjusted R2 of the Wave 2 polynomial calculated using the Wave 3 runs (in red).
Also shown are the R2 and adjusted R2 of the Wave 3 polynomial calculated with the
same Wave 3 runs (in green). Note the dramatic difference in variance explained between
the red and green points. This demonstrates that the two sets of polynomials are
substantially different. While this comparison is not strictly fair (as the Wave 3 points
were used to fit the Wave 3 polynomial), equivalent polynomials would be expected to
have much smaller differences in their R2 values. To highlight this point, figure 8 (right
panel) shows the R2 of the Wave 2 and Wave 3 polynomials calculated using a set of
204 Wave 3 diagnostic runs. Again a clear difference between the explanatory power of
the two polynomials can be seen. This suggests that the emulators are picking up new
features of the model at each wave through improved polynomial fits: a natural feature
as we try to build more structure into the mean function of the emulators, as opposed
to into the stationary process part.
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Figure 8: Left panel gives a plot showing the R2 (open points) and adjusted R2 (solid
points) of the Wave 2 polynomial when used to predict the outputs of the Wave 3
runs (in red). Also shown are the corresponding Wave 3 polynomial R2 (open points)
and adjusted R2 (solid points) in green. Note the large difference between red and
green points. Right panel: shows the fairer comparison of the R2 of the Wave 2 and 3
polynomials when used to predict 204 Wave 3 diagnostic runs.

8.3 Implausibility Measures and Space Reduction

Table 3 summarises which of the four implausibility measures IM (x), I2M (x), I3M (x)
and I(x) were used in each of the four Waves, along with the implausibility cutoffs
that were imposed. Note that the multivariate cutoff IMV , employed at Wave 3, was
chosen to be equal to 26.75, the critical value of 0.995 from a chi squared distribution
with 11 degrees of freedom. This cutoff was employed in a conservative manner as
follows. The expert was only able to assert possible ranges on the parameters a, b and c
that parameterise the model discrepancy contribution Var(ΦE) ((16),(17)). Therefore,
inputs x were only discarded as implausible due to the multivariate measure I(x) if
I(x) > IMV for all values of a, b and c within their specified ranges.

Figure 9 shows the progression of implausibility and optical depth plots, in the
vhotdisk and alphacool plane, for Waves 1 to 3. Note that the size of the non-implausible
region decreases with each wave as expected, occupying a volume of 15%, 5.9% and 1.6%
respectively. Even though the non-implausible volume occupies a small part of the input
space, it still covers a large part of the two dimensional projection.

9 Results of Wave 4 and 5

9.1 Wave 4

The Wave 4 emulator gives an accurate description of the non-implausible region of input
parameter space X ∗. Visualising this region is a difficult task, as it is a complicated
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Figure 9: The top three panels give Wave 1, 2 and 3 implausibility projection plots:
the red region indicates high implausibility where input points will be discarded. Note
that the yellow and green regions occupy only 15%, 5.9% and 1.6% of the input space
respectively (the non-implausible region), even though they take up much larger areas
of the 2-dimensional projection. The bottom three panels give the depth plots, showing
the fraction of the hidden 6 dimensional volume that satisfies the implausibility cutoff,
at that grid-point.

object in a ten-dimensional space. We leave a rigorous exploration of this region, of
the problem of projecting higher dimensional objects, and of the structure of the Wave
4 emulator as a whole to future work, and here confine our analysis to useful two
dimensional projections of the space.

Figure 10 shows the minimised Implausibility projections (below the diagonal) and
optical depth plots (above the diagonal) corresponding to all possible pairs of active
variables. The plots above the diagonal have been transposed to have the same orien-
tation as those below the diagonal for ease of comparison. Figure 10 highlights many
features of the Galform model, which are of great interest to the cosmologists. It sug-
gests that acceptable fits can be found over large ranges of the input parameters. It also
demonstrates clear relationships between certain parameters, for example, the positive
correlation between vhotdisk and alphareheat: if one input is increased, then the second
should be increased to compensate. This make physical sense as both these parameters
are involved with feedback from supernovae: vhotdisk is related to the gas blown out
of a galaxy due to supernovae while alphareheat regulates the time taken for this gas
to return. Similarly, there exist a strong negative correlation between vhotdisk and
alphahot: another input related to supernovae feedback.



44 Galaxy Formation: an Uncertainty Analysis

0.00

0.01

0.02

0.03

0.04

1.5

2.0

2.5

3.0

3.5

Figure 10: All Wave 4 Implausibility (below diagonal) and Optical Depth (above diag-
onal) projections. Compare the Implausibility plots with the Wave 5 runs of figure 11.

Figure 10 also shows which parameters influence the luminosity functions, and are
therefore constrained, and which parameters do not. Inputs related to the Reionisa-
tion and Galaxy Mergers modules of the Galform function (see table 1) are all inactive
save tau0mrg (fdf), which only has a subtle impact. Therefore the physical processes
represented by these modules can be concluded to have little impact on the luminosity
function. There are many more physical interpretations that can be obtained from this
analysis. For example, by applying principal component analysis to a set of points be-
longing to the non-implausible region, several approximate linear relationships between
groups of variables can be obtained (see Bower et al. (2009)).

9.2 Wave 5

Once the Wave 4 analysis had been performed, we designed and ran a final batch of 2000
model evaluations within the non-implausible region defined by the Wave 4 emulator.
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Figure 11: The Wave 5 runs coloured by the data implausibility, consistent with fig 10.

We refer to these as Wave 5 runs, although we do not construct a Wave 5 emulator.
These runs were evaluated for two reasons: to check that a significant volume of the non-
implausible region did indeed correspond to acceptable runs (and therefore that another
wave of analysis is not required), and to generate a large set of realised acceptable runs
for the cosmologists to use to perform provisional explorations of other output data sets.

Figure 11 shows the two-dimensional projections of these Wave 5 runs, coloured
using the data implausibility (that is the implausibility without any emulator variance).
The colour scale is the same as that of figure 10 to allow direct comparison. It can be
seen that we do indeed find a large number of acceptable runs: 306 of the 2000 Wave
5 runs satisfied the implausibility cutoffs, with approximately 800 more runs within
10 percent of the cutoff boundary. This is expected as the surface area of a complex
10-dimensional object can be large compared to its volume. The acceptable runs do
span a large range in several of the inputs, as was suggested by the Wave 4 analysis:
a fact that was a surprise to the cosmologists. In general the Wave 5 runs are in good
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agreement with the Wave 4 analysis, suggesting that the Wave 4 emulator is of sufficient
accuracy. For this reason, and due to the large number of acceptable runs obtained,
we concluded that another wave of analysis was unnecessary. The acceptable runs were
used to perform provisional explorations of additional outputs of the Galform model, as
described in Bower et al. (2009).

To illustrate the improvement in the model runs from Wave 1 to Wave 5, figures 12
and 13 show the first 500 model runs bj and K outputs from Waves 1,2,3 and the ‘good’
runs from Wave 5, defined as those that satisfy IM (x) < 2.5. It can be seen that a large
number of acceptable runs have been found, which are acceptable across all outputs,
not just the 11 used for the emulation process.
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Figure 12: The bj Luminosity function output for the first 500 runs of Waves 1,2 and
3 (top left, top right and bottom left panels respectively). The colours represent the
maximum implausibility IM (x) and are consistent with the colour scale of figures 10 and
11. Bottom right panel: the Wave 5 runs that satisfy IM (x) < 2.5. (Note the tighter
error bars compared to previous waves as ΦIA has been dropped)

10 Conclusion

In this Case Study we have presented the results of an uncertainty analysis of the galaxy
formation model known as Galform. The main aim was to identify the set of inputs
that would give rise to an acceptable match between model output and observed data,
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Figure 13: The K Luminosity function output for the first 500 runs of Waves 1,2 and
3 (top left, top right and bottom left panels respectively). The colours represent the
maximum implausibility IM (x) and are consistent with the colour scale of figures 10 and
11. Bottom right panel: the Wave 5 runs that satisfy IM (x) < 2.5. (Note the tighter
error bars compared to previous waves as ΦIA has been dropped)

taking into account all of the major uncertainties present in such a situation.

This analysis can be seen as a demonstration of the power of the iterative refocussing
technique in addressing a difficult and important problem: difficult in the sense that
Galform is a complex model with a significant run time, and with a large number of
active parameters many of which exhibit intricate interactions; important in that Gal-
form is a state-of-the-art model, and that the results we present provide insight into the
physics of galaxy formation for the cosmology community. At each iteration, improved
fits for the emulators are obtained, and new features of the model are seen (section 8.2).
This iterative strategy leads to a collection of emulators that are increasingly accurate
over regions of the input space of increasing interest. It is hard to see how such an
accurate description of the non-implausible region of input space could be obtained in
one step, without requiring an infeasibly large number of model evaluations. As the
non-implausible region is so small (less that 0.26% of the initial space), it is clearly
beneficial to perform a History Match before attempting any form of fully Bayesian
Calibration.

It is instructive to ask what possible improvements could have been made to this
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Figure 14: 5 new outputs of the Galform model describing galaxy disk sizes, TF relation,
gas metallicity, gas mass to LB and BH mass. The cosmologists best fit is in red, with
a group of the best Wave 5 runs in green. Already we have found better simultaneous
fits to these additional data sets.

analysis, and to the project as a whole, with the benefit of hindsight. Throughout the
project we have had the benefit of substantial computational resources, courtesy of the
Galform group. This has allowed relatively large numbers of runs to be performed at
each wave of the analysis, when it may have been possible to obtain broadly similar
results using fewer evaluations. Also, certain simplifying assumptions used when as-
sessing the Model Discrepancy could have been dropped. For example, the assumption
that the effect of the Dark Matter forcing function ΦDM was independent of x, has been
addressed in House et al. (2009), where Galform models with different Dark Matter con-
figurations are treated as exchangeable computer models. This is a particular aspect of
a more general treatment of model discrepancy (Goldstein and Rougier (2009)).

The identification of the non-implausible region shown in figure 10 provides several
immediate physical insights into the Galform model, e.g. the relations between certain
inputs, the ranges of feasible values for the inputs, as well as identifying which inputs
are not restricted by the luminosity function, all of which are of significant scientific
interest. However, there may be several physical features that are hard to obtain from
simple 2- or even 3-dimensional projections, or from linear analyses such as PCA (Bower
et al. 2009). Visualising the complexities of the full 10-dimensional volume efficiently is
a difficult task, but must be addressed in order to extract the full information provided
by the emulators. This is made even more difficult by the fact that although the
emulators are very fast to evaluate, they are still not fast enough to completely cover a
(possibly complex) 10-dimensional object. We have developed efficient emulator designs



Vernon, Goldstein and Bower 49

and calculation routines for high-dimensional visualisation purposes and will report on
these elsewhere. The set of Wave 5 evaluations provided a large number of realised
acceptable runs for use by the cosmologists in provisionally exploring further Galform
outputs. Several examples of such output datasets describing various galaxy properties
(disk sizes, TF relation, gas metallicity, gas mass to LB and BH mass), along with
corresponding observed data (the black points) are shown in figure 14. The single red
line represents the cosmologists’ single best run prior to this analysis, and the green lines
are ten of the best Wave 5 runs. We found many runs that were substantially better
fits to the luminosity functions than had ever been seen previously by the cosmologists,
and as figure 14 shows, have already found several runs that are an improved match to
these other output data sets. The next step in this ongoing collaboration is to apply the
emulation and History Matching procedures outlined in this report to these new output
data sets, in order to understand their impact on the input space, and to determine
which regions of input space will provide acceptable matches to all possible outputs.
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