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ABSTRACT

We investigate the clustering of dark matter halos in Lagrangian space in terms of their two-point correlation
function. Analyzing a set of collisionless scale-free 1283 particle N-body simulations with spectral indices n 5

, 21, we measure the first two Lagrangian bias parameters b1 and b2 relating halo and mass correlations. We22
find that the Mo & White leading-order formula for b1 describes the clustering of halos with mass M * M?

(where M? indicates the characteristic nonlinear mass) quite accurately. Smaller halos turn out to be less clustered
in Lagrangian space than predicted by Mo & White. Our findings are consistent with the recent results of Jing
for the clustering of halo populations in Eulerian space, demonstrating that the discrepancies between the N-
body and analytical Mo & White prediction for the bias exist already in Lagrangian space. This shows that a
more refined theoretical algorithm for selecting halos in the initial conditions needs to be developed. Finally, we
present a very accurate fitting formula for the linear halo bias factor b1 in Lagrangian space.

Subject headings: cosmology: theory — galaxies: statistics — large-scale structure of universe

1. INTRODUCTION

Virialized dark matter halos in the universe are not distrib-
uted in the same way as the underlying dark matter. This is
true whether one takes the final positions of the halos in Eu-
lerian space or their initial positions in Lagrangian space (Mo
& White 1996, hereafter MW; Catelan et al. 1998, hereafter
CLMP; Catelan, Matarrese, & Porciani 1998; Jing 1998; Sheth
& Lemson 1998). The numerical tour de force by Jing (1998),
who thoroughly investigated with unmatched accuracy the clus-
tering of dark matter halos in Eulerian space, demonstrated
explicitly that (1) the halo-to-mass bias is independent of the
halo separation (at least in the scale-free case and inn 5 22
the linear regime) and (2) the MW Eulerian linear bias correctly
describes the clustering of halos of masses , but sys-M * M?

tematically underpredicts it for any value of the spectral index
n if , where M? is the typical nonlinear mass. However,M & M?

it is impossible to understand solely on the basis of the Eulerian
investigation whether the discrepancies between the numerical
results and the analytical MW predictions are due to (1) a failure
of the algorithm for identifying the halo positions in Lagrangian
space, (2) the effects of nonlinear shear dynamics (not ac-
counted for in the original MW approach) on the mapping of
halo positions from Lagrangian to Eulerian space, or (3) a
combination of the two.

In this Letter, we employ scale-free collisionless N-body
simulations [i.e., with density parameter and initialQ 5 1
power spectra ] to investigate the clustering of darknP(k) ∝ k
matter halos in Lagrangian space in terms of their two-point
correlation function. We compare the halo correlation function
to the correlation of the underlying dark matter for ,n 5 22
21 spanning more than 4 (3) orders of magnitudes in halo
masses for ( ).n 5 22 n 5 21

We find that the theoretical “underclustering” reported by
Jing for masses is already present in the initial con-M & M?

ditions as well (but as “overclustering,” since the first-order
bias is negative for small masses), and it cannot be due exclu-
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sively to the subsequent nonlinear effects of the shear dynamics
acting on small scales and unaccounted for in the original spher-
ical collapse model of MW. We then argue that the standard
Press-Schechter (1974) approach (“extended” or not), on which
MW and CLMP based their speculations, is inadequate for
identifying the locations of halos in the initial conditions, and
a major effort should be devoted to finding an improved al-
gorithm. Section 2 reports the details of the present investi-
gation. Finally, an accurate fitting formula for the bias b1 in
Lagrangian space is given, which should be considered as the
Lagrangian version of Jing’s fitting formula for the Eulerian
case. Section 3 contains our conclusions.

2. HALO CLUSTERING FROM N-BODY SIMULATIONS

2.1. Simulations and Halos

The simulations used here are similar to those of Lacey &
Cole (1994), who used them to test halo merging histories.
They were performed using the AP3M code of Couchman
(1991) with 1283 particles. The force softening used was
L/1280, with L the size of the periodic box. Initial positions
and velocities were generated by displacing particles from a
uniform 1283 grid according to the Zeldovich approximation,
assuming an initial scale-free power spectrum and Gaussian
statistics. We considered four realizations for two different
spectral indices , 21. For each simulation, we recorded,n 5 22
for many epochs, positions and velocities of all particles. The
output times (38 for and 35 for ) were chosenn 5 22 n 5 21
so that M? increased by a factor between subsequent outputÎ2
times. In the last output, corresponded to 33,748 particlesM?

for and to 28,616 particles for .n 5 22 n 5 21
For each output time, we selected dark matter halos in the

simulations employing the “friends-of-friends” group finder
with a linking length equal to 20% of the mean interparticle
distance (e.g., Davis et al. 1985). We checked that results ob-
tained using the spherical overdensity group finder (Lacey &
Cole 1994) are essentially identical. We excluded halos con-
taining fewer than 20 particles or more than 20,000 particles.
We moved all of the particles belonging to a given halo back
to their initial (Lagrangian) positions, then computed the po-
sition of their center of mass. We used the latter as the “halo
position” in Lagrangian space. In such a way, for each output
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Fig. 1.—Dots: Best-fit values of (top) and (bottom) as a function of2 2¯ ¯b b1 2

variance and halo mass on the same scale for . Error bars denote2j n 5 22M

1 j uncertainties. Long-dashed line: MW and CLMP Lagrangian bias with
. Short-dashed line: Jing’s fit to the Eulerian bias minus 1. Contin-d 5 1.686c

uous line: Our fitting formula for b1 given in the main text. Both the theoretical
predictions and the fitting formula are averaged over the Press-Schechter mass
function. The horizontal error bar in the bottom right-hand corner of the top
panel indicates the mass intervals considered. The inset in the top panel shows
the best-fit correction f(jM) to the MW formula for b1, when :M ! M?

.2log f 5 (0.34 5 0.11) 2 (0.73 5 0.12) log jM

time, we constructed a catalog of halos indicating their mass
and position in Lagrangian space.

2.2. Halo Correlation Function in Lagrangian Space

We computed the mean correlation function between halosȳh

in a given mass interval, where a bar denotes mass averaged
quantities. Self-similar scaling allowed us to combine data from
different output times in order to reduce the Poisson fluctuations
due to the finite number of halos within the box. We considered
every output time containing more than 100 halos in the same
mass interval, and we binned the distributions of halo sepa-
rations in units of r/R?, where . Finally, we computed3R ∝ M? ?

the halo correlation function using the estimator

O N [r/R (z )]i i ? i¯Ay S 5 2 1, (1)h PoiO N [r/R (z )]i i ? i

where the index i runs over different output times zi of the
same simulation, is the number of halo pairs in theN (r/R )i ?

ith output, and is the corresponding quantity for aPoiN (r/R )i ?

Poisson process with the same number density. The average
symbol (angle brackets) is introduced since we considered in-
formation coming from the different temporal outputs. In this
way, for each mass interval, we collected four realizations of
the Lagrangian correlation function of dark matter halos.

This procedure allows us to achieve two goals: (1) to reduce
statistical fluctuations by increasing the number of halo pairs
and (2) to extend the mass interval and the range of halo
separations that may be sampled. In fact, the box size L and
the minimum halo mass in the simulation are fixed, while R?

and M? increase with time. This means that the correlation
function for halos with is measured mainly from theM k M?

early output times, while that for halos less massive than M?

comes mostly from later output times. In order to simulate
bootstrap resampling, we assigned as the standard error the
Poisson error bar multiplied by a factor of (Mo, Jing, &Î3
Börner 1992).

2.3. Lagrangian Bias Parameters

Now we want to test whether the Lagrangian halo correlation
yh is related that of the mass (ym) through a relation (see eq.
[15] in CLMP and eq. [38] in Porciani et al. 1998)

2r r b r22 2y 5 b y 1 y 1 ) , (2)h 1 m m( ) ( ) ( )R R 2 R? ? ?

where the symbol bi denotes the ith Lagrangian bias factor, and
ym is calculated according to linear theory. For instance, the
extended Press-Schechter approach (Bond et al. 1991) leads to
the MW and CLMP expressions for b1 and b2, namely b 51

and , where indicates the2 2 2 2 2d /j 2 1/d b 5 (d /j 2 3)/j jc M c 2 c M M M

mass variance on scale M (Cole & Kaiser 1989; MW; Mo,
Jing, & White 1997). Note that, by definition, forj 5 dM c

. To test this biasing model against simulations, weM 5 M?

have to consider a finite range of halo masses. Equation (2)
then implies , where is the mean of12 2 2¯ ¯ ¯ ¯y 5 b y 1 b y 1 ) bh 1 m 2 m k2

bk in the mass interval, weighted by the mass function. In order
to obtain statistically reliable values for and , we compute¯ ¯b b1 2

the averages AymS and directly from the initial conditions2Ay Sm

of the simulation, following the same averaging procedure we
used for the halo correlations (in this case, it corresponds to
averaging over output times using the volume of the r/R? bin

as a weight). Note that, after averaging, generally differs2Ay Sm

from AymS2, so that equation (2) implies 2¯ ¯Ay S 5 b Ay S 1h 1 m

. This averaging procedure is important to account1 2 2b̄ Ay S 1 )2 m2

for the finiteness of the box: in this way, the lack of any Fourier
components of the density would be equally experienced by
both mass and halo distributions. Finally, to check the reliability
of equation (2), we apply the x2 test, assuming that every

is normally distributed around a mean value.¯Ay Sh

Halos are objects of finite size, and we expect exclusion



No. 2, 1999 PORCIANI, CATELAN, & LACEY L101

Fig. 2.—As in Fig. 1, but for . In this case, the best fit for f isn 5 21
.2log f 5 (0.13 5 0.13) 2 (0.41 5 0.10) log jM

effects to dominate yh at separations of the order of the halo
Lagrangian size RL. In a sample composed of identical spherical
halos, spatial exclusiveness implies for andy 5 21 r ! 2Rh L

a strong compensating positive correlation at . Ther * 2RL

magnitude of this positive correlation is related to the volume
fraction occupied by the spheres, since . In-` 2dr r y (r) 5 0∫0 h

spired by this, we decided to exclude from the x2 test all data
corresponding to separations , wherer & 2R R 5max max

is the characteristic Lagrangian radius of the1/3R (M /M )? max ?

largest halo in the mass interval considered. Note that, out of
the exclusion region, the additional condition is notFy F ! 1m

needed to neglect higher order terms in equation (2). This is
because, for and , as with . An-2ai 1 1 j r ` b r 0 j a ≥ 2M i M

yway, the exact value of the minimum separation considered
has been determined on a case-by-case basis, checking for the

stability of our results with increasing the number of data points
at small separations. We avoided averaging between different
realizations of the same power spectrum: the entire data set of
up to four values of for each r/R? interval is considered¯Ay Sh

in the x2 test.
Minimization of x2 with nonholonomic constraints 2b̄ ≥ 01

and is used to obtain estimates of the bias parameters.2b̄ ≥ 02

The resulting shows that the a priori bias hypothesis—the2xmin

bias relation in equation (2)—is acceptable to a 95% confidence
level over a wide interval of halo masses. However, for n 5

, samples with are inconsistent with equation (2)22 M 1 16M∗
at the 99% confidence level. This is caused by the presence of
noticeable differences (especially at very large separations) be-
tween the halo correlation functions extracted from different
realizations. Indeed, very massive halos are exponentially rare
and more affected by statistical fluctuations. On the other hand,
we could also have underestimated the uncertainty in com-
puting AyhS.

Figures 1 and 2 show the best-fit results for and . The2 2¯ ¯b b1 2

error bars are obtained by projecting along the b-axes the con-
tours of constant x2 at . Concerning , the comparison2 2¯x 1 1 bmin 1

against theoretical predictions shows a quantitatively good
agreement for . However, the square bias parameter ofM 1 M?

lower mass halos is significantly smaller than predicted by Mo
& White (meaning that the bias is less negative than theb̄1

MW value). Findings of this kind have been published by Jing
(1998), who investigated the Eulerian halo clustering in the
quasi-linear regime, giving an accurate fitting formula for the
Eulerian analog of b1. Our result shows incontrovertably that
the effects discovered by Jing are already present in Lagrangian
space.

There is no rigorous way to apply Jing’s bias-fitting formula
in Lagrangian space, since the nonlocal dynamics of the mass
density field enters the transformation. However, as a first ap-
proach, and only to check the order of magnitude of the effect,
we can follow MW in assuming a spherical evolution of the
coarse-grained mass density field to map from Lagrangian to
Eulerian space. In this case, the first Eulerian bias term is given
by . Jing’s formula, , turns out to be a1 1 b b { b 2 11 1 Jing

reasonably good description of our data, showing that the un-
derclustering of small halos in Eulerian space detected by Jing
is correspondingly already present in their Lagrangian cluster-
ing; the intervening dynamics is approximately well accounted
for by the standard mapping from Lagrangian to Eulerian space
in the laminar regime. We elaborate below our own fitting
formula for the linear Lagrangian bias, which turns out to be
accurate to 10% over the entire mass range investigated (with
the exception of the zero crossing region for b1).

Our results for b2 are of course less conclusive than for b1,
mainly because of the larger uncertainties. However, they con-
firm the information extracted considering b1. Quantitatively,
for , the CLMP expression for b2 gives a good estimaten 5 22
for halos with , while it overpredicts the numericalM 1 M?

outcome for when . For , our results are a2b M ! M M ∼ M2 ? ?

factor of ∼1.4 smaller than predicted by the CLMP formula.
This is the range in which our method is best suited to compute
b2, since b1 vanishes and the halo correlation function is pro-
portional to . No firm conclusion can be drawn for n 52ym

21, since practically the entire data set only allows one to set
an upper limit on . It is not unlikely that, for the less negative2b̄2

spectral indices, bigger simulations are better suited to quantify
the halo clustering up to second-order biasing, above all in
Lagrangian space. It will be worthwhile to address this point
in a future work.
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2.4. Accurate Fitting Formula for b1

Our results for b1 can be accurately parametrized by intro-
ducing a mass-dependent, multiplicative correction to the MW
formula, namely

2 2 2b (j ) 5 f (j )(d /j 2 1/d ) . (3)1 M M c M c

For , the original MW formula (i.e., ) withn 5 22 f { 1
, as suggested by the spherical collapse model, de-d 5 1.686c

scribes the data for to within 10% accuracy. SmallerM 1 M?

masses instead require . For and1.46f 5 2.19/j n 5 21 M 1M

, our numerical data are very well described by the MWM∗
formula for b1 with a lower collapse threshold . Ind . 1.52c

this case, for we obtain . These fitting0.82M ! M f 5 1.35/j∗ M

formulae are extremely accurate in describing our data set.
Their simple power-law behavior encourages further theoretical
investigation. For instance, with data for more than two spectral
indices n, one may attempt to fit the dependence of b1 on n.

3. DISCUSSION AND CONCLUSIONS

Employing 1283-body scale-free simulations, we analyzed
the clustering of dark matter halos in Lagrangian space. The
main results of this investigation can be summarized as follows.

1. Assuming a correlation model as in equation (2), the
first two Lagrangian bias factors b1 and b2 are strongly mass
dependent over the 4 orders of magnitude in mass investigated.

2. The clustering of halos with mass above the nonlinear
mass, , is fairly well described by the MW formulaM * M?

for the linear Lagrangian bias, both for and .n 5 21 n 5 22
3. Halos with nonlinear masses are less clusteredM & M?

(have a smaller correlation amplitude) than what the leading
order Lagrangian bias of MW would predict (see also Sheth
& Lemson 1998).

When these results are combined with the ones recently ob-
tained by Jing (1998) about the clustering of halos in Eulerian

space, we can disentangle the question of whether the dis-
crepancies between Jing’s numerical results and the MW the-
oretical predictions are mainly due to the effects of the non-
linear shear dynamics, effective on smaller scales, or to a
possible failure of the halo selection algorithm in the initial
conditions—a question actually left unsolved by Jing. Clearly,
since, as we showed, the same effects discovered by Jing are
essentially already present in Lagrangian space, our investi-
gation suggests that it is time to improve on the classical Press-
Schechter algorithm for identifying halos in Lagrangian space:
since it assumes spherically symmetric collapse, it is not
surprising that it fails in correctly counting the small halo
masses, where departures from spherical collapse can be cos-
mologically relevant. The failure of the MW formula for the
Lagrangian and Eulerian bias is presumably related to the de-
parture of the halo mass function from the Press-Schechter form
at low masses (e.g., Lacey & Cole 1994).

Finally, we derived a fitting formula for the linear Lagrangian
bias b1 that is relevant for accurately predicting the clustering
of dark matter halos, above all in the low-mass tail. Our fitting
formula can be considered as the Lagrangian equivalent of
equation (3) in Jing (1998). These results are highly relevant
for predicting the clustering of low-luminosity galaxies, most
of which lie in lower-mass halos (e.g., Baugh et al. 1998).
Modeling of galaxy clustering found in present and future gal-
axy redshift surveys will provide an important application of
the present results.
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