
THE ASTROPHYSICAL JOURNAL, 559 :552È571, 2001 October 1
( 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A.

SPIN-INDUCED GALAXY ALIGNMENTS AND THEIR IMPLICATIONS FOR
WEAK-LENSING MEASUREMENTS

ROBERT G. CRITTENDEN,1 PRIYAMVADA NATARAJAN,2,3 UE-LI PEN,4 AND TOM THEUNS2
Received 2000 September 26 ; accepted 2001 June 1

ABSTRACT
Large-scale correlations in the orientations of galaxies can result from alignments in their angular

momentum vectors. These alignments arise from the tidal torques exerted on neighboring protogalaxies
by the smoothly varying shear Ðeld. We compute the predicted amplitude of such ellipticity correlations
using the Zeldovich approximation for a realistic distribution of galaxy shapes. Weak gravitational
lensing can also induce ellipticity correlations, since the images of neighboring galaxies will be distorted
coherently. On comparing these two e†ects that induce shape correlations, we Ðnd that for current weak-
lensing surveys with a median redshift of the intrinsic signal is of the order of 1%È10% of thez

m
\ 1,

measured signal. However, for shallower surveys with the intrinsic correlations dominate overz
m

¹ 0.3,
the lensing signal. The distortions induced by lensing are curl-free, whereas those resulting from intrinsic
alignments are not. This di†erence can be used to disentangle these two sources of ellipticity correlations.
Subject headings : galaxies : general È gravitational lensing

1. INTRODUCTION

Gravitational lensing can be used to map the detailed distribution of matter in the universe over a range of scales (Gunn
1967). Systematic distortions in the shapes and orientations of high-redshift background galaxies are induced by mass
inhomogeneities along the line of sight. In strong lensing, a single massive foreground cluster will cause background galaxies
to be signiÐcantly magniÐed and distorted. Weak lensing, on the other hand, statistically measures the cumulative e†ect of less
massive systems along the line of sight (Gunn 1967 ; Blandford et al. 1991 ; Miralda-Escude 1991 ; Kaiser 1992 ; see a recent
review by Bartelmann & Schneider 2001).

The lensing e†ect depends only on the projected surface mass density and is independent of the luminosity or the dynamical
state of the mass distribution. Thus, this technique can potentially provide invaluable constraints on the distribution of matter
in the universe and the underlying cosmological model (Bernardeau, van Waerbeke, & Mellier 1997 ; van Waerbeke, Bernard-
eau, & Mellier 1999). There has been considerable progress in theoretical calculations of the e†ects of weak lensing by
large-scale structure, both analytically and using ray tracing through cosmological N-body simulations (Kaiser 1992 ; Ber-
nardeau et al. 1997 ; Jain & Seljak 1997 ; Jain, Seljak, & White 2000 ; Hu & White 2000).

Recently, several teams have reported observational detections of ““ cosmic shear ÏÏÈweak lensing on scales ranging from 1@
to 10@ (Van Waerbeke et al. 2000 ; Bacon, Refregier, & Ellis 2000 ; Wittman et al. 2000 ; Kaiser, Wilson, & Luppino 2000). At
present, these studies are limited by observational e†ects, such as shot noise due to the Ðnite number of galaxies and the
accuracy with which shapes can actually be measured given the optics and seeing (Kaiser 1995 ; Bartelmann & Schneider
2001 ; Kuijken 1999). In addition, the intrinsic ellipticity distribution of galaxies and their redshift distribution is still
somewhat uncertain. These observational difficulties can be potentially overcome with more data.

However, an important theoretical issue remains. In modeling the distortion produced by lensing, it is assumed that the a
priori intrinsic correlations in the shapes and orientations of background galaxies are negligible. Correlations in the intrinsic
ellipticities of neighboring galaxies are expected to arise from the galaxy formation process, for example as a consequence of
correlations between the angular momenta of galaxies when they assemble. We compute the strength of these correlations in
linear theory, in the context of Gaussian initial Ñuctuations.

To do so, we approximate the projected shape of a galaxy on the sky by an ellipsoid with semiaxes a and b (a [ b). The
orientation of the ellipsoid depends on the angle t between the major axis and the chosen coordinate system, while its
magnitude is given by o v o\ (a2[ b2)/(a2] b2). Both the magnitude of the ellipticity and its orientation can be concisely
described by the complex quantity v(o),

v(o) \ o v(o) o e2it \ v(̀o)] iv
C
(o) , (1)

where the superscript (o) denotes the observed shape.
In the linear regime and under the assumption of weak lensing, the lensing equation can be written as

v(o)\ v] g
1 ] g*v

, (2)
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where g is the complex shear and v is the intrinsic shape of the source (Kochanek 1990 ; Miralda-Escude 1991). Furthermore,
in the weak regime, correlations of this distortion Ðeld are

Sv(o)(x1)v(o)*(x2)T ^ Sv(x1)v*(x2)T ] Sg*(x2)v(x1) ] g(x1)v*(x2)T ] Sg(x1)g*(x2)T , (3)

where the asterisk denotes complex conjugation.5 In this paper we examine the Ðrst term, which arises from intrinsic shape
correlations. Previous analyses have focused on the third term of this expression, correlations due to weak lensing. The second
term, which is due to correlations between the lensing galaxies and the intrinsic shapes of the galaxies being lensed, will not be
addressed here. Naively, however, we expect this contribution to be small, since the mean distance between the lensing and
lensed galaxies far exceeds the distance scale over which angular momentum correlations are important.

We assume that shape correlations arise primarily from correlations in the direction of the angular momentum vectors of
neighboring galaxies. Spiral galaxies are disklike, with the angular momentum vector perpendicular to the plane of the disk,
so that angular momentum couplings will be translated into shape correlations. We assume that for ellipticals the angular
momentum vector also lies along its shortest axis on average, as it does for the spirals. However, since elliptical galaxies are
intrinsically more round, the correlation amplitude will be smaller. Below we use the observed ellipticity distributions of each
morphological type in the computation of the shape correlations. For weak lensing, in contrast, the induced shape corre-
lations are independent of the original shapes of the lensed galaxies. In the next subsections we brieÑy review the origin of
angular momentum and recent work on understanding intrinsic ellipticity correlations.

1.1. Origins of Angular Momentum
The angular momentum of the matter contained in a volume V is deÐned as

L(t)\
P
V
[r(t) [ r6 (t)] Â v(r, t)o(r, t)d3r , (4)

where is the center of mass and o(r, t) is the density. Hoyle (1949) suggested that the origin of galactic angular momentum isr6
tidal torquing between the protogalaxy and the surrounding matter distribution. Most of the angular momentum of an object
is imparted before the overdense region completely collapses. After collapse, tidal torquing will be inefficient and the object
will simply conserve its spin.

Peebles (1969) used perturbation theory to calculate the growth rate of angular momentum contained within a comoving
spherical region. For such a spherical region, there are no torques initially, so the growth occurs at second order as a result of
convective e†ects on the bounding surface. In contrast, Doroshkevich (1970) showed that the angular momentum of a
protogalaxy grows at Ðrst order, since in general protogalactic regions are not spherical, generating an initial tidal torque.
White (1984) described this process using the Zeldovich (1970) approximation and showed that the spin grows linearly in time
for an EinsteinÈde Sitter universe.

Following White (1984), we consider the growth of Ñuctuations in an expanding Friedmann universe Ðlled with pressure-
free dust (p \ 0) in Lagrangian perturbation theory. The trajectory of a dust particle can be written in comoving coordinates
x \ r/a in terms of the gradient of the gravitational potential (, x(q, t) \ q [ D(t)$( (Zeldovich 1970). The term D(t)
describes the growth of modes in linear theory and is proportional to the cosmological expansion factor, a(t), for an Einstein
deÈSitter model. In terms of the Lagrangian coordinates q, the expression for angular momentum becomes

L(t)\ o0 a5
P
VL

(x [ x6 ) Â x5 d3q ^ o0 a5
P
VL

(q [ q6 ) Â x5 d3q , (5)

where is the present mean matter density and is the Lagrangian volume that corresponds to V . The latter expression iso0 VLcorrect to second order, since is parallel to the displacement.x5 \[D0 (t)$(
We can progress by expanding the gradient of the gravitational potential in a Taylor series around the center of mass,

La((q) ^ La((q6 ) ] (q [ q6 )b Tab , (6)

where the shear tensor is deÐned as the second derivative of the gravitational potential, The angularTab(q) \ La Lb ((q).
momentum of a collapsing protogalactic region before turnaround then is given by

L a \ a2(t)D0 (t)vabc Tbp Ipc , (7)

where is the moment of inertia of the matter in the collapsing volume,Ipc

Ipc\ o0 a3(t)
P
VL

(q [ q6 )p(q [ q6 )c d3q . (8)

Note that the volume element that initially contains the matter is in fact much larger than that of the Ðnal galaxy in comoving
coordinates. In this picture, the angular momentum is constant after turnaround.

This formalism has been used to study how angular momentum arises during galaxy formation. Heavens & Peacock (1988)
used Eulerian perturbation theory to compute the modulus of the angular momentum for galaxies, assuming the object to
form at the peak of a Gaussian Ðeld (Bardeen et al. 1986). They found that there is a broad distribution in the angular

5 In the remainder of the text we write two-point correlations functions in the following form: S fg@T4 S f (x1)g(x2)T.
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momenta of collapsed objects, which is only weakly correlated with the heights of the density peaks around which galaxies
form.

Catelan & Theuns (1996a, hereafter CT96a) expanded on this, working in Lagrangian space instead of Eulerian space. The
results from these two approaches are very similar, but the resulting expressions are simpler for the Lagrangian case. CT96a
approximated the shape of the object in Lagrangian space by an ellipsoid, which allowed the study of how angular momen-
tum was correlated with other aspects of the matter distribution, such as its mass or prolateness. The results of this analysis
allow one to compute joint probability distributions, for example between the mass and spin of a halo. These were found to be
in good agreement with the results from numerical simulations (Sugerman, Summers, & Kamionkowski 2000).

Extending their approach, Catelan & Theuns (1996b) used second-order Lagrangian perturbation theory to estimate the
contribution of nonlinear e†ects, which they showed to be small. They also investigated the consequences of non-Gaussian
primordial perturbations (Catelan & Theuns 1997), which they showed could have a signiÐcant e†ect on galactic spins.

Lee & Pen (2000a, 2000b, hereafter LP00) reexamined the origin of angular momentum on galaxy scales and studied the
statistics of both the magnitude and the direction of the present-day spin distribution using numerical simulations. They
developed a method to reconstruct the gravitational Ðeld, using only the direction of the angular momenta, since the
predictions for its magnitude have a large variance. A central issue in determining the magnitude of L is the degree of
correlation between the principal axes of the inertia tensor and gravitational shear tensor. CT96a attempted to take this into
account around peaks, and found that such a correlation reduces the angular momentum by a small factor. LP00 demon-
strated using numerical simulations that this factor is in fact nonnegligible. They conclude, however, that the approximation
made by CT96a is adequate for determining the direction of the angular momentum vector but not the magnitude. Here we
extend the treatment of LP00, and much of our notation and formalism follows their papers.

1.2. Intrinsic Ellipticity Correlations
There have been a number of preprints on this subject recently. We here brieÑy review some of the results obtained by other

groups, and we compare our calculations and results with these in more detail in subsequent sections.
Two groups, Heavens, Refregier, & Heymans (2000) and Croft & Metzler (2000), have attempted to measure the strength of

intrinsic correlations from high-resolution cosmological N-body simulations (that evolve only the dark matter component) of
the Virgo Collaboration (Jenkins et al. 1998 ; Thomas et al. 1998 ; Pearce et al. 1999). Some assumption must be made to relate
the dark matter halos in numerical simulations to the expected ellipticity of the luminous galaxies that form within them.
Croft & Metzler (2000) measure the projected ellipticities of dark matter halos and the correlation of pairs as a function of
separation. They then assumed that halo shapes are synonymous with galaxy shapes, and having done so claim to Ðnd a
positive signal for the correlation on scales of the order of 20 h~1 Mpc (limited by the largest box size available). The results
obtained in three dimensions were then projected into two-dimensional angular ellipticity correlation functions, taking into
account the viewing angle. They compute the induced correlations in the ellipticity and compare to recent reported measure-
ments of the observed lensing signal. While there is a large uncertainty arising from the unknown redshift distribution of the
sheared background galaxies, they Ðnd that at most 10%È20% of the measured signal could be attributed to contamination
from residual intrinsic correlations.

Heavens et al. (2000) have studied correlations in the intrinsic shapes of spiral galaxies also using the Virgo simulations.
However, they use the angular momentum of the halo (rather than the actual shape, as done by Croft & Metzler) and assume
that its direction is perpendicular to that of a thin disk. They compute the three-dimensional ellipticity correlation function
and its two-dimensional projection directly from simulations populated by D105 halos. They also conclude on comparing
with recent measurements of the shear induced by lensing on large scales that the contamination from intrinsic correlations is
small on most angular scales of interestÈthe contamination is roughly at the 10%È20% level on scales of 0@.1È10@.

Catelan, Kamionkowski, & Blandford (2001) have recently presented an analytic calculation to assess the importance of
intrinsic galaxy shape alignments and the consequent mimicking of the signal produced by weak gravitational lensing. They
make the Ansatz that the ellipticity is linearly proportional to the tidal shear and calculate correlations due to intrinsic shape
correlations as a function of scale. (While originally meant to apply to ellipticity correlations resulting from angular momen-
tum couplings, Catelan et al. now use this Ansatz only for ellipticities induced by the halo shapes [M. Kamionkowski 200,
private communication].) They also consider possible means of discriminating the lensing signal from intrinsic alignments.

Very recently, the Ðrst observational detection of the magnitude of spin-spin correlations has been reported by Pen, Lee, &
Seljak (2000). They construct the simplest quadratic two-point spin-spin correlation function in the context of linear pertur-
bation theory and compare the statistic computed for galaxies in the Tully catalog. They claim a detection at the 97%
conÐdence level out to a few Mpc.

Several authors have pointed out that one of the important discriminants between the correlations arising from lensing
versus those from intrinsic alignments is the prediction of the existence of nonzero ““ B-type ÏÏ curl modes in the shear Ðeld in
the intrinsic case (Kaiser 1992 ; Stebbins 1996 ; Kamionkowski et al. 1998). A detailed decomposition of the shear Ðeld into the
““ B ÏÏ and ““ E,ÏÏ or pure gradient, modes for intrinsic correlations is presented in Crittenden et al. (2001).

1.3. Schematic Outline
Our goal is to calculate the two-point correlation of the intrinsic shape distribution of galaxies, Svv@T, as a function of

projected distance. Since the following calculation is quite complex, we present a brief schematic outline to guide the reader
and to clarify the simplifying assumptions that we make. Our approach is primarily analytic, but we also use numerical
realizations of Gaussian Ðelds to verify some of our results.

The intrinsic ellipticity of a galaxy depends on its three-dimensional shape, its orientation, and the direction of its angular
momentum, v4 v(S, Here we use S to denote the shape and orientation degrees of freedom. We implicitly assume that theLŒ ).
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galaxy is ellipsoidal and that its angular momentum lies parallel to the shortest axis of the ellipsoid. The expected correlation
between ellipticities at di†erent points is

Svv@*T \
P

dS dS@ dLŒ dLŒ @ v(S, LŒ )v(S@, LŒ @)P(S, LŒ , S@, LŒ @) , (9)

where P denotes the joint probability distribution. The present three-dimensional shapes of galaxies, quantiÐed via their axis
ratios, are primarily determined by ““ local ÏÏ processes such as the extent of dissipation within the collapsing dark matter halo.
Thus, we assume that they are uncorrelated between neighboring galaxies, so that we can rewrite P(S, LŒ , S@, LŒ @)\

For each galaxy, we can then integrate over all possible shapes and orientations to Ðnd the averageP(LŒ , LŒ @)P(S)P(S@).
ellipticity of a galaxy with angular momentum in a given direction, This integration is described inv6 (LŒ ) \ / dSv(S, LŒ )P(S).
detail in ° 2.

The resulting correlation is then simply given by

Svv@*T \
P

dLŒ dLŒ @ v6 (LŒ )v6 (LŒ @)P(LŒ , LŒ @) . (10)

To proceed, we need to understand the correlations between the directions of the angular momentum vectors of galaxies, or
explicitly, the nature of Rather than attempt to calculate the angular momentum correlations directly, we insteadP(LŒ , LŒ @).
relate them to correlations in the shear tensor, T, which yields itself more easily to linear theory.

As discussed above, the angular momentum of a given galaxy depends on the tidal Ðeld and the moment of inertia, I, of all
the matter that has turned around and that will eventually collapse to form the galaxy. To compute one needs theP(LŒ , LŒ @),
full joint probability function, P(I, T, I@, T@). We make the simplifying assumption that the moment of inertia at a given point
is signiÐcantly correlated only with the shear at that point, so that P(I, T, I@, T@) \P(I o T)P(I@ o T@)P(T, T@). Given a form for
P(I o T), one can derive However, since the local stress tensor depends on the details of the mass distribution outsideP(LŒ o T).
the collapsed object as well, P(I o T) is not accurately known. In ° 3, we follow LP00 and assume that is Gaussian, andP(LŒ o T)
use the most general form that the correlation matrix could have as a function of the shear tensor. This allows us to derive an
expression for the expected mean ellipticity for a given shear tensor.v6 (T)\ / dLŒ v(LŒ )P(LŒ o T),

With these assumptions, the ellipticity correlation depends only on how the tidal Ðeld is correlated from place to place,

Svv@*T \
P

dT dT@ v6 (T)v6 (T@)P(T, T@) \ F(C(r
ij
)) , (11)

where is the correlation matrix of the shear tensor, which will be Gaussian distributed if the underlying Ñuctuations areC(r
ij
)

Gaussian. The ellipticity correlation is now only a function of the separation In ° 4, we calculate the correlations of ther
ij
.

shear tensor as well as the moments required to Ðnd Svv@T. Later, in ° 4, we also examine how the correlations of the shear
change if they are sampled only at peaks of the density. This is to account for the fact that we are sampling galaxies, which do
not form at random positions in space.

Until now, the ellipticity correlations we have been considering are in three dimensions. These correlations must be
projected into two dimensions to compare with weak-lensing predictions and measurements. In ° 5, we do this projection
using LimberÏs equation (Limber 1953). This allows us to take into account the clustering of galaxies whose ellipticities are
sampled.

In ° 6, we examine the implications of our results for weak-lensing observations and the prospects for measuring the
intrinsic signal in ongoing surveys such as the Sloan Digital Sky Survey (SDSS) and Two-Degree Field (2dF). We conclude in
° 7, with a more detailed discussion of our assumptions and the uncertainties involved in our calculations.

2. INTRINSIC SHAPE DISTRIBUTIONS

In this section, we relate the observed, projected shapes of galaxies to their three-dimensional shapes in the absence of
lensing. When calculating intrinsic shape correlations, it is important to take into account the distribution of three-
dimensional shapes, since the strength of the signal depends strongly on it. For example, a spherical galaxy will appear round
when viewed from any angle ; consequently, its presence will tend to suppress intrinsic shape correlations. We Ðrst consider
the simplest case, in which the galaxies are modeled as thin disks, with the angular momentum vector perpendicular to the
disk plane. This is a fairly good approximation for spiral galaxies. We then consider the e†ects of projecting more realistic
galaxy shapes, modeling them to be triaxial with Gaussian distributed axis ratios.

For a galaxy with a thin disk, the exact dependence of the observed ellipticity is easy to calculate. The shape of such a
disklike galaxy depends strongly on the observing angle, appearing round (v\ 0) when viewed face-on and very elongated
(v\ 1) when viewed edge-on. When viewed from an angle h with respect to the perpendicular, the disk will be foreshortened
by a factor of cos h in one direction. The magnitude of the observed ellipticity is then

o v o\ 1 [ cos2 h
1 ] cos2 h

\ 1 [ LŒ
z
2

1 ] LŒ
z
2 , (12)

where is the unit spin vector. The observed ellipse has its long axis oriented perpendicularLŒ \ (sin h cos /, sin h sin /, cos h)
to the projected angular momentum vector, so that t\ /] n/2.

For realistic galaxies, however, the relation between the observed and intrinsic shapes can be much more complicated. The
Ðnite thickness of the galaxy puts an upper limit on how elongated the observed shape can be. Observed galaxy samples also
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contain a mix of morphological typesÈellipticals, spirals, and spheroidalsÈeach of which has a di†erent distribution of
intrinsic shapes.

We consider the intrinsic shape distributions found by Lambas, Maddox, & Loveday (1992, hereafter LML92), extracted
from the Bright Galaxy Survey of the Automated Plate Measuring Facility (APM) catalog. They used triaxial models to
describe the observed ellipticity distributions of the various morphological classes and obtained Ðts for the distribution of the
underlying axes ratios. They assumed Gaussian distributions for the scaled axis ratios (a \ 1) for all three morphological
classes of the form

P(b)P exp
C[(b [ b0)2

2p
b
2

D
, P(c) P exp

C[(c[ c0)2
2p

c
2

D
, (13)

truncated such that 0 \ c\ b \ 1. For the spiral population, they found it necessary to include the e†ects of a Ðnite disk
thickness in order to explain the deÐcit in the high-ellipticity tail of the observed distribution. The best-Ðt parameters for
spirals were found to be and LML92 also demonstrated that simple oblate or prolateb0\ 1.0, p

b
\ 0.13, c0 \ 0.25, p

c
\ 0.12.

models were not capable of reproducing the observations for elliptical galaxies and that triaxial models were required. For
ellipticals, the best-Ðt parameters were found to be and Finally, the best-Ðt parame-b0\ 0.95, p

b
\ 0.35, c0\ 0.55, p

c
\ 0.2.

ters for spheroidals were found to be andb0\ 1.0, p
b
\ 0.3, c0\ 0.59, p

c
\ 0.24.

Stark (1977) derived the relation between the three-dimensional axis ratios and the ellipticity, which we adapt to the case at
hand. Knowing the distribution of galaxy shapes for a given galaxy type, we can calculate the average ellipticity of a galaxy
with angular momentum at an angle h with respect to the line of sight,

v6 (LŒ ) \
P

dS
i
v(S

i
, LŒ

i
)P(S

i
) \
P
0

2n
d/
P
0

1
dbP(b)

P
0

b
dcP(c)v(h, /, b, c) , (14)

where v(h, /, b, c) is complex and given in Appendix A. We have performed these integrations numerically and display the
results for the amplitude in Figure 1. By symmetry, the average orientation angle is perpendicular to the projected angular
momentum.

As can be seen in the left panel of Figure 1, is di†erent for each morphological type. The maxima, corresponding to whenv6
the galaxies are seen edge-on, are signiÐcantly less than 1 because of the Ðnite thicknesses of the galaxies. Interestingly,
however, the dependence of on h for each of the morphological classes roughly scales identically to the disk case. That is, it isv6
a good approximation to assume the same functional dependence on angle with an overall scaling

o v6 (LŒ
z
) o\ a

1 [ LŒ
z
2

1 ] LŒ
z
2 , (15)

where 0 \ a \ 1 is a measure of the relative galaxy thickness. For the more realistic distributions, a ranges from 0.85 for
spirals, down to around 0.5 for spheroids and ellipticals.

FIG. 1.ÈL eft : Mean ellipticities of di†erent morphological types of galaxies, averaged over their intrinsic shape distributions (cf. eq. [14]), as seen from a
given angle h with respect to the angular momentum vector. Also shown is the result for a sample with all types weighted by the observed fractions in the
APM survey. Note that they all scale roughly as the thin disk case. Right : Probability distribution of ellipticities for the di†erent morphological types based
on the LML92 intrinsic shape distributions to Ðt the APM data. The di†erences between the LML92 model and the Ðt from lensing surveys (dashed curve)
could be due to there being either a di†erent morphological mix in high-redshift surveys or evolution in the intrinsic shape distributions, particularly for the
spirals.
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The mean redshift of the APM survey is and the composition of the sample is roughly 10% ellipticals, 25%z
m

\ 0.1,
spheroidals, and 65% spirals. While these fractions might be representative of a local Ðeld sample, the redshift distribution of
background galaxies of interest in lensing studies is considerably higher, so the morphological mix could be very di†erent. To
examine whether this is the case, we plot both the distribution of ellipticities for the LML92 populations and that measured
for lensing studies,

P( o v o ) P o v o e~( @ v @ @0.3)1.15 (16)

(Brainerd et al. 1996 ; Ebbels 1998), which is represented by the thick dashed curve in the right panel of Figure 1. The LML92
distributions provide a poor Ðt to the results of the higher redshift Ðeld surveys. This could be due to two e†ects : either a
di†erent morphological mix or a di†erent, perhaps non-Gaussian, distribution of intrinsic axis ratios for spirals. In addition,
since the higher redshift surveys are more likely to be dominated by irregulars, the intrinsic shape distributions are expected to
evolve.

Although we Ðnd that the LML92 distributions on the whole provide a poor Ðt to that from lensing studies, the inferred
mean value for is in good agreement. For a thin disk, so our simpliÐed model haso v6 o o v6 oTD\ n/2 [ 1, o v6 o\ a o v6 oTD\ 0.57a.
The mean of the measured ellipticity distribution (eq. [16]) is 0.42, implying that a \ 0.73. This is consistent with the mean
value for a computed from the APM sample in the left panel of Figure 1. In the following sections, we explicitly compute
correlations between the components of in order to calculate Svv@T based on the deÐnition in equation (15).LŒ

3. ELLIPTICITY AND THE TIDAL FIELD

We wish to relate the ellipticity directly to the tidal Ðeld. The easiest way to do so is to consider the real and imaginary
pieces of the distortion Ðeld separately :

v6
`

\ o v6 o cos (2/) \ a
1 [ LŒ

z
2

1 ] LŒ
z
2

LŒ
y
2[ LŒ

x
2

LŒ
y
2] LŒ

x
2\ a

LŒ
y
2[ LŒ

x
2

1 ] LŒ
z
2 ,

v6
C

\ o v6 o sin (2/) \ a
1 [ LŒ

z
2

1 ] LŒ
z
2

LŒ
y
LŒ
x

LŒ
y
2] LŒ

x
2\ a

LŒ
y
LŒ
x

1 ] LŒ
z
2 . (17)

When the observation frame coincides with the frame in which the stress tensor is diagonal, and the expectedSLŒ
y
LŒ
x
T \ 0,

distortion is purely real. Next we need to relate the angular momentum to the tidal Ðeld.
One central assumption in this work is that the expectation value of the angular momentum at a point is solely a function of

the tidal tensor at that point. As the next step in calculating ellipticity correlations, we need to understand this relationship
more quantitatively. That is, we need to know the probability of a given spin direction for a speciÐed shear Ðeld, or e†ectively,
the form of As discussed above, the angular momentum of a collapsing region is given byP(LŒ o T). L a\ a2(t)D0 (t)vabc Tbp Ipc.The crucial issue is how the moment of inertia for a collapsing object is related to the tidal Ðeld that it experiences.
Unfortunately, this requires a precise understanding of what determines the region that eventually collapses into the galaxy,
which in turn depends on the positions of nearby overdensities. This remains a major unsolved problem.

Catelan & Theuns (1996a), studying the variance of the amplitude of the angular momentum of galaxies, initially assumed
that the tidal tensor and the moment of inertia are entirely uncorrelated. However, since galaxies form preferentially at density
peaks, CT96a also considered the suppression of angular momentum that arises around peaks in a Gaussian because of
correlations between the inertia and the shear. In both of these cases, if one considers the frame in which the inertia tensor is
diagonal, the o†-diagonal terms of the shear tensor are expected to be uncorrelated with the inertia tensor. However, around
peaks the amplitude of these o†-diagonal terms is suppressed, which results in lower angular momenta.

As we show, the amplitude of the angular momentum has little e†ect on the magnitude of ellipticity correlations, which is
chieÑy determined by correlations in the directions of the spins. For simplicity, we assume each component of the inertia
tensor to be Gaussian distributed, so that the resulting distribution for the angular momentum given some shear tensor is also
Gaussian distributed,

P(L o T) \ 1
(2n)3@2 oQ o1@2 e~La Qab~1 Lb@2 , (18)

where is the correlation matrix. In the frame where the shear is diagonal, the inertia tensor is uncorrelated withQab 4SL a L bTit, and the correlation matrix has the form

SL a L bT P
<

t

>

t

t

(T33[ T22)2 0 0
0 (T11 [ T33)2 0
0 0 (T22[ T11)2

=

t

?

t

t
. (19)

This has the same form in the peaks case studied by CT96a. The relation can be rewritten as

SL a L bT \ SL2T(23 dab[ TŒ acTŒ cb) , (20)

where is the unit normalized traceless tidal tensor Note that the angular momentum is independent of theTŒ (TŒ abTŒ ab \ 1).
trace of the tidal tensor, so we can consider to be traceless without loss of generality. Our Ðnal expression for the ellipticityTŒ
correlations will be independent of the proportionality factor SL2T, so uncertainties in this factor will be irrelevant here.
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It has been argued that the approximations made by CT96a underestimate the correlations between the moment of inertia
and the tidal Ðeld, and result in overestimating the angular momentum that is produced when compared to simulations. LP00
suggest that the CT96 approximations may do well in predicting the direction of the angular momentum, but not its
amplitude. They consider the most general correlation between the shear and inertia tensors,

SL a L bT \ SL2T
A1 ] a

3
dab [ aTŒ ac TŒ cb

B
, (21)

where 0¹ a ¹ 1. The CT96a case of uncorrelated moment of inertia corresponds to a \ 1. In the extreme a \ 0 case, the
direction of the angular momentum is random, independent of the tidal tensor. Ironically, stronger correlations between the
moment of inertia and the tidal Ðeld make the direction of the expected angular momentum more, not less, random. The
directions can be further perturbed by nonlinear interactions, particularly if the magnitude of the angular momentum is small
originally. LP00 investigate this in N-body simulations and Ðnd that the relation is best Ðtted by a \ 0.24.

The distribution of the direction of the angular momentum vector is given by integrating over the amplitude of the
momentum,

P(LŒ o T)\
P

L2 dL P(L o T) \
P
0

=
L2 dL

1
(2n)3@2 oQ o1@2 e~L2L4 a Q~ab1 L4 b@2 (22)

\ 1
4n oQŒ o1@2 (LŒ aQŒ ab~1 LŒ b)~3@2 , (23)

where The variance of the two-point expectation value of the direction of the angular momentum is thenQŒ \Q/SL2T.

SLŒ a LŒ bT \
P

d2LŒ LŒ a LŒ b
1

4n oQŒ o1@2 (LŒ aQŒ ab~1 LŒ b)~3@2 . (24)

As shown by LP00 and in Appendix B, for small a this implies that

SLŒ a LŒ bT \ 1
3
A
1 [ 3a

5
B
dab] 3a

5
TŒ acTŒ cb . (25)

Combining the above results, we can compute the average ellipticity for a given shear tensor at one point,

v6 (T)\
P

dLŒ v(LŒ )P(LŒ o T)\ a
P

d2LŒ sin2 h
1 ] cos2 h

(cos 2/] i sin 2/)
1

4n oQŒ o1@2 (LŒ aQŒ ab~1 LŒ b)~3@2 . (26)

For small a, we can approximate Therefore,QŒ ~1^ 13[dab[ a(dab[ 3TŒ acTŒ cb)]. (LŒ aQŒ ab~1 LŒ b)~3@2 ^ oQŒ o1@2[1] 3a/
Inserting this in the integral, by symmetry the surviving terms are2 [ (9a/2)LŒ a LŒ b TŒ ac TŒ cb].

v6 (T)\[9aa
8n

P
0

n
dh

sin5 h
1 ] cos2 h

P
0

2n
d/(cos 2/] i sin 2/)(TŒ1c TŒ c1 cos2 /] TŒ2cTŒ c2 sin2 /] 2TŒ1c TŒ c2 sin / cos /)

\ [9aa
8n

P
0

n
dh

sin5 h
1 ] cos2 h

P
0

2n
d/(cos 2/] i sin 2/)(A] B cos 2/] C sin 2/) , (27)

where and Finally, usingA\ 12(TŒ1c TŒ c1 ] TŒ2c TŒ c2), B\ 12(TŒ1c TŒ c1 [ TŒ2c TŒ c2), C\TŒ1c TŒ c2. /0n@2 dh[sin5 h/(1 ] cos2 h)]\
n [ 8/3, we Ðnd that the integral of equation (26) evaluates to

v6 (T)\ v6
`

(T)] iv6
C
(T)\ aa

A
6 [ 9n

4
BC1

2
(TŒ1c TŒ c1 [ TŒ2cTŒ c2) ] iTŒ1cTŒ c2

D
. (28)

The numerical factor, 9n/4 [ 6, is very nearly unity, and we drop it for convenience here. Thus, the average ellipticity for a
given tidal Ðeld is quadratic in the tidal Ðeld and is suppressed both by a factor due to the Ðnite thicknesses of the galaxies (a)
and by the randomization of the angular momentum vector (a).

4. CORRELATIONS IN THE TIDAL FIELD

In the previous section we related the ellipticity to the tidal Ðeld, and here we calculate the moments of the tidal Ðeld
required to derive ellipticity correlations. Since the tidal tensor is the second derivative of the gravitational potential, its
statistical properties are directly related to those of the matter density. We assume that the underlying density Ðeld is
Gaussian distributed, which implies that the tidal Ðeld is also Gaussian. However, the unit normalized tidal Ðeld that is of
relevance to us will not be Gaussian distributed.

Knowing the full statistics of the tidal Ðeld, it is possible to calculate expectation values of observables such as the ellipticity
correlation, Since the ellipticity is quadratic in we need to compute linear and quadra-Svv@pT \ / dT dT@ v6 (T)v6 *(T@)P(T, T@). TŒ ,
tic two point functions of the normalized shear Ðeld, and respectively. We Ðrst compute the correlations of TSTŒ TŒ @T STŒ TŒ TŒ @TŒ @T,
that are necessary to evaluate these moments.
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4.1. Correlations of T
To begin, we compute the two-point expectation value of the tidal tensor in terms of the power spectrum of Ñuctuations. A

Fourier expansion of the shear tensor yields

Tab(x) \ [
P

d3k ka kb ((k)eik Õ x , (29)

where ((k) is the Fourier transform of the gravitational potential, which has a power spectrum deÐned as

S((k)((k@)T \ dD(k [ k@)P((k) . (30)

From this, it is straightforward to calculate the two-point correlation function of the tidal tensor,

Cabcp(r)4 STab(x)Tcp(x@)T \
P

d3k ka kb kc kp P((k)eik Õ r , (31)

where the separation is r \ x [ x@.6
To evaluate the correlation function, it is useful to relate Fourier-space components back to the real-space derivatives via

Thus, we haveika 4 La.

Cabcp(r)\ La Lb Lc Lp
P

d3k P((k)eik Õ r \ 2nLa Lb Lc Lp
P

dk k2P((k) j0(kr) . (32)

Here we have performed the integration over the angular directions of the Fourier modes, and is the zerothj0(kr) \ sin kr/kr
order spherical Bessel function.

It is useful to rewrite the derivatives as where the operator D4 (1/r)(d/dr). Using the identityLa \ (dr/dxa)(d/dr) \ xaD,
we ÐndLaxb\ dab,

Cabcp(r)\ 2nLa Lb
P

dk k2P((k)Mdcp D[ j0(kr)]] xcxpD2[ j0(kr)]N

\ 2n(dab dcp] dac dbp] dap dbc)
P

dk k2P((k)D2[ j0(kr)]

]2n(ra rb dcp] ra rc dbp] ra rp dbc ] rb rc dap] rb rp dac] rc rp dab)
P

dk k2P((k)D3[ j0(kr)]

]2nra rb rc rp
P

dk k2P((k)D4[ j0(kr)] . (33)

It is possible to use PoissonÏs equation to substitute the power spectrum of the potential with that of the density, k4P((k)\
in units where and G is the gravitational constant. Using the identity the abovePd(k), 4nGo0\ 1 Dnj0(r) \ ([1)nr~nj

n
(r),

simpliÐes to

Cabcp(r)\ (dab dcp] dac dbp ] dap dbc)f2(r) ] rü a rü b rü c rü p f4(r)
](rü a rü b dcp ] rü a rü c dbp] rü a rü p dbc] rü b rü c dap ] rü b rü p dac] rü c rü p dab)f3(r) , (34)

where

f
n
(r)\ ([1)n

2n
r4~n

P
dk kn~2j

n
(kr)Pd(k) , (35)

and is the nth spherical Bessel function. This is identical to the expression derived in LP00, where it was shown that thesej
n
(kr)

f functions are related to the density correlation function, and integrals of it.m(r) \ / dk k2Pd(k) j0(kr),
If the density Ðeld is smoothed, its correlation function levels o† as r ] 0. In this limit, and and the abovef3 f4] 0,

expression reduces to

Cabcp(0)\ f2(0)(dab dcp] dac dbp ] dap dbc) . (36)

Since this corresponds precisely to the variance of the tidal Ðeld found by CT96a (eq. [38] in their Appendixf2(0)\ m(0)/15,
A). The correlation function simpliÐes dramatically when averaging over directions rü ,

Cabcp(r)4
1
4n
P

d2rüCabcp(r) \
1
15

m(r)(dab dcp] dac dbp ] dap dbc) . (37)

This is useful when the correlation length is much smaller than the depth of the survey.

4.2. Correlations of TŒ
In this subsection, we calculate the two- and four-point moments of the unit normalized traceless tidal Ðeld, Since T isTŒ .

not Gaussian distributed, these moments are not necessarily simply related. In the next subsection, we use these results to
derive the Ðnal ellipticity correlation.

6 Note that the positional vectors are in Lagrangian space and were denoted by q in ° 1.
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For simplicity of notation, it is useful to treat the 6 degrees of freedom in the shear tensor as a vector, which we denote by
capitals with subscripts, While using this notation, it is important to remember that theT \ (T11, T22, T33, T12, T13, T23).shear transforms as a tensor under rotations, rather than as a vector. To further simplify the notation, we write the shear Ðeld
at a displacement r from the origin as T @. Thus, in this notation, the correlation matrix becomes a 6 ] 6 matrix, ST

A
T

B
@ T \

[C
r
]
AB

.
Since the tidal Ðeld is Gaussian, with a two-point correlation matrix given by C, we can write the expectation value for an

observable like asTŒ
A

TŒ
B

STŒ
A

TŒ
B
@ T\

P d6T d6T @
oC o1@2(2n)6 TŒ

A
TŒ

B
@ e~(1@2)TTC~1T , (38)

where T\ (T, T @). The matrix C has the block diagonal form

C\<
t
>

C0 C
r

C
r

C0

=
t
?

, (39)

where is the zero-lag correlation matrix and contains the two-point correlations. For galaxies that are separated byC0 C
rdistances greater than the smoothing scale, we can assume that and expand in powers of to invert C toC

r
>C0 C

r
C0~1

second order :

C~1^<
t
>

C0~1(1] C
r
C0~1C

r
C0~1 [C0~1C

r
C0~1

[C0~1 C
r
C0~1 C0~1(1] C

r
C0~1C

r
C0~1)

=
t
?

. (40)

We perform a Taylor expansion of the exponential,

exp ([12 TTC~1T)^ [1] T C0~1 C
r
C0~1T @ ] 12 (T C0~1C

r
C0~1 T @)2] . . . ] exp [[12 (T C0~1 T ] T @C0~1T @)] . (41)

To evaluate the linear two-point function of we must keep terms to Ðrst order in The expectation value can then beTŒ , C
r
C0~1.

written as

STŒ
A

TŒ
B
@ T\

P d6T d6T @
oC0 o (2n)6 TŒ

A
TŒ

B
@ [T C0~1C

r
C0~1 T @]e~(1@2)(TC0~1T`T{C0~1 T{)\ STŒ

A
T
C
T[C0~1 C

r
C0~1]

CD
STŒ

B
@ T

D
@ T , (42)

where

STŒ
A

T
B
T 4

P d6T
(2n)3 oC0 o1@2 TŒ

A
T
B
e~(1@2)(TC0~1T) (43)

is proportional to the mean magnitude of the tidal Ðeld. This is evaluated in Appendix C by transforming variables,
to a basis in which the correlation function is proportional to the unit matrix. Using the results derived there,T

A
4R

AA{ TA{,
the linear two-point function is shown to be

STŒ
A

TŒ
B
@ T\ 64

225nf2(0)
(C3

r
)
AB

(44)

where is the correlation function of the traceless part of the tidal Ðeld. Although this was evaluated in the large separationC3
rlimit, its value at zero lag is very close to the exact result.

The quadratic two-point function of is evaluated in an analogous way, except here we must keep terms to second order inTŒ
Making this substitution, the quadratic two-point function isC

r
C0~1.

STŒ
A

TŒ
B
TŒ

C
@ TŒ

D
@ T \

P d6T d6T @
oC o1@2(2n)6 TŒ

A
TŒ
B
TŒ

C
@ TŒ

D
@ e~(1@2)TTC~1T

\ STŒ
A

TŒ
B
TSTŒ

C
@ TŒ

D
@ T ] 12 STŒ

A
TŒ
B
T
E
T
F
TSTŒ

C
TŒ
D

T
G

T
H
T[C0~1C

r
C0~1]

EG
[C0~1 C

r
C0~1]

FH
. (45)

As before, the expectation value of

STŒ
A

TŒ
B
T
C
T
D
T \

P d6T
(2n)3 oC0 o1@2 TŒ

A
TŒ
B
T
C
T
D

e~(1@2)(TC0~1 T) (46)

is computed in the transformed basis and is derived in Appendix C. The Ðnal form of the quadratic two-point function is then

STŒ
A

TŒ
B
TŒ

C
@ TŒ

D
@ T \

C 1
14f2(0)

D2
([C3

r
]
AC

[C3
r
]
BD

] [C3
r
]
AD

[C3
r
]
BC

) ] local terms , (47)

where is deÐned as above. The local terms correspond to the reducible parts of this fourth-order moment and do notC3
rcontribute to the ellipticity correlation.
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4.3. Correlations of the Ellipticity
Using the results derived earlier, we are Ðnally in a position to calculate ellipticity correlations. Recall that the ellipticity

correlations are given by

Svv@*T \
P

dT3 dT3 @ v6 (T3 )v6 *(T3 @)P(T3 , T3 @)^ a2a2S[12(TŒ1cTŒ c1[ TŒ2c TŒ c2) ] iTŒ1c TŒ c2][12(TŒ 1p@ TŒ p1@ [ TŒ 2p@ TŒ p2@ ) [ iTŒ 1p@ TŒ p2@ ]T . (48)

We choose the separation vector r to lie in the x-z plane at an angle h from the line of sight, which we assume to be parallel to
the z-axis. This choice implies that frames in which the ellipticities are measured lie parallel to the projected separation.

Inserting equation (47), the two nonzero components of the ellipticity correlation are

Sv
`

v@̀ T \ a2a2
144

C 1
14f2(0)

D2
M336f22(r)] 472f2(r)f3(r) ] 155f32(r) ] 58f2(r)f4(r) ] 26f3(r)f4(r) ] 3f42(r)

] 4[18f2(r)f3(r)[ 7f32(r)[ 8f3(r)f4(r)[ f42(r)] cos 2h ] [17f32(r) ] 6f2(r)f4(r) ] 6f3(r)f4(r) ] f42(r)] cos 4hN , (49)

and

Sv
C

v
C
@ T \ a2a2

18
C 1
14f2(0)

D2
M42f22(r) ] 59f2(r)f3(r) ] 13f32(r) ] 5f2(r)f4(r) ] f3(r)f4(r)

][9f2(r)f3(r)] 5f32(r) ] 3f2(r)f4(r) [ f3(r)f4(r)] cos 2hN . (50)

For a simple model with m(r)P 1/r, and are plotted in Figure 2, computed assuming top-hat smoothing on aSv
`

v@̀ T Sv
C

v
C
@ T

1 h~1 Mpc scale.
These functions are explicitly anisotropic and depend on the angle between r and the line of sight. Much of the angular

dependence can be understood intuitively by considering the symmetries of the problem. When the line of sight is parallel to r
(h \ 0), there is no longer a distinction between and so that and are identical. In addition, thesev

`
v
C

, Sv
`

v@̀ T Sv
C

v
C
@ T

correlations are invariant under the transformations h ] [h and h ] n [ h, so that the only surviving terms are either
constant or proportional to cos 2h or cos 4h. This anisotropy is demonstrated in the right panel of Figure 2.

Asymptotically at large r, the angle-averaged behavior is approximately

Svv@*T ^
a2a2
84

m2(r)
m2(0)

. (51)

This is very close to the exact expression at large r, as shown in the left panel of Figure 2. The factor of 1/84 has been derived
for large separations. At zero lag, it can be computed directly from the fourth moment of the unit normalized traceless shear
tensor and is found to be 1/60.

FIG. 2.ÈL eft : Computed three-dimensional ellipticity correlation function averaged over angles and plotted as a function of separation. The signal is
appreciable at separations smaller than the smoothing scale (less than 1 Mpc) and falls o† as m2(r). For comparison, we have plotted the exact derived
function (solid curve) against the approximation of eq. (51) (dashed curve). Right : Expectation value of the two components of the two-point ellipticity
correlation and divided by the approximate curve (solid curve, left panel) for various values of the viewing angle h \ 0, n/4, and n/2. NoteSv

`
v
`

T Sv
C

v
C

T
that the two components are equal for h \ 0.
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FIG. 3.ÈAngle-averaged ellipticity correlations from Gaussian Ðeld realizations on a 5123 grid compared to the analytic results. The correlations at peaks
of the density Ðeld ( Ðlled squares) appear to match well with the results from random positions (dot-dashed line). At zero lag they both asymptote to the exact
result (1/60) shown by the horizontal dot-dashed line. The full analytic correlations (solid curves) and the analytic estimate where the large-scale power has
been removed (dashed curve) to account for the Ðnite size of the realizations are both shown. These are not valid below the smoothing scale. The analytic
results match well in the region where they are valid, i.e., at scales larger than the smoothing length, but note the importance of large-scale power (here we
have set a \ a \ 1).

4.4. Peaks in a Gaussian Field
Galaxies do not form at random positions, but at peaks of the density Ðeld (Bardeen et al. 1986). It is possible that this

sampling could bias the expected correlation of galaxy ellipticities, since our analytic correlations have been computed for
random points. We examine such a potential bias using numerical realizations of Gaussian Ðelds, and also use these to check
the validity of our analytic results.

We create realizations of Gaussian Ðelds on a 5123 grid with a power spectrum corresponding to a densityPd P k~2,
correlation that falls o† as 1/r. The density Ðeld is smoothed with a spherical top-hat Ðlter of approximately four grid units.
Peaks are identiÐed as positions at which the density Ðeld exceeds the value at each of its six nearest neighbors. The tidal Ðeld
is calculated at each point using di†erencing. At each point, we compute and subtract the trace and Ðnally unit normalize the
tidal tensor.

We checked Ðrst that the moments of the normalized tidal Ðeld match our analytic expectations at zero lag. For example,
we can analytically calculate the variance of one component of the tidal tensor, From isotropy, this can be shown to beSTŒ

xx
2 T.

2/15, which we have veriÐed in the realizations. We have also checked numerically other exact quadratic and quartic relations,
such as andSTŒ

xy
2 T \ 1/10, STŒ

xx
4 T \ 4/105, STŒ

xx
2 TŒ

xy
2 T \ 1/105.

Using the deÐnition in equation (48), we compute the correlation function of the (angle-averaged) ellipticity on the grid both
for peaks and random Ðeld points, assuming a \ a \ 1. These are compared with the derived analytic results in Figure 3. The
correlation function for the peaks (D70,000 in the box) and the Ðeld points are in excellent agreement for both small and large
separations. At zero lag, they both asymptote to the analytic result of 1/60 (marked in Fig. 3 by the horizontal long-dashed
line). The maximum deviation occurs around the smoothing scale and is of the order of 10%. This implies that while peaks
might preferentially be sites of galaxy formation, as far as intrinsic ellipticity correlations are concerned, there is no substantial
bias between peaks and random Ðeld points.

The numerical correlation function starts dropping below the exact analytic expectation (Fig. 3, solid curve) for large
separations. This is due to missing large-scale power on the grid : an analytic calculation that incorporates the same lack of
power on large scales as the grid is shown by the dashed line. Its agreement with the numerical results demonstrates that the
steeper fallo† of the numerical estimates is indeed an artifact of the Ðnite box size. Clearly, this is a worry for all numerical
computations of the ellipticity correlation function. In addition, on separations smaller than the smoothing scale, our analytic
estimates fall below the numerical results and the exact values derived from the one-point moments. This discrepancy arises
because the approximation we made in computing the analytic results, C(r)/C(0)> 1, is invalid on small scales.

5. THE PROJECTED CORRELATION FUNCTIONS

Up to now we have been focusing on the three-dimensional ellipticity correlation function. While this is in principle
observable (Pen et al. 2000), weak-lensing studies usually consider the ellipticity correlation projected onto the sky. The
projection of the intrinsic signal will enable us to compare directly with weak-lensing estimates and judge its importance as a
possible contaminant for these measurements.
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5.1. L imberÏs Equation
We begin by making some general comments about the basis dependence of the two-dimensional correlation functions.

Previously, we calculated the three-dimensional correlation functions in a special basis, one in which the separation vector
was coplanar with one of the axes used to deÐne the ellipticity. We showed that the ellipticity correlations in this basis were
functions only of the three-dimensional separation and the angle In two dimensions, this basis is equivalent tocos h \ zü Æ rü .
taking one axis vector to be parallel to the two-dimensional separation r.7 In this special basis, which hereafter are denoted by
the superscript r, the ellipticity correlations will only be functions of the distance between the two points. We denote these
functions as

m
`

( o r o )4 Sv
`
r (x)v

`
r (x ] r)T, m

C
( o r o ) 4 Sv

C
r (x)v

C
r (x ] r)T . (52)

The cross-correlation, is zero because of parity (x ] [x) invariance.Sv
`
r (x)v

C
r (x ] r)T,

The basis for these correlation functions depends on the separation vector, and thus on which pair of galaxies one is
considering. It is often useful to work in a Ðxed basis on the sky for the ellipticities. The ellipticity measured in an arbitrary
basis with an angle / relative to the separation vector is given by

v
`

\ v
`
r cos 2/[ v

C
r sin 2/, v

C
\ v

`
r sin 2/] v

C
r cos 2/ . (53)

In such a Ðxed basis, the correlation function depends on / as

C1( o r o , /)4 Sv
`

v@̀ T \ m
`

( o r o ) cos2 2/] m
C
( o r o ) sin2 2/ ,

C2( o r o , /)4 Sv
C

v
C
@ T \ m

C
( o r o ) cos2 2/] m

`
( o r o ) sin2 2/ , (54)

for all pairs separated by o r o at an angle of / with respect to the chosen basis. The sum of these is a function of the separation
only, while the di†erence has a simple dependence on / :

C1( o r o , /)] C2( o r o , /)\ m
`
( o r o )] m

C
( o r o ), C1( o r o , /) [ C2( o r o , /) \ [m

`
( o r o ) [ m

C
( o r o )] cos 4/ . (55)

Recent measurements of the shear from weak lensing have focused on the variance of the magnitude of the ellipticity
averaged over a patch, which depends only on the sum.

We next consider the projection into two dimensions and use an approach similar to that used by Heavens et al. (2000) and
Croft & Metzler (2000). Assuming that we are working on a small area of the sky, the observed patch of sky is approximated
by a plane. The projection uses LimberÏs equation to take into account the clustering of galaxies,

m
`

( o r o )\ / z12 z22 dz1 dz2t(z1)t(z2)[1] mgg(r)]Sv
`
(x1)v`(x2)T

/ z12 z22 dz1 dz2t(z1)t(z2)[1 ] mgg(r)]
,

m
C

( o r o )\ / z12 z22 dz1 dz2t(z1)t(z2)[1] mgg(r)]Sv
C
(x1)vC(x2)T

/ z12 z22 dz1 dz2t(z1)t(z2)[1 ] mgg(r)]
, (56)

where t(z) is the observational selection function, and is the galaxy-galaxy correlation function.o r o2\ r2[ (z1[ z2)2, mgg(r)Note that while the ellipticity correlation function is calculated in Lagrangian coordinates, the projection is performed in
Eulerian space. The Eulerian separations will di†er from the Lagrangian ones because of peculiar velocities of galaxies, which
we have ignored here. For galaxies near each other, the Eulerian separations will in general be smaller than the corresponding
Lagrangian ones. This will result in a suppression of the intrinsic projected ellipticity correlations. We expect this e†ect to be
small at large separations, but it could be signiÐcant closer in.

5.2. Qualitative Features
In Figure 4 we plot the projected correlation function calculated for the simple model in which the density correlation falls

o† as 1/r. We have assumed a top-hat smoothing scale of 1 h~1 Mpc. The clustering term is taken to be of the form
where h~1 Mpc is the clustering scale and b \ 1.8 (Loveday et al. 1992). Finally, following Heavens etmgg\ (r/R

s
)~b, R

s
\ 5

al. (2000), the selection function is taken to be which has a mean redshift of In the Ðgure we plott(z) \ e~(z@z0)1.5, z
m

\ 1.4z0.the functions and for a \ a \ 1. They are nearly identical at small angular scales, but deviate at larger separation.m
`

m
CThe qualitative features of these correlation functions can be understood by looking at the various scales in the problem:

the mean depth of the survey ; the clustering length of galaxies ; and the smoothing scale. If the density correlationR
m
, R

s
, R0,function falls o† as 1/r, the three-dimensional ellipticity correlation scales as where we havem

`
^ m

C
^ a2a2R02/84(R02] r2),

used the approximation from equation (51). Both the numerator and the denominator of equation (56) contain a clustering
term, which dominates at small angular separations and a mean contribution.

The denominator in LimberÏs equation is essentially the average number of galaxies within an angular distance h from a
given galaxy out to the volume of the survey. At large separations, the denominator scales as the volume squared, or R

m
6 .

Corrections from clustering are of the order of which become important at angles For aR
m
6(R

s
/R

m
)bh1~b, h \ (R

s
/R

m
)b@(b~1).

7 For clarity, we use the bold italic for three-dimensional vectors and bold roman for two-dimensional vectors.
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FIG. 4.ÈProjected two-dimensional ellipticity correlation functions, and for various values of the median redshift of the distribution of galaxiesm
`

m
C

,
(left) and for various selection functions (right). Here we have assumed that the galaxies are well described by thin disks and are perfectly aligned with the
linear predictions (a \ a \ 1) but deviate at larger separation. Both increase strongly with decreasing redshift, roughly proportional to The right panelz

m
~2.

compares the usual exponential selection function with top-hat selection functions with the same median redshift, but much more narrowly peaked in
redshift. The correlations increase as the redshift interval decreases, because galaxies are generally closer together.

survey with median redshift this occurs at about 2A. For a shallower survey with this occurs at much largerz
m

D 1, z
m

D 0.1,
scales, of the order of a few arcminutes.

The numerator in LimberÏs equation is the projected ellipticity correlation function, weighted by the number of pairs at a
given separation. Again, the clustering term dominates at small scales. For separations less than the three-h DR0/Rm

,
dimensional correlations are e†ectively constant with an amplitude of 1/60, so the behavior is identical to that of the
denominator, At very large separations, clustering is not important but the numeratora2a2R

m
6(R

s
/R

m
)bh1~b/60. h [R

s
/R

m
,

also falls o† inversely with angular separation, Between these regimes, there is a transitionR02 R
m
2 h~1/84. R0/Rm

\h \ R
s
/R

m
,

where the clustering contribution falls o† quickly.
Thus, the projected correlation functions have a number of distinct regimes. At very small separations, clustering dominates

both the numerator and the denominator, leaving the correlation constant [a2a2/60 for On slightly largerh \ (R
s
/R

m
)b@(b~1)].

scales, but smaller than clustering dominates the numerator, but not the denominator, and the correlation falls o† as aR0/Rm
,

power law, There is then a brief transition region where the correlation falls fairly quickly. Finally,mv D a2a2/60(R
s
/R

m
)bh1~b.

on very large scales, the mean values dominate both the numerator and the denominator, and the correlation falls o† as
a2a2h~1R02/(84R

m
2).

It is straightforward to understand the dependence of the correlation functions on the mean redshift of the survey. The
typical three-dimensional separation of galaxies with a given angular separation is directly proportional to the survey depth

Thus, if the three-dimensional ellipticity correlations fall o† as r~n, then the projected correlations fall o† as For theR
m
. R

m
~n.

case we have been considering, m P 1/r, so that the ellipticity correlations fall o† as 1/r2, and the projected correlation drops as
This is clearly seen in the left panel of Figure 4.z

m
~2.
The correlation functions also depend on the width of the survey in redshift space. The more narrow the survey, the closer

the galaxies are to one another and the higher the predicted intrinsic correlation. The right panel of Figure 4 demonstrates
this by comparing the correlations seen using the selection function deÐned above to much narrower top-hat(*z^ 2z

m
)

window functions with the same mean redshift (Hamana et al. 2001).

6. INTRINSIC ALIGNMENTS VERSUS WEAK LENSING

In the previous sections we presented an analytic expression for the intrinsic ellipticity correlation function, which we now
evaluate for realistic surveys. We also compare this with recent measurements of cosmic shear and with theoretical weak-
lensing predictions at high and low redshifts.

The amplitude of intrinsic correlations depends on both the mean thickness of galaxies and on their degree of alignment
with the tidal Ðeld. In ° 2, we argued that observed shapes of galaxies are characterized by a \ 0.73. The degree of alignment of
the galaxies with the predictions from linear theory, parameterized by a, was measured by LP00 in N-body simulations and
found to be fairly small, a ^ 0.24. This implies that the correlations could be suppressed by nonlinear e†ects.

However, we are interested in the correlations of spins with each other, not necessarily in how they align with the
predictions from linear theory. The LP00 measurement was a one-point measurement, and thus cannot account for
““ correlated randomizations.ÏÏ Nonlinear interactions between galaxies could lessen the correspondence of their spins with the
linear predictions without changing how well the spins correlate with each other. Thus, using the one-point value of a will
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likely underestimate the amplitude of the spin correlations. The measurements of the three-dimensional spin correlations from
the Virgo simulations (Heavens et al. 2000) can be used to measure an e†ective a that takes this e†ect into account. At 1 Mpc,
they Ðnd a correlation of approximately 5 ] 10~3, which is in remarkable agreement with that found by Pen et al. (2000)
observationally. When compared to the analytic prediction of a2a2/60, this yields an e†ective value of a \ 0.55. (Heavens et al.
treat the galaxies as thin disks, so that a \ 1.) Here we present results for both a \ 0.24 and a \ 0.55, to demonstrate the
possible uncertainty of our predictions.

In the left panel of Figure 5, we plot the sum of the intrinsic correlation functions, for a median redshift of 1, am
`

] m
C

,
galaxy smoothing scale of 1 h~1 Mpc, and the parameter choices described above. We also show the measured shear variance
compiled from the recent literature. The weak-lensing prediction from Jain & Seljak (1997) for an galaxy clusterÈ)" \ 0.7
normalized Ñat universe Ðts the data well. At small separations, the intrinsic signal contaminates the lensing one at the level of
a few percent, modulo the uncertainties in a and a.

Note that there can be ambiguities in plotting measurements of the cosmic shear. One issue is whether the correlation
function or the top-hat variance is plotted. For a simple 1/h correlation function, the variance is nearly a factor of 2 larger
than the correlation at the same scale. In addition, some authors plot the variance as a function of the top-hat smoothing
radius, while others instead plot it as a function of the diameter. Finally, some authors quote the variance of each component
of the complex shear Ðeld, while others quote the variance of the modulus of v. Here we plot the theoretical predictions for

the correlation of the modulus of the ellipticity. In contrast, when plotting the data, we have used the modulusm
`

] m
C

,
variance for a given top-hat radius. Since the correlation function implied by the data is slightly lower than the variance, the
relative contribution of the intrinsic correlations is somewhat larger than is naively implied by the Ðgure.

The relative importance of the intrinsic correlations increases dramatically as the depth of the survey is reduced. As the
observed galaxies are closer to us, the lensing signal falls because there is less intervening matter to lens them, while the
intrinsic signal grows, since the galaxies are physically closer to each other for a given angular separation. Jain & Seljak (1997)
show that the lensing signal scales as for a Ñat universe. In contrast, if the density correlation function isz

m
1.52 )" \ 0.7

proportional to rn, then the ellipticity correlation scales as On galaxy scales, n ^ [1 ; hence, the intrinsic amplitude growsz
m
2n.

rapidly since the signal scales as Dz
m
~2.

In the right panel of Figure 5 we compare the intrinsic correlations for a shallow survey with such as SDSS or 2dF,z
m

\ 0.1,
to the lensing signal expected from the theoretical analysis of Jain & Seljak (1997). We show their Ðts for and alsoz

m
\ 0.5

extrapolate the Ðt to The latter is beyond the stated range of validity, but should give an approximate idea of thez
m

\ 0.1.
lensing amplitude. For low the intrinsic signal is signiÐcant and may dominate over the lensing contribution on mostz

m
¹ 0.3,

scales. Clearly, large surveys such as 2dF and SDSS o†er exciting possibilities for measuring intrinsic shape correlations.

FIG. 5.ÈIntrinsic correlation signal vs. the predictions from weak lensing and current observations. L eft : for a median redshift of 1,m
`
(h) ] m

C
(h)

compared to the measured shear correlation function. At small separations, the intrinsic signal is approximately 1% of the measured value. The amplitude
depends on the value of the assumed average galaxy thickness (a) and the parameter a that describes how well the angular momentum of the galaxy is
correlated with the shear Ðeld. We plot a \ 0.24 (solid line) and 0.55 (short-dashed line), which correspond to the values inferred from numerical simulations
by LP00 and Heavens et al. (2000), respectively ; a \ 0.73 corresponds to the value determined from the observed distribution of ellipticities (Ebbels 1998).
The data are : van Waerbeke et al. (2000 ; solid squares), Wittman et al. (2000 ; Ðlled circles), Kaiser et al. (2000 ; open circles), and Bacon et al. (2000 ; Ðlled
triangle). The long-dashed line shows the theoretical prediction from Jain & Seljak (1997) computed for a galaxy clusterÈnormalized Ñat universe,)" \ 0.7
D4.75] 10~4(h/arcmin)~0.84. Right : Same as left panel, but for the predictions for a shallower survey, such as SDSS and 2dF, with median redshiftz

m
\ 0.1.

The intrinsic signal is again shown for two values of a, and the theoretical prediction for weak lensing is shown by the long-dashed line (for andz
m

\ 0.1)
dot-long-dashed line (for The lensing prediction for is extrapolated from the Jain & Seljak Ðt beyond the stated range of validity. For suchz

m
\ 0.5). z

m
\ 0.1

low redshifts, the intrinsic signal is signiÐcant and may dominate over the lensing contribution for most scales.
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There are other important distinctions between the lensing and the intrinsic correlation signals. For example, the lensing
signal depends on the amplitude of the mass Ñuctuations, parameterized by In contrast, the intrinsic correlations dependp8.only on correlations of the direction of the shear Ðeld and are therefore largely independent of the amplitude of the
Ñuctuations.

In addition, another di†erence arises in how the intrinsic signal depends on morphological type. Weak lensing is in some
sense democratic, since all galaxy types are distorted in the same way. This is not the case for intrinsic correlations, however.
We have shown that this signal depends on the distribution of axis ratios. Spiral galaxies are characterized by a ^ 0.85, while
ellipticals and spheroidal galaxies typically have a ^ 0.5. In addition, the alignment of the angular momentum with the
shortest axis is likely to have more scatter in elliptical galaxies, resulting in an e†ective lowering of the value of a. Thus, we
expect the intrinsic correlation to be suppressed by more than a factor of 2. This hypothesis can be checked observationally by
using color criteria to separate the morphological types of galaxies, since ellipticals tend to be redder than spirals.

7. SUMMARY

In this paper, we have presented a calculation of intrinsic correlations in the observed ellipticities of galaxies resulting from
angular momentum couplings. We have focused on the angular momentum that arises in linear theory and is associated with
the local tidal Ðeld. The three-dimensional spin correlations were projected using LimberÏs equation to obtain the expected
two-dimensional ellipticity correlations. These intrinsic correlations were shown to dominate over the weak-lensing signal for
shallower surveys.

A number of assumptions were made in order to make the calculation tractable. Foremost of these is the assumption that
angular momentum plays the central role in aligning the observed galaxy shapes. Other factors, such as the initial distribution
of matter that fell in to form the galaxy, could also conceivably have contributed to the observed shapes. However, the
angular momentum is special in that it is approximately constant during the later evolution of the galaxies. Galaxies typically
have had many dynamical times to virialize, and we expect most of the dependence on the initial matter distribution to be lost.
This is particularly true for spirals, and holds for ellipticals that are slow rotators and have spin parameters of the order of
10%. Although their rotational timescale (D1 Gyr) is much longer than their dynamical time (D100 Myr), they have
undergone enough rotations in a Hubble time to erase any memory of the alignment of the principle axis (Dubinski 1992).

At small separations, other factors, such as the recent history of galaxy collisions, might also a†ect the ellipticity corre-
lations. In addition, it is important to remember that we are probing only the light distributions, which reÑect the matter
distribution only at the very central parts of the galaxies.

It is essential to understand precisely how the ellipticity correlations depend on the angular momenta. The dominant
contribution to the correlations comes from alignments in the orientations of the galaxy ellipticities. The elongations of the
galaxy light distributions are expected to be orthogonal to the direction of their projected angular momenta. The magnitude
of the ellipticity may to some extent depend on the magnitude of L ; for example, galaxies with larger angular momenta may
appear more disklike. Even so, the form of this relation is largely irrelevant for understanding the ellipticity correlations. This
is because the galaxy orientations are expected to be isotropic on average, so there must be correlations in the alignments for
ellipticity correlations to occur. However, the magnitude of the ellipticity has a signiÐcant mean value. Therefore, galaxy
alignments already introduce ellipticity correlations even in the absence of correlations in the magnitude of the ellipticities.

To see this, consider the ellipticity correlation

Svv@*T ^ S o v o o v@ o TSe2i(t~t{)T \ [ o v6 o2] S( o v o[ o v6 o )( o v@ o[ o v6 o )T]Se2i(t~t{)T . (57)

The Ðrst relation follows from assuming that the magnitudes of the ellipticities are independent of their orientation corre-
lations. Recall that the distribution for ellipticities described in equation (16) has a large mean value, The varianceo v6 o^ 0.42.
of this distribution is signiÐcantly smaller than the square of the mean, so that even perfectS( o v o[ o v6 o )2T \ 0.055^ 0.3 o v6 o2,
correlations between magnitude of the ellipticities would only result in a small modulation of the overall correlation.

Since the ellipticity is proportional to e2it, it is quadratic in the angular momentum components perpendicular to the line of
sight (eq. [17]). The ellipticity correlation is therefore quartic in the angular momenta : This result shouldSvv@T P SLŒ LŒ LŒ @LŒ @T.
be contrasted with the Ansatz of Catelan et al. (2001), which assumes the correlation to be quadratic in the angular momenta.8

The correlation strength Svv@T also depends on the mean ellipticity, which in turn depends on the galaxy type. Spiral
galaxies are more Ñattened than elliptical galaxies, and thus will have a larger correlation. We have also assumed that the
angular momentum is parallel to the shortest axis of the galaxies, which should be a good approximation for spirals, but may
not be as good for elliptical galaxies and could suppress their correlation further.

Another major simplifying assumption we have made is that linear theory is sufficient to calculate these angular momentum
correlations. We might hope that this is a good approximation, since most of the angular momentum is expected to be
imparted before the object starts to collapse and enters the nonlinear regime. While there are nonlinear corrections, N-body
simulations have shown the linear approximation to be surprisingly robust (LP00 ; Sugerman et al. 2000). We have attempted
to account for the e†ects of nonlinear evolution by parameterizing the extent to which spin alignments are suppressed in
comparison with linear predictions. This parameter was estimated from the N-body simulations of LP00 and Heavens et al.
(2000), as well as by comparison to measurements of observed ellipticity correlations seen in the Tully catalog (Pen et al. 2000).

The amplitude and shape of the ellipticity correlation function can be understood intuitively. Recall that the ellipticity is a
function of the shear tensor, which is the second derivative of the potential. By virtue of PoissonÏs equation, the trace of the

8 These authors have recently reexamined this issue and now Ðnd results consistent with those we have presented here (M. Kamionkowski 2000, private
communication.)
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shear tensor is the density. Therefore, we expect that the correlation of the other components of the shear Ðeld will drop at the
same rate as the density correlation function. Since the ellipticities are quadratic in the shear Ðeld, correlations in them will fall
as the density correlation function squared, The order of magnitude of the amplitude of the correlation at zero lagSvv@T P mo2.
follows from simple symmetry arguments. The shear tensor has 6 degrees of freedom, but only 5 are relevant since angular
momentum is independent of the trace. The typical magnitude of a fourth-order moment of a unit tensor in a Ðve-dimensional
space is 1/35. Therefore, these considerations suggest that the ellipticity variance will have a comparable amplitude. Fuller
consideration shows that, from equation (51), Svv@TP 1/84 ] m2(r)/m2(r \ 0). Our analytic calculations are valid for random
points in a Gaussian Ðeld, but galaxies are usually assumed to form at density peaks. We performed large realizations of
Gaussian Ðelds and checked that our results are good approximations for such special sampling.

We have compared the strength of the intrinsic correlation to that expected for weak lensing. The intrinsic signal grows as
the depth of the survey decreases, because then galaxies close on the sky are on average also physically closer together, and
hence they are more correlated. The weak -lensing signal, on the other hand, becomes weaker, since there is less matter
between us and the lensed objects. For surveys typical of weak lensing, with a median redshift of the intrinsic signal isz

m
\ 1,

of the order of 1% of the weak-lensing amplitude. However, for shallower surveys, such as SDSS or 2dF, the intrinsic signal
may dominate the lensing one on small scales. Therefore, SDSS and 2dF are ideally suited for studying intrinsic correlations
in the orientations of galaxies.

The intrinsic ellipticity depends on the square of the tidal Ðeld, whereas the lensing distortion is linear in the shear. As a
direct consequence, the distortion Ðeld is curl-free when induced by lensing, but not when intrinsic correlations are present as
well (Crittenden et al. 2001). The detection of such ““magnetic ÏÏ modes will be an invaluable way of separating lensing from
intrinsic correlations.

Finally, in this paper we have concentrated on intrinsic correlations of galaxies. Applying a similar reasoning to clusters,
one could hope to study the shear Ðeld on much larger scales. The alignment of clusters of galaxies is dominated by the
intrinsic alignment of the major shear axis. Their dynamical time is longer, and they form later, so we would expect the initial
formation alignment to persist, implying ellipticities linearly proportional to the shear. The correlation should then drop as
the correlation function m(r) instead of its square, as is the case for spin alignments. The qualitative features are reported for
Gaussian random Ðelds in U. Pen (in preparation) and for simulations by Y. Tseng & U. Pen (in preparation).

We thank L. van Waerbeke for useful conversations. R. C. and T. T. acknowledge PPARC for the award of an Advanced
and a postdoctoral fellowship, respectively. P. N. acknowledges support from a Trinity College Research Fellowship.
Research was conducted in cooperation with Silicon Graphics/Cray Research utilizing the Origin 2000 supercomputer at the
Department for Applied Mathematics and Theoretical Physics (DAMTP), Cambridge.

APPENDIX A

FROM INTRINSIC TO PROJECTED SHAPES

Here we derive an expression for the projected ellipticity, v\ o v o e2it, for a general ellipsoid when viewed from an arbitrary
angle. We follow the treatment of Stark (1977) and consider a galaxy as an absorption-free stellar system, in which the volume
brightness is constant on similar ellipsoids.

The general equation for the ellipsoid of the constant volume brightness in the coordinate frame of the galaxy (x, y, z) is

t2x2] u2y2] z2\ a
v
2 , (A1)

where t is the axis ratio c/a, u is the axis ratio c/b, and is the variable that parameterizes the volume brightness. (Note thata
vone axis ratio used here, u, di†ers from the one used by LML92, which is b/a.) We want to transform the above equation into a

frame that is aligned with z@ along the line of sight, which is accomplished by a general rotation, characterized by the Ðrst two
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Stark shows that projecting the volume brightness along the line of sight yields curves of constant surface brightness
described by

a
s
2\

A j
f
B
x@2 ] 2

Ak
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x@y@]

A l
f
B
y@2 , (A2)

where parameterizes the surface brightness, anda
s

f4 f (/, h, t, u)4 t2 sin2 h sin2 /] u2 sin2 h cos2 /] cos2 h , (A3)

j4 j(/, h, t, u)4 t2u2 sin2 h ] t2 cos2 / cos2 h ] u2 sin2 / cos2 h , (A4)

k 4 k(/, h, t, u)4 (u2[ t2) sin / cos / cos h , (A5)

l4 l(/, h, t, u)4 t2 sin2 /] u2 cos2 / . (A6)
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For a given set of axis ratios and observation angle, j, k, l, and f are constant, so that the projection of curves with constant
surface brightness are similar ellipses. Therefore, the projected image of a galaxy that has luminosity constant on similar
ellipsoids has isophotes that are similar ellipses, with the same position angle.

These isophotes correspond to ellipses with

b2\ 1 [ J1 [ c
1 ] J1 [ c

\ 1 [ v
1 ] v

, (A7)

where c\ 4t2u2f/( j] l)2, b is the ratio of the short axis to the long axis, and

t\ 1
2

sin~1
C 2k
( j ] l)v

D
, (A8)

the angle between the major axis and the x@ direction. Therefore, the general expression for the projected ellipticity of a galaxy
with axes ratios t and u seen from a line of sight (h, /) with respect to the galaxy frame is v(h, /, t, u) \ (1[ c)1@2e2it.

APPENDIX B

MOMENTS OF LŒ

As discussed in the text, the variance of the expectation value of the direction of the angular momentum is

SLŒ a LŒ bT \
P

d2LŒ LŒ a LŒ b
1

4n oQ o1@2 (LŒ aQab~1 LŒ b)~3@2 . (B1)

Here, we estimate it in the limit of a > 1. A similar discussion can be found in LP00. Writing the measure thed2LŒ \ dLŒ 1 d/,
angular integral in the above expression can be evaluated explicitly. In the frame where Q is diagonal,

SLŒ 1 LŒ 1T \
P
~1

1
dLŒ 1

P
0

2n
d/

1
4n oQ o1@2

LŒ 12
(ALŒ 12] B)3@2 , (B2)

where

B\Q22~1 cos2 /]Q33~1 sin2 /, A\Q11~1[B . (B3)

Substituting we havetan2 t\ (A/B)LŒ 12,

SLŒ 1 LŒ 1T \ 2
P
0

tan~1SA@B
dt
P
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2n
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1
4n oQ o1@2

sin2 t
A3@2 cos t

. (B4)

The t integral can be evaluated exactly to be

P
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] t5
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. (B5)

The approximation is valid in the small-angle limit tan~1 (A/B)1@2> 1, which corresponds to assuming that a in equation (9)
is small. Using tan~1 t^ t[ t3/3, the integral becomes
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since

Qab~1^
1 [ a

3
dab ] aTŒ ac TŒ cb , (B7)

we have

A\ a(TŒ 112 [ TŒ 222 cos2 /[ TŒ33 sin2 /) , B\ 1 [ a
3

] aTŒ 222 cos2 /] aTŒ 332 sin2 / . (B8)

To linear powers in a, the Ðrst term in the integral becomes

2
3
P
0

2n
d/

1
4n oQ o1@2 B~3@2 ^

2
3
P
0

2n
d/

1
4n
G
1 [ 3

2
C
[a ] 3a(TŒ 222 cos2 /] TŒ 332 sin2 /)

DH

^
1
6n
C
2n
A
1 ] 3

2
a
B

[ 9na
2

(TŒ 222 ] TŒ 332 )
D

^
1
3
A
1 [ 3a

4
] 9a

4
TŒ 112
B

. (B9)



No. 2, 2001 SPIN-INDUCED GALAXY ALIGNMENTS 569

Similarly, the second term in equation (B6) gives
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Thus, Similar expressions hold for the other diagonal correlations, and the o†-diagonalSLŒ 1 LŒ 1T ^ 13[1[ 3a/5 ] (9a/5)TŒ 112 ].
elements remain zero. Thus, the full correlation matrix becomes

SLŒ a LŒ bT \ Qab \ 1
3
A
1 [ 3a

5
B
dab ] 3a

5
TŒ acTŒ cb . (B11)

APPENDIX C

THE LINEAR AND QUADRATIC SHEAR TWO-POINT FUNCTIONS

Here we perform integrations useful in evaluating the two- and four-point functions of As described in the text, weTŒ .
transform to a new basis, T\ [(T11 ] T22] T33)/J3, (T11[ T22)/J2, (T11] T22 [ 2T33)/J6, J2T12, J2T13, J2T23].This is a convenient basis to integrate over the trace (since it is irrelevant to the angular momentum) and the correlation
function has a particularly simple form. The transformation matrix between these bases is
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We work in this basis throughout this Appendix.
Let us consider Ðrst the correlation function at zero separation in this new basis. In terms of its original indices, C0\

In the new basis this becomes(1/15)m(0)(dab dcp] dac dbp ] dap dbc).

[C0]AB
\ R

AA{[C0]A{B{[RT]
B{B

\ m(0)
15

diag(5, 2, 2, 2, 2, 2) . (C2)

The factor in the exponential of the Gaussian distribution, can be written in this basis asT C0~1 T , TC0~1T\ m~1(0)(Tr T 2
where is the modulus of the traceless part of T.] 15 oT o2/2), oT o2\ £

A/26 T
A
2

In this basis, it is simple to calculate asSTŒ
A
T

B
T

STŒ
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P d6T
(2n)3 oC0 o1@2 TŒ
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B
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Converting the measure to and rewriting we can easilyd6T\ (1/J3)d Tr T oT o4d oT o d4TŒ T
D

\ oT oTŒ
D

] Tr T d1D/J3,
perform the integrations. The trace integral yields
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=
d Tr Te~(1@2)*m~1(0)(Tr T2)+\ [2nm(0)]1@2 , (C4)

while the modulus integral is

P
0

=
oT o5d oT o e~(1@2)*15m~1(0) @ T @2@2)+\ 8[2m(0)/15]3 . (C5)

The determinant in this basis is simply so that we ÐndoC0 o1@2 \ 4J10[m(0)/15]3,
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where runs only over the nontrace indices (2-6). E†ectively, operating on a vector projects out the trace part ofd
AB

STŒ
A
T

B
T

the vector. We are Ðnally in a position to Ðnd the linear two-point function :
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r
]
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, (C7)

where the tilde denotes that the trace has been projected out of the correlation function. (If P is the projection operator, then
In the original basis, this projection operator is At zero separation, this gives an answer to within 10%C3 4 PCPT. R~1d

AB
R.)

of the exact value a remarkable fact when one remembers that this was derived assumingSTŒ
A
TŒ

B
@ T \ d

AB
/5, C

r
> C0.

Moving on, we next try to evaluate the quadratic two-point correlation in this basis,
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Now, at zero lag the quartic moment in the transformed basis
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Again making the substitution the surviving terms are of the formT
C
\TTŒ

C
] (1/J3)Tr T d1C,

STŒ
A
TŒ

B
T

C
T

D
T \

P (1/J3)d Tr T oT o4d oT o d4TŒ
(2n)3 oC0 o1@2 TŒ

A
TŒ

B

A
oT o2TŒ

C
TŒ

D
]Tr T 2

3
d1C d1D

B
. (C10)

As above, we can perform the integrals simply. For the Ðrst term, the trace integral is identical to equation (C5), while the
modulus integral is

P
0

=
oT o6d oT o e~(1@2)*15m~1(0) @ T @2@2+\ 15

J2n
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The angular integral yields
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Again, the indices range over 2È6, since the trace has been e†ectively projected out. For the second term, the angular integral
is as it was for the linear two-point function given in equation (C6), while the trace integral becomes

P
~=

=
d Tr T (Tr T )2e~(1@2)*m~1(0)(Tr T2)+\J2nm(0)3@2 , (C13)

and the modulus integral gives

P
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=
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Putting these all together, we Ðnd that

STŒ
A
TŒ

B
T

C
T

D
T \ m(0)

15
C2
7

(d
AB

d
CD

] d
AC

d
BD

] d
AD

d
BC

) ] d
AB

d1C d1D
D

. (C15)

Finally, we are in a position to evaluate the quadratic two-point function. This expression has a number of terms, but it can
e†ectively be broken into a local part, which includes terms proportional to or and a nonlocal part. Since only thed

AB
d
CD

,
latter terms contribute to the ellipticity correlation, we will keep only these here. This nonlocal part is a simple function of the
correlation of the trace-free components,
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In the limit of small separations, the total (local and nonlocal) correlation function should approach (d
AB

d
CD

] d
AC

d
BD] d

AD
d
BC

)/35.
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