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Abstract—A quasi-optical deembedding technique for charac-
terizing waveguides is demonstrated using wide-band time-re-
solved terahertz spectroscopy. A transfer function representation
is adopted for the description of the signal in the input and
output port of the waveguides. The time-domain responses were
discretized and the waveguide transfer function was obtained
through a parametric approach in the -domain after describing
the system with an AutoRegressive with eXogenous input (ARX),
as well as with a state-space model. Prior to the identification
procedure, filtering was performed in the wavelet domain to mini-
mize both signal distortion, as well as the noise propagating in the
ARX and subspace models. The optimal filtering procedure used
in the wavelet domain for the recorded time-domain signatures is
described in detail. The effect of filtering prior to the identifica-
tion procedures is elucidated with the aid of pole-zero diagrams.
Models derived from measurements of terahertz transients in a
precision WR-8 waveguide adjustable short are presented.

Index Terms—Identification algorithms, multimode waveguide
characterization, signal processing, terahertz spectroscopy.

I. INTRODUCTION

THIS PAPER discusses quasi-optical broad-band mea-
surements of the scattering parameters, attenuation

coefficients, and characteristic impedances of waveguide com-
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ponents at submillimeter-wave frequencies performed using a
terahertz-transient spectrometer.

Although there are inherent advantages in broad-band mea-
surements using very short terahertz pulses as the individual
reflection signatures of the device-under-test are in the time
domain and, therefore, can be directly isolated and gated
out, the frequency bands within which the device-under-test
exhibits monomode operation must be identified. A further
difficulty that arises is that most of the power output from the
wide-band pulsed source occurs at frequencies (e.g., 1–3 THz)
where waveguides designed for lower frequencies can support
a number of modes. At frequencies where multimoded prop-
agation can occur, a meaningful analysis is only possible if
the extent to which each waveguide mode has been excited
is known. Finally, the power output of the source over the
single-moded bandwidth of the waveguide is often rather low,
leading to a poor signal-to-noise ratio in each frequency bin of
the complex insertion loss function.

In this paper, the problems associated with poor
signal-to-noise ratio and multimoded propagation are ad-
dressed by placing the waveguide characterization problem in a
system identification framework. We introduce autoregressive
and state-space models as efficient modeling tools of linear
processes such as energy dissipation in a waveguide test
piece. These tools, however, require low-noise data sets,
which might not be realizable within practical integration time
scales. Wavelet pre-filtering is well suited to the denoising
of the nonstationary data sets obtained in terahertz transient
spectrometry [1]–[3]. Since the commonly used wavelets such
as the family are not necessarily optimal in describing
an experimental data set, we introduce a process for tailoring
the wavelet transform to the signal to be analyzed in order to
maximize the amount of energy in the wavelet coefficients
kept in the filtering process. The algorithm is then used to
process terahertz transient reflection signatures from a WR-8
adjustable waveguide short. The identification models provide
the weights and attenuation for each mode propagating in the
structure. Pole-zero diagrams are used to show the effect of
filtering on the calculated mode parameters.

II. EXPERIMENTAL SETUP

The experimental setup for generating and detecting tera-
hertz radiation is shown in Fig. 1(a). A mode-locked Ti:sapphire
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Fig. 1. (a) Experimental setup for waveguide characterization.
(b) Time-domain reflection signatures for five shorted WR-8 waveguides
differing in length by 1 mm. The signals are vertically offset for better
visualization.

laser producing optical pulses with durations of 140 fs is used
to resonantly excite the lowest interband transitions of an In-
GaAs emitter, which is located at the focal point of a parabolic
reflector [4]–[6]. The optical pulse generates an electron–hole
plasma and the accelerated carriers generate a pulse of terahertz
radiation that is horizontally polarized along the direction of the
surface field of the InGaAs emitter. Terahertz pulses emitted by
the photoconductive element are transmitted through a vertical
grid and the propagating terahertz beam, which has a Gaussian
transverse amplitude distribution, is focused by the second par-
abolic mirror to feed at normal incidence, in a co-polar manner,
the open port of the waveguide under test. The optics are de-
signed to give a frequency-independent beam waist at the test
port. The effective beam-waist size and location to optimally
feed the waveguide will change in frequency, but will be inde-
pendent of the location of the short in the waveguide. Thus, at
any given frequency, the coupling coefficient between the beam
and waveguide remains constant regardless of the position of the
short. Upon 180 reflection at the back short, the modified ter-
ahertz pulse exits the waveguide and is focused to a time-gated
ion-implanted silicon-on-sapphire photoconductive dipole an-
tenna [7].

A sequence of measurements was performed on a commer-
cially available precision WR-8 waveguide adjustable short. The
time-domain interferograms corresponding to five different po-
sitions of the backshort at 1-mm spacings are shown in Fig. 1(b).

Maintaining the location of the waveguide relative to the
beam and using an adjustable short to provide different test
waveguide lengths ensured that a constant degree of coupling

Fig. 2. Two-channel filter bank. Blocks H and G represent a low-pass
and a high-pass filter, respectively and # 2 denotes the operation of dyadic
downsampling. The decomposition can be carried out in more resolution levels
by successively splitting the low-pass channel.

was maintained between the terahertz beam and the test piece
throughout the measurement sequence. The terahertz pulse
produced by the photoconductive antenna has frequency com-
ponents up to 3 THz.

III. WAVELET PRE-FILTERING

A. Filter Bank Formulation of the Discrete Wavelet Transform

Prior to the identification procedures, the time-domain signa-
tures reflected by the short at the end of each waveguide length
were detrended by subtracting the mean. Such a detrending was
performed to avoid the need to include an offset term in the iden-
tification model [8]. Wavelet filtering was performed because
it is known to produce better results than conventional filters
when the signal is nonstationary [9], [10]. The wavelet filtering
process was performed using a filter bank formulation of the
wavelet transform [11]. Each time-domain signature was repre-
sented by a data vector of length , where the th element
of , denoted by , represents the measured signal at the th
sampling instant. The filter bank transform can be regarded as a
change in variables from to performed according to the
following operation:

(1)

where is a transformed variable and is a transform
weight. It proves convenient to write the transform in matrix
form as

(2)

where is the row vector of original vari-
ables, is the row vector of new (transformed) variables, and
is the matrix of weights. Choosing to be unitary (i.e.,

, the transform is said to be orthogonal and it, therefore, con-
sists of a simple rotation in the coordinate axes (with the new
axes directions determined by the columns of ). As described
in the wavelet literature [12]–[14], the discrete wavelet trans-
form can be calculated in a fast manner by using a finite im-
pulse response (FIR) filter bank structure of the form depicted in
Fig. 2. It is worth noting that general -channel FIR filter bank
decompositions could also be employed in this context [15], but
the scope of this paper will be restricted to two-channel filter
banks, as in Fig. 2.

In this filter bank, the low-pass filtering result undergoes suc-
cessive filtering iterations with the number of iterations chosen
by the analyst. The final result of the decomposition of data
vector is a vector resulting from the concatenation of row
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TABLE I
CONVOLUTION PROCEDURE FOR LOW-PASS FILTERING SHOWING

RESULTS BEFORE AND AFTER DYADIC DOWNSAMPLING

vectors and (termed approximation and detail co-
efficients at the th scale level, respectively) in the following
manner:

(3)

with coefficients in larger scales (e.g.,
) associated with broad features in the data vector, and

coefficients in smaller scales (e.g., ) asso-
ciated with narrower features such as sharp peaks.

Let and be the
impulse responses of the low-pass and high-pass filters, re-
spectively. Assuming that filtering is carried out by circular
convolution, the procedure for generating the approximation
coefficients from the data vector is illustrated in Table I.
The convolution consists of flipping the filtering sequence and
moving it alongside the data vector. For each position of the
filtering sequence with respect to the data vector, the scalar
product of the two is calculated (with missing points in the fil-
tering sequence replaced with zeros). For instance, if , the
third row in Table I shows that .
Dyadic downsampling is then performed to to generate
coefficients . The detail coefficients are obtained in a
similar manner by using the high-pass filtering sequence.

If the approximation and detail coefficients are stacked
in vector , the wavelet transform can be expressed in
the matrix form (2) with the transformation matrix given by (4),
shown at the bottom of this page.

A requirement for the transform to be orthogonal (i.e.,
is that the sum of the squares of each column must

be equal to one and the scalar product of different columns
must be equal to zero. Therefore, for a filter bank that utilizes
low-pass and high-pass filters, the following conditions ensure
orthogonality of the transform so that no information is lost in
the decomposition process [11]

(5a)

(5b)

If the filtering sequences satisfy these conditions, the entire
structure is termed a quadrature-mirror filter (QMF) bank [12].
A QMF bank is said to enjoy a perfect reconstruction (PR) prop-
erty because can be reconstructed from , which means that
there is no loss of information in the decomposition process. In
fact, from the relation , it follows that
and , due to the orthogonality of the transform. At this
point, it should be noticed that other nonorthogonal transforms
can also enjoy a PR property, provided that they are associated
to a nonsingular matrix . However, the analysis in this paper
will be restricted to orthogonal transforms.

Filtering in the wavelet domain consists of replacing some of
the elements of by zero so that a new vector is produced and
then applying the inverse transform.

B. Filtering Using Adaptively Chosen Wavelets

One limitation of the procedure described for the filtering of
the time-domain signatures in the wavelet domain is that the
wavelets must be chosen a priori and are not adapted to opti-
mally describe the experimental data set. Optimizing the trans-
form to maximize its compression ability and, therefore, its effi-
ciency is normally achieved by optimizing the QMF bank. The
QMF bank can be described by a set of parameters that can
be adjusted by any algorithm for unconstrained optimization to
maximize the compression ability of the transform.

The parametrization of PR FIR filter banks proposed by
Vaidyanathan as adapted by Sherlock and Monro [13] to pa-
rametrize orthonormal wavelets of arbitrary compact support

...
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...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(4)
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Fig. 3. Procedure for parameterizing wavelet filter banks by N angles.

may be used for this purpose. For a filter bank of the form
shown in Fig. 2 where the conditions in (5a) and (5b) are satis-
fied, the transfer function of the low-pass filter in the -domain
can be written as

(6)

where superscript denotes that the filtering sequences have
length and , termed polyphasic compo-
nents of , are given by

(7a)

(7b)

Defining the polyphasic components and
of the high-pass filter in a similar manner, a matrix

may be defined as follows:

(8)

It can be shown [11], [12] that can be factorized as

(9)

where each pair of parameters are related to a common
angular parameter as and

. It follows that the filters can be completely
parameterized by angles , which can assume
any value in the set of real numbers, as shown in Fig. 3.

The weights of the low-pass filter can be easily recovered
from a set of angles by using the following recursive for-
mula [11], [12]:

(10)

for with

(11)

Equation (10) with the initial condition of (11) provide a way
to obtain the weights for a filter of length
from the weights for a filter of length . To do that, one
starts by writing, from (8) and (10)

(12a)

(12b)

with and . A recursive formula
for the generation of low-pass filter weights with even indexes

can then be stated by using the definitions in (7a) and (7b)
to expand (12a) as

(13)

for , with and . From
the identity of terms with the same power of in the last line of
(13), it follows that

(14a)

for .
A similar formula can be stated for the low-pass filter weights

with odd indexes by expanding (12b) as

(14b)
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for . After obtaining the low-pass filtering
sequence, as explained above, the high-pass filtering sequence
can be obtained by using (5b).

Condition (5a) states that the weights of the low-
pass filter are subject to restrictions. Thus, there are de-
grees of freedom that can be used to optimize the filter bank
according to some performance criterion. It is worth noting that
since the restrictions are nonlinear and may define a nonconvex
search space, the optimization task is not trivial. We circumvent
this difficulty by using the lattice structure for the filter bank,
which is parameterized by angles that
can assume any real value, as shown in Fig. 3.

The problem then becomes one of unconstrained optimiza-
tion in . The optimal filtering procedure employed in this
study was aimed at maximizing the amount of energy in the
wavelet coefficients kept in the thresholding process. The opti-
mization consisted of maximizing an objective function

defined as

(15)

where is the vector of angles that parameterize the filter
bank, as explained above, is the th wavelet coefficient
resulting from the signal decomposition, and is the index
set of the coefficients kept in the thresholding process. It is
worth noting that is defined on the basis of the magnitude of
the wavelet coefficients before the optimization. The flexible
polyhedron algorithm available in the MATLAB Optimization
Toolbox was employed to search for the optimum using the
parameters associated with the wavelet as a starting point.
The optimization was carried out separately for each signal.

It is possible that the objective function (15) may have local
maxima different from the global maximum. In that case, the
flexible polyhedron algorithm will tend to converge to the
closest local maximum. However, even if the global maximum
is not attained, an improvement over the original wavelet
transform may still be obtained.

For comparative purposes, a nonoptimized filtering proce-
dure, where each time-domain signal to be filtered was de-
composed using a wavelet filter bank with two resolution
levels [16], was also performed. Hard thresholding was em-
ployed, with all wavelet coefficients with magnitude smaller
than a certain fraction of the largest coefficient being replaced
with zeros. The inverse transform was then applied to obtain the
filtered signal shown in Fig. 4.

As can be seen from Fig. 4, a direct comparison between fil-
tered and optimally filtered waveforms is almost impossible in
the time-domain plots. Plotting, however, pole-zero diagrams
after performing system identification for the terahertz-transient
excited waveguide sections makes the effect of filtering more
apparent.

IV. SYSTEM IDENTIFICATION

A. ARX Model

This section describes the process of obtaining the frequency
response of a waveguide test piece by identifying a parametric

Fig. 4. Unfiltered, filtered, and optimally filtered time-domain responses for
the 2-mm-long WR-8 waveguide section.

model from the reflection signatures for two different wave-
guide lengths. Let and be the reflection signatures
for the shorter (length , where is a length unit) and longer
(length ) waveguides, respectively. Ratioing the spectra

and yields the effective complex insertion loss func-
tion for a unit length waveguide [17] that is given from

, where can be regarded as the fre-
quency response of a linear system, which produces an output

for an input .
Instead of using the ratioing procedure, which is very sensi-

tive to measurement noise, system identification techniques can
be employed to obtain the complex insertion loss. Since this ap-
proach is novel in the context of waveguide characterization,
results from two different identification techniques will be pre-
sented to demonstrate this concept. Firstly, can be ob-
tained directly through a parametric approach [8], [18] in which
the unit length waveguide is described by an AutoRegressive
with eXogenous input (ARX) model of the form

(16)

where is the response measured at time (sampling in-
terval femtoseconds), are
model coefficients, is the number of poles (equivalent to the
system order), is the number of zeros, is a pure time
delay, and is a residual. can be discretized as a -do-
main transfer function

(17)

by making . The roots of (poles of )
are associated with the modes of the waveguide (
modes in total). It is worth noting that, since the modes have an
oscillatory behavior, it is reasonable to model them with second-
order terms [19], as in the right-hand side of (17).
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The roots of (zeros of ) are associated with the
weights of each mode in the overall response of the system and

(since the order of the denominator of is
and there are terms in the expansion, each one with

a second-order denominator). Each partial fraction describes a
propagating mode inside the waveguide. The th mode will have
a weight, resonant frequency of oscillation, and damping ratio
associated with the roots of the polynomial in the th denomi-
nator. It is worth noting that this is the minimal representation
needed to describe a mode since the first-order term in the nu-
merator of the partial fraction will account for the cut-on effect
in the frequency domain, whereas the second-order term in the
denominator will ensure that the response is attenuated at high
frequencies. For modeling parsimony, no extra zeros or poles
are incorporated in the description of each mode. Parameters
and can be obtained by minimizing the mean square value
of the residual over the time horizon used for identification
using a least squares procedure.

When choosing the model order , one must make an as-
sumption on the number of modes that are propagating in the
structure. The value of can be accurately estimated after ob-
serving the delay in the time-domain signatures recorded by the
spectrometer from

(18)

where [17]. The choice of can be made in
an empirical way from cross-correlation of the outputs with the
residuals. Other methods such as spectral analysis, analysis of
the information matrix, Akaike’s final error prediction criterion,
or Akaike’s information theoretic criterion [8] are also appro-
priate. The System Identification Toolbox of MATLAB chooses

on the basis of parsimony arguments in order to balance the
accuracy and complexity (number of parameters to be identi-
fied) of the model.

It is worth noting that the use of physical insight in the iden-
tification procedure reduces the number of design choices that
need to be done on the basis of the data themselves. If the en-
tire definition of the model structure (including the choice of
and ) were data driven, the identification procedure would be
more sensitive to artifacts and noise.

The experimental time-domain reflection signatures from the
backshorts must be aligned with respect to each other before an
identification model is applied to the discretized time-domain
signatures. Using the known dimensions of the rectangular sec-
tion of the waveguide, the cut-on frequency, guide wavelength,
and theoretical phase delay at each frequency for each mode
for all modes propagating in the structure can be calcu-
lated [20]. To calculate the overall phase delay, vectorial addi-
tion must be performed for all the propagating modes inside the
waveguide. Since each mode is attenuated to a different degree,
its contribution must be weighted by a weight and a factor
with an attenuation constant

(19)

By matching the theoretical calculations for the phase delay
in WR-8 waveguide samples to the recorded delay by the
interferometer, it was concluded that most of the power is
distributed among two modes and, thus, a fourth-order model
should be adopted for the backshort experiment. In addition,
an examination of the phase velocity of the received signal
shows that the propagation of terahertz pulses inside the
waveguide is almost dispersion free within the bandwidth of
the excitation pulse. Such preferential coupling of the pulse
energy to the lower order modes of the structure and the al-
most dispersion-free propagation observed are similar to the
ones obtained by Grischkowsky’s group [21] where they also
used broad-band excitation in their experimental procedure to
characterize plastic ribbon terahertz waveguides.

B. State-Space Modeling

An alternative way to obtain would be through a
state-space modeling approach. Discrete time state-space
models represent difference equations, as ARX models do, but
are rearranged such that only one delay is used in the expres-
sion. This leads to the introduction of extra variables, known
as state variables, which are not measured, but can, under
certain conditions, be reconstructed from input–output data.
For the waveguide characterization problem, a single-input
single-output state space model may be identified directly from
the data

(20)

where is an -dimensional state vector, is a deter-
ministic input, is the measured output, is the output
residual, is a scalar parameter, and and are ma-
trices of the appropriate dimensions. A sound method for es-
timating the state-space model parameters using input–output
data is the subspace approach [22], [23]. A more detailed de-
scription of the subspace algorithm as applied to optical sys-
tems is provided elsewhere [24]. A common implementation is
the N4SID algorithm, which is available as part of MATLAB’s
System Identification Toolbox.

There is an equivalence between the state-space representa-
tion, and the input–output representation. Taking the -trans-
form of the state-space model and eliminating the state vari-
ables, it follows that

(21)

Writing both ARX, as well as state-space models in an
input/output form, a direct comparison of the two methods
is possible. However, the state-space representation can be
deemed more appropriate than the ARX representation in op-
timal estimation and optimal control frameworks, as discussed
in [24].

Instead of relying on matching the observed phase delay in
the interferometer with theoretical models of phase delay that
take into account the waveguide dimensions to define the model
order as the ARX model does, the subspace algorithm avoids
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Fig. 5. Measured (solid line) and simulated (dotted line) time-domain
responses using the: (a) ARX model and (b) state-space model (modeling data,
d =d case).

over-parametrization by observing the singular values plot re-
sulting from the singular value decomposition of a Hankel ma-
trix built from the input–output data [22]. The optimal model
order is selected in such a way that the singular values for higher
orders are comparatively smaller.

V. RESULTS AND DISCUSSION

The System Identification Toolbox of MATLAB v.6.1 was used
to obtain models in the form of (17) and (21). Fig. 5 com-
pares the measured and simulated time domain responses for
the modeling data, which consisted of the signals for two- and
three-waveguide-length units. Both the ARX and state-space
models reproduced 87% of the -variance.

Readers familiarized with control systems theory will notice
that the time-domain plots of Fig. 5 resemble impulse responses
of nonminimum phase systems [19]. However, one should bear
in mind that those are the responses of the entire structure (in-
cluding the coupling of the test piece), whereas the models con-
sidered in this paper are developed for the waveguide only (the
coupling effects being ratioed out). Thus, if the nonminimum
phase behavior is actually caused by coupling effects, it should
not be reflected in the identified models.

For validation, the models were applied to an independent
data set consisting of the responses for four- and five-wave-
guide-length units. The results presented in Fig. 6 show that the
model predictions are in good agreement with the measured re-
sponses. It is worth noting that the accuracy is smaller in the
validation set, as compared to the modeling set (Fig. 5). Such a
finding was to be expected because the validation data are not
included in the model-building process. They are used instead
to check the generalization ability of the model, i.e., its ability

Fig. 6. Measured (solid line) and simulated (dotted line) time-domain
responses using the: (a) ARX model and (b) state-space model (validation data,
d =d case).

Fig. 7. Residual statistics for the state-space model with the d =d
validation data. (a) Autocorrelation values of the modeling residual e[k].
(b) Cross-correlation between the modeling residual and input signal.

to predict the behavior of the system in a situation that is not
exactly equal to the one considered in the modeling phase [8].

Fig. 7(a) shows the autocorrelation values of the state space
model residual , where is a time lag between
two points of the state-space model residual sequence. Fig. 7(b)
shows the cross-correlation between the mod-
eling residual and input signal for different time lags .

Fig. 8(a) and (b) shows similar residual correlation plots for
the ARX model. Ideally, the autocorrelation should be zero for



2416 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 10, OCTOBER 2004

Fig. 8. Residual statistics for the ARX model and the d =d validation data.
(a) Autocorrelation values of the modeling residual "[k]. (b) Cross-correlation
between the modeling residual and input signal.

Fig. 9. Calculated transmission coefficient jH(jw)j of a unit length
waveguide for the backshort.

time lags different from zero (white noise) and there should be
no cross-correlation between the residual and input since any
correlation would indicate that part of the residual could be pre-
dicted from the input. Since the autocorrelation of the residuals
is small, the assumption of whiteness in the noise can be as-
sumed to be valid.

Fig. 9 shows the insertion loss of a unit length waveguide (as
calculated both by the ARX and state-space models) after ra-
tioing the spectra obtained with the backshort adjusted to 3 mm
with that at 2 mm (denoted as the case), which is, in fact,
the frequency response of the identified models. An effective
propagation constant for the multimode propagation can, there-
fore, be calculated [17]. The observed increased insertion loss
at higher frequencies is attributed to the variation of the conduc-
tivity of gold with frequency.

The pole-zero charts in Figs. 10 and 11 provide details of the
resulting ARX model and state-space model (when converted to
an input–output model). The dashed isoclines provide values of

Fig. 10. Pole-zero diagram for the state-space model showing the confidence
regions using one standard deviation.

Fig. 11. Pole-zero diagram for the ARX model showing the confidence regions
using one standard deviation.

natural frequencies and damping ratios for the propagating
modes. The isoclines are obtained from

(22)

where by fixing and varying or by
fixing and varying .

In these plots, the confidence locus of the zeros is much larger
than the confidence locus of the poles. This was to be expected
since it is easier to estimate poles than zeros, as they are asso-
ciated with the exponential decay and frequency of oscillation
of the modes, whereas the zeros are associated with the weights
of each mode, which are intuitively more difficult to obtain. In
addition, if more modes were assumed in the model, the radii of
the confidence zones of the poles and zeros would increase since
the number of unknowns would be larger for the same number
of observations, i.e., the confidence levels in the model decrease
significantly when the model is over-parametrized.
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Fig. 12. (a) Zero- and (b) pole-charts of original (�), wavelet-filtered ( ),
optimal wavelet-filtered (}) responses assuming a fourth-order ARX model.

Since the autocorrelation function of the residual for both the
ARX and state-space models is almost within the one standard
error bounds, it can be concluded that the models have been
appropriately chosen. Some of the zeros calculated using the
state-space model are outside the unit circle, which indicates
that this model exhibits nonminimum phase behavior, which is
not the case with the identified ARX model.

Fig. 12 provides pole and zero charts where an ARX identifi-
cation model is used to obtain after assuming two modes
propagating in the structure. It was observed that the wavelet fil-
tering process resulted in a zero that was outside the unit circle
being brought to the inside. This is in accordance with our ex-
pectations since there does not seem to be a physical reason for
a zero being outside the unit circle.

As stated earlier, the poles are directly related to the mode
properties. Filtering increased the estimated damping in the
higher frequency mode. The frequency itself remained practi-
cally unchanged. Furthermore, in the lower frequency mode,
the filtering decreased the estimated frequency, whereas the
damping remained unchanged.

A premise of this study is that the filtering procedure im-
proves the signal-to-noise ratio of the measurements and, conse-
quently, the accuracy of the identification results. However, one
should bear in mind that if the filtering is too aggressive (in the

sense of more wavelet coefficients being replaced with zeros),
there is a risk that the identified model will be related to the filter
dynamics rather than to the waveguide response. At this point,
it is worth noting that the proposed wavelet optimization proce-
dure may actually alleviate such a risk. In fact, by tailoring the
wavelet transform to the denoising task, it is possible to mini-
mize the distortion effects on the signal caused by removing the
noise.

VI. CONCLUSION

Both ARX and state-space models are efficient modeling
tools for linear processes such as energy dissipation in a wave-
guide test piece. These tools, however, require low-noise data
sets, which might not be realizable within practical integration
time scales. Wavelet pre-filtering is well suited to the denoising
of the nonstationary data sets obtained in terahertz transient
spectrometry.

One limitation of commonly used wavelets such as the
family is that the wavelets must be chosen a priori and are not
adapted to optimally describe the experimental data set. We,
therefore, introduced a QMF bank to optimize the compression
ability of the transform before performing any thresholding in
the wavelet domain. The optimal filtering procedure employed
in this study was aimed at maximizing the amount of energy in
the wavelet coefficients kept in the thresholding process.

Although pre-filtering of the time-domain signatures with a
and an optimal filter did not produce traces that would be

classified as different by eye inspection, these different filtering
procedures had a marked effect on the pole-zero diagrams ob-
tained after ARX and subspace models were fitted to the data.
This justifies their use in waveguide mode identification from
broad-band experiments.

An extension of the subspace algorithm to bilinear systems
would be required to take into account the nonlinearities of the
cut-on conditions in the modes and account for evanescent fields
for a more accurate model. In this case, the complex values
arising in the simulations would be treated separately in matrix
form in a similar manner to real valued data. The good fit, how-
ever, of both models to the time-domain data sets indicated that
this was not necessary in our current analysis. In fact, since the
scope of this study was restricted to the modeling of the prop-
agating modes, the cut-on conditions and the evanescent fields
were not modeled or considered in the validation of the obtained
models. Different experimental protocols may be designed to
focus the study on such a phenomena. In that case, the nonlinear
effects would have to be properly taken into account.

Finally, it is worth noting that, although the proposed analysis
in the wavelet domain has been placed within a filtering frame-
work, there have been suggestions [25] that such transforms
may also be used directly for waveguide mode identification.
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