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Helium dimer dispersion forces and correlation potentials in density
functional theory
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The dispersion interaction in the helium dimer is considered from the viewpoint of the force on a
nucleus. At large internuclear separations, Brueckner coupled clustér) Bidces agree well with
near-exact dispersion forces. The atomic density distortion associated with the dispersion force is
quantified by comparing the BIDD) dimer density with a superposition of atomic densities. For
density functional theory calculations in the Hartree—Fock—Kohn—St#RKS) formalism, the
accuracy of the dispersion force is governed by the correlation potential. Calculations using the
conventional Lee—Yang—PdiPhys. Rev. B37, 785(1988] potential only generate a small density
distortion, giving forces significantly smaller than BD. The BIO(T) electron densities are
therefore used to determine improved correlation potentials using a modified Zhao—Morrison—Parr
(ZMP) approacHPhys. Rev. A50, 2138(1994)]. HFKS calculations using these ZMP potentials
guantitatively reproduce the distortion, giving dispersion forces in good agreement wiih.Bbe

dimer ZMP correlation potential is partitioned into two parts, one equal to the sum of two
unperturbed spherical atomic correlation potentials and the other representing an interaction
potential. HFKS calculations using the former do not generate the distortion; forces are close to
Hartree—Fock. Calculations using the latter do generate the distortion, giving forces essentially
identical to those from the full dimer potential. The origin of the distortion is traced to the
asymmetric structure of the interaction correlation potential in the vicinity of each nuclel00@
American Institute of Physics[DOI: 10.1063/1.1522715

I. INTRODUCTION gradually?® does bind. For a recent review of van der Waals
studies using conventional functionals, see Ref. 24.

The description of van der Waals interactions is a major A DFT calculation using an appropriately chosen con-
challenge for density functional theofpFT) approxima- ventional functional can therefore provide a qualitative de-
tions. Calculations using conventional exchange-correlatioscription of van der Waals systems at intermediate separa-
functionals have been performed for a range of systems, irtions, where there is a non-negligible overlap between the
cluding rare gas dimers® C4Hs dimer®”% CH, and interacting fragments and the interaction energy is composed
C,H, dimers®*? He --CO,,*31* N, dimer!® CqHg --X [X  of several termgdispersion, exchange-dispersion, electro-
=0,, N,, CO (Ref. 16, Ne, Ar (Ref. 3], and other non- static, exchange-repulsion, tcAt larger separations, how-
bonded dimeric complexé$. Common conclusions are ever, where overlap is negligible, the interaction energy is
reached. The local density approximatidnDA) tends to dominated by the long-range dispersion energy, arising from
overbind?45while the performance of generalized gradi- correlated interactions between electrons on the separate
ent approximatiofGGA) and hybrid functionals is sensitive fragments. The local nature of conventional functionals
to the choice of exchange approxima’[ion_ Functionals basedi€eans they are fundamenta”y unable to describe this feature,
on Becke 1988 exchantfe often predict a repulsive failing to recover the leading- C¢R™° interaction energy.
interactiont~35-911-13.15-1fhnse pased on PW9Ref. 19  Although this term can be introduced in an empirical
or PBE (Ref. 20 exchange do tend to bind, although quan_manneﬁs more advanced methods must be used to introduce
titative accuracy is lacking=>**~**This sensitivity to the 1t rigorously. —These include long-range™  and
exchange functional has been attribdt&to the behavior of seamles¥ "> approaches; see Ref. 39 for an assessment of
the exchange enhancement factor at large reduced densRme of these methods. Kohn—Sham orbitals have also been
gradients; the Becke 1988 enhancement factor divergestSed within symmetry-adapted perturbation thé‘_&‘s}. o
whereas the PW91 and PBE factors are better behaved. In N this study we consider the long-range dispersion in-
our preliminary studies, we obtained results consistent witieraction in DFT from the viewpoint of the force on a
this assessment. The HCTH98Ref. 21 exchange- nucl'eus, rather 'Fhan from t.he uspal ylewp0|nt of' the elec-
correlation functional, whose exchange enhancement factdfonic energy. Given that dlsp_er5|on is a correlation effect,
increases rapidly witls, does not bind the helium dimer. The W& treat exchange exactly using the Hartree—Fock—Kohn—

s n42,43 ; ;
1/4 functiona? whose enhancement factor increases mor%svzirgn(HFKS) formalism: The electronic energy is
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where Eyd {¢;}] is the Hartree—Fock functionaE[p] is We commence in Sec. Il by providing computational de-
an approximate correlation energy functional, aid) is the tails and choosing internuclear separations ip tthere dis-
electron density persion dominates. The physical origin of the dispersion
force—a distortion of the atomic densities—is discussed and
p()=2, @2(r). (20 quantified using BOT) densities. Deficiencies with conven-
I

tional correlation potentials are highlighted by considering
HFKS forces using the Lee—Yang—PdtYP) potential®®
Correlation potentials are then determined directly from the
BD(T) electron densities, using a modified Zhao—Morrison—

, o Parr(ZMP) (Ref. 46 approach. Self-consistent HFKS calcu-
f Fre(r.r)ei(r)dr' +ocNei(N—€ei()=0 () |ations are performed using these potentials and forces are
determined. The partitioning of the correlation potential into
atomic and interaction components is investigated. Conclu-
sions are presented in Sec. lll.

Expansion of the orbitalge;} in a basis sef g} allows the
HFKS equations

to be recast as secular equations

% fna(r)UFHF(r,r’)nﬁ(r’)dr’+vc(r)n5(r)
Il. RESULTS
€ nﬁ(r)}drCﬁFO, (4) A, Computational details

where Fye(r,r’) is the coordinate representation of the  All calculations were pe7rformed using a modified ver-
Hartree—Fock operatanonmultiplicative due to orbital ex- Sion of thecappac progrant” with an extensive g5p4d

change and basis set on the He atoms, corresponding to the nuclear cen-
tred part of the DCBS (Dc147) basis set of Ref. 48, with
_ OEdp] the f functions removed for technical reasons. Unless other-
velh)= op(r) ®) wise stated, the BO'), Hartree—Fock, and DFT forces were

is th lati Al Th St | . all evaluated analytically, using conventional rigorous energy
'it e correlation potential. The HFKS force on nucleus A iSyg iy ative expressions. Where possible, numerical stability
then was confirmed by comparing the analytic forces with nu-

IEper R . merical forces determined from energies at perturbed geom-
Forr=— F Entl{eit]— f p A(N)vc(r)dr etries. Basis set superposition err@BSSH affect the shape
of the interaction energy curve and so also affect the calcu-
Ra lated forces. All forces were corrected for BSSE by differen-
+§i: €6S;" ©) tiating the counterpoise energy correction. This requires the

force on a single helium atom, calculated in the presence of

where EEé[{(pi}], pRA(r), and SIFTA are the basis-function- additional ghost atom basis functions. For DFT calculations,
only derivatives of the Hartree—Fock functional, density, andhe integration grid on the ghost atom was also included, in
orbital overlap matrix, respectively, with respect to theorder to account for integration grid superposition error.
nuclear coordinate vectoR,. Other thanuv(r), all the  Given our extensive basis set, large internuclear separations,
guantities in Eq(6) can be constructed from the solutions to and near-saturated integration grids, the BSSE corrections to
Eq. (4). Given thatv(r) is the only approximated term in the total forces are very small. To the number of decimal
Eqg. (4), it follows that the quality of this potential alone places quoted they are negligible for all methods except
determines the quality of the force for a given basis set. IBD(T) [where it contributes 0210 © a.u. (about 2% to
essencekEd p] governs the accuracy of the total energy, sothe forces at 8.0 and 8.5 alu.BSSE corrections to
its functional derivative governs the energy derivative. ThisHellmann—Feynman forces were slightly larger.
dependence onc(r) is particularly evident when the basis All BD (T) densities are relaxed densities. HFKS corre-
set is complete, since Ed6) reduces to the Hellmann— lation potentials were determined from these densities using
Feynman forcé? For a given Born—Oppenheimer configu- the methodology of Refs. 49 and 50, which is a modification
ration, this depends only on the density, whose accuracy isf the ZMP approach® based on the constrained search
governed by (r) through Egs(2) and (3). formulation®® The method is as follows. The only terms in

At large separation, the force on a nucleus in a van deEq. (1) that are not explicit functionals of the density are the
Waals molecule is almost exclusively due to the dispersiomoninteracting kinetic and orbital exchange energies in
interaction. To describe this dispersion force accuratehEyd{¢;}]. Minimization of the sum of these two terms with
within the HFKS formalism therefore requires an accuraterespect to the orbitals, subject to the constraint that the den-
representation af o(r) at large separation; integration of this sity equals the BDT) density, gives the HFKS orbitals asso-
force along the dissociation path yields the dispersion intereiated with that density. The addition of appropriate explicit
action energy. We regang-(r) as a key quantity, containing density functionals to the minimization ensures that the re-
essential physics of DFT dispersion. The aim of this study isulting one-electron equations take the same form as3tg.
to useab initio electron densities to learn about the structurebut does not change the solution. Comparison of the equa-
of v(r) and its relationship to dispersion forces in the he-tions then allows (r) to be identified in terms of the B)
lium dimer He. density, the iterating density, and a Lagrange multi-
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plier N associated with the density constraint. The one- 10 T
electron equations are solved within a basis set framework g
and the potential is tabulated numerically on a DFT numeri- |
cal integration grid. 6 \ Faw

The Lagrange multipliek is formally infinite, although o
for finite basis sets the BD) densities cannot be reproduced ,“ 4 8
exactly and so this is inappropriateWe considered three = 9 Boaer
approaches to circumvent this problem. We considered a fi- : ——

0 — |

nite value ofA =900, as was used in Ref. 49 and in studies
of exchange-correlation potentials. We also considered two 9
extrapolation schemes. The first, from Ref. 53, involves an

expansion from\ 3 to A 1, where the latter term represents -4
basis set incompleteness. The second extrapolation, similar P!
to that in Ref. 46, replaces this basis set term witf. To !
choose an optimal scheme, we used the fact that the ZMP -8

iterating density should equal the BD density, and so
Hellmann—Feynman forces from the two should be identical.
Comparison of the forces led us to conclude that the first
extrapolation scheme did not work well; a similar conclusion . i .
was reached in Ref. 49. Forces fronx900 were close to IFo'nGg'_;'ngSeA;Zp!‘r‘;g"n°tc'2ﬂt§§jtﬁ?)§;’;jaigi;‘S’p”f‘(fff,g' together with
those from the second extrapolation scheme and so for sim-
plicity we use a finite value ok =900 throughout.

In all calculations, Hgis oriented along the axis. The
nuclei, which are labeled A and B to distinguish them, areThe force on nucleus A is
positioned atz coordinatesz, and zg, respectively, where
zg>2z, and the internuclear separation Bs=zg—z,. All
guoted forces correspond to the force on nucleus A. This acts
along thez axis and is equal and opposite to the force on
nucleus B.(Forces constructed using approximate ZMP po-hich at largeR approaches the long-range dispersion force
tentials do not generally satisfy this translational invariance
condition because the potentials are not exact functional de-
rivatives. The homonuclear nature of Hensures that this

10

R/au

(9ESAPT: IEsapT

IZp IR’ ©

Fsapr=—

_ &Edisp_ (9Edisp
Fdisp_ - - TR

condition is satisfied in the present stydyA positive force 9Zp JR
pulls nucleus A towards nucleus B and so represents an at- onC
traction; a negative force is a repulsion. = 2 R2n+21n
n=3
B. Dispersion forces and the atomic density 6C. 8C 16C
distortion R_76 R_98 R1716' (10)

Our first task is to choose a set of internuclear separa-

tions R, where the interaction is dominated by dispersion.,:igure 1 presentEsapr and Foapy as a function oR. Here

48 ¢
Koronaet al.™ fitted an accurate symmetry-adapted pertur-Edisp and Fqgp are also presented in order to estimate the

bation theory(SAPT) interaction energy for Heto the form

8
e el C,
Esppr=Ae “®" =3 f50(R.b) gam, @)

where all parameters are defined in Ref. 48. At ldryehis
approaches the long-range dispersion energy

8

distance where the SAPT terms reduce to these limiting
long-range forms. The curves become indistinguishable be-
yondR=7.5 a.u. and so we shall concentrateRn 8.0, 8.5,

and 9.0 a.u. Table | presenf;s, and Fgapr at the threeR
values. The small difference between the two forces reflects
the nonvanishing atomic overlap. We reg& g,pt as near-
exact reference forces.

E,.—— Can __ Eg _ % L &g (8) Before presenting forces from approximate electronic
disp™ e RN R® R R! structure methods, it is informative to consider the physical

TABLE I. The force on nucleus A in Hg in units of X 10~8 a.u., for internuclear separatioRs=8.0, 8.5, and 9.0 a.u. All forces act along the He—He bond

axis. A positive force represents an attraction between the nuclei.

R Fdisp Fsapt Fue FBD(T) FDFT[UdCiT‘% Forrl v@,"%‘ﬁﬁp FDFT[ve(lZI,OZT/ISP FDFT[vig,tZMP]
8.0 5.4 51 -0.2 4.9 0.9 4.8 -0.3 4.8
8.5 34 3.3 -0.1 3.1 0.3 3.2 —-0.1 3.2
9.0 2.2 2.2 -0.0 2.1 0.1 2.1 -0.0 2.1
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origin of the dispersion force in the exact HeThe electro- 5 O B =80au
static theorem of Feynm&h—obtained by applying the dif- 5 4 '
ferential Hellmann—-Feynman theorem to a nuclear = 3
perturbation—states that the force on a nucleus is just the g 2
classical electrostatic force exerted by the other nuclei and é A lie Pie
the electron density. For Hethe exact force on nucleus A is o \ I \ /
then -
4 r
F=—§2+2fp—r(3i)zmdrl, (12) 5
Al 5 4 R=28.5au
where the first term is the repulsive force due to nucleus B & 3
and the second is the force due to the exact density. At large &
R, correlation between electrons on the two atoms causes the 1 He He
atomic densities to be distorted towards one another. The 0 . .
force due to the density then pulls nucleus A in the direction -1 \ / \ /
2

of nucleus B more strongly than they repel one another, re- -
sulting in a net attractive force. Feynman described this dis-
tortion:
“The Schrdinger perturbation theory for two interacting
atoms at a separation Rarge compared to the radii of the
atoms, leads to the result that the charge distribution of each
is distorted from central symmetry, a dipole moment of order
1/R’ being induced in each atom. The negative charge dis- .
tribution of each atom has its center of gravity moved -1 \ \ /
Sllght'y toward the othef -8 -6 -4 -9 0 2 4 6 8

Feynman also conjectured that the leading term in the z/au
dispersion force on a nucleus arose entirely from the attrac-
tion of that nucleus to itewndistorted density. For He this  FIG. 2. Density differenced p(r) determined from BIOT) densities, plotted
implies that theR~7 component of the force on nucleus A along the He—_He bond axis for the thiRevalues. The nuclei are symmetri-

. , . . cally placed either side af=0.

arises from atom A's density contribution to the second term
in Eq. (11); this density is polarized towards atom B and so
pulls nucleus A in that direction. Although atom B causes the
dispersion force on nucleus A, its density and nucleus only
explicitly contribute to the higher-order forces. Feynman’seffects, which distorts the atomic densitiaway from one
conjecture was verified by Hirschfelder and Elia¥dor two  another®®® The attractive force due to the density is then
hydrogen atoms. A general proof has been provided bymaller than the nuclear repulsion, resulting in a net repul-
Hunt?® see Refs. 56—58 for further discussion. sive force. The small overlap at these laRgevalues means

In an approximate electronic structure calculation thethis distortion—and hence the force—is very small. We do
electrostatic theorem does not hold exactly, due to finite basisot present plots oA p(r) for Hartree—Fock since it can be
sets or nonvariational methodology. Nevertheless, we do findifficult to distinguish the distortion from the numerical
that all our Hartree—Fock, BOV), and DFT forces are very noise in the calculations—the Hartree—Fock dimer is essen-
close to the Hellmann—Feynman fordd4) calculated using tially two spherical atoms at these large separations. By con-
their respective densities, demonstrating that the forces itrast, electron correlation in BD) distorts the atomic den-
these methods can be rationalized in terms of simple electraities towards one another as in the exact case, overcoming
statics; the force reflects the density distortion produced byhe small exchange distortion. This is demonstrated in Fig. 2
the method. We shall quantify the distortion using the func-where Ap(r) for BD(T) is plotted along the He—He bond
tion Ap(r), defined as the density of the dimer minus theaxis for the threeRk values. At the nuclei, the plots approach
sum of two isolated atomic densities, positioned at the dimer- 182, — 126, and—88x 10’ a.u. forR=8.0, 8.5, and 9.0
nuclear coordinates; ghost atoms are not included in tha.u., respectively, which are not visible on the scale. On ei-
atomic calculations since the isolated atoms must be spheriher side of each nucleug p(r) exhibits a positive peak,
cal. A positiveAp(r) corresponds to a region where the den-which is much more pronounced on the side of the nucleus
sity increases upon dimer formation; a negative value correnearest to the other atom. Analogous plots have been pre-
sponds to a density decrease. sented for H (Ref. 57; further discussion on the density of

Table | presents forces from Hartree—Fock and(BIp  rare gas dimers can be found in Ref. 61. The quality of the
denotedrF ¢ andFgpr), respectively. The former are small, BD(T) density is quantified by calculating the associated
repulsive, and vanish as overlap reduces; the latter are iHellmann—Feynman forces. F&=8.0, 8.5, and 9.0 a.u.,
reasonable quantitative agreement with the near-exact valhe forces aret 4.8, +3.2, and+2.1x 10 ® a.u., which are
ues. The absence of electron correlation in Hartree—Focklose to the near-exact values of Table I.
means that the only distortion is due to overlgxchangg We next consider forces from HFKS calculations. The

Ap/10~"an
O~ N W Ot
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from BD(T), atR=9.0 a.u. The atomic densities are slightly
distorted towards one another, but the magnitude of the dis-
tortion is significantly too small.

To improve the HFKS forces the correlation potential
must be improved. We have therefore used thé BDRlimer
densities as input to our amended ZMP procedure. The cal-
culated dimer correlation potentials are denom%lﬂgﬁ,,’p(r).

To determine the associated forceggﬂp(r) was calculated

on numerical integration grids, for the thré&evalues, and
written to disk. HFKS calculations were then performed, but
rather than using a conventional correlation potential, the
ZMP potential was read from disk: i.e., we solve Eq)
using vC(r)=v‘é"r2f\",|rP(r). The equations were converged to
self-consistency; the resulting orbitals and eigenvalues then
agree, to within negligible numerical integration error, with
those from the ZMP calculation. These orbitals and eigenval-
(@) z/au ues, together witb%‘EeM’P(r) , were then used to assemble the
force (6). We realize that this expression is only strictly valid
when the orbitals and eigenvalues are variationally opti-
mized; however, previous studies of magnetic properties
have demonstrated the practicality of evaluating variational
expressions with ZMP quantitié8.The forces determined

from self-consistent calculations usinggﬁp(r) are denoted

FDFT[de'E‘,f,{P] and are presented in Table |I.

The forces are in good agreement Wipp1),, quantita-
tively describing the dispersion force. By construction, a
HFKS calculation using the ZMP potential gives a density
close to BOT). It follows that the HFKS calculations repro-
duce the atomic density distortion, giving high-quality
forces. Figure @) presentsAp(r) calculated from HFKS
I densities using;‘é'@ﬂ,;(r) for the dimer and the analogous
atomic ZMP potential for the atoms. The plot is almost in-
distinguishable from that of BO'). The similarity between
the HFKS and BDT) densities is quantified by comparing

2% a4 =2 o 2 P! 6 8 their Hellmann—Feynman forces. The HFKS forces are
(b) z/au +4.5, +3.0, and+2.0x10 ® a.u. forR=8.0, 8.5, and 9.0
a.u., respectively, compared to the @D values of+4.8,

FIG. 3. Density differenced p(r) determined from BIT) densities(solid +3.2, and+2.1x10°° a.u.
line), plotted along the He—He bond a>‘<is er=_9.0 a.u., compared with Figure 4 presentsdc'”g,‘fﬂrp(r), plotted along the He—He
Ap(r) from HFKS calculationddashed lingsusing (@) LYP and (b) ZMP 154 axjs for the threR values. The only discernible differ-
potentials. ence between the three plots is the increased separation be-
tween the atomic features. Figure 5 comparfi%i(r) and

vaTMer(r) atR=9 a.u.; they bear minimal resemblance to one

only difference between the Hartree—Fock equations and thanother. Previous studies have demonstrated significant dis-
HFKS equations is the correlation potentigl(r). The ac- ~Ccrepancies between approximate and near-exact correlation
curacy of the HFKS forces will depend on how well this Potentials in systems such as the hefiiand neoff® atoms.
potential reproduces the density distortion.

Ap/10~7au

Ap/10~Tan

C. DFT forces and correlation potentials D. Partitioning the correlation potential

We first consider HFKS calculations using the regular It is important to understand whycggﬁnrp(r) correctly
LYP correlation functional. Equatio4) was solved using distorts the atomic densities. On the scale of Fig. 4,
ve(r)=vdT(r), wherevdTer(r) is the LYP potential of v&%er(r) is indistinguishable from the sum of two atomic
the dimer obtained by applying E¢) to the LYP energy correlation potentials. This leads us to partition the dimer
functional. The forceg6), denotedFDFT[de'T$,2], are pre- potential into two terms
sented in Table I. They are attractive, which is consistent dimer /.« atoms int
with previous observation'd, but they are considerably vezmrlN)=vezupl N Fue zme(r). (12)
smaller than those of BO), vanishing as overlap reduces. Herevg%5i(r) is the sum of two independent atomic ZMP
This failure is clearly evident in Fig.(d), whereAp(r) de-  correlation potentials positioned at the dimer nuclear coordi-

termined from LYP HFKS densities is compared with thatnates, each determined from a 8D atomic density.
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FIG. 4. Correlation potentialsdser(r) plotted along the He—He bond axis

for the threeR values.

vié‘fZMp(r) is an interaction correlation potential, representing
the change in the correlation potential that occurs when th

atoms interact.
atoms

To determinev ¢ zp(r) on the dimer integration grid, an
atomic ZMP calculation, based on a BD density, was per-

/1072 au
g

dimer
Vg
|
—

z/au

FIG. 5. Correlation potentialsdser(r) (solid curve andv 27e,
curve, plotted along the He—He bond axis fB=9.0 a.u.

(r) (dashed

M. J. Allen and D. J. Tozer

formed on atom A, with atom B included as a ghost atom
with an associated numerical integration grid, but no basis
functions. The calculation was repeated for atom B and the
two potentials were added. The potential was input to HFKS
calculations; i.e., we solve E@4) usingvc(r)=vaommr).

The forces (6), denotedFpevdgel, are presented in
Table I.

The forces are small and repulsive, very close to the
Hartree—Fock forces. This is because the ZMP correlation
potential of an isolated helium atom is short ranged. In the
vicinity of each nucleusy29wi(r) is essentially a spherical
atomic potential because the contribution from the potential
on the other atom is so small¥%ye(r) introduces correla-
tion appropriate for isolated atoms, but does not cause the
atomic densities to be distorted towards one another; we
have confirmed this by examiningp(r) plots. The ex-
change distortion dominates, giving a repulsive force. In es-
sence, a HFKS calculation using?%i(r) generates two
BD(T)-like atoms that have an exchange, but no dispersion
interaction. _

The dispersion force therefore arises dua;&Mp(r),
which is the subtle difference between@De(r) and
vEguR(r). To demonstrate this we have performed HFKS
calculations using juathZMp(r) as the correlation potential;
i.e., we solve Eq(4) usinguv(r) zvngMP(r). The forceq6),
denotedFDFT[vngMP], are presented in Table I. To the pre-
cision quoted, they are indistinguishable from those obtained
with the full dimer potential. By examining p(r) plots, we
have confirmed thab'(’;‘TZMP(r) alone quantitatively repro-
duces the atomic density distortion.

The reason whw'(r;‘fZMp(r) generates the distortion is
clear from Fig. 6, where the potential is plotted for the three
R values; note the smaller scale compared to Fig. 4. For each
ﬁlot, the potential is asymmetric in the vicinity of each
nucleus. It reduces in moving from the far side to the near
side of each nucleus and so shifts density to the near side,
distorting the atomic densities towards one another. The po-
tentials were calculated by subtracting two approximate ZMP
potentials, so we cannot be sure that all features are quanti-
tatively accurate; for example, the oscillatory behavior near
the nuclei is sensitive to the basis set and other convergence
criteria. However, the general structure is not sensitive to
precise computational details.

Despite giving essentially identical dispersion forces,
HFKS calculations using',e(r) andvd%5(r) are funda-
mentally different. At largeR,

int

R—»
but
lim o @DEe(r) = v EGNRr), (14)

R0

and so, asymptotically, the former yields two Hartree—Fock
atoms whereas the latter yields two BD-like atoms. Quan-
titatively similar dispersion forces can therefore be obtained
through a minor distortion of Hartree—Fock or BD-like
atoms. It is the distortion that matters, not the underlying
atom.
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B 8 A~ R=30 AN approach for determining dispersion forces. However,
S 4 /—/ AN sena \ knowledge of the structure of the correlation potential at
T o . . large separation may prove useful in the development of new
Ty He He energy functionals that correctly describe dispersion. At a
-3 more pragmatic level, they may aid the development of new
19 model potentials or procedures for correcting existing poten-
16 tials.
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