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Helium dimer dispersion forces and correlation potentials in density
functional theory

Mark J. Allen and David J. Tozera)

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, United Kingdom

~Received 18 July 2002; accepted 30 September 2002!

The dispersion interaction in the helium dimer is considered from the viewpoint of the force on a
nucleus. At large internuclear separations, Brueckner coupled cluster BD~T! forces agree well with
near-exact dispersion forces. The atomic density distortion associated with the dispersion force is
quantified by comparing the BD~T! dimer density with a superposition of atomic densities. For
density functional theory calculations in the Hartree–Fock–Kohn–Sham~HFKS! formalism, the
accuracy of the dispersion force is governed by the correlation potential. Calculations using the
conventional Lee–Yang–Parr@Phys. Rev. B37, 785~1988!# potential only generate a small density
distortion, giving forces significantly smaller than BD~T!. The BD~T! electron densities are
therefore used to determine improved correlation potentials using a modified Zhao–Morrison–Parr
~ZMP! approach@Phys. Rev. A50, 2138 ~1994!#. HFKS calculations using these ZMP potentials
quantitatively reproduce the distortion, giving dispersion forces in good agreement with BD~T!. The
dimer ZMP correlation potential is partitioned into two parts, one equal to the sum of two
unperturbed spherical atomic correlation potentials and the other representing an interaction
potential. HFKS calculations using the former do not generate the distortion; forces are close to
Hartree–Fock. Calculations using the latter do generate the distortion, giving forces essentially
identical to those from the full dimer potential. The origin of the distortion is traced to the
asymmetric structure of the interaction correlation potential in the vicinity of each nucleus. ©2002
American Institute of Physics.@DOI: 10.1063/1.1522715#
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I. INTRODUCTION

The description of van der Waals interactions is a ma
challenge for density functional theory~DFT! approxima-
tions. Calculations using conventional exchange-correla
functionals have been performed for a range of systems
cluding rare gas dimers,1–10 C6H6 dimer,3,7,9,11 CH4 and
C2H2 dimers,9,12 Hē CO2,13,14 N2 dimer,15 C6H6¯X @X
5O2, N2 , CO ~Ref. 16!, Ne, Ar ~Ref. 3!#, and other non-
bonded dimeric complexes.17 Common conclusions ar
reached. The local density approximation~LDA ! tends to
overbind1,2,4,5,16while the performance of generalized grad
ent approximation~GGA! and hybrid functionals is sensitiv
to the choice of exchange approximation. Functionals ba
on Becke 1988 exchange18 often predict a repulsive
interaction;1–3,5–9,11–13,15–17those based on PW91~Ref. 19!
or PBE ~Ref. 20! exchange do tend to bind, although qua
titative accuracy is lacking.4–9,14–16 This sensitivity to the
exchange functional has been attributed5,16 to the behavior of
the exchange enhancement factor at large reduced de
gradient s; the Becke 1988 enhancement factor diverg
whereas the PW91 and PBE factors are better behave
our preliminary studies, we obtained results consistent w
this assessment. The HCTH93~Ref. 21! exchange-
correlation functional, whose exchange enhancement fa
increases rapidly withs, does not bind the helium dimer. Th
1/4 functional,22 whose enhancement factor increases m
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gradually,23 does bind. For a recent review of van der Waa
studies using conventional functionals, see Ref. 24.

A DFT calculation using an appropriately chosen co
ventional functional can therefore provide a qualitative d
scription of van der Waals systems at intermediate sep
tions, where there is a non-negligible overlap between
interacting fragments and the interaction energy is compo
of several terms~dispersion, exchange-dispersion, elect
static, exchange-repulsion, etc.!. At larger separations, how
ever, where overlap is negligible, the interaction energy
dominated by the long-range dispersion energy, arising fr
correlated interactions between electrons on the sepa
fragments. The local nature of conventional function
means they are fundamentally unable to describe this fea
failing to recover the leading2C6R26 interaction energy.
Although this term can be introduced in an empiric
manner,25 more advanced methods must be used to introd
it rigorously. These include long-range26–33 and
seamless34–38 approaches; see Ref. 39 for an assessmen
some of these methods. Kohn–Sham orbitals have also b
used within symmetry-adapted perturbation theory.40,41

In this study we consider the long-range dispersion
teraction in DFT from the viewpoint of the force on
nucleus, rather than from the usual viewpoint of the el
tronic energy. Given that dispersion is a correlation effe
we treat exchange exactly using the Hartree–Fock–Koh
Sham ~HFKS! formalism.42,43 The electronic energy is
written

EDFT5EHF@$w i%#1EC@r#, ~1!
3 © 2002 American Institute of Physics
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whereEHF@$w i%# is the Hartree–Fock functional,EC@r# is
an approximate correlation energy functional, andr(r ) is the
electron density

r~r !5(
i

w i
2~r !. ~2!

Expansion of the orbitals$w i% in a basis set$hb% allows the
HFKS equations

E FHF~r ,r 8!w i~r 8!dr 81vC~r !w i~r !2e iw i~r !50 ~3!

to be recast as secular equations

(
b

E ha~r !F E FHF~r ,r 8!hb~r 8!dr 81vC~r !hb~r !

2e ihb~r !GdrCb i50, ~4!

where FHF(r ,r 8) is the coordinate representation of th
Hartree–Fock operator~nonmultiplicative due to orbital ex
change! and

vC~r !5
dEC@r#

dr~r !
~5!

is the correlation potential. The HFKS force on nucleus A
then

FDFT52
]EDFT

]RA
52EHF

RA@$w i%#2E rRA~r !vC~r !dr

1(
i

e iSii
RA, ~6!

where EHF
RA@$w i%#, rRA(r ), and Sii

RA are the basis-function
only derivatives of the Hartree–Fock functional, density, a
orbital overlap matrix, respectively, with respect to t
nuclear coordinate vectorRA . Other thanvC(r ), all the
quantities in Eq.~6! can be constructed from the solutions
Eq. ~4!. Given thatvC(r ) is the only approximated term in
Eq. ~4!, it follows that the quality of this potential alon
determines the quality of the force for a given basis set
essence,EC@r# governs the accuracy of the total energy,
its functional derivative governs the energy derivative. T
dependence onvC(r ) is particularly evident when the bas
set is complete, since Eq.~6! reduces to the Hellmann–
Feynman force.44 For a given Born–Oppenheimer config
ration, this depends only on the density, whose accurac
governed byvC(r ) through Eqs.~2! and ~3!.

At large separation, the force on a nucleus in a van
Waals molecule is almost exclusively due to the dispers
interaction. To describe this dispersion force accurat
within the HFKS formalism therefore requires an accur
representation ofvC(r ) at large separation; integration of th
force along the dissociation path yields the dispersion in
action energy. We regardvC(r ) as a key quantity, containing
essential physics of DFT dispersion. The aim of this stud
to useab initio electron densities to learn about the structu
of vC(r ) and its relationship to dispersion forces in the h
lium dimer He2 .
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We commence in Sec. II by providing computational d
tails and choosing internuclear separations in He2 where dis-
persion dominates. The physical origin of the dispers
force—a distortion of the atomic densities—is discussed
quantified using BD~T! densities. Deficiencies with conven
tional correlation potentials are highlighted by consideri
HFKS forces using the Lee–Yang–Parr~LYP! potential.45

Correlation potentials are then determined directly from
BD~T! electron densities, using a modified Zhao–Morriso
Parr~ZMP! ~Ref. 46! approach. Self-consistent HFKS calc
lations are performed using these potentials and forces
determined. The partitioning of the correlation potential in
atomic and interaction components is investigated. Con
sions are presented in Sec. III.

II. RESULTS

A. Computational details

All calculations were performed using a modified ve
sion of the CADPAC program47 with an extensive 7s5p4d
basis set on the He atoms, corresponding to the nuclear
tred part of the DC1BS ~Dc147! basis set of Ref. 48, with
the f functions removed for technical reasons. Unless oth
wise stated, the BD~T!, Hartree–Fock, and DFT forces wer
all evaluated analytically, using conventional rigorous ene
derivative expressions. Where possible, numerical stab
was confirmed by comparing the analytic forces with n
merical forces determined from energies at perturbed ge
etries. Basis set superposition errors~BSSE! affect the shape
of the interaction energy curve and so also affect the ca
lated forces. All forces were corrected for BSSE by differe
tiating the counterpoise energy correction. This requires
force on a single helium atom, calculated in the presence
additional ghost atom basis functions. For DFT calculatio
the integration grid on the ghost atom was also included
order to account for integration grid superposition err
Given our extensive basis set, large internuclear separat
and near-saturated integration grids, the BSSE correction
the total forces are very small. To the number of decim
places quoted they are negligible for all methods exc
BD~T! @where it contributes 0.131026 a.u. ~about 2%! to
the forces at 8.0 and 8.5 a.u.#. BSSE corrections to
Hellmann–Feynman forces were slightly larger.

All BD ~T! densities are relaxed densities. HFKS cor
lation potentials were determined from these densities us
the methodology of Refs. 49 and 50, which is a modificat
of the ZMP approach,46 based on the constrained sear
formulation.51 The method is as follows. The only terms
Eq. ~1! that are not explicit functionals of the density are t
noninteracting kinetic and orbital exchange energies
EHF@$w i%#. Minimization of the sum of these two terms wit
respect to the orbitals, subject to the constraint that the d
sity equals the BD~T! density, gives the HFKS orbitals asso
ciated with that density. The addition of appropriate expli
density functionals to the minimization ensures that the
sulting one-electron equations take the same form as Eq.~3!,
but does not change the solution. Comparison of the eq
tions then allowsvC(r ) to be identified in terms of the BD~T!
density, the iterating density, and a Lagrange mu
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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plier l associated with the density constraint. The on
electron equations are solved within a basis set framew
and the potential is tabulated numerically on a DFT num
cal integration grid.

The Lagrange multiplierl is formally infinite, although
for finite basis sets the BD~T! densities cannot be reproduce
exactly and so this is inappropriate.52 We considered three
approaches to circumvent this problem. We considered
nite value ofl5900, as was used in Ref. 49 and in stud
of exchange-correlation potentials. We also considered
extrapolation schemes. The first, from Ref. 53, involves
expansion froml23 to l11, where the latter term represen
basis set incompleteness. The second extrapolation, sim
to that in Ref. 46, replaces this basis set term withl24. To
choose an optimal scheme, we used the fact that the Z
iterating density should equal the BD~T! density, and so
Hellmann–Feynman forces from the two should be identic
Comparison of the forces led us to conclude that the fi
extrapolation scheme did not work well; a similar conclusi
was reached in Ref. 49. Forces froml5900 were close to
those from the second extrapolation scheme and so for
plicity we use a finite value ofl5900 throughout.

In all calculations, He2 is oriented along thez axis. The
nuclei, which are labeled A and B to distinguish them, a
positioned atz coordinateszA and zB , respectively, where
zB.zA and the internuclear separation isR5zB2zA . All
quoted forces correspond to the force on nucleus A. This
along thez axis and is equal and opposite to the force
nucleus B.~Forces constructed using approximate ZMP p
tentials do not generally satisfy this translational invarian
condition because the potentials are not exact functional
rivatives. The homonuclear nature of He2 ensures that this
condition is satisfied in the present study.! A positive force
pulls nucleus A towards nucleus B and so represents an
traction; a negative force is a repulsion.

B. Dispersion forces and the atomic density
distortion

Our first task is to choose a set of internuclear sepa
tions R, where the interaction is dominated by dispersio
Korona et al.48 fitted an accurate symmetry-adapted pert
bation theory~SAPT! interaction energy for He2 to the form

ESAPT5Ae2aR1bR2
2 (

n53

8

f 2n~R,b!
C2n

R2n , ~7!

where all parameters are defined in Ref. 48. At largeR, this
approaches the long-range dispersion energy

Edisp52 (
n53

8
C2n

R2n 52
C6

R6 2
C8

R8 2 ¯ 2
C16

R16. ~8!
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The force on nucleus A is

FSAPT52
]ESAPT

]zA
5

]ESAPT

]R
, ~9!

which at largeR approaches the long-range dispersion fo

Fdisp52
]Edisp

]zA
5

]Edisp

]R

5 (
n53

8
2nC2n

R2n11

5
6C6

R7 1
8C8

R9 1 ¯ 1
16C16

R17 . ~10!

Figure 1 presentsESAPT andFSAPT as a function ofR. Here
Edisp and Fdisp are also presented in order to estimate
distance where the SAPT terms reduce to these limit
long-range forms. The curves become indistinguishable
yondR57.5 a.u. and so we shall concentrate onR58.0, 8.5,
and 9.0 a.u. Table I presentsFdisp andFSAPT at the threeR
values. The small difference between the two forces refle
the nonvanishing atomic overlap. We regardFSAPT as near-
exact reference forces.

Before presenting forces from approximate electro
structure methods, it is informative to consider the physi

FIG. 1. SAPT interaction energyESAPT and forceFSAPT, together with
long-range dispersion contributionsEdisp andFdisp for He2 .
nd
TABLE I. The force on nucleus A in He2 , in units of31026 a.u., for internuclear separationsR58.0, 8.5, and 9.0 a.u. All forces act along the He–He bo
axis. A positive force represents an attraction between the nuclei.

R Fdisp FSAPT FHF FBD~T! FDFT@vC,LYP
dimer # FDFT@vC,ZMP

dimer # FDFT@vC,ZMP
atoms # FDFT@vC,ZMP

int #

8.0 5.4 5.1 20.2 4.9 0.9 4.8 20.3 4.8
8.5 3.4 3.3 20.1 3.1 0.3 3.2 20.1 3.2
9.0 2.2 2.2 20.0 2.1 0.1 2.1 20.0 2.1
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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origin of the dispersion force in the exact He2 . The electro-
static theorem of Feynman44—obtained by applying the dif-
ferential Hellmann–Feynman theorem to a nucle
perturbation—states that the force on a nucleus is just
classical electrostatic force exerted by the other nuclei
the electron density. For He2 , the exact force on nucleus A i
then

F52
4

R2 12E r~r1!

r A1
3 zA1dr1 , ~11!

where the first term is the repulsive force due to nucleu
and the second is the force due to the exact density. At la
R, correlation between electrons on the two atoms cause
atomic densities to be distorted towards one another.
force due to the density then pulls nucleus A in the direct
of nucleus B more strongly than they repel one another,
sulting in a net attractive force. Feynman described this
tortion:
‘‘ The Schro¨dinger perturbation theory for two interacting
atoms at a separation R, large compared to the radii of the
atoms, leads to the result that the charge distribution of ea
is distorted from central symmetry, a dipole moment of or
1/R7 being induced in each atom. The negative charge d
tribution of each atom has its center of gravity mov
slightly toward the other.’’

Feynman also conjectured that the leading term in
dispersion force on a nucleus arose entirely from the att
tion of that nucleus to itsowndistorted density. For He2 , this
implies that theR27 component of the force on nucleus
arises from atom A’s density contribution to the second te
in Eq. ~11!; this density is polarized towards atom B and
pulls nucleus A in that direction. Although atom B causes
dispersion force on nucleus A, its density and nucleus o
explicitly contribute to the higher-order forces. Feynma
conjecture was verified by Hirschfelder and Eliason54 for two
hydrogen atoms. A general proof has been provided
Hunt;55 see Refs. 56–58 for further discussion.

In an approximate electronic structure calculation
electrostatic theorem does not hold exactly, due to finite b
sets or nonvariational methodology. Nevertheless, we do
that all our Hartree–Fock, BD~T!, and DFT forces are very
close to the Hellmann–Feynman forces~11! calculated using
their respective densities, demonstrating that the force
these methods can be rationalized in terms of simple elec
statics; the force reflects the density distortion produced
the method. We shall quantify the distortion using the fun
tion Dr(r ), defined as the density of the dimer minus t
sum of two isolated atomic densities, positioned at the dim
nuclear coordinates; ghost atoms are not included in
atomic calculations since the isolated atoms must be sph
cal. A positiveDr(r ) corresponds to a region where the de
sity increases upon dimer formation; a negative value co
sponds to a density decrease.

Table I presents forces from Hartree–Fock and BD~T!,
denotedFHF andFBD~T! , respectively. The former are sma
repulsive, and vanish as overlap reduces; the latter ar
reasonable quantitative agreement with the near-exact
ues. The absence of electron correlation in Hartree–F
means that the only distortion is due to overlap~exchange!
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effects, which distorts the atomic densitiesaway from one
another.59,60 The attractive force due to the density is th
smaller than the nuclear repulsion, resulting in a net rep
sive force. The small overlap at these largeR values means
this distortion—and hence the force—is very small. We
not present plots ofDr(r ) for Hartree–Fock since it can b
difficult to distinguish the distortion from the numerica
noise in the calculations—the Hartree–Fock dimer is ess
tially two spherical atoms at these large separations. By c
trast, electron correlation in BD~T! distorts the atomic den
sities towards one another as in the exact case, overcom
the small exchange distortion. This is demonstrated in Fig
where Dr(r ) for BD~T! is plotted along the He–He bon
axis for the threeR values. At the nuclei, the plots approac
2182, 2126, and28831027 a.u. forR58.0, 8.5, and 9.0
a.u., respectively, which are not visible on the scale. On
ther side of each nucleus,Dr(r ) exhibits a positive peak
which is much more pronounced on the side of the nucl
nearest to the other atom. Analogous plots have been
sented for H2 ~Ref. 57!; further discussion on the density o
rare gas dimers can be found in Ref. 61. The quality of
BD~T! density is quantified by calculating the associat
Hellmann–Feynman forces. ForR58.0, 8.5, and 9.0 a.u.
the forces are14.8, 13.2, and12.131026 a.u., which are
close to the near-exact values of Table I.

We next consider forces from HFKS calculations. T

FIG. 2. Density differencesDr(r ) determined from BD~T! densities, plotted
along the He–He bond axis for the threeR values. The nuclei are symmetri
cally placed either side ofz50.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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only difference between the Hartree–Fock equations and
HFKS equations is the correlation potentialvC(r ). The ac-
curacy of the HFKS forces will depend on how well th
potential reproduces the density distortion.

C. DFT forces and correlation potentials

We first consider HFKS calculations using the regu
LYP correlation functional. Equation~4! was solved using
vC(r )5vC,LYP

dimer (r ), where vC,LYP
dimer (r ) is the LYP potential of

the dimer obtained by applying Eq.~5! to the LYP energy
functional. The forces~6!, denotedFDFT@vC,LYP

dimer #, are pre-
sented in Table I. They are attractive, which is consist
with previous observations,10 but they are considerabl
smaller than those of BD~T!, vanishing as overlap reduce
This failure is clearly evident in Fig. 3~a!, whereDr(r ) de-
termined from LYP HFKS densities is compared with th

FIG. 3. Density differencesDr(r ) determined from BD~T! densities~solid
line!, plotted along the He–He bond axis forR59.0 a.u., compared with
Dr(r ) from HFKS calculations~dashed lines! using ~a! LYP and ~b! ZMP
potentials.
loaded 26 Apr 2011 to 129.234.252.65. Redistribution subject to AIP licens
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from BD~T!, at R59.0 a.u. The atomic densities are slight
distorted towards one another, but the magnitude of the
tortion is significantly too small.

To improve the HFKS forces the correlation potent
must be improved. We have therefore used the BD~T! dimer
densities as input to our amended ZMP procedure. The
culated dimer correlation potentials are denotedvC,ZMP

dimer (r ).
To determine the associated forces,vC,ZMP

dimer (r ) was calculated
on numerical integration grids, for the threeR values, and
written to disk. HFKS calculations were then performed, b
rather than using a conventional correlation potential,
ZMP potential was read from disk: i.e., we solve Eq.~4!
using vC(r )5vC,ZMP

dimer (r ). The equations were converged
self-consistency; the resulting orbitals and eigenvalues t
agree, to within negligible numerical integration error, wi
those from the ZMP calculation. These orbitals and eigenv
ues, together withvC,ZMP

dimer (r ), were then used to assemble th
force ~6!. We realize that this expression is only strictly val
when the orbitals and eigenvalues are variationally o
mized; however, previous studies of magnetic proper
have demonstrated the practicality of evaluating variatio
expressions with ZMP quantities.62 The forces determined
from self-consistent calculations usingvC,ZMP

dimer (r ) are denoted
FDFT@vC,ZMP

dimer # and are presented in Table I.
The forces are in good agreement withFBD~T! , quantita-

tively describing the dispersion force. By construction,
HFKS calculation using the ZMP potential gives a dens
close to BD~T!. It follows that the HFKS calculations repro
duce the atomic density distortion, giving high-quali
forces. Figure 3~b! presentsDr(r ) calculated from HFKS
densities usingvC,ZMP

dimer (r ) for the dimer and the analogou
atomic ZMP potential for the atoms. The plot is almost i
distinguishable from that of BD~T!. The similarity between
the HFKS and BD~T! densities is quantified by comparin
their Hellmann–Feynman forces. The HFKS forces a
14.5, 13.0, and12.031026 a.u. forR58.0, 8.5, and 9.0
a.u., respectively, compared to the BD~T! values of14.8,
13.2, and12.131026 a.u.

Figure 4 presentsvC,ZMP
dimer (r ), plotted along the He–He

bond axis for the threeR values. The only discernible differ
ence between the three plots is the increased separation
tween the atomic features. Figure 5 comparesvC,ZMP

dimer (r ) and
vC,LYP

dimer (r ) atR59 a.u.; they bear minimal resemblance to o
another. Previous studies have demonstrated significant
crepancies between approximate and near-exact correla
potentials in systems such as the helium63 and neon49 atoms.

D. Partitioning the correlation potential

It is important to understand whyvC,ZMP
dimer (r ) correctly

distorts the atomic densities. On the scale of Fig.
vC,ZMP

dimer (r ) is indistinguishable from the sum of two atom
correlation potentials. This leads us to partition the dim
potential into two terms

vC,ZMP
dimer ~r !5vC,ZMP

atoms ~r !1vC,ZMP
int ~r !. ~12!

HerevC,ZMP
atoms (r ) is the sum of two independent atomic ZM

correlation potentials positioned at the dimer nuclear coo
nates, each determined from a BD~T! atomic density.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions



ng
th

m
sis
the
KS

the
tion
the
l
tial

the
we

es-

ion

S
;

e-
ned

s
ee
ach
h

ear
ide,
po-
MP
anti-
ear
nce
to

s,

ck

ed

ing

s

11118 J. Chem. Phys., Vol. 117, No. 24, 22 December 2002 M. J. Allen and D. J. Tozer

Down
vC,ZMP
int (r ) is an interaction correlation potential, representi

the change in the correlation potential that occurs when
atoms interact.

To determinevC,ZMP
atoms (r ) on the dimer integration grid, an

atomic ZMP calculation, based on a BD~T! density, was per-

FIG. 4. Correlation potentialsvC,ZMP
dimer (r ) plotted along the He–He bond axi

for the threeR values.

FIG. 5. Correlation potentialsvC,ZMP
dimer (r ) ~solid curve! andvC,LYP

dimer (r ) ~dashed
curve!, plotted along the He–He bond axis forR59.0 a.u.
loaded 26 Apr 2011 to 129.234.252.65. Redistribution subject to AIP licens
e

formed on atom A, with atom B included as a ghost ato
with an associated numerical integration grid, but no ba
functions. The calculation was repeated for atom B and
two potentials were added. The potential was input to HF
calculations; i.e., we solve Eq.~4! using vC(r )5vC,ZMP

atoms (r ).
The forces ~6!, denoted FDFT@vC,ZMP

atoms #, are presented in
Table I.

The forces are small and repulsive, very close to
Hartree–Fock forces. This is because the ZMP correla
potential of an isolated helium atom is short ranged. In
vicinity of each nucleus,vC,ZMP

atoms (r ) is essentially a spherica
atomic potential because the contribution from the poten
on the other atom is so small.vC,ZMP

atoms (r ) introduces correla-
tion appropriate for isolated atoms, but does not cause
atomic densities to be distorted towards one another;
have confirmed this by examiningDr(r ) plots. The ex-
change distortion dominates, giving a repulsive force. In
sence, a HFKS calculation usingvC,ZMP

atoms (r ) generates two
BD~T!-like atoms that have an exchange, but no dispers
interaction.

The dispersion force therefore arises due tovC,ZMP
int (r ),

which is the subtle difference betweenvC,ZMP
dimer (r ) and

vC,ZMP
atoms (r ). To demonstrate this we have performed HFK

calculations using justvC,ZMP
int (r ) as the correlation potential

i.e., we solve Eq.~4! usingvC(r )5vC,ZMP
int (r ). The forces~6!,

denotedFDFT@vC,ZMP
int #, are presented in Table I. To the pr

cision quoted, they are indistinguishable from those obtai
with the full dimer potential. By examiningDr(r ) plots, we
have confirmed thatvC,ZMP

int (r ) alone quantitatively repro-
duces the atomic density distortion.

The reason whyvC,ZMP
int (r ) generates the distortion i

clear from Fig. 6, where the potential is plotted for the thr
R values; note the smaller scale compared to Fig. 4. For e
plot, the potential is asymmetric in the vicinity of eac
nucleus. It reduces in moving from the far side to the n
side of each nucleus and so shifts density to the near s
distorting the atomic densities towards one another. The
tentials were calculated by subtracting two approximate Z
potentials, so we cannot be sure that all features are qu
tatively accurate; for example, the oscillatory behavior n
the nuclei is sensitive to the basis set and other converge
criteria. However, the general structure is not sensitive
precise computational details.

Despite giving essentially identical dispersion force
HFKS calculations usingvC,ZMP

int (r ) andvC,ZMP
dimer (r ) are funda-

mentally different. At largeR,

lim
R→`

vC,ZMP
int ~r !50, ~13!

but

lim
R→`

vC,ZMP
dimer ~r !5vC,ZMP

atoms ~r !, ~14!

and so, asymptotically, the former yields two Hartree–Fo
atoms whereas the latter yields two BD~T!-like atoms. Quan-
titatively similar dispersion forces can therefore be obtain
through a minor distortion of Hartree–Fock or BD~T!-like
atoms. It is the distortion that matters, not the underly
atom.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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III. CONCLUSIONS

The dispersion interaction has been considered from
viewpoint of the force on a nucleus. When the HFKS meth
is used to implement this viewpoint, the key to an accur
dispersion force is an accurate correlation potential at la
internuclear separation; this contrasts conventional
proaches, which tend to focus on the correlation ene
rather than the potential. We have used coupled-clu
BD~T! electron densities to investigate the potential and
relationship to dispersion forces in the helium dimer.

BD~T! dispersion forces are in good agreement w
near-exact values. The BD~T! densities have been used
quantify the atomic density distortion associated with
dispersion force. HFKS calculations using the conventio
LYP potential only generate a small distortion, giving forc
significantly smaller than BD~T!. The BD~T! densities have
therefore been used to determine improved correlation po
tials, using a modified ZMP approach; the potentials dif
considerably from LYP. HFKS calculations using these p
tentials accurately reproduce the distortion, giving forces
good agreement with BD~T!. The correlation potential ha
been partitioned into atomic and interaction parts. HFKS c
culations using the latter generate the density distortion,
ing dispersion forces essentially identical to those from
full dimer potential. The origin of this distortion can b
traced to the asymmetric structure of the interaction corr
tion potential in the vicinity of each nucleus.

The DFT calculations in this study rely on the under
ing BD~T! calculation and so do not represent a practi

FIG. 6. Interaction correlation potentialsvC,ZMP
int (r ) plotted along the He–He

bond axis for the threeR values.
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approach for determining dispersion forces. Howev
knowledge of the structure of the correlation potential
large separation may prove useful in the development of n
energy functionals that correctly describe dispersion. A
more pragmatic level, they may aid the development of n
model potentials or procedures for correcting existing pot
tials.
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