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Regular and irregular vibrational states: Localized anharmonic modes
and transition-state spectroscopy of Na 3

Nicholas J. Wrighta) and Jeremy M. Hutsonb)

Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, United Kingdom

~Received 10 November 1999; accepted 24 November 1999!

We have calculated the lowest 900 vibrational energy levels and wave functions for the quartet
(14A28) state of Na3 . The equilibrium geometry of the trimer is triangular, but the calculations
include many states that lie above the barrier to linearity. Most of the high-lying states are irregular,
but there are a few relatively localized states embedded in the irregular bath. The localized modes
observed include a ‘‘horseshoe’’ mode and a symmetric stretch centered on the linear transition
state. The density of states and couplings are such that in most cases the ‘‘horseshoe’’ character is
spread over several bath states, while the symmetric stretch states exist in a purer form. The
localized states could be observed in laser-induced fluorescence, stimulated-emission pumping or
ion photodetachment spectroscopy from a state with a linear equilibrium geometry. ©2000
American Institute of Physics.@S0021-9606~00!00807-2#

I. INTRODUCTION

The vibrational energy levels of polyatomic molecules
govern many important chemical processes. The wave func-
tions and level distribution reflect the underlying structure of
the phase space for the molecule. Because of the chaotic
nature of the phase space at high energies, the high-lying
vibrational states might be expected to be irregular. It has
been found in several studies, however, that this is far from
the case: Some states in the ‘‘classically chaotic’’ region are
strongly localized, with wave functions that exhibit regular
nodal patterns and do not sample all of the available phase
space. Previous studies on H3

1 ,1–6 LiCN,7 KCN8 and Ar3
9–11

have identified several different localization features, which
have been termed ‘‘localized anharmonic modes.’’11

Prominent amongst the localization features observed in
H3

1 and Ar3 are the so-called ‘‘horseshoe’’ states. These cor-
respond to a motion in which the molecule passes from one
equilateral triangle geometry to another equivalent one: one
atom moves between the other two, with the two outer atoms
moving apart to make way for it. Classical calculations by
Gomez Llorente, and Pollak12 suggested that these states
were responsible for the coarse-grained features in the H3

1

photofragmentation spectra of Carrington and Kennedy.13

Further studies by Le Sueur, Henderson, and Tennyson
showed that horseshoe states corresponded to intensity peaks
in the calculated spectra for excitation from the ground
state.4 In calculations on Ar3 , the regular nodal patterns of
the horseshoe states were clearly visible in the wave
functions,9–11 and it was also possible to identify a ‘‘linear
symmetric stretch mode,’’ where the wave function ampli-

tude was concentrated about the linear transition-state
configuration.11 For Ar3 ,14 as for H3

1 ,15,2,5 the regular nodal
patterns were shown to be localized around the trajectories of
stable periodic orbits.

Highly excited states of Ar3 may be difficult to observe.
However, there are other systems that are more amenable to
experiment. For example, Higginset al.16 have recently ob-
served laser-induced fluorescence spectra of quartet states of
Na3 on the surface of helium droplets. They excite from the
lowest quartet state (14A28), which is bound principally by
van der Waals forces, to the 24E8 state. When the zero-point
level of the 24E8 state is excited, the resulting fluorescence
spectra probe levels of the lowest quartet state with up to 350
cm21 of vibrational energy. The 24E8 state has a nonequi-
lateral geometry because of the Jahn–Teller effect.Ab initio
potential energy surfaces have been computed and bound-
state calculations performed to assign the transitions
measured.16,17The calculated potential energy surface for the
lowest quartet state is highly nonadditive.

The computational method used in Refs. 16 and 17 is
suitable for low-lying states, but would be very difficult to
converge for horseshoe states. The purpose of the present
work is to carry out calculations on the higher-lying states, to
assess the role of localized anharmonic modes and suggest
how they could be observed.

II. THEORY

The theoretical methods used in this work are identical
to those used in Ref. 11. A more detailed description can be
found there.

We use a Jacobi coordinate system to represent a tri-
atomic system ABC as an atom A interacting with a diatom
BC. The vectorr of length r runs from atom B to atom C
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~where atom B is the heavier of B and C if they are differ-
ent!. The vectorR of lengthR runs from the center of mass
of BC to atom A.u is the angle betweenr andR.We use a
discrete variable representation~DVR!18,19 to describe the
wave functions. The DVR is advantageous because it allows

the grid of basis functions to be tailored to the region of
interest. In addition, the DVR Hamiltonian matrix is very
sparse, so that it can be diagonalized efficiently using an
iterative diagonalizer. In the notation of Choi and Light,20

the DVR Hamiltonian matrix elements are

HabgK
a8b8g8K85 (

i i 8 j j 8 l l 8

RTi 8a8
rTj 8b8

KuTl 8g8Hi jlK
i 8 j 8 l 8K8RTia

rTj b
KuTlg

5Rda8adb8bdgg8dK8K1 rdb8bda8adgg8dK8K1
\2

2 S 1

m1Ra
2

1
1

m2r b
2 D uK

dg8gda8adbb8dK8K

1
\2

2mRa
2 ~@J~J11!22K2#da8adb8bdgg8dK8K2@11dK0#1/2LJK

1 Bgg8K
1 da8adb8bdK8K11

2@11dK80#1/2LJK
2 Bgg8K

2 da8adb8bdK8K21!1Vabg
a8b8g8dK8K . ~1!

The first two terms are the kinetic energy operators associ-
ated with the two radial coordinates,R and r, the third term
is the angular kinetic energy, the fourth term contains the
centrifugal term and the Coriolis coupling, and the final term
is the potential energy. The transformation matricesT are
labeled by superscriptsR, r, andKu to indicate the coordi-
nate that they refer to. Greek suffixes refer to DVR points
and Roman suffixes to functions in the corresponding finite
basis representation. The reduced massesm1 and m2 corre-
spond to the complete complex (2MNa/3 here! and the dia-
tom (MNa/2 here!, respectively. All calculations in the
present work are forJ50, so that the centrifugal term and
the Coriolis coupling are zero.

The nth wave function of the system, with parityp and
total angular momentumJ, may be expanded in the finite
basis representation as

Cn
pJ~R,r ,u!5R21r 21(

i j lK
ci j lKn

Jp f i
R~R!f j

r~r !Pl
K~cosu!, ~2!

where the functionsPl
K(cosu) are associated Legendre poly-

nomials. The functionsf i
R(R) and f j

r(r ) are potential-
optimized basis functions inR and r. These are obtained as
solutions of one-dimensional~1D! Schrödinger equations
with one-dimensional effective potentials for the motions in
R andr. The effective potentials are constructed in the same
way as in Ref. 11. From these 1D functions the DVR quadra-
ture points are obtained using the method of Harris, Enger-
holm, and Gwinn~HEG!.21

The molecular symmetry group of Na3 is D3h(M ). The
only symmetry operation that appears naturally in Jacobi co-
ordinates, however, is permutation of the labels of the ‘‘dia-

tom’’ nuclei, which has the effectu→p2u. Use of the Ja-
cobi coordinate system effectively reduces the molecular
symmetry group toC2v(M ). The Hamiltonian matrix splits
into two blocks, symmetric and antisymmetric with respect
to the permutation. In terms of labels ofD3h(M ), the even
block containsA1 and E ~component 1! and the odd block
containsA2 andE ~component 2!. The even symmetric block
contains only functions withl even in Eq.~2! and the odd
block contains only functions withl odd.

We obtain the eigenvalues and eigenvectors of the
Hamiltonian matrix using the implicitly restarted Lanczos
method~IRLM ! as described by Sorensen.22,23 The method
does not require explicit construction of the Hamiltonian ma-
trix; only matrix-vector products involving the Hamiltonian
are needed. This allows diagonalization of matrices far larger
than could be stored in computer memory. To improve the
convergence rate of the IRLM scheme we use the Chebychev
polynomial preconditioning scheme described by Koram-
bath, Wu, and Hayes.24

III. POTENTIAL ENERGY SURFACE

In this work we use the potential of Higginset al.17 to
describe the 14A28 state of Na3 . This potential was obtained
from a grid of coupled-cluster@CCSD~T!# calculations with a
large basis set, interpolated using the reproducing-kernel Hil-
bert space scheme of Ho and Rabitz.25 The potential has a
global minimum at2849.4 cm21, with the atoms in an equi-
lateral triangle configuration 4.41 Å apart. The barrier to lin-
earity is at2385.3 cm21 ~464.1 cm21 above the minimum!,
with r 55.10 Å. Comparison with the corresponding Na–Na
pair potential,26 which has Re55.192 Å and De5177.7
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cm21, shows that large nonadditive effects are present in
Na3 and that they are especially prominent at the equilibrium
geometry.

The large nonadditive contribution to the Na3 potential
energy surface makes its shape qualitatively different from
that for Ar3 , where the nonadditive effects are small and can,
to a good first approximation, be neglected. The nonadditive
forces significantly decrease the Na–Na distances at the
equilibrium configuration when compared with both the
dimer and the linear configuration.

IV. RESULTS AND DISCUSSION

We have calculated the lowest 900J50 energy levels
and wave functions of Na3 (14A28). The DVR basis set was
constructed from 28 points inu, 40 points inR and 38 points
in r. The 40 points inR were obtained by integrating the 1D
Schrödinger equation from 0 to 10 Å. The quadrature points
in r were obtained similarly, propagating fromr 53 to 12 Å.

Our present calculations are limited to the lowest 900
states by memory restrictions. However they provide one
over 400 energy levels above the barrier to linearity, which is
sufficient to examine the dynamics in this region. The differ-
ence between the energies of the correspondingE levels in
the even and odd symmetry blocks can give a measure of the
convergence of the calculation. For Na3 such a comparison is
only possible for the lowest 400 levels or so and indicates
that our calculation is converged to approximately 0.5 cm21

in this region ~though much better near the bottom of the
well!. For higher levels the density of states is simply too
great to be able to identify the corresponding components of
E levels from the two symmetries. Although the calculation
is not of spectroscopic accuracy above the barrier, we believe
that the properties we are interested in, the localization fea-
tures present in the wave functions, will not be significantly
altered by increasing the convergence of the calculation.

The cumulative energy level distribution is shown in
Fig. 1; the density of states is the gradient of this. A similar
plot in Ar3 shows a sharp increase near the barrier to linear-

ity because a significant amount of extra phase space be-
comes available at that point.11 In quartet Na3 , by contrast,
no such sharp increase is present. In this system the much
deeper well provides more phase space below the barrier, so
that the extra encounted on reaching the barrier to linearity is
less significant.

Selected vibrational wave functions for Na3 are shown
as contour plots in Figs. 2–4. Although the wave functions
are functions of three coordinates, they are presented here as
cuts at fixedu as this provides the clearest representation for
the present study.

It is possible to assign the lowest vibrational levels of
quartet Na3 in terms of the normal mode quantum numbers
of a D3h molecule. Such an assignment can be made from
visual inspection of the wave functions up to approximately
2480 cm21 (;300 cm21 above the ground state!. Above

FIG. 1. The vibrational eigenvalue distribution for the 14A28 state of Na3 .
The density of states is the gradient of the curve.

FIG. 2. Vibrational wave functions of quartet Na3 , plotted in Jacobi coor-
dinates as a function ofR and r for u590°. The dotted line shows the
boundary of the classically allowed region at the energy concerned. Solid
and dashed contours show positive and negative values of the wave func-
tion. Contours are for 0.64, 0.32, 0.16, 0.08 and 0.04 of the maximum
amplitude.
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this energy the regular nodal patterns in the wave functions
begin to disappear, making such an assignment impossible
and to some extent meaningless. Even in this region, how-
ever, a few of the states remain assignable in terms of

normal-mode quantum numbers. These are usually pure
overtones or combinations with only 1 or 2 quanta of exci-
tation in one of the modes. For example,A1 /E state number
131 is shown in Fig. 2~a! and is clearly a state with 9 quanta
of excitation in the asymmetric stretch mode. This behavior
persists up to the barrier to linearity;A1 /E state number 239,
which has 10 quanta of excitation in the symmetric stretch
mode and 1 in the asymmetric mode, is shown in Fig. 2~b!
and is the last that is assignable in this way.

The horseshoe states previously observed in H3
1 and Ar3

are also present in Na3 . They are however present in a much
less ‘‘pure’’ form. The larger barrier in Na3 means that there
are many more energy levels below the barrier than in Ar3 .
At the barrier the density of states is already about 3 states
per cm21 in Na3 . This large density of states means that the
localization features that are present above the barrier have
many more ‘‘bath’’ states to couple to, so that their features
are spread over many more eigenstates.

A complete assignment of all the horseshoe states based
on inspection of their wave functions, which was achieved
for both H3

1 and Ar3 , is not possible for Na3 . The best
example of a horseshoe state in Na3 is shown in Fig. 3~a!.
The horseshoe features are clearly visible and, with careful
counting, this state can be assigned as having 20 quanta of
excitation. However it is far from typical. The state shown in
Fig. 3~b! is much more representative. By comparison with
the typical bath state shown in Fig. 3~c!, it clearly has some
horseshoe character. However the nodal structure forr ,7 Å
has no regularity; the nodal planes are no longer perpendicu-
lar to the path of the horseshoe motion and any quantum
number assignment is fraught with uncertainty. This con-
trasts with Ar3 and H3

1 , for both of which the horseshoe
states show clear localization features across the whole range
in r ~andR).

The horseshoes are not the only regular states above the
barrier. Indeed, the linear symmetric stretch states exist in a
purer and more localized form than the horseshoes. Figure 4
shows states with quantum numbersns50 – 3 in this mode.
As in H3

1 and Ar3 , states corresponding to combinations of
the linear symmetric stretch mode and the horseshoe are also
visible.

It is of great interest to consider how the localized an-
harmonic modes could be observed experimentally. Their
characteristic feature is that they all show regular behavior
around the barrier to linearity: they are in a real sense
‘‘transition-state modes.’’ In H3

1 , Le Sueur, Henderson, and
Tennyson4 showed that horseshoe states produced intensity
peaks in spectra involving direct excitation from the triangu-
lar ground state. This may be true in quartet Na3 as well, but
the intensities are likely to be very low. A more promising
approach is to access the transition-state modes from an ex-
cited electronic state, using laser-induced fluorescence or
stimulated-emission pumping. The localization features
might be visible in transitions from the 24E8 state already
observed, which has a nonequilateral geometry because of
the Jahn–Teller effect. However, they would be most promi-
nent in emission from a state with a linear or near-linear
geometry. Alternatively, transition-state spectra could be ob-
served by photodetachment from a state of the anion with a

FIG. 3. Vibrational wave functions of quartet Na3 , plotted as in Fig. 2.

3217J. Chem. Phys., Vol. 112, No. 7, 15 February 2000 Regular and irregular vibrational states
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linear equilibrium geometry. Unfortunately, not enough
work has yet been done to establish whether such linear
states exist for quartet Na3 or triplet Na3

2 .
To investigate how the localized anharmonic modes

would appear in transitions from a linear species, we have
calculated the overlap between each vibrational wave func-
tion and a function localized atR50 and u590°, with a
Gaussian profile inr ~centered atr 59.75 Å with width 0.5
Å!. The results are shown in Fig. 5, both as a stick spectrum
and smoothed by convoluting with a Gaussian of width 0.4
cm21. The individual states give widely varying intensities,
because the localized character is usually spread over several
eigenstates. Nevertheless, the localized modes do give rise to
fairly regular progressions in the low-resolution spectrum,
and these might well be experimentally observable. With the
aid of visual inspection of the wave functions, the peaks in
the low-resolution spectrum can be assigned to progressions
in the horseshoe mode for different excitations of the linear
symmetric stretch as shown by the ‘‘combs’’ in Fig. 5.

Localization effects such as these will not be confined to
quartet Na3 . They may be expected for any trimer with a
triangular equilibrium geometry and an accessible linear
transition state. Indeed, analogous localization features cen-
tered around transition-state geometries may be found for a
much wider range of species and geometries.

V. CONCLUSIONS

We have calculated vibrational energy levels and wave
functions for the lowest quartet (14A28) state of Na3 . The
equilibrium structure of this species is triangular, but the
calculations extend to states well above the barrier to linear-
ity.

In quartet Na3 , as for H3
1 and Ar3 , most of the states

above the barrier are irregular in nature; they fill all the en-
ergetically available configuration space and their wave
functions have no obvious nodal pattern. However there are
regular states embedded in the bath of irregular states, analo-

FIG. 4. Vibrational wave functions of quartet Na3 for states involving excitation in the linear symmetric stretch mode, plotted as in Fig. 2.~a!–~d! States with
ns51 – 4 quanta of stretch excitation.

3218 J. Chem. Phys., Vol. 112, No. 7, 15 February 2000 N. J. Wright and J. M. Hutson
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gous to the ‘‘horseshoe’’ states previously identified for H3
1

and Ar3 and the ‘‘linear symmetric stretch’’ states of Ar3 .
The character of these localized states is in most cases spread
over several eigenstates, but the localization features never-
theless leave characteristic signatures in the spectrum.

Quartet Na3 does show some differences from H3
1 and

Ar3 because the barrier to linearity is much higher. The in-
creased density of states makes it impossible to assign quan-
tum numbers to the horseshoe states by visual inspection of
the wave functions. The linear symmetric stretch states, how-
ever, remain relatively pure and can be assigned easily.

The effects of the localization features should be experi-
mentally observable. The most promising experiments for
quartet Na3 are laser-induced fluorescence or stimulated-
emission pumping, ideally from an excited quartet state with
a linear equilibrium geometry, or photodetachment from a
linear state of the triplet Na3

2 ion. Such a photodetachment
scheme has already been implemented for doublet Ag3 ,27–29

although in that case the density of states at the energy of the
barrier is very high. Other trimers, such as Li3 and K3 , may
be better candidates.
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19Z. Bačić and J. C. Light, Annu. Rev. Phys. Chem.40, 469 ~1989!.
20S. E. Choi and J. C. Light, J. Chem. Phys.92, 2129~1990!.
21D. O. Harris, G. G. Engerholm, and W. D. Gwinn, J. Chem. Phys.43,

1515 ~1965!.
22D. C. Sorensen, SIAM J. Matrix Anal. Appl.13, 357 ~1992!.
23R. B. Lehoucq, K. Maschoff, D. C. Sorensen, and C. Yang,ARPACK,

available from ftp://ftp.caam.rice.edu/pub/software/ARPACK.
24P. P. Korambath, X. T. Wu, and E. F. Hayes, J. Phys. Chem.100, 6116

~1996!.
25T.-S. Ho and H. Rabitz, J. Chem. Phys.104, 2584~1996!.
26M. Gutowski, J. Chem. Phys.110, 4695~1999!.
27S. Wolf, G. Sommerer, S. Rutz, E. Schreiber, T. Leisner, and L. Wo¨ste,

Phys. Rev. Lett.74, 4177~1995!.
28D. W. Boo, Y. Ozaki, L. H. Anderson, and W. C. Lineberger, J. Phys.

Chem. A101, 6688~1997!.
29T. Leisner, S. Vajda, S. Wolf, L. Wo¨ste, and R. S. Berry, J. Chem. Phys.

111, 1017~1999!.

FIG. 5. Simulated spectra for a transition from Na3 in a linear configuration
to the quartet state. The peaks in the spectra correspond to the regular
features observed in the wave functions. The combs on the plot indicate the
positions of progressions of the regular features. From bottom to top they
correspond to the linear symmetric stretch mode, the horseshoe mode, the
horseshoe plus 1 quantum of linear symmetric stretch and the horseshoe plus
2 quanta of linear symmetric stretch.

3219J. Chem. Phys., Vol. 112, No. 7, 15 February 2000 Regular and irregular vibrational states

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.234.252.67 On: Wed, 19 Aug 2015 12:18:33


