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MATCHING GAMES: THE LEAST CORE AND THE NUCLEOLUS

WALTER KERN and DANIËL PAULUSMA

A matching game is a cooperative game defined by a graph G = �N �E�. The player set is N

and the value of a coalition S ⊆ N is defined as the size of a maximum matching in the subgraph
induced by S. We show that the nucleolus of such games can be computed efficiently. The result
is based on an alternative characterization of the least core, which may be of independent interest.
The general case of weighted matching games remains unsolved.

1. Introduction. A cooperative game is defined by a set N of players and a charac-
teristic function v 	 2N →�, associating a value v�S� to every subset (coalition) S ⊆ N . We
assume that v���= 0. The value v�S� of a coalition S ⊆ N is interpreted as the total gain
the members of S can achieve by cooperating.
The central problem in cooperative game theory is how to allocate the total gain v∗ =

v�N� among the individual players i ∈ N in a “fair” way. There are various notions of
fairness and corresponding allocation rules (solution concepts).
Clearly, a useful solution concept should not only be “fair” in an adequate sense but

also efficiently computable. The computational complexity of classical solution concepts
has therefore been studied with growing interest during the last years (see, e.g., Deng and
Papadimitriou 1994, Granot and Granot 1992, Granot et al. 1996, Faigle et al. 1997, 1998,
Faigle et al. 1998a, Deng et al. 1999).
The most prominent and widely accepted solution concept is the core of a game:

core�N � v� 	= �x ∈ �N � x�N�= v∗� x�S�≥ v�S� for all S ⊂ N
�

Here, we use the shorthand notation

x�S� 	=∑
i∈S

xi

for S ⊆ N . Any x ∈ �N with x�N� = v∗ is an allocation. So a core allocation x ∈ �N

guarantees each coalition S ⊆N to be satisfied in the sense that it gets at least what it could
gain on its own.
If the core is empty (and even in case it is not) one might try to find allocations x

in the least core, satisfying all coalitions S ⊂ N as much as possible. To this end we let
�0 	= ���N 
 and consider the LP

�P1� max �

s�t� x�S�≥ v�S�+ � �S � �0��
x�N �= v∗�

with optimum value �1 ∈ �. (Clearly, �1 ≥ 0 if and only if core(N�v) �= �.)
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We let P1��� denote the set of all x ∈�N such that �x� �� satisfies the constraints of (P1).
So core(N�v)= P1�0�. The least core is defined as

leastcore�N � v� 	= P1��1��

The excess of a coalition � �= S �= N with respect to an allocation x ∈ �N is defined as

e�S� x� 	= x�S�−v�S��

So least core allocations are those that maximize the minimal excess. If the least core is
not yet a single point, one might try to find “the best” allocation in the least core by further
pursuing the idea of maximizing minimum excess: Given an allocation x ∈ �N define the
excess vector ��x� as the 2N − 2 dimensional vector whose components are the excesses
e�S� x�� � �= S �= N , arranged in nondecreasing order. The nucleolus (Schmeidler 1969)
is then the (unique!) allocation x∗ ∈ �N that lexicographically maximizes the excess vector
��x�.
Although computational aspects will be discussed later, it is immediately clear that

computing the nucleolus by explicit lexicographic optimization of the excess vector is
intractable: In general, there are exponentially (in �N �) many different excess values,
whereas an efficient procedure should be polynomial in �N �. The standard procedure for
computing the nucleolus proceeds by solving up to �N � linear programs (cf. Maschler et al.
1979). To present it we introduce the following notation: For a polyhedron P ⊆ �N let

FixP 	= �S ⊆ N � x�S�= y�S� for all x� y ∈ P


denote the set of coalitions fixed by P .
Now, assume we have determined the least core P1��1�. We then proceed to maximize

the minimal excess on those coalitions that are not already fixed, i.e., we solve

�P2� max �

s�t� x ∈ P1��1��

x�S�≥ v�S�+ � �S � FixP1��1���
and let �2 > �1 be the corresponding optimum value. Extending our previous notation in the
obvious way, we let P2��� denote the set of all x ∈�N satisfying the constraints of (P2) for
� ∈ �. Now proceed to solve the problem

�P3� max �

s�t� x ∈ P2��2��

x�S�≥ v�S�+ � �S � FixP2��2���
and so on, until the problem

�Pr� max �

s�t� x ∈ Pr−1��r−1��
x�S�≥ v�S�+ � �S � FixPr−1��r−1���

defines a unique solution x∗ ∈ �N , which is equal to the nucleolus of the game �N � v�.
In each iteration k at least one subset S ⊆ N is fixed (to x�S� = v�S�+ �k) which was

not fixed before. So the dimension of the feasible region decreases by at least 1 in each
iteration, implying that r ≤ �N �. By construction, we proceed until every S ⊆ N is fixed.
Hence, finally, in particular, every one-element coalition �i
 ⊆ N has some fixed value
x��i
�= x∗

i . So in the end, the feasible set consists of a single point x
∗.
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296 W. KERN AND D. PAULUSMA

Remark 1.1. The set FixPk��k� consists of all coalitions S ⊆ N which were “fixed”
to x�S� = v�S�+ �j in iterations j = 1� � � � � k plus all coalitions S ′ ⊆ N which are linear
combinations of these S ⊆ N (in the sense that �S′ = ∑

�S�S with �S ∈ � holds for the
corresponding incidence vectors). In each iteration we have to identify the set FixPk��k�
to determine the (in general exponentially many) inequality constraints, one for each S �
FixPk��k�.
The above “linear programming approach” to the nucleolus is also interesting from a

structural point of view, as it implies a nice bound on the size �x∗� of the nucleolus (number
of bits necessary to represent x∗). Let �v� denote the maximum size of the v-values, i.e.,
�v� 	=max��v�S�� � S ⊆ N
.

Theorem 1.1. The nucleolus of (N�v) has size bounded polynomially in �N � and �v�.
Proof. Let �0 ⊂ �1 ⊂ · · · ⊂ �r−1 ⊆ 2N denote the increasing sequence of fixed sets in

�P1�� � � � � �Pr�, i.e., �0 = ���N 
 and

�i 	= FixPi��i� �i = 1� � � � � r−1��
Then, the unique lexicographic optimum of

lex-max ��̃1� � � � � �̃r � x1� � � � � x�N ��

s�t� x�N �= v∗,
x�S�≥ v�S�+ �̃1 �S � �0�,

x�S�≥ v�S�+ �̃2 �S � �1�,
���

x�S�≥ v�S�+ �̃r �S � �r−1��

equals ��1� � � � � �r � x
∗�, where x∗ is the nucleolus and �1� � � � � �r are the optimum values

of �P1�� � � � � �Pr�. Hence ��1� � � � � �r � x
∗� is a vertex of the feasibility region of the above

program. As such its size is polynomial in the dimension r+�N � =���N �� and the maximum
size of a constraint (i.e., the facet complexity, cf. Grötschel et al. 1993). The latter is bounded
by �N �+�v�. �

As to complexity issues in cooperative game theory, various results have been obtained
for particular classes of games and solution concepts. For example, so-called minimum
spanning tree games have been studied with respect to core, least core and nucleolus (cf.
Megiddo 1978, Granot et al. 1996, Faigle et al. 1997, Faigle et al. 2000). Deng et al. (1999)
analyze the core of various combinatorial games with respect to complexity. Granot et al.
(1998) study the complexity of the nucleolus in general.
Matchings in graphs are one of the most studied (and best understood) subjects in combi-

natorial optimization (cf. Lovász and Plummer 1986, Korte and Vygen 2000). From a game
theoretical perspective, matching games (sometimes called roommate games) as introduced
below have been studied by many authors. In a classical paper, Shapley and Shubik (1972)
introduce the bipartite case (assignment games). The problem of computing the nucleolus
in the bipartite case is settled by Solymosi and Raghavan (1994). The general (nonbipar-
tite) case is studied in Deng et al. (1999), characterizing when the core is nonempty. The
extreme points of the core (in case this is nonempty) are characterized in Eriksson and
Karlander (2001). (This paper also touches a “nontransferable utility” version of the room-
mate problem and provides several references.) Faigle et al. (1998) introduce the nucleon
as an alternative to the nucleolus, present an efficient algorithm for computing the nucleon,
and point out that the problem of computing the nucleolus remains unsolved. Faigle et al.
(1998b) prove a general result on the complexity of the so-called kernel (a subset of the
least core) of a game. As a consequence of this, computing an element in the least core
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is easy for matching games. The complexity of the nucleolus remains unsolved yet. In the
current paper, we solve the “unweighted case” by presenting an efficient algorithm for com-
puting the nucleolus of cardinality matching games. Our result is based on a polynomial
description of the least core of such games, which might be of independent interest. We
would like to remark that this result is generalized in Paulusma (2001), in which the class
of cardinality matching games is extended to the class of so-called node matching games.

2. Matching games. The classical example of assignment (bipartite matching) games
deals with the situation, where n house-owners are to sell their houses to n potential buyers
(cf. Shapley and Shubik 1972). Clearly, there is no reason to assume that the group of house-
owners is disjoint from the set of potential buyers. We are thus led to consider exchange
markets with a set N of agents (players). Each player i ∈ N can do business with at most
one player j ∈ N (within a given time unit). Players i and j are willing to do business
with each other if this results in a common profit w�i� j� ≥ 0. Obviously, the total profit
will be maximal, if all persons in N cooperate and a maximum weight matching can be
constructed. The problem of dividing the total profit is an allocation problem.
A matching game (N�v) is determined by a graph G = �N �E� with node set N and by

a weight function w ≥ 0 defined on the edge set E. The value v�S� of a coalition S ⊆ N is
the value of a maximum weight matching in the subgraph of G induced by S, i.e.,

v�S� 	=max�w�M� �M ⊆ E�S� is a matching
�

where E�S� ⊆ E denotes the set of edges joining nodes of S. We also use the standard
notation N�F � to denote the set of nodes covered by a subset F ⊆ E.
In the following, we restrict ourselves to cardinality matching games. These arise when

w ≡ 1, i.e., the characteristic function is given by
v�S� 	=max��M � �M ⊆ E�S� is a matching
�

We first consider the matching game (N�v) determined by G= K2, the complete graph on
two nodes. The core of this game is equal to

core�N � v�= �x ∈ �2 � x1+x2 = 1 and x ≥ 0
�
and the nucleolus of (N�v) is x∗ = �1/2�1/2�.
In the following we will assume that G �= K2. Below we give some examples of (cardi-

nality) matching games with an empty core. We have also computed the nucleolus of these
games.

Examples. (i) Let G = �N �E� be the graph as shown in Figure 1. N is split into
�a
∪D1∪D2. Then (P1) has a unique optimal solution: the nucleolus x

∗ given by

x∗
i =




4

7
if i = a�

3
7

if i ∈D1∪D2�

and �1 =−3/7.
(ii) Let G= �N �E� be the graph as shown in Figure 2. We have N =D1∪D2∪D3. Then

�1 =−1 and P1�−1� contains all allocations x ∈ �N for which

xi = xj �i� j ∈Dp�p = 1� � � � �3��

xi +xj = 1
2

�i ∈D1� j ∈D2��
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298 W. KERN AND D. PAULUSMA

2

a

1D

D

Figure 1. A connected graph with empty core.

xi =
1
2

�i ∈D3��

x ≥ 0�

The nucleolus x∗ is given by

x∗ ≡ 1
4

onD1∪D2�

x∗ ≡ 1
2

onD3�

In the following, we will need some fundamental results and concepts from matching
theory: A (near-) perfect matching is one that covers all nodes (except one). A graph is
factor-critical if removing any node results in a perfectly matchable graph.
If A⊆ N , we let as usual G\A denote the graph obtained by removing A. A component

of G\A is called even or odd if it has an even respectively odd number of nodes. We
let � = ��A� denote the set of even components of G\A and � = ��A� the set of odd
components of G\A. Recall that A⊆ N is called a Tutte set if each maximum matching M
of G decomposes as

M =M� ∪MA��∪M��

where M� is a perfect matching in
⋃
�, the union of all even components. M� induces a

near-perfect matching in all odd components D ∈� and MA�� is a matching that matches
A (completely) into

⋃
�, the union of odd components. Equivalently, A is a Tutte set if

3

21D D

D

Figure 2. A disconnected graph with empty core.
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MATCHING GAMES: THE LEAST CORE AND THE NUCLEOLUS 299

and only if the size v∗ of a maximum matching in G equals

v∗ = ∑
C∈�

�C�
2

+�A�+ ∑
D∈�

��D�−1�
2

�

Tutte sets can be found efficiently. More precisely, the following is true (see, e.g., Lovász
and Plummer 1986).

Theorem 2.1 (Gallai-Edmonds Decomposition). Given G = �N �E�, one can effi-
ciently construct a unique Tutte set A⊆ N such that
(i) all odd components D ∈� are factor-critical, and
(ii) for each D ∈� there is some maximum matching that does not completely cover D.

In the following, we assume that A ⊆ N is the (fixed) Tutte set satisfying conditions (i)
and (ii) in Theorem 2.1. We will sometimes identify subsets of N with the corresponding
induced subgraphs. For example, if i ∈ N is a node we do not hesitate to write i ∈ D to
indicate that i is a node of the component D ∈�. If x ∈�N is an allocation, we consequently
write

x�D�=∑
i∈D

x�i��

Finally, we also extend our general shorthand notation in the following way, if no misunder-
standing is possible: If e = �i� j� ∈ E, we write x�e�= x��i� j
�. More generally, if M ⊆ E
is a matching, we let x�M� 	= x�N�M��.
After these preliminaries, let us study the core and the least core of a matching game

(N�v) defined by a graph G. We start with the following simple observation (cf. also Deng
et al. 1999):

Theorem 2.2. The matching game defined by G= �N �E� has nonempty core (�1 ≥ 0)
if and only if �D� = 1 for all D ∈�.

Proof. “⇐”: Suppose �D� = 1 for all D ∈�. Then x ∈ �N defined by

x ≡ 1

2
on

⋃
��

x ≡ 1 on A�

x ≡ 0 on
⋃
��

is easily seen to be in the core.
“⇒”: Suppose D ∈� with �D� ≥ 3. Let e= �i� j�∈E�D�. From Theorem 2.1 we conclude

that G\i and G\j have matchings of size v∗. So if x ∈ �N were in the core, then

x�N\i�≥ v�N\i�= v∗ and x�N\j�≥ v�N\j�= v∗�

Furthermore, x�e�= x��i� j
�≥ 1. Together, these imply x�N� > v∗, a contradiction. Hence,
the core must be empty. �

Because the Gallai-Edmonds decomposition can be computed efficiently, we can easily
check whether the core is empty or not. In the latter case, the least core and the nucleolus
are straightforward to compute. This is essentially due to the fact that all �i are nonnegative:

Theorem 2.3. In case of nonempty core (�1 ≥ 0) the least core equals the set of allo-
cations x ∈ �N solving

�P+
1 � max �

s�t� x�e�≥ 1+ � for all e ∈ E�

xi ≥ � for all i ∈ N�

x�N�= v∗�
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300 W. KERN AND D. PAULUSMA

Proof. The proof is straightforward, using the fact that the above constraints (for �≥ 0)
imply x�S�≥ v�S�+ � for all S ⊂ N . �

Remark 2.1. Note that the optimum value �+
1 = �1 of the LP problem in Theorem 2.3

is always at most 0. (Recall that we assume that G �= K2, in which case �1 = 1/2.) If the
core is nonempty, then �+

1 = �1 = 0, and the least core coincides with the core.
Continuing in a similar way, the nucleolus can also be computed easily. We first identify

E1 	= �e ∈ E � e ∈ FixP+
1 ��

+
1 �
 and N1 	= �i ∈ N � i ∈ FixP+

1 ��
+
1 �


and then solve

�P+
2 � max �

s�t� x�e�= 1+ �+
1 �e ∈ E1��

xi = �+
1 �i ∈ N1��

x�e�≥ 1+ � �e ∈ E\E1��
xi ≥ � �i ∈ N\N1��
x�N �= v∗�

with optimum value �+
2 = �2 and so on, until we obtain a linear program (P

+
r ) that defines a

unique solution x̃ ∈�N . Using the fact that the constraints x ≥ 0 and x�e�≥ 1 for all e ∈ E
imply x�S�≥ v�S� for all S ⊂ N , it is clear that x̃ is equal to the nucleolus of (N�v).

Remark 2.2. Note that also for general weighted matching games with nonempty core,
a similar characterization of the (least) core and nucleolus exists.
The above approach fails in the case �1 < 0. In this case, at least intuitively, large coali-

tions S ⊂ N get fixed in the first place rather than small ones (single nodes and edges) as
above. The case �1 < 0 (empty core) is treated in §3.

3. When the core is empty. In the following we assume that the core is empty. Equiv-
alently, �1 < 0 and �D� > 1 for some odd component D ∈ �. We first state the following
simple fact (which in the nonempty core case follows trivially from Theorem 2.3):

Lemma 3.1. leastcore�N � v�⊆ �N
+ .

Proof. Assume to the contrary that (x� �1) is an optimal solution of

�P1� max �

s�t� x�S�≥ v�S�+ � �S � �0��

x�N �= v∗�

and xi < 0 for some i ∈ N .
Claim. If S ⊂ N satisfies x�S�≥ v�S�+ �1 with equality, then i ∈ S.
Proof. Assume to the contrary that i � S.
Case 1. S ⊂ S ∪ i ⊂ N . Then x�S ∪ i� < x�S� = v�S�+ �1 ≤ v�S ∪ i�+ �1 contradicts the

feasibility of x.
Case 2. S ⊂ S ∪ i = N . Then x�N� = x�S�+xi = v�S�+ �1+xi < v�S� ≤ v∗ again con-

tradicts the feasibility of x.
Hence, the claim is true. But then we may slightly increase x on �i
 and decrease x on

N\i uniformly by the same total amount, thereby obtaining a better solution. This proves
the lemma. �

Remark 3.1. In §1 we have actually defined the prenucleolus of a game (cf. Schmei-
dler 1969). However, by Lemma 3.1 the prenucleolus and nucleolus of a matching game
coincide.
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MATCHING GAMES: THE LEAST CORE AND THE NUCLEOLUS 301

Due to Lemma 3.1 problem (P1) defining the least core can equivalently be stated as
follows. Let � denote the set of matchings M ⊆ E. Then (recall our notation x�M� =
x�N�M�� from §2):

�P1� max �

s�t� x�M�≥ �M �+ � �M ∈���

x�N �= v∗�
x ≥ 0�

Proposition 3.1. Checking whether a given x ∈�N is an element of P1��� can be done
in polynomial time.

Proof. It suffices to show that for given x ∈ �N and � ∈ � we can sufficiently check
whether

x�M�≥ �M �+ � �M ∈��

holds. This can be done by solving a minimum weight matching problem on G = �N �E�
with respect to the edge weights

wij 	= xi +xj −1 ��i� j� ∈ E��

(see, e.g., Lovász and Plummer 1986). �

As a consequence of Proposition 3.1 we can solve (P1) efficiently (see Grötschel et al.
1993). Here we aim for more, namely, a concise description of P1��1�.
As a first step we introduce a relaxation ( �P1) of (P1) below, which is easier to analyze

and, as we will see, defines the same optimum value. To motivate this approach, note that,
as mentioned earlier, we expect rather large matchings to become tight when solving (P1).
We let �∗ denote the set of maximum matchings in G. Each M ∈�∗ matches A completely
in �. By condition (ii) of Theorem 2.1, given D ∈ �, there is some M ∈ �∗ matching
A into �\�D
. We say that M leaves D uncovered. Let �� denote the set of matchings
M ⊆ E�

⋃
�� that are completely contained in the union of the odd components.

We will study the following relaxation of (P1):

� �P1� max �

s�t� x�M�≥ �M �+ � �M ∈�∗ ∪����

x�N �= v∗�
x ≥ 0�

with optimum value �̂1. (As in the proof of Theorem 2.2, it is easy to see that �̂1 < 0,
cf. also below.)
To investigate the structure of optimal solutions of ( �P1), let us introduce some notation.

As before, �P1��� denotes the set of x ∈�N such that (x� �) is feasible for ( �P1). If x ∈ �P1��̂1�
is an optimal solution, we say that M ∈ �∗ ∪�� is x-tight, if x�M� = �M �+ �̂1. Given a
feasible solution x ∈ �P1��� and D ∈�, let

xD 	= x�D�

�D�
denote the average value of x on D. Define x̄ ∈ �N by averaging x on each component
D ∈�, i.e.,

x̄i 	= xD �i ∈D�D ∈��

and leaving x unchanged on A∪⋃
�.
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Lemma 3.2. If x ∈ �P1���, then x̄ ∈ �P1��� and � < 0.

Proof. Let x ∈ �P1���. It suffices to show that averaging x on some component D ∈�
preserves feasibility. Thus, let D ∈� and let x̃ ∈�N be obtained by averaging x on D, i.e.,
x̃i = xD �i ∈D�.
Certainly, x̃ satisfies x̃ ≥ 0 and x̃�N � = v∗. We are left to check x̃�M� ≥ �M � + � for

M ∈�∗ ∪��.
Suppose M ∈�∗. Then either M covers D or M ∩D = D\i for some i ∈ D. In the first

case, x̃�M�= x�M� and the claim follows. In the second case, we may assume without loss
of generality that i ∈ D maximizes xi over D, otherwise we replace M inside D by some
other near-perfect matching without changing x̃�M�−�M �. (Recall that D is factor-critical.)
Then xi ≥ x̃i holds and consequently x̃�M�≥ x�M�, so the claim follows as x ∈ �P1���.
Next, consider M ∈�� and assume M minimizes x̃�M�−�M � over ��. If x̃≡ xD > 1/2

on D and M ∩D �= �, then removing an edge in M ∩D results in a matching �M with
x̃� �M�−� �M �< x̃�M�−�M �. Hence, M ∩D =� and x̃�M�= x�M� and the claim follows.
If x̃ ≡ xD ≤ 1/2 on D, then M ∩D is without loss of generality a near-perfect matching

in D and we argue as we did for M ∈�∗.
Finally, let us show that � < 0. Let D ∈ � be a component with �D� > 1. If x̄ ≡ 0 on

D, then � ≤ −1. (Indeed, if e ∈ E�D�, then 0 = x̄�e� ≥ 1+ �.) If x̄ ≡ xD > 0 on D, let
M ∈�∗ be a maximum matching leaving some i ∈D unmatched. Then x̄�M�≥ v∗ +� and
x̄�M� < x̄�M ∪ i�≤ x̄�N �= v∗. Hence, � < 0. �

We conclude that �̂1 < 0. If x ∈ �P1��̂1� is an optimal allocation, so is x̄. Furthermore,
some matchings in �∗ ∪�� must be x̄-tight. These can in principle be found by minimizing
x̄�M�−�M � over �∗ ∪��. Minimizing x̄�M�−�M � over �∗ amounts to solving a mini-
mum weight maximum matching problem. Minimizing x̄�M�−�M � over �� is even trivial:
We simply choose a near-perfect matching in each component D ∈ � with x̄ ≡ xD < 1/2
(plus an arbitrary matching in all components on which x̄ ≡ 1/2). So computing an x̄-tight
M ∈�∗ ∪�� for given x̄ ∈ �P1��̂1� is easy.
We aim at a more structural characterization of x̄-tight matchings for given x̄ ∈ �P1��̂1�.

Let �max = �max�x̄� ⊆ � be the set of odd components on which x̄ ≡ xD is maximum
(among all D ∈�).

Lemma 3.3. No x̄-tight M ∈ �∗ covers all D ∈ �max. If x̄-tight matchings in �∗ exist
at all, then for each D ∈�max there is some x̄-tight M ∈�∗ leaving D uncovered.

Proof. Suppose �M ∈�∗ is x̄-tight and covers D ∈�max. Let �M ∈�∗ be any matching
not covering D. (Recall Theorem 2.1.) Let P ⊆ �M ∪ �M be the unique maximal alternating
path starting in D (in a node uncovered by �M) and ending in, say,  D (in a node uncovered
by �M). Reversing �M along P results in a matching M ∈�∗ covering  D instead of D. Since
D ∈�max, we have x̄D ≥ x̄  D, hence x̄�M�≤ x̄� �M�. Thus M must be x̄-tight again, proving
the second claim.
The first claim follows by observing that if �M would cover all D ∈�max, then  D ��max

(as it is uncovered by �M). But then x̄D > x̄  D and x̄�M� < x̄� �M�, hence

x̄�M� < x̄� �M�= � �M �+ �̂1 = �M �+ �̂1�

contradicting x̄ ∈ �P1��̂1�. �

Let �∗
� denote the set of all maximum matchings in ��.

Lemma 3.4. Let x ∈ �P1��̂1�. Then
(i) x = x̄,
(ii) x ≤ 1/2 on

⋃
�, and

(iii) each M ∈�∗
� is x-tight.
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Proof. Let x ∈ �P1��̂1�. We first prove (ii) and (iii) for x̄ and then show that x = x̄.
(ii) x̄ ≤ 1/2 on ⋃

�: Suppose to the contrary that x̄ > 1/2 on D ∈�max.
We first consider the case A∪⋃

� = �. If �max = �, we had x̄ > 1/2 on
⋃
� and

hence x̄�N � > v∗, a contradiction. Hence �max ⊂�. Then we may decrease x̄ slightly and
uniformly on

⋃
�max and increase x̄ on

⋃
�\⋃�max resulting in some ¯̄x ∈ �P1��̂1� for which

no M ∈�∗ ∪�� is tight. This contradicts the optimality of �̂1.
Now suppose A∪⋃

� �= �. If �max =�, we had x̄ > 1/2 on
⋃
� and hence no M ∈��

were x̄-tight. We may thus decrease x̄ on
⋃
� and increase x̄ on A∪⋃

� by the same
(sufficiently small) amount ' > 0 resulting in some x̄' ∈ �P1��̂1� for which no M ∈�∗ ∪��

is tight. (Recall Lemma 3.3.) This contradicts the optimality of �̂1.
If �max ⊂�, we proceed similarly. Chose ' > 0 sufficiently small and let x̄' arise from

x̄ by
• Decreasing x̄i by '/�D� (i ∈D�D ∈�max).
• Increasing x̄ on A by '′ in total, where ���max�−1�' < '′ < ��max�'.
• Increasing x̄ uniformly on

⋃
�\⋃�max by ��max�'−'′ in total.

For sufficiently small ' > 0, the resulting x̄' has x̄'�M� > x̄�M� for each x̄-tight M ∈
�� (because none of these meets �max) and x̄'�M� > x̄�M� for all x̄-tight M ∈ �∗ by
Lemma 3.3. Hence, again x̄' ∈ �P1��̂1� has no tight matchings, contradicting the optimality
of �̂1.
(iii) Each M ∈�∗

� is x̄-tight: Because x̄≤ 1/2 on ⋃�, each M ∈�∗
� minimizes x̄�M�−

�M � over ��. It therefore suffices to show that some matching in �� is x̄-tight. Assume
to the contrary that no matching in �� is x̄-tight. As above, this excludes �∗ ⊆ ��, so
A∪⋃

� must be nonempty.
Case 1. x̄�

⋃
�� > 0. In this case we may slightly (and uniformly) decrease x̄ on

⋃
�max

and increase it by the same total amount on A∪⋃
�. By Lemma 3.3 the resulting ¯̄x has

no tight matchings, a contradiction.
Case 2. x̄ ≡ 0 on ⋃

�. Then x̄�M�= v∗ for M ∈�∗. Because �̂1 < 0, no M ∈�∗ were
tight either, a contradiction.
(i) x = x̄: For each D ∈ � we chose a node i ∈ � with maximum x-value and a near-

perfect matching covering D\i. LetM ∈�∗
� be the union of all these near-perfect matchings.

By construction we have x�M�≤ x̄�M� with equality if and only if x≡ x̄ on
⋃
�. Because

M is x̄-tight,

x�M� < x̄�M�= �M �+ �̂1

would contradict x ∈ �P1��̂1�. �

Lemma 3.5. Let x = x̄ ∈ �P1��̂1�. Then there is some x-tight M ∈�∗. Moreover, if D ∈
�max or �D�> 1, then there is some x-tight M ∈�∗ not covering D.

Proof. The lemma is trivial in case A∪⋃
� =�. So we suppose A∪⋃

� �= � and we
first claim that any x ∈ �P1��̂1� has x�A∪⋃

�� > 0. Indeed, any M ∈�∗ decomposes as

M =M� ∪MA��∪M�

with M� a perfect matching of
⋃
�, MA�� matching A into �, and M� ∈ �∗

�. Because
x ∈ �P1��̂1�, we have

x�M�≥ �M��+ �MA���+ �M��+ �̂1�

Because M� is x-tight (cf. Lemma 3.4 (iii)), we have x�M�� = �M��+ �̂1, hence x�M� ∪
MA���≥ �M��+ �MA���. Because x ≤ 1/2 on ⋃

�, we conclude that indeed

x
(
A∪⋃

�
)= x�A∪M��≥

�A�
2

+�M��> 0�
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Now let us show that some M ∈ �∗ is x̄-tight. Suppose to the contrary that x�M� >
�M �+ �̂1 for all M ∈�∗. We could then decrease (somehow) x̄ on A∪⋃

� and increase x̄
uniformly on

⋃
� by the same total (sufficiently small) amount. The resulting ¯̄x were still

in �P1��̂1� and would contradict Lemma 3.4 (iii).
By Lemma 3.3, this implies that each D ∈�max is left uncovered by some x̄-tightM ∈�∗.

We are left to prove a corresponding result for D ∈ � with �D� > 1. Hence, assume D ∈
�\�max and �D� > 1. Then x̄ < 1/2 on D by Lemma 3.4 (ii), so every x̄-tight M ∈ �∗

�

contains a near-perfect matching of D. Now suppose D is covered by every x̄-tight M ∈�∗.
We may then decrease x̄ slightly on A∪� and increase x̄ uniformly on D by the same
(sufficiently small) total amount. The resulting ¯̄x would again be in �P1��̂1� and contradict
Lemma 3.4 (iii). This finishes the proof. �

Let us call an allocation x = x̄ ∈ �P1��̂1� flexible if the conclusion of Lemma 3.5 holds
with respect to all D ∈�, i.e., if each D ∈� is left uncovered by some x̄-tight M ∈�∗.

Lemma 3.6. Flexible allocations exist.

Proof. Let x= x̄ ∈ �P1��̂1�. Suppose x̄ is not already flexible. Then there exists a compo-
nent D= �i
∈D of size 1 such that every x̄-tight M ∈�∗ covers i. In particular, this implies
that A �= �. From the proof of Lemma 3.5 it turns out that in that case x�A∪⋃

C� > 0.
We may thus increase x̄i and decrease x̄ on A∪⋃

� by the same total amount ' until x̄
becomes “flexible” with respect to D = �i
. In other words, we choose ' > 0 maximal such
that the modification x̄' is still in �P��̂1�. Then x̄'�M� = �M � + �̂1 holds for at least one
matching M ∈ �∗ that does not cover i (and is not x̄-tight). Because all matchings in �∗

that were already x̄-tight (and contain i) remain tight, the claim follows by induction. �

We are now ready to determine the structure of x-tight matchings in �∗ for flexible
x= x̄ ∈ �P1��̂1�. Suppose x̂ ∈ �P��̂1� is a given flexible allocation. Suppose that (0 < · · ·< (p

�p ≥ 0� are the different values x̂ takes on ⋃
� and let

�=�0∪ � � � ∪�p

be the corresponding partition of �. Hence, x̂ ≡ (i on
⋃
�i and �p =�max.

Proposition 3.2. There exists a partition A= A0∪ � � � ∪Ap (with some of the Ai pos-
sibly empty) such that M ∈�∗ is x̂-tight if and only if M matches each Ai into �i.

Proof. If A=�, the claim is true in the sense that nothing is matched into � and each
M ∈ �∗ is x̂-tight. (By Lemma 3.5, some x̂-tight M ∈ �∗ exists and because A = �, all
M ∈�∗ have the same x̂-value.)
In general, recall that x̂-tight matchings in �∗ are exactly those that minimize x̂�M�

over �∗. For given x̂, the value x̂�M� only depends on how many nodes of A are matched
into each �i. (This readily follows from the decomposition M =M�∪MA��∪M�.) In other
words, x̂�M� only depends on the total x̂-weight of nodes in

⋃
� that are matched with A.

The claim, therefore, follows from Lemma 3.7 below. �

Lemma 3.7. Consider a bipartite graph G�A�B� with node set A∪B. Suppose B =
B0∪ � � � ∪Bp is a partition of B and edges incident with Bi have weight (i ((0 < · · ·<(p�.
Assume that the set �∗ of matchings that completely match A into B is nonempty and let
�∗
min be the set of M ∈�∗ with minimum weight. Suppose finally, that �∗

min is “flexible” in
the sense that each b ∈B is left unmatched by some M ∈�∗

min. Then there is a partition A=
A0∪ � � � ∪Ap of A such that M ∈�∗

min if and only if M matches Ai into Bi (i= 0� � � � � p).

Proof. Let �∗
0 denote the set of maximum matchings in the subgraph G0 induced by

A∪B0. Clearly, each M ∈ �∗
min induces a maximum matching M0 ⊆ M in �∗

0. (Apply an
augmenting path argument.) Hence, we must have

�∗� each b ∈ B0 is left uncovered by someM0 ∈�∗
0�
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Suppose m∗
0 is the maximum size of a matching in G0. As G0 is bipartite, König’s Theorem

(see, e.g., Bondy and Murty 1976, p. 74) ensures the existence of a vertex cover A∗
0 ∪B∗

0

(A∗
0 ⊆A�B∗

0 ⊆ B) of size m∗
0. Each M ∈�∗

0 is incident with all nodes in A∗
0∪B∗

0 . Hence, by
(*) we conclude that B∗

0 =�. In other words, each M ∈�∗
min matches A

∗
0 into B0. Now let

�∗
1 denote the set of maximum matchings in the subgraph G1 induced by A\A∗

0 ∪B1, and
proceed in the same way. So the claim follows by induction. �

We are now prepared to present our main result, a simple alternative description of the
least core. Consider the LP

� ˆ̂P 1� max �

s�t� x = x̄�

xi ≤
1
2

�i ∈⋃
���

x�e�≥ 1 �e ∈ E\E�
⋃
����

x�N �= v∗�
x�M�≥ �M �+ � �M ∈�∗

���

x ≥ 0�
Note that x ≡ x̄ is just a shorthand for a number of linear equalities of the type xi = xj .
Further note that for x ≡ x̄, the value x�M� is independent of the particular choice of
M ∈ �∗

D. Hence, the exponentially many constraints for M ∈ �∗
D reduce to one single

inequality.
Again, we let ˆ̂P 1��� 	= �x � �x� �� is feasible for � ˆ̂P 1�
 and denote the optimum value of

( ˆ̂P 1) by ˆ̂�1.

Theorem 3.1. We have �1 = �̂1 = ˆ̂�1 and leastcore�N � v�= P1��1�= ˆ̂P 1� ˆ̂�1��

Proof.
• We have �1 ≤ �̂1 by definition.
• �̂1 ≤ ˆ̂�1: Let x̂ ∈ �P1��̂1� be flexible with corresponding partitions � = �0 ∪ � � � ∪�p

and A= A0∪ � � � ∪Ap. Define ˆ̂x ∈ �N by

ˆ̂x ≡ 1
2

on
⋃
��

ˆ̂x ≡ x̂ on
⋃
��

ˆ̂x ≡ 1−(i on Ai �0 ≤ i ≤ p��

We show that ˆ̂x ∈ ˆ̂P 1��̂1� (proving that ˆ̂�1 ≥ �̂1). The only nontrivial constraints to check
are ˆ̂x�N� = v∗ and ˆ̂x�e� ≥ 1 for e ∈ E\E�

⋃
��. All other constraints directly follow from

Lemma 3.4.
Let M ∈�∗ be x̂-tight and decompose it as

M =M� ∪MA��∪M�

as usual. BecauseM� ∈�∗
� is also x̂-tight by Lemma 3.4, we conclude that x̂�M�∪MA���=

�M��+ �MA��� = ˆ̂x�M� ∪MA��� by definition of ˆ̂x. Hence, ˆ̂x�N�= x̂�N �= v∗.
Second, let us consider e ∈ E\E�

⋃
��. If e ∈ E�A∪⋃

�� then ˆ̂x�e�≥ 1 by definition of ˆ̂x.
(Recall that x̂= (i ≤ 1/2 on

⋃
�i.) Thus we are left with edges between A and

⋃
�. Suppose

ˆ̂x�e� < 1 for such an edge joining, say, D ∈ �i with a ∈ Aj . Then ˆ̂x�e� = (i + 1−(j < 1,
i.e., (i < (j . Because x̂ is flexible, there exists an x̂-tight matching M ∈�∗ not covering D.
Because D is factor-critical (and x̂ is constant on D), we may assume that M does not match
the endpoint of e in D. BecauseM is x̂-tight, a ∈ Aj is matched into Dj by some edge f ∈M
(cf. Proposition 3.2). ThenM ′ =M\f + e has x̂�M ′� < x̂�M�, a contradiction.
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• ˆ̂�1 ≤ �1: We show that in general ˆ̂P 1��� ⊆ P1���. Suppose x ∈ ˆ̂P 1���. Then x�M� ≥
�M �+� for all M ∈�∗

�. Because x ≤ 1/2 on ⋃
�, this also implies x�M�≥ �M �+� for all

M ∈��. (Use an augmenting path argument.) Because x�e�≥ 1 for all e ∈ E\E�
⋃
��, we

further conclude that x�M�≥ �M �+ � for all M ∈�.
• Finally, let us verify that P1��1� = ˆ̂P 1� ˆ̂�1�. We have just proved that “⊇” holds. Con-

versely, let x ∈ P1��1�. Then x ∈ �P1��̂1� and, by Lemma 3.4, x satisfies all constraints of
ˆ̂P 1� ˆ̂�1� except possibly x�e�≥ 1 for e ∈ E\E�

⋃
��. Thus, let e ∈ E\E�

⋃
��. Pick M ∈�∗

�

not covering the endpoint of e in
⋃
�, so that M ∪ e is a matching again. Then, because

x ∈ P1��1�, we have x�M ∪ e� ≥ �M � + 1+ �1, and because M ∈ �∗
� is x-tight, we have

x�M�= �M �+ �̂1. Because �1 = �̂1, the claim follows. �

4. The nucleolus. Recall from §1 that the nucleolus is computed by solving the fol-
lowing sequence of LP’s:

�P1� max �

s�t� x�S�≥ v�S�+ � �S � ���N 
��

x�N�= v∗�

with optimum value �1,

�P2� max �

s�t� x ∈ P1��1��

x�S�≥ v�S�+ � �S � FixP1��1���
with optimum value �2, etc. until the nucleolus is finally determined as the unique solution
x∗, �∗ = �r of

�Pr� max �

s�t� x ∈ Pr−1��r−1��
x�S�≥ v�S�+ � �S � FixPr−1��r−1���

By Theorem 3.1, (P1) is equivalent to � ˆ̂P 1� in the sense that they define the same set of
optimal solutions. As we will see, similar equivalent formulations can be found for (Pk),
k ≥ 2. Define recursively

� ˆ̂Pk� max �

s�t� x ∈ ˆ̂Pk−1� ˆ̂�k−1��

x�e�≤ 1+ �1− � �e ∈ E�
⋃
��� e � Fix ˆ̂Pk−1� ˆ̂�k−1���

x�e�≥ 1− �1+ � �e ∈ E\E�
⋃
��� e � Fix ˆ̂Pk−1� ˆ̂�k−1���

xi ≥−�1+ � �i ∈ N� i � Fix ˆ̂Pk−1� ˆ̂�k−1���

As before, let ˆ̂�k denote the optimum value of ( ˆ̂Pk) and define
ˆ̂Pk��� in the obvious way.

Theorem 4.1. We have �k = ˆ̂�k and Pk��k�= ˆ̂Pk� ˆ̂�k� for k= 1� � � � � r . In particular, the
sequence ˆ̂P 1� ˆ̂�1�⊃ · · · ⊃ ˆ̂Pr� ˆ̂�r�= �x∗
 defines the nucleolus.

Proof. For k = 1, the claim is equivalent to Theorem 3.1. We proceed by induction
on k. Assume that �k−1 = ˆ̂�k−1 and Pk−1��k−1�= ˆ̂Pk−1� ˆ̂�k−1�. The induction step amounts to
show the following two things.
(i) Pk���⊆ ˆ̂Pk��� (implying that ˆ̂�k ≥ �k): Let x ∈ Pk���. Then x ∈ P1��1�= ˆ̂P 1� ˆ̂�1�, so

x satisfies x ≥ 0, xi = xD ≤ 1/2 for all i ∈D�D ∈�, and x�M�= �M �+�1 for all M ∈�∗
�.
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We first consider e ∈ E\E�
⋃
�) and show that x�e� ≥ 1 − �1 + � unless e ∈

Fix ˆ̂Pk−1� ˆ̂�k−1� = FixPk−1��k−1�. Choose M ∈ �� such that M ∪ e is a matching. (Exis-
tence follows from the fact that each D ∈ � is factor-critical.) Because M is fixed by
ˆ̂P 1� ˆ̂�1�= P1��1�, it is fixed by

ˆ̂Pk−1� ˆ̂�k−1�. Hence, e ∈ Fix ˆ̂Pk−1� ˆ̂�k−1� if and only if M ∪e ∈
Fix ˆ̂Pk−1� ˆ̂�k−1�. Because we assume e � Fix ˆ̂Pk−1� ˆ̂�k−1�, we have M ∪e � FixPk−1��k−1� and
thus x ∈ Pk��� implies x�M ∪ e� ≥ �M ∪ e�+ �. Together with x�M� = �M �+ �1 this yields
x�e�≥ 1− �1+ �.
In the same way we can show that xi ≥−�1+ � for a node i � Fix ˆ̂P� ˆ̂�k−1�.
Next, consider e ∈ E�

⋃
��, say e ∈ E�D� for D ∈ �. We show that x�e� ≤ 1+ �1− �

unless e is already fixed by ˆ̂Pk−1� ˆ̂�k−1�=Pk−1��k−1�. Because x≡ xD on D ∈�, we conclude
that x�e� is independent of the particular choice of e ∈ E�D�. Choose any M ∈ M∗

� and
assume without loss of generality that e ∈ M ∩E�D� is not fixed by Pk−1��k−1�. Because
x�M� is fixed (to �M � + �1), we conclude that M\e � FixPk−1��k−1�. Hence, x ∈ Pk���
implies x�M\e�≥ �M\e�+ �. Together with x�M�= �M �+ �1 we get x�e�≤ 1+ �1− �.
(ii) ˆ̂Pk���⊆ Pk��� (implying that �k ≥ ˆ̂�k): Let x ∈ ˆ̂Pk���. Again, this implies x ∈ ˆ̂P 1� ˆ̂�1�,

so x≥ 0, x≡ xD ≤ 1/2 on each D ∈� and x�M��= �M��+�1 forM� ∈�∗
�. We are to show

that x�S� ≥ v�S�+ � for S ⊂ N not yet fixed by Pk−1��k−1� = ˆ̂Pk−1� ˆ̂�k−1�. Because x ≥ 0,
we may only consider S = v�M� for M ∈�. Furthermore, because x�e�≥ 1 on E\E�

⋃
��,

we may restrict ourselves to M ⊆ E�
⋃
��. Finally, because x ≡ xD (D ∈�), x�M� only

depends on �M ∩D� for each D ∈ �. So we may without loss of generality assume that
M ⊆ M� for some M� ∈ �∗

�. Assume that M is not fixed by Pk−1��k−1�. Because M� is
fixed by Pk−1��k−1�, we conclude that M�\M is not fixed by Pk−1��k−1�. So at least some
e ∈M�\M is not fixed by Pk−1��k−1�. Hence, x ∈ ˆ̂Pk��� implies x�e�≤ 1−�+�1. All other
edges f ∈M�\M satisfy x�f �≤ 1 (as x≤ 1/2 on ⋃�). Hence, x�M��= �M��+�1 implies
x�M�≥ �M �+ � as required. �

Clearly, the number of constraints in each linear program � ˆ̂Pk� is bounded by a polyno-
mial in �N �. The size of the parameters ˆ̂�k �k = 1� � � � � r� is bounded by a polynomial in
N and �v� (cf. the proof of Theorem 1.1). Then we can conclude that

Corollary 4.1. The nucleolus x∗ of a matching game on a graph G = �N �E� with
unit edge weights can be computed in polynomial time.

We end this section by introducing the following class of matching games. Let G =
�N �E� model a market situation, in which each person i ∈ N has a “weight” wi ≥ 0 indi-
cating his importance or power. The edges in E correspond with pairs of potential business
partners. Now assume that, if i and j do business with each other, their common profit
equals $w�i� j� = wi +wj . Again, the total profit is maximal if all persons in N cooperate
and a maximum weight matching can be constructed. The corresponding matching game is
called a node matching game.
So a node matching game is determined by a graph G = �N �E� with node weighting

w	 N → �+. The edge weighting $w is defined by $w�i� j�= wi +wj for all �i� j� ∈ E. Note
that a cardinality matching game can been seen as a node matching game by defining a node
weighting w ≡ 1/2 on N . Also for node matching games the nucleolus can be computed in
polynomial time. For the proof we refer to Paulusma (2001).
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