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Abstract. The paper contains a construction of ramification theory for higher di-
mensional local fields K provided with additional structure given by an increasing
sequence of their “subfields of i-dimensional constants”, where 0 � i � n and n is
the dimension of K. It is also announced that a local analogue of the Grothendieck
Conjecture still holds: all automorphisms of the absolute Galois group of K, which
are compatible with ramification filtration and satisfy some natural topological con-
ditions appear as conjugations via some automorphisms of the algebraic closure of
K.

0. Introduction

This paper deals with the formalism of ramification theory of higher dimensional
local fields. It comes from I.Zhukov’s approach [Zh], [Ab5] to such a theory in the
case of 2-dimensional local fields K, which is based on the introduction of the
additional structure on K given by its closed 1-dimensional local subfield Kc of
dimension 1 — “the subfield of 1-dimensional constants”. Then the filtration of
ΓK = Gal(Ksep/K) by its ramification subgroups appears in the form of decreasing
filtration of ΓK by normal subgroups {Γ(j)

K }j∈J(2). Here J(2) = J1

∐
J2, where

J1 = {j ∈ Q | j � 0}, J2 = {j ∈ Q2 | j � (0, 0)} (with respect to the lexicographical
ordering on Q2), and by definition each element of J2 is greater than every element of
J1. For j ∈ J1, the groups Γ(j)

K appear as the preimages of the classical ramification
subgroups of ΓKc = Gal(Kc,sep/Kc) with respect to the natural projection π from
ΓK to ΓKc . The “2-dimensional part” of ramification filtration of ΓK appears as
a decreasing filtration {Γ(j)

K }j∈J2 of Γ̃K = Kerπ and its definition can be given
in terms of semistable reduction of the arithmetical scheme SpecOK → SpecOKc

attached to the field extension K ⊃ Kc (here OK and OKc are corresponding
valuation rings).

The above interpretation of Zhukov’s approach admits a direct generalization
to the case of local fields of arbitrary dimension n, which are supposed to be pro-
vided with an additional F -structure given by increasing sequence of subfields of
i-dimensional constants with 1 � i < n. The techniques developed earlier by the
author [Ab1-3] to study the classical ramification filtration can be adjusted to ob-
tain similar results for higher dimensional local fields. In particular, the paper
[Ab5] contains an explicit description of the ramification filtration of the maxi-
mal p-extension of 2-dimensional local field of characteristic p with Galois group
of nilpotence class 2 (p � 3). Following the strategy from [Ab4] one can use this

2000 Mathematics Subject Classification. Primary 11S15, 11S20, Secondary 11S70.
Key words and phrases. local fields, ramification, anabelian conjecture.

Typeset by AMS-TEX

1
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description to prove a local analogue of the Grothendieck Conjecture for higher
dimensional local fields. This result is stated in n.6 below. It justifies that the
proposed ramification theory is sufficiently nice because it carries practically all
information about the original local field. Complete proofs of announced Theorems
1 and 2 are given in the papers [Ab6,7] in the case of local fields of dimension 2. It
would be interesting to compare our theory with recent approach to ramification
theory from [A-S] as well as with earlier approaches to such a theory by K.Kato,
O.Hyodo, etc., which were basically related to the study of arithmetical proper-
ties of abelian extensions of higher dimensional local fields. One can find a brief
exposition of related results together with necessary references in the book [HLF].1

1. n-dimensional local fields

By definition L is a local n-dimensional field if either n = 0 and L is a finite field,
or n � 1 and L is the quotient field of a complete discrete valuation ring O

(1)
L with

residue field L̄, which is a local field of dimension n− 1. With the obvious notation
there is the following sequence of epimorphic maps and embeddings of valuation
rings and residue fields

L := L(0) ⊃ O
(1)
L −→ L̄ := L(1) ⊃ O

(1)

L(1) −→ · · · −→ L̄(n−1) = L(n), (1)

where L(n) is a finite field. For 0 � i � n, denote by O
(i)
L the preimage of L(i)

in L with respect to the composition of corresponding morphisms from (1). The
kernel of the natural projection from O

(i)
L to L(i) will be denoted by m

(i)
L . Notice

that O
(0)
L = L and m

(0)
L = 0. The ring O

(n)
L will be denoted also by OL and will be

called the valuation ring of L.
A subfield E of L is closed if it is either finite or it is the fraction field of a closed

non-discrete (with respect to the corresponding valuation topology) subring of O
(1)
L

and the corresponding residue field Ē is a closed subfield of the (n−1)-dimensional
local field L̄. Then E is provided with a unique induced structure of local field
of dimension � n. On the other hand, if M is a finite extension of L, then M is
provided uniquely with a structure of an n-dimensional local field such that L is a
closed n-dimensional subfield of M .

In this paper we are going to consider only local fields L, which satisfy one of
the following two basic assumptions:
a) the finite characteristic case, i.e. charL(0) = charL(n); in this case the field L
is always standard, that is L � k((tn)) . . . ((t1)), where k = L(n) (for any field F ,
F ((t)) is a field of formal Laurent series with coefficients in F );
b) the mixed characteristic case, i.e. charL(0) = 0 but charL(1) = charL(n) =
p > 0; in this case L is a finite extension of some standard field K{{tn}} . . .{{t2}},
where [K : Qp] < ∞ (if F ⊃ Qp then F{{t}} = F ⊗̂Zp lim←−Z/pMZ((t))).

Only in the above two cases the absolute Galois group ΓL = Gal(Lsep/L) is
complicated enough to be provided with interesting ramification filtration.

Let t1, . . . , tn be a system of local parameters of L, i.e. for all 1 � i � n,
ti ∈ m

(i)
L and ti mod m

(i−1)
L is uniformizing element of the complete discrete valu-

ation field L(i−1) = O
(i−1)
L mod m

(i−1)
L . Notice that t1, . . . , tn is a system of local

1The author is very grateful to the referee and I.Fesenko for pointing out several inaccuracies
in the original version of this paper
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parameters if and only if t1 is uniformizing element of O
(1)
L , t2, . . . , tn ∈ O

(1)∗
L and

t2 mod m
(1)
L , . . . , tn mod m

(1)
L is a system of local parameters in L(1). Clearly, L can

be identified with the set of all formal Laurent series

l =
∑

i1,...,in

[αi1...in ]ti11 . . . tin
n , (2)

where the sum is taken for all multi-indices (i1, . . . , in) such that for some (de-
pending on l) lower boundaries m, m(i1), . . . , m(i1, . . . , in−1), one has i1 � m,
i2 � m(i1),..., in � m(i1, . . . , in−1), and [αi1...in ] are Teichmüller representatives
of αi1...in ∈ L(n) (if charL = charL(n), then the Teichmüller representative of
α ∈ L(n) is just α itself). This identification has been considered in basic papers on
higher dimensional local fields (A.Parshin, K.Kato) via introducing a special topol-
ogy on L, with respect to which (we shall call it the P -topology) the above series
(2) are convergent (the concept of P -topology was analyzed and studied later by
I.Fesenko and I.Zhukov). Actually, the P -topology brings into correlation all n dis-
crete valuation topologies of the fields L = L(0), . . . , L(n−1). Notice that operations
of addition and multiplication are sequentially P -continuous in L. If 1 � i � n

and the ring O
(i)
L ⊂ L is provided with the induced P -topology, then all natural

projections pri : O
(i)
L −→ L(i) are continuous. On the other hand, any choice of

local parameters t1, . . . , tn gives rise to continuous sections si : L(i) −→ O
(i)
L of pro-

jections pri and implies a description of elements from L as formal power series (2).
It is also known that the P -topology of a finite extension E of L is compatible with
that of L with respect to an identification of L-vector spaces E � Lm, m = [E : L],
given by some choice of L-basis in E. For these and related results we refer again
to the book [HLF].

So, it is natural to consider the P -topology as an essential part of the concept
of higher dimensional local field. In other words, when working with the category
of higher dimensional local fields we shall consider only P -continuous field mor-
phisms. For example, if t1, . . . , tn is a system of local parameters in L, then any
ψ ∈ AutP-top(L) is uniquely determined by the images ψ(t1), . . . , ψ(tn), which have
to form again a system of local parameters in L.

2. F -structure

If L is an n-dimensional local field then its F -structure is given by an increasing
sequence of its closed subfields Lc 1 ⊂ Lc 2 ⊂ · · · ⊂ Lc n = L such that for all
1 � i � n,
— Lc i is a closed i-dimensional subfield of L;
— Lc i is algebraically closed in L.
The subfields Lc i may be treated as subfields of “i-dimensional constants”. It will
be also convenient to introduce the subfield of 0-dimensional constants. If charL is
positive, then the last residue field L(n) can be naturally identified with a unique
subfield of L and of all Lc i, 1 � i � n. So, L(n) may be interpreted as the subfield
of “0-dimensional constants” Lc 0. In the mixed characteristic case L contains
Qp, therefore, Lc 1 is the algebraic closure of Qp in L, and we take its maximal
unramified over Qp subfield as Lc 0.

If E is a finite extension of L then E is provided with a unique induced F -
structure such that for any 1 � i � n, Ec i is the algebraic closure of Lc i in
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E. Inversely, any given F -structure on E induces the F -structure of L given by its
subfields Lc i := L∩Ec i. In the both cases above we shall call F -structures of E and
L compatible. Throughout all this paper all local fields are assumed to be provided
with some F -structure. When considering any algebraic extension of n-dimensional
local fields we always assume that the corresponding F -structures are compatible.
Notice also that for 1 � i � n, the subfields L

(1)
c,i−1 := (Lc i ∩ O

(1)
L )mod m

(1)
L give

the induced F -structure of the first residue field L(1) of L. So, while giving an
F -structure on L we provide automatically all residue fields of L with uniquely
determined induced F -structures.

Suppose L is a standard field. Then either L = k((tn)) . . . ((t1)), where k is
a finite field, or L = K{{tn}} . . . {{t2}}, where K is a 1-dimensional local field
with uniformizing element t1. In the both cases t1, . . . , tn form a system of local
parameters in L. Associate to it the F -structure of L such that for 1 � j � n, the
subfield Lc j consists of elements l given in terms of corresponding formal series (2)
by the condition

αi1...in = 0 if at least one of the indices ij+1, . . . , in is not zero.

In other words, for 1 � j � n, the subfield Lc j consists of elements presented as
formal series in variables t1, . . . , tj . This F -structure of (a standard field) L will be
called standard. The following proposition is very well-known application of Epp’s
result on eliminating wild ramification.

Proposition 1. Let L be an n-dimensional local field with F -structure. Then there
is a finite separable extension E′ of Lc,n−1 such that the induced F -structure on
E := LE′ is standard.

Proof. Apply induction on n.
If n = 1 then there is nothing to prove.
Let n > 1 and let Lalg be an algebraic closure of L. By Epp’s Theorem [Epp, KZ]

there is a finite separable extension M1 of Lc 1 in Lalg such that if M = LM1, then
any uniformizing element t1 of M1 appears also as a uniformizing element of M
(with respect to its first valuation). Let M ′ = M (1) be the first residue field of M .
Consider its induced F - structure {M ′

c i | 1 � i � n − 1}, where M ′
c i = (Mc,i+1)

(1)

is the first residue field of Mc,i+1. By induction there is a finite separable extension
Ē′ of M ′

c,n−2 in L
(1)
alg such that the induced F - structure {Ēc i | 1 � i � n − 1}

of Ē := Ē′M ′ is standard, i.e. it is associated to some system of local parameters
t̄1, . . . , t̄n−1 of Ē.

Let E be one of unramified extensions of M in Lalg with the (first) residue field
Ē. For 1 � i � n, denote by Ec i the maximal unramified extension of Mc i in E.
It is easy to see that {Ec i | 1 � i � n} is F -structure on E, this F -structure is
associated to a collection of local parameters t1, . . . , tn such that for i = 2, . . . , n,
ti ∈ O

(1)
Ec i

and ti mod m
(1)
Ec i

= t̄i−1. The proposition is proved.

Remark. If in the notation of the above proposition M ′ is a finite extension of E′

then the induced F -structure of M := LM ′ is not generally standard. Nevertheless,
we have the following property:
— if t1, . . . , tn is a system of local parameters of E, which is associated with its
(standard) F -structure, and u1, . . . , un−1 is a system of local parameters of M ′ then
u1, . . . , un−1, tn is a system of local parameters of M .
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3. The valuation vL

A valuation of rank n of an n-dimensional local field L is a map v : L −→
Qn ∪ {∞} such that
— v|L∗ is a group homomorphism from L∗ to Qn and v(0) = ∞;
— v(l1+l2) � min{v(l1), v(l2)}, where Qn is provided with lexicographical ordering
and by definition ∞ is greater than any element of Qn;
— if 1 � i � n and vi is the i-th coordinate function of the map v, then

O
(i)
L = {l ∈ L | (v1(l), . . . , vi(l)) � 0̄i},

where here and everywhere below 0̄i := (0, . . . , 0) ∈ Qi.
As usually, if E is an algebraic extension of L then there is a unique valuation

v′ of rank n on E such that v′|L = v. Inversely, any valuation v′ of E induces the
valuation v = v′|L of L. (In these both situations we often use below the same
notation for v and v′.)

Suppose an n-dimensional local field L is provided with some F -structure
{Lc i | 1 � i � n}. A valuation v of L will be called compatible with this F -
structure if for all 1 � i � n, it holds v(L∗

c i) ⊂ Qi ⊕ 0̄n−i, i.e. for all l ∈ L∗
c i, the

last n− i components of v(l) are zeroes. Suppose [E : L] < ∞ and the valuation v′

on E is the extension of v. Then the compatibility of v with some F -structure on L
is equivalent to the compatibility of v′ with the corresponding induced F -structure
on E.

Proposition 2. If v and v1 are valuations of rank n on L, which are compatible
with its F -structure then there is d̄ ∈ Qn such that for any l ∈ L, v(l) = d̄v1(l) —
the component-wise product of vectors d̄ and v1(l).

Proof. By Prop.1 and the uniqueness property of extension of valuations the state-
ment can be reduced to the case of a field L provided with a standard F -structure.
Let t1, . . . , tn be a system of local parameters associated with such F -structure and
let for 1 � i � n, v(ti) = (αi1, . . . , αin) ∈ Qn and v1(ti) = (α′

i1, . . . , α
′
in) ∈ Qn.

By the definition of valuation of rank n we have αij = α′
ij = 0 for all i > j. In

addition, F -compatibility of v and v1 implies αij = α′
ij = 0 for all i < j. So, we

can take d̄ = (α11/α′
11, . . . , αnn/α′

nn). The proposition is proved.

If [E : L] < ∞, introduce the vector ramification index ēE/L = (e1, . . . , en) ∈ Zn

by setting for 1 � i � n,

ei = [Ec i : Lc iEc,i−1] = [Ec i : Lc i][Ec,i−1 : Lc,i−1]−1.

Notice that if L ⊂ E ⊂ E1 is a tower of finite extensions (with compatible F -
structures) then ēE1/L = ēE1/E ēE/L.

Proposition 3. Any n-dimensional local field L with an F -structure can be pro-
vided with a unique valuation vL of rank n such that
a) if L has a standard F -structure and t1, . . . , tn is a corresponding system of local
parameters, then for all 1 � i � n, vL(ti) = (δi1, . . . , δin), where δ is the Kronecker
symbol;
b) if [E : L] < ∞, where E has standard F -structure, then vL = ē−1

E/LvE .
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Proof. a) Clearly, the values vL(ti), 1 � i � n, determine vL uniquely and it is
easy to see that for any other corresponding system of local parameters u1, . . . , un,
it holds vL(ui) = vL(ti), i = 1, . . . , n.

b) It will be sufficient to verify that if E and L are provided with standard
F -structures, then

vE = ēE/LvL. (3)

Suppose t1, . . . , tn is a corresponding system of local parameters in L and u1, . . . , un

is a corresponding system of local parameters in E. Then relation (3) easily follows
from the fact that for any 1 � j � n, u1, . . . , uj−1, tj is a system of local parameters
of Lc jEc,j−1 and u1, . . . , uj is a system of local parameters of Ec j . The proposition
is proved.

Notice that the above valuation vL is automatically compatible with given F -
structure on L and for any finite extension E of L, it holds vE = ēE/LvL. Besides,
for any 1 � i � n, vL induces the valuation vLc i when being restricted to Lc i.

On the other hand, if L(i) is the i-th residue field of L, where 1 � i � n, then vL

generally does not induce the valuation vL(i) on L(i). But this will be true if e.g. a
given F -structure of L is standard.

4. Subgroups Γ̃E/L and its ramification subgroups

Let L0 be a local field of dimension n with F -structure. Choose an algebraic
closure L̄0 of L0 and suppose everywhere below that any algebraic extension L of L0

is chosen inside L̄0 and is provided with the induced F -structure {Lc i | 0 � i � n}.
For any finite normal extension E of L, set ΓE/L = Gal(E/L(i)), where L(i)

is the maximal purely non-separable extension of L in E. Notice that ΓE/L is
identified also with the Galois group of the maximal separable extension E(s) of L
in E, cf. [Jac], n.8.7. With the above agreement use the induced F -structure on
E to introduce the group Γ̃E/L := ΓE/LEc,n−1 . Clearly, there is a natural exact
sequence

1 −→ Γ̃E/L −→ ΓE/L −→ ΓEc,n−1/Lc,n−1 −→ 1.

Let Jn = {j ∈ Qn | j � 0̄n}, where Qn is provided with the lexicographical
ordering. Consider a finite extension M ′ of Ec,n−1 in L̄0 such that the induced
F -structure {Ẽc,i | 1 � i � n} of Ẽ := M ′E is standard, cf. Prop. 1. Then
any system of local parameters t1, . . . , tn−1 of Ẽc,n−1 = M ′ can be extended to
a system of local parameters t1, . . . , tn−1, θ of Ẽ = EM ′. Let L̃ = LM ′. Then
the extension of 1-dimensional complete discrete valuation fields Ẽ(n−1)/L̃(n−1) is
totally ramified and θ mod m

(n−1)
eE

is uniformizing element of Ẽ(n−1). This implies

that t1, . . . , tn−1, N eE/eLθ is a system of local parameters of L̃ and we obtain very
important property of monogeneity O

eE = O
eL[θ].

Remark. Notice that if M ′
1 is any finite extension of M1 and Ẽ1 = ẼM ′

1 and
L̃1 = L̃M ′

1 then we still have the monogeneity property O
eE1

= O
eL1

[θ]. This follows
easily from Remark in n.2.

Let vE be the valuation of rank n on E from Prop.3. Use the natural identifica-
tion Γ̃E/L = Γ

eE/eL to set for any g ∈ Γ̃E/L,

ı̃E/L(g) = vE(gθ − θ) − vE(θ).
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Then ı̃E/L(g) ∈ Jn ∪{∞} does not depend on the above special choices of the aux-
iliary field M ′ and the generator θ (but it definitely depends on the corresponding
F -structure on L). For any j ∈ Jn, set

Γ̃E/L,j = {g ∈ Γ̃E/L | ı̃E/L(g) � j}.

This is a decreasing filtration of Γ̃E/L by its normal subgroups, which is parametrized
by elements of Jn. Define the auxiliary Herbrand function ϕ̃E/L : Jn −→ Jn by the
relation

ϕ̃E/L(j) = ē−1
E/L

∫ j

0̄n

|Γ̃E/L,j| d j.

The value of this integral coincides with that of the corresponding integral sum
taken for the partition 0̄n � j1 < · · · < js � j where all breaking points j1, . . . , js

are the indices of jumps of the ramification filtration {Γ̃E/L,j} between 0̄n and j.
This implies for any j ∈ Jn, that

ϕ̃E/L(j) = ē−1
E/L

∑
g∈eΓE/L

min{ı̃E/L(g), j}.

Suppose a subfield F of E is normal over L. With the above notation we have
a tower of normal extensions Ẽ ⊃ F̃ := FM ′ ⊃ L̃. Consider the natural projection
π : Γ̃E/L −→ Γ̃F/L := Γ

eF/eL. Then Kerπ = Γ
eE/ eF = Γ̃E/F .

Clearly, for any δ ∈ Γ̃E/F , it holds ı̃E/L(δ) = ı̃E/F (δ) and, therefore, one has for
all j, Γ̃E/F,j = Γ̃E/F ∩ Γ̃E/L,j.

Notice that the extension of penultimate residue fields Ẽ(n−1)/F̃ (n−1) is totally
ramified, so t1, . . . , tn−1, N eE/ eF θ is a system of local parameters of F̃ , we still have
the monogeneity property O

eF = O
eL[N

eE/ eF θ], and we can introduce for all j ∈ Jn,

the subgroups Γ̃F/L,j .

Proposition 4. For any j ∈ Jn, π(Γ̃E/L,j) = Γ̃F/L,ϕ̃E/F (j).

Proof. We follow arguments from the proof of corresponding 1-dimensional property
from [AN], Ch.1.

Clearly, we have ω ∈ π(Γ̃E/L,j) ⇔ j � d(ω) := max{ı̃E/L(γ) | π(γ) = ω} and
ω ∈ Γ̃F/L,ϕ̃E/F (j) ⇔ ϕ̃E/F (j) � ı̃F/L(ω). So, it is sufficient to prove that

ϕ̃E/F (d(ω)) = ı̃F/L(ω).

Suppose γ0 ∈ Γ̃E/L is such that π(γ0) = ω and ı̃E/L(γ0) = d(ω). For any
δ ∈ Γ̃E/F , we have

ı̃E/L(γ0δ) = min{ı̃E/L(δ), d(ω)}. (4)

Indeed,
ı̃E/L(γ0δ) = vE((γ0δ)θ − θ) − vE(θ) �

min{vE(γ0(δθ − θ)), vE(γ0θ − θ)} − vE(θ) = min{ı̃E/L(δ), ı̃E/L(γ0)},



8 VICTOR ABRASHKIN

and this inequality becomes the equality if ı̃E/L(δ) < ı̃E/L(γ0). On the other hand,
if ı̃E/L(δ) � ı̃E/L(γ0), then

d(ω) � ı̃E/L(γ0δ) � min{ı̃E/L(δ), ı̃E/L(γ0)} = ı̃E/L(γ0) = d(ω)

and the equality (4) still holds. So,

ϕ̃E/F (d(ω)) = ē−1
E/F

∑
δ∈eΓE/F

min{ı̃E/F (δ), d(ω)} = ē−1
E/F

∑
γ∈eΓE/F

π(γ)=ω

ı̃E/L(γ)

(notice that ı̃E/F (δ) = ı̃E/L(δ)) and our proposition will be implied by the following
lemma.

Lemma. For any ω ∈ Γ̃E/L, it holds

ēE/F ı̃F/L(ω) =
∑

γ∈eΓE/L

π(γ)=ω

ı̃E/L(γ).

Proof. As earlier, we have O
eE = O

eL[θ] and O
eF = O

eL[θ′], where θ′ = N
eE/ eF (θ). Let

f(X) = Xm + a1X
m−1 + · · · + am ∈ O

eF [X ]

be the minimal monic polynomial of θ over F̃ . Consider

(ωf)(X) = Xm + ω(a1)Xm−1 + · · · + ω(am) ∈ O
eF [X ].

Clearly, am = (−1)mθ′, ı̃F/L(ω) + vF (θ′) = vF (ωam − am) < vF ((ωan − an)θm−n)
for all 1 � n < m, and therefore,

vE((ωf)(θ) − f(θ)) = ēE/F vF ((ωf)(θ) − f(θ)) = ēE/F (̃ıF/L(ω) + vF (θ′)).

On the other hand, the equality

(ωf)(θ) − f(θ) =
∏

γ∈eΓE/L

π(γ)=ω

(θ − γθ)

implies
vE((ωf)(θ) − f(θ)) =

∑
γ∈eΓE/L

π(γ)=ω

(̃ıE/L(γ) + vE(θ))

and it remains to notice that ēE/F vF (θ′) = vE(θ′) = [Ẽ : F̃ ]vE(θ).

Proposition 5. For any j ∈ Jn, it holds

ϕ̃E/L(j) = ϕ̃F/L(ϕ̃E/F (j)). (5)

Proof. The both functions are piecewise linear functions taking the same value 0̄n

in 0̄n. Notice that Prop.4 gives for any j ∈ Jn, the following natural exact sequence
of ramification subgroups

1 −→ Γ̃E/F,j −→ Γ̃E/L,j −→ Γ̃F/L,ϕ̃E/F (j) −→ 1.

Therefore, |Γ̃E/L,j| = |Γ̃E/F,j||Γ̃F/L,ϕ̃E/F (j)|. This relation implies the equality of
derivatives of the both sides of (5) in all j except a finite number of edge points
coming from jumps of the corresponding ramification filtrations. The proposition
is proved.
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5. Ramification filtration of ΓL

As earlier, let L be an n-dimensional local field inside L̄0 provided with induced
F -structure {Lc i | 1 � i � n}. Denote by Lsep the separable closure of L in L̄0

and set ΓL = Gal(Lsep/L). Consider the set of indices J(n) = J0

∐
J1 · · ·

∐
Jn,

where as earlier Ji = {j ∈ Qi | j � 0̄i ∈ Qi} for all 1 � i � n and J0 = {c},
where c is just a symbol. The set J(n) is provided with the ordering coming from
lexicographical orderings inside each of its component Js, 1 � s � n, and by setting
that for 0 � s1 < s � n, every element of Js1 is less than any element of Js. We are
going to define the ramification filtration {Γ(j)}j∈J(n) of the absolute Galois group
ΓL.

Consider a finite Galois extension E/L with the induced F -structure
{Ec i | 1 � i � n}. Then for all 1 � i � n, Ec i/Lc i is a finite Galois exten-
sion of i-dimensional local fields provided with induced compatible F -structures.
Besides, for all 1 � i � n, we have the natural exact sequences

1 −→ Γ̃Ec i/Lc i
−→ ΓEc i/Lc i

πi−→ ΓEc,i−1/Lc,i−1 −→ 1.

Let vE be the valuation of rank n on E from Prop.3. Then vE |Ec i = vEc i is
also the valuation of rank i on Ec i from Prop.3 whilst Qi being identified with
Qi ⊕ 0̄n−i ⊂ Qn.

Let j ∈ J(n). If j = c ∈ J0 we set ΓE/L,c = ΓE/L. Suppose that j ∈ Ji with
1 � i � n. Consider the subgroup Γ̃Ec i/Lc i,j of ΓEc i/Lc i

from n.4 and denote
by ΓE/L,j its preimage with respect to the composition of all projections πs with
s = i + 1, . . . , n. It is easy to see that {ΓE/L,j}j∈J(n) is a decreasing filtration by
normal subgroups of ΓE/L. This completes the definition of ramification filtration
of the group ΓE/L in lower numbering.

Define the Herbrand function ϕE/L : J(n) −→ J(n) as follows. For c ∈ J0, set
ϕE/L(c) = c. For 1 � i � n and j ∈ Ji ⊂ J(n), set ϕE/L(j) = ϕ̃Ec i/Lc i

(j).
Clearly, ϕE/L is a bijection of J(n) such that ϕE/L(Ji) = Ji for all 0 � i � n.

Prop.4 implies obviously the following property.

Proposition 6. Let E ⊃ F ⊃ L be a tower of finite Galois extensions provided
with compatible F -structures and let π be a natural epimorphism from ΓE/L to
ΓF/L. Then for any j ∈ J(n),
a) π(ΓE/L,j) = ΓF/L,ϕE/F (j);
b) ϕE/L(j) = ϕF/L

(
ϕE/F (j)

)
.

As usually, introduce the upper numbering of the ramification filtration of ΓE/L

by setting

ΓE/L,j = Γ(ϕE/L(j))
E/L

for all j ∈ J(n). By the above Prop.6 the ramification filtration in upper number-
ing behaves well in the projective system of all finite Galois extensions E/L with
compatible F -structures and we can introduce for all j ∈ J(n), the ramification
subgroups

Γ(j)
L = lim←−

E⊃L

Γ(j)
E/L

of the absolute Galois group ΓL.
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Notice that if H is an open subgroup of ΓL and E = LH
sep, then the decreasing

sequence of subgroups

ΓL ⊃ Γ(0)
L H ⊃ Γ(0,0)

L H ⊃ · · · ⊃ Γ(0̄n)
L H ⊃ H

corresponds to the tower of algebraic extensions

L ⊂ LEc 0 ⊂ LEc 1 ⊂ · · · ⊂ LEc,n−1 ⊂ E.

In particular, if ēE/L = (e1, . . . , en), then e1 = (Γ(0)
L H : Γ(0,0)

L H), . . . , en =
(Γ(0̄n)

L H : H), i.e. the ramification filtration contains all information about the
vector ēE/L.

Similarly to the classical 1-dimensional case the composition property from
Prop. 6b) allows to extend the definition of Herbrand’s function ϕE/L to the
case of all not necessarily normal finite extensions E/L of n-dimensional local fields
with induced F -structures. Equivalently, the Herbrand function can be introduced
directly (cf. e.g. [De] for 1-dimensional case): it will be sufficient to replace in
all the above constructions the group Γ̃E/L by an appropriate subset ĨE/L of L-
isomorphic embeddings of E into L̄0. Then the Herbrand function is a piece-wise
linear function on J(n) and its “edge points” correspond to the jumps of the corre-
sponding filtration {IE/L,j}j∈J(n). The above definitions and formal computations
with Herbrand’s functions imply the following proposition.

Proposition 7. Suppose E is a finite extension of an n-dimensional local field L
and let ψE/L be the inverse Herbrand function. Then

a) for any j ∈ J(n), Γ(ψE/L(j))

E = Γ(j)
L ∩ ΓE;

b) if j ∈ Ji with 1 � i � n, then

ψE/L(j) = ēE/L,�i

∫ j

0̄i

(
Γ(j)

L Γ(0̄i)
E : Γ(0̄i)

E

)−1

d j (6)

(if ēE/L = (e1, . . . , en) then ēE/L,�i := (e1, . . . , ei)).

Proof. We can assume that j ∈ Jn.
Let E1 be any finite Galois extension of L containing E. Then for any j ∈ Jn,

ψE1/E

(
ψE/L(j)

)
= ψE1/L(j) and, therefore,

Γ(ψE/L(j))
E1/E = ΓE1/E,ψE1/L(j) = ΓE1/L,ψE1/L(j) ∩ ΓE1/E = Γ(j)

E1/L ∩ ΓE1/E .

Taking the projective limit on E1 we obtain the property a).
In order to prove b) notice that(

Γ(j)
L Γ(0̄n)

E : Γ(0̄n)
E

)
=

(
Γ(j)

L : Γ(j)
L ∩ Γ(0̄n)

E1

)(
Γ(j)

L ∩ Γ(0̄n)
E : Γ(j)

L ∩ Γ(0̄n)
E1

)−1

,

where the first factor equals |Γ(j)
E1/L| = |ΓE1/L,ψE1/L(j)| and the second factor equals(

Γ(ψE/L(j))

E : Γ(ψE/L(j))

E ∩ Γ(0̄n)
E1

)−1

= |ΓE1/E,ψE1/L(j)|−1.

So, the derivative of the right-hand side in (6) equals

ēE1/L|ΓE1/L,ψE1/L(j)|−1ē−1
E1/E |ΓE1/E,ψE1/L(j)| =

ϕ′
E1/L

(
ψE1/L(j)

)−1
ϕ′

E1/E

(
ψE1/L(j)

)
= ψ′

E1/L(j)ψ′
E1/E

(
ψE/L(j)

)−1 = ψ′
E/L(j).

The proposition is proved.

Notice that the left-continuity property of the ramification filtration implies
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Proposition 8. For any finite extension E/L of n-dimensional local fields, there
is a maximal j(E/L) ∈ J(n), such that Γ(j)

E/L acts non-rivially on E if and only if
j � j(E/L).

One must be a bit careful about the definition of edge points in 0̄i ∈ Ji for
1 � i � n. They should correspond to tamely ramified sub-extensions. Anyway,
if E/L is a p-extension, then such sub-extensions doesn’t exist, and we have the
following important property.

Proposition 9. If E/L is a p-extension, then all edge points of the Herbrand
function correspond to the jumps of the ramification filtration, and the point
(ϕ−1

E/L(j(E/L)), j(E/L)) is the last edge point of ϕE/L.

In the paper [Ab5] the definition of ramification filtration was given in slightly
different terms: when giving the definition of ramification subgroups Γ̃E/L,j from
n.3 we used the extension of a chosen from the very beginning valuation v of the
basic field L0 instead of the canonical valuation vE . Actually, if v = vL then the
both definitions of ramification filtration for the Galois group ΓL coincide. So, the
main result from [Ab5] gives an explicit description of the ramification filtration of
the groups ΓL/ΓpM

L C3(ΓL), where M � 1, C3(ΓL) is the subgroup of commutators
of order � 3 and L is a 2-dimensional local field of characteristic p provided with
a standard F -structure. This result admits a direct generalization to the case of
n-dimensional local fields and plays a crucial role in the proof of a local analogue
of the Grothendieck Conjecture, cf. n.6 below.

As usually, let L be an n-dimensional local field with the subfield of i-dimensional
constants Lc i and the i-th residue field L(i), 0 � i � n. Then there are natural
group epimorphisms πi : ΓL −→ ΓLc i and π(i) : ΓL −→ ΓL(i) . By the use of the
relation between vL, vLc i and vL(i) we obtain the following property.

Proposition 10.
a) If j ∈ Jl ⊂ J(n) then πi(Γ

(j)
L ) = e if l > i and πi(Γ

(j)
L ) = Γ(j)

Lc i
if l � i;

b) If L is provided with a standard F -structure and j ∈ J(i) then π(i)(Γ(ξ(j))
L ) =

Γ(j)

L(i) , where ξ : J(i) → J(n) is such that for 0 � s � i and j ∈ Js, it holds
ξ(j) = 0̄n−i × j ∈ Js+n−i.

6. A local analogue of the Grothendieck Conjecture

6.1. The category FPG(n), n ∈ N. The objects of this category are profinite
groups G with decreasing filtration by its normal closed subgroups {G(j)}j∈J(n).

Suppose H is an open subgroup of G. Define “the vector ramification in-
dex” ēGH = (e1, . . . , en) ∈ Zn, where e1 = (G(0)H : G(0,0)H), . . . , en−1 =
(G(0̄n−1)H : G(0̄n)H), en = (G(0̄n)H : H).

Define also “the inverse Herbrand function” ψGH : J(n) −→ J(n) by setting
ψGH(c) = c and

ψGH(j) = ēGH,�i

∫ j

0̄i

(
G(j)H(0̄i) : H(0̄i)

)−1

d j,

where j ∈ Ji, 1 � i � n, H(0̄i) := H ∩ G(0̄i) and, as earlier, the vector ēGH,�i ∈ Zi

consists of the first i coordinates of the vector ēGH .
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If G1, G2 are objects of the category FPG(n), then the set of morphisms
HomFPG(n)(G1, G2) consists of open embeddings i : G1 → G2 such that for any
j ∈ J(n), it holds

i
(
G

(ψG2i(G1)(j))

1

)
= i(G1) ∩ G

(j)
2 . (7)

Following arguments from [Ab4], n.1.2, one can verify that the composition of any 2
morphisms in FPG(n) is again a morphism in FPG(n) (what is actually equivalent
to the composition property of the above inverse Herbrand function). Therefore,
FPG(n) is a category.

Define also the category FPGP(n). Its objects are objects G of the category
FPG(n) provided with additional structure given by some topology on the maximal
abelian quotient Hab of every open subgroup H of G. These topologies must be
compatible with natural maps Hab

1 −→ Hab, where H1 is another open subgroup
of G such that H1 ⊂ H . Morphisms in FPGP(n) are morphisms π : G1 → G2

from FPG(n) such that for any open subgroup H of G1 the corresponding map
πab

H : Hab → π(H)ab is continuous with respect to the corresponding topologies of
these abelian subquotients.

6.2. The category DVFp(n). Choose a basic n-dimensional local field L0 =
Fp((tn)) . . . ((t1)) with standard F -structure {L0i | 0 � i � n} associated to the
system of local parameters t1, . . . , tn. Let L̄0 be an algebraic closure of L0. The
direct limit of P -topologies of all finite extensions of L0 gives the P -topological
structure on L̄0. Denote by C(n)p the completion of L̄0 with respect to its first
valuation v1

0 = pr1(vL0). The P -topological structure on C(n)p appears as v1
0-adic

topology associated with P -topology of L̄0. For 0 � i � n, denote by C(i)p the
completion of the algebraic closure of L0i in C(n)p. Notice that we have the induced
P -topological structures on the fields F̄p = C(0)p ⊂ C(1)p ⊂ · · · ⊂ C(n)p.

Objects of the category DVFp(n) are finite extensions K of L0 in C(n)p. Any
such field K is provided with induced F -structure {Kc i | 0 � i � n}, where Kc i =
K ∩ C(i)p. Notice that C(n)ΓK

p = R(K) — the radical closure (=the completion of
the maximal purely non-separable extension) of K in C(n)p. Similarly, for 0 � i � n,
it holds that C(i)ΓK

p = R(Kc i).
Suppose K, L ∈ DVFp(n). Then the corresponding set of morphisms

HomDVF(K, L) in the category DVFp(n) consists of all P -continuous field mor-
phisms ϕ : C(n)p → C(n)p such that for 1 � i � n,
a) ϕ(C(i)p) = C(i)p;
b) ϕ(Kc i) ⊂ Lc iR(Lc,i−1) — the closure of the composite of Lc i and R(Lc,i−1) in
C(n)p;
c) Lc iR(Lc,i−1) is separable over ϕ (Kc iR(Kc,i−1)).

Notice that for all i, Kc i, Lc i ∈ DVFp(i) and ϕ|Kc i ∈ HomDVF(Kc i, Lc i).
If γ : K −→ L is a separable field embedding then it induces a morphism in

DVFp(n), which we denote by the same symbol γ.
It is easy to see that ϕ ∈ HomDVF(K, L) is isomorphism if and only if LR(Lc,n−1) =

ϕ(KR(Kc,n−1)). This implies that Lc iR(Lc,i−1) = ϕ(Kc iR(Kc,i−1)), i.e. ϕ|Kc i is
an isomorphism in DVFp(i) and R(Lc i) = ϕ(R(Kc i)) for all 1 � i � n.

Proposition 11. Any ϕ ∈ HomDVF(K, L) is uniquely decomposed into the com-
position of a field embedding and an isomorphism.
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Proof. The proof can be obtained by the use of the following lemma, which is a
consequence of Krasner’s Lemma and results from [Jac], n.8.7.

Lemma. Suppose K ′ is a closed subfield of K ∈ DVFp(n). Then for any finite
separable extension M̃ of KR(K ′) of some degree d, there is a unique separable
extension M of K of degree d such that M̃ = MR(K ′). In addition, if M ′ is
the algebraic closure of K ′ in M then R(M ′) = M ′R(K ′) and, therefore, M̃ =
MR(M ′).

6.3. The category DVF0p(n). Choose a basic n-dimensional local field L0 =
Qp{{tn}} . . . {{t2}} with the standard F -structure {L0i | 0 � i � n} associated to
the system of local parameters p = t1, t2, . . . , tn. Let L̄0 be an algebraic closure
of L0. Denote by C(n)p the completion of L̄0 with respect to its first valuation.
For 0 � i � n, denote by C(i)p the completion of the algebraic closure of L0i in
C(n)p. As earlier, the P -topological structure of finite extensions of L0 induces
P -topological structures on the fields Q̂p,ur = C(0)p ⊂ C(1)p ⊂ · · · ⊂ C(n)p.

The objects of the category DVF0p(n) are finite extensions K of L0 in C(n)p.
Any such field K is provided with the induced F -structure {Kc i | 0 � i � n},
where Kc i = K ∩ C(i)p. Notice that C(n)ΓK

p = K cf. [Hy] and, similarly, for all
1 � i � n, C(i)ΓK

p = Kc i.
Suppose K, L ∈ DVF0p(n). Then the corresponding set of morphisms

HomDVF(K, L) in the category DVF0p(n) consists of all P -continuous field mor-
phisms ϕ : C(n)p → C(n)p such that for 1 � i � n,
a) ϕ(C(i)p) = C(i)p;
b) ϕ(Kc i) ⊂ Lc i.

6.4. The functor RFp. Let K ∈ DVFp(n). Then K is provided with canonical
F -structure and, therefore, RFp(K) := ΓK = Gal(Ksep/K), where Ksep is the
separable closure of K in C(n)p, being provided with the corresponding ramification
filtration becomes an object of the category FPG(n).

Let L ∈ DVFp(n) and ϕ ∈ HomDVF(K, L). By Lemma from n.6.2 the categories
of separable extensions of L and of K are equivalent to the categories of separable
extensions of LR(Lc,n−1) and, respectively, of KR(Kc,n−1). Therefore, the separa-
ble field embedding ϕ : KR(Kc,n−1) −→ LR(Lc,n−1) gives rise to the embedding ϕ̂
of the first category into the second and we obtain an open embedding of topological
groups ϕ∗ : ΓL −→ ΓK .

Proposition 12. ϕ∗ ∈ HomFPG(ΓL, ΓK).

Proof. If ϕ comes from a separable field embedding of K into L then our proposition
follows from Prop.7. Therefore, by Prop.11 we can assume that ϕ is isomorphism
and we must prove that for any j ∈ J(n), it holds ϕ∗(Γ(j)

L ) = Γ(j)
K .

Suppose that L′ is a finite Galois extension of L, then K ′ := ϕ̂(L′) is Galois
over K and we obtain induced group isomorphism ϕ∗ : ΓL′/L −→ ΓK′/K . We must
verify that for any j ∈ J(n),

ϕ∗(ΓL′/L,j) = ΓK′/K,j . (8)

The compatibility of ϕ with F -structures on K and L implies that for all 0 � i �
n, ϕ∗ is compatible with natural projections ΓL′/L −→ ΓL′

c i/Lc i
and ΓK′/K −→
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ΓK′
c i/Kc i

, and induces group isomorphisms

ϕ∗
c i : ΓL′

c i/Lc i
−→ ΓK′

c i/Kc i
. (9)

We can assume by induction that ϕ∗
c i are compatible with ramification filtration

for all i < n and, therefore, it is sufficient to prove (8) only for all j ∈ Jn. Notice
also that (9) implies that ē(L′/L) = ē(K ′/K).

Choose a finite extension M of L′
c,n−1 such that if L̃′ = L′M , L̃ = LM , K̃ = ϕ̂(L̃)

and K̃ ′ = ϕ̂(L̃′), then:
a) there is L̃′

1 with standard F -structure such that L′ ⊂ L̃′
1 ⊂ L̃′;

b) there is K̃ ′
1 with standard F -structure such that K ′ ⊂ K̃ ′

1 ⊂ K̃ ′.
Then there are θL ∈ L̃′

1 and θK ∈ K̃ ′
1 such that O

eL′ = O
eL[θL] and O

eK′ =
O

eK [θK ], cf. Remark in n.4. Therefore,

O
eL′R(eL′

c,n−1)
= O

eLR(eLc,n−1)
[θL] = O

eLR(eLc,n−1)
[ϕ(θK)]. (10)

Lemma. If vL′ and vK′ are valuations of rank n from Prop.3, then ϕ∗vL′ = vK′ ,
i.e. for any z ∈ C(n)p, vK′(z) = vL′(ϕ(z)).

Proof of lemma. Because ē(L̃′/L′) = ē(K̃ ′/K ′), it will be sufficient to prove that
ϕ∗v

eL′ = v
eK′ . By induction we can assume also that ϕ∗v

eL′ and v
eK′ coincide when

being restricted to K̃ ′
c,n−1.

Notice, that any system of local parameters of K̃ ′
c,n−1 being completed by θK

gives a system of local parameters of K̃ ′. So, we must prove only that v
eL′(ϕ(θK)) =

v
eK′(θK).
From the definition of valuations v

eL′ and v
eK′ it follows v

eL′(θL) = ē−1
eL′/eL′

1
v

eL′
1
(θL) =

(0, . . . , 0, 1) and, similarly, v
eK′(θK) = (0, . . . , 0, 1), i.e. v

eK′(θK) = v
eL′(θL).

It remains only to note that θK and θL appear as lifts of uniformizing elements
of the (n − 1)-th residue fields of the fields L̃′R(L̃′

c,n−1) and K̃ ′R(K̃ ′
c,n−1), which

are isomorphic under ϕ. Therefore, v
eL′(ϕ(θK)) = v

eL′(θL).
The lemma is proved.

From (10) it follows that we can use ϕ(θK) instead of θL to compute rami-
fication invariants of ΓL′/L. So, for any τ ∈ ΓL′/L = Γ

eL′/eL, it holds iL′/L(τ) =
vL′(τ(ϕ(θK ))−ϕ(θK ))−vL′(ϕ(θK)) = vK′(ϕ∗(τ)θK −θK)−vK′(θK) = iK′/K(ϕ∗τ).
The proposition is proved.

Now we can set RFp(ϕ) = ϕ∗ to obtain the functor RFp : DVFp(n) −→ FPG(n).
Actually, if K ∈ DVFp(n) then ΓK can be considered naturally as an object of the
category FPGP(n). Indeed, if H ⊂ ΓK is an open subgroup then H = ΓE where
[E : K] < ∞ and Hab is provided with the P -topological structure coming from
P -topology on E by Witt-Artin-Schreier duality. Clearly, RFp(ϕ) is a morphism of
the category FPGP(n).

The functor RFp is faithful. This follows from the faithfulness of action of the
group of all P -continuous field automorphisms of KR(Kc,n−1) on the Galois group
of the maximal abelian extension of K of exponent p. The proof is based on a
suitable version of Artin-Schreier theory. Actually, we have the following local
analogue of the Grothendieck Conjecture in characteristic p:
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Theorem 1. The functor RFp : DVFp(n) −→ FPGP(n) is fully faithful.

The above formalism of ramification theory reduces the above statement to the
following result.

Theorem 1’. Suppose that K is an n-dimensional local field of characteristic p, K ′

is its subfield of (n−1)-dimensional constants and {Γ(j)
K }j∈Jn is the “n-dimensional

part of ramification filtration” of ΓK . Then any continuous group automorphism
π : ΓK → ΓK such that
a) for any j ∈ Jn, π(Γ(j)

K ) = Γ(j)
K ;

b) for any open subgroup H of ΓK , π|Hab is P -continuous,
is induced by a P -continuous field automorphism ϕ of KR(K ′) such that
ϕ(R(K ′)) = R(K ′).

The proof follows the strategy from the proof of the corresponding 1-dimensional
property from [Ab4] and will appear in [Ab6] for the case of 2-dimensional local field
K. We use the explicit description of ramification filtration of the maximal quotient
of the Galois group of the maximal p-extension ΓK(p) of nilpotence class 2. Then
we prove that any its group automorphism, which is compatible with ramification
filtration and P -continuous on ΓK(p)ab, must satisfy very serious restrictions.

6.5. The functor RF0. Let K ∈ DVF0p(n). As earlier, K is provided with the
canonical F -structure and RF0(K) := ΓK is an object of the category FPGP(n).
If L ∈ DVF0p(n) and ϕ ∈ HomDVF(K, L) then ϕ(K) ⊂ L is a finite extension

and the corresponding group embedding ΓL ⊂ Γϕ(K)
ϕ∗
−→ ΓK gives the morphism

RF0(ϕ) ∈ HomFPGP(ΓL, ΓK). Again RF0 is a functor and we have

Theorem 2. The functor RF0 : DVF0p(n) −→ FPGP(n) is fully faithful.

The proof follows again the strategy from [Ab4]. First of all, we adjust the
construction of the field-of-norms functor to the case of higher dimensional local
fields. Then we apply it to deduce Theorem 2 from Theorem 1.
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