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Abstract

In this paper, we examine the complex sine-Gordon model in the presence of a

boundary, and derive boundary conditions that preserve integrability. We present

soliton and breather solutions, investigate the scattering of particles and solitons

off the boundary and examine the existence of classical solutions corresponding to

boundary bound states.

1 Introduction

Two dimensional integrable field theories have become an area of extensive study. Their
rich underlying mathematical structure allows for their exact solution. This in turn pro-
vides valuable information about the wide range of physical phenomena which integrable
field theories can be used to model, and more generally about non-perturbative field the-
ory. A number of models have been studied in the presence of a boundary. This has led
to results for both the classical and quantum scattering of objects, like particles and soli-
tons, off the boundary. In particular Toda models [1], the sine-Gordon model [2], and the
sinh-Gordon model[3] amongst others have been studied on the half-line.

In this paper we study the classical two dimensional complex sine-Gordon (CSG) model
in the presence of a boundary. The model in the bulk is described by the following La-
grangian

LCSG =
1

2

∂u∂̄u∗ + ∂̄u∂u∗

1 − ξuu∗ − 4βuu∗ , (1)
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where ∂ = ∂/∂z, ∂̄ = ∂/∂z̄, z = (t−x)/2, z̄ = (t+x)/2 . The field u is complex, β is a real
coupling constant and the parameter ξ can be changed by rescaling u and will henceforth
be set to one. The Lagrangian is invariant under global phase rotations of the field u and
this leads to a conserved U(1) charge.

As such, the complex sine-Gordon model comprises an integrable generalisation of the
sine-Gordon theory, with an internal U(1) degree of freedom. It was first introduced
independently by Lund and Regge as a model of relativistic vortices in a superfluid [4, 6]
and by Pohlmeyer in a dimensional reduction of a O(4) non-linear σ-model [5]. It belongs
to a class of generalisations of the sine-Gordon theory, which in the literature is referred
to as homogeneous sine-Gordon theories. The latter appear as G/U(1) gauged Wess-
Zumino-Witten models perturbed by a potential. These generalisations describe integrable
perturbations of c > 1 conformal field theories and have been studied in the bulk in [7, 8].
The CSG model appears as the simplest case where G = SU(2) and describes integrable
perturbations of Zk parafermions by the first thermal operator [12, 19]. The quantum case
was also studied by Dorey and Hollowood in [18], and Maillet and de Vega in [16].

The CSG model has found many applications in different fields of physics, from general
relativity [9], to the description of propagating optical pulses in a non-linear medium [10].
In the latter, the CSG theory was used as a generalisation of the pioneering work of McCall
and Hahn [11], where the simple sine-Gordon (SG) was used as a field theory description.
The CSG theory provides for a more realistic description of optical pulses incorporating
effects like frequency detuning and modulation, while at the same time the theory can be
extended beyond the description of two-level atom systems to multi-level atom systems.

In the next section of this paper some aspects of the theory in the bulk will be reviewed.
Classical solutions, including particles, solitons and breathers will be presented for the
model in the bulk clarifying previous treatments. Unlike the sine-Gordon model where the
soliton solutions are topological in nature, the CSG model solitons which carry a Nöether
U(1) charge, have no obvious topological charge associated with them. This follows from
the trivial vacuum structure of the model for β > 0, although as we shall explain chargeless
solitons do carry the topological charge of the sine-Gordon model in a subtle way. We also
discuss the existence of breathers and find a class of charged breather solutions.

In section 3, we consider the effect of introducing a boundary and suitable boundary
conditions are found which preserve the integrability of the model.In order to do this we
explicitly construct low-spin conserved charges by abelianising the Lax pair description
of the model, and ensure that these are conserved on the half-line by imposing boundary
conditions. We find a natural generalisation of the boundary conditions that Ghoshal and
Zamolodchikov [20] introduced for the sine-Gordon theory.

The final section in the main body of the paper deals with the scattering of particles
and solitons. We find the corresponding solutions and use them to calculate the classical
time-delay. We also find solutions corresponding to boundary bound states. The paper
concludes with some general remarks about the results presented, as well as a few open
questions that are related with some interesting properties of the model.
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2 Classical aspects of the CSG theory

In this section we shall review some important features of the CSG theory and establish
our notation. We present the equation of motion, the relation of the model with the sine-
Gordon theory and review the mathematical background in which the CSG model can be
regarded as a perturbed gauged Wess-Zumino-Witten model. Moreover vacuum, soliton
and multi-soliton solutions are written down in a compact form. Finally, we clarify the
existing confusion concerning the existence of breathers within this model and present
explicit breather solutions.

2.1 Definition of the model

The Lagrangian of the model was presented in (1). We assume without loss of generality
ξ = 1 since the parameter can be dropped by rescaling the field variables. The equation
of motion that follows is

∂∂̄u +
u∗∂u∂̄u

1 − uu∗ + 4βu(1 − uu∗) = 0 . (2)

The relation between this model and sine-Gordon becomes obvious if we substitute

u = sin φ e2iη , (3)

with φ and η real fields. We use this notation here which gives a more standard connection
with the sine-Gordon theory but differs from previous treatments by φ → π

2
− φ. This

takes (1) to
L = ∂φ∂̄φ + 4 tan2 φ∂η∂̄η − 4β sin2 φ . (4)

This is essentially the form of the Lagrangian derived by Lund and Regge, and Pohlmeyer.
By taking the field η to be constant the sine-Gordon Lagrangian emerges. As was demon-
strated by Bakas [12] the theory can be reformulated in terms of a gauged WZW action.
The corresponding action principle can be written as

S = SgWZW + Spot . (5)

The action term SgWZW is the well known gauged WZW action

SWZW = − 1

4π

∫

Σ
dzdz̄ Tr(g−1∂gg−1∂̄g) − 1

12π

∫

B
Tr(g̃−1dg̃ ∧ g̃−1dg̃ ∧ g̃−1dg̃)

+
1

2π

∫
Tr(−W∂̄gg−1 + W̄g−1∂g + WgW̄g−1 − WW̄ ) . (6)

This action is defined in a three-dimensional manifold B whose boundary is our compact-
ified normal two-dimensional space Σ. The field g is an SU(2) group element and g̃ is the
extension of g to the three dimensional manifold. The last term introduces gauge fields W
and W̄ which act as Lagrange multipliers. The Spot term is

Spot =
β

2π

∫
Tr(gσ3g

−1σ3) . (7)
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This term breaks conformal invariance and thus gives rise to massive states. Varying the
action yields the CSG equations of motion which can be expressed in a zero curvature form
[13]

[∂ + (g−1∂g + g−1Wg + iβλσ3) , ∂̄ + (W̄ − i

λ
g−1σ3g) ] = 0 . (8)

From the variation of the gauge fields W and W̄ , two constraint equations arise

∂̄gg−1 − gW̄g−1 + W̄ = 0 ,

(9)

g−1∂g + g−1Wg − W = 0 ,

which are critical in order to make the identification with the CSG theory. The connexion
between the SU(2) matrix g and the complex field u of (2) is given by

g =

(
u −iv∗

−iv u∗

)
, (10)

where v = −
√

1 − uu∗e−iθ . The field variable θ should not be considered as an independent
field but rather as an auxiliary field that is properly defined up to a constant through the
constraint equations (9). In the gauge where W = W̄ = 0 , the constraint equations take
the form

∂θ = −i
u∗∂u − u∂u∗

2(1 − uu∗)
, ∂̄θ = −i

u∂̄u∗ − u∗∂̄u

2(1 − uu∗)
, (11)

whilst the equation of motion now becomes

[∂ − A, ∂̄ − Ā] = 0 , (12)

where

A = −(g−1∂g + iβλσ3) , Ā =
i

λ
g−1σ3g . (13)

This compact zero-curvature form of the equations of motion demonstrates the inte-
grability of the model and will prove useful when we come to consider Bäcklund transfor-
mations and conserved quantities in later sections.

2.2 Vacuum solutions in the bulk.

From (1) it is easy to see that the energy of the CSG model in the bulk is

Hbulk =
∫

dx

(
|∂0u|2 + |∂1u|2

1 − uu∗ + 4βuu∗
)

. (14)

The most suitable candidate for a vacuum, would be a constant value for the field u that
would force the kinetic term involving derivatives to vanish and at the same time minimize
the potential term. It is clear to see from (3) and (4) that for β > 0 the obvious choice is
u = 0, while for β < 0 the choice should be |u| = 1 if we insist that |u| ≤ 1 . The sign
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of the parameter β divides the theory into two sectors. In the matrix potential formalism,
both sectors are treated simultaneously as the diagonal and off-diagonal parts of the field
variable g. In this context the fields u and v are both solutions to the CSG equation each
derived for a specific choice of β, and each corresponding to a different vacuum . This is
because the two sectors are connected by a duality transform which interchanges the sign
of the coupling constant β [14] and simultaneously interchanges the role of u and v . That
is to say the theory is invariant under the change

g → g′ = iσ1g =

(
v iu∗

iu v∗

)
, β → −β, (15)

the latter representing a transform akin to the Krammers-Wannier duality of the Zn

parafermion theory [15]. Taking into account the invariance of the theory under this du-
ality transform, we shall concentrate in this paper on the β > 0 sector which corresponds
to the diagonal part of the matrix formalism. A suitable vacuum solution would be

gvac =

(
0 ie−iΩ

ieiΩ 0

)
. (16)

This selection is consistent with the choices appearing in the beginning of this section with
the diagonal β > 0 sector, corresponding to the u = 0 vacuum , while the off-diagonal
β < 0 to |v| = 1. It is noted that the apparent singular behaviour of the Lagrangian at
|u| = 1 does not appear as a problem embedded in the theory but is a direct consequence
of the fact that the gauge fields W, W̄ are ill defined at the specific point.

2.3 Spectrum of the model

The CSG model, like the sine-Gordon theory, possesses both particle and soliton solutions.
When small perturbations around the vacuum are considered

u = 0 + ǫ(x, t) , (17)

the theory becomes linear when higher order terms in ǫ are ignored

(∂2
0 − ∂2

1)ǫ(x, t) + m2ǫ(x, t) = 0, (18)

where m2 = 4β. The solution to the above equation is the familiar plane waves solution

ǫ(x, t) = e−iωt
(
Aeikx + Be−ikx

)
, (19)

where k and ω are related through

ω2 = k2 + m2. (20)

Different techniques have been used for the construction of soliton solutions like the
inverse scattering method [16] and the Hirota method [17]. However both methods yield
results that are both cumbersome and difficult to manipulate. The Bäcklund transforma-
tion for the CSG model provides a more elegant way to obtain soliton solutions and can
be written in terms of two matrix variables g and f [14]
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g−1∂g − f−1∂f − δβ
√
|β|

[g−1σ3f, σ3] = 0 , (21)

∂̄gg−1σ3 − σ3∂̄ff−1 +

√
|β|
δ

(gf−1σ3 − σ3gf−1) = 0 . (22)

It is easy to show that both f and g satisfy the CSG equation as well as the constraint
equation in the specific gauge choice. Taking f to be an already known solution, one can
generate a new solution through the equations presented above. One-soliton solutions can
be derived by applying the Bäcklund transformation on the vacuum solutions gvac of (16).
Each sector of the theory provides us with two sets of two first order differential equations
that can be integrated, in order to provide the one-soliton solutions. The diagonal elements
of g which correspond to the β > 0 sector give

∂0u −
√

β
(
δ ei(θ+Ω) − 1

δ
e−i(θ+Ω)

)
u
√

1 − uu∗ = 0 ,

(23)

∂1u +
√

β
(
δ ei(θ+Ω) +

1

δ
e−i(θ+Ω)

)
u
√

1 − uu∗ = 0 .

The one-soliton solution that emerges is

u =
cos(a) exp

(
2i
√

β sin(a) t−V x√
1−V 2

)

cosh
(
2
√

β cos(a) x−V t√
1−V 2

) , (24)

where V and a are real parameters associated with the velocity and charge of the soliton
respectively. This solution was originally derived by Getmanov [17] for the β > 0 case. In
addition an expression for the phase θ which appears in its dual field v, is also obtained

θ = −Ω − arctan

(
tan(a) coth

(
2
√

β cos(a)
x − V t√
1 − V 2

))
. (25)

Respectively for the off-diagonal elements that correspond to the β < 0 sector, the set of
equations is

∂0v −
√
|β| eiΩ

(
δ − 1

δ

)
(1 − vv∗) = 0

(26)

∂1v +
√
|β| eiΩ

(
δ +

1

δ

)
(1 − vv∗) = 0 ,

that finally produce a different solution

v = −eiΩ

(
cos(a) tanh

(
2
√
|β| cos(a)

x − V t√
1 − V 2

)
+ i sin(a)

)
, (27)

with Ω a real parameter associated with the vacuum of the theory. This is the solution
that was derived by Lund and Regge [4] when considering the β < 0 case.
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A two-soliton solution can be obtained through a non-linear superposition technique.
Starting from the vacuum of the theory and by the application of the Bäcklund trans-
formation twice, a set of parameters {δ1, δ2} is used respectively in each step. The same
procedure is followed again where the two parameters are used in the opposite order. By
demanding that the two results are equal, one ends up with an equation for the two-soliton
solution in matrix form

g2s = σ3 (δ1g2 − δ2g1) gvacσ3

(
δ1g

−1
1 − δ2g

−1
2

)−1
. (28)

The matrix field variables gk are of the general form of (10), with elements

uk =
cos (ak)Nk exp(2i

√
β sin (ak)Θk)

cosh
(
2
√

β cos (ak)Σk

) , (29)

vk = −eiΩ
(
cos (ak) tanh

(
2
√

β cos (ak)Σk

)
+ i sin (ak)

)
. (30)

The identification one must make is:

Σk =
1

2

(
δk +

1

δk

)
x +

1

2

(
δk −

1

δk

)
t , (31)

Θk =
1

2

(
δk +

1

δk

)
t +

1

2

(
δk −

1

δk

)
x , (32)

where Nk is a total phase. As expected g2s has the same general form of equation (10)

g2s =

(
u2s −iv∗

2s

−iv2s u∗
2s

)
. (33)

The two-soliton solution and its complex conjugate are given by the diagonal elements of
g2s

u2s =
(−δ1v

∗
2 + δ2v

∗
1 ) eiΩ (δ1u1 − δ2u2) + (−δ1u2 + δ2u1) e−iΩ (−δ1v1 + δ2v2)

δ1
2 + (−u∗

1u2 − u∗
2u1 − v ∗

1v2 − v ∗
2v1) δ2δ1 + δ2

2 , (34)

u∗
2s =

(−δ1v2 + δ2v1) e−iΩ (δ1u
∗
1 − δ2u

∗
2) + (−δ1u

∗
2 + δ2u

∗
1) eiΩ (−δ1v

∗
1 + δ2v

∗
2)

δ1
2 + (−u∗

1u2 − u∗
2u1 − v ∗

1v2 − v ∗
2v1) δ2δ1 + δ2

2 , (35)

while the off diagonal elements represent the dual field and its conjugate

v2s =
(−δ1u

∗
2

+ δ2u
∗
1
) eiΩ (δ1u1 − δ2u2) − (−δ1v2 + δ2v1) e−iΩ (−δ1v1 + δ2v2)

δ1
2 + (−u∗

1u2 − u∗
2u1 − v ∗

1v2 − v ∗
2v1) δ2δ1 + δ2

2 , (36)

v∗
2s =

(−δ1u2 + δ2u1) e−iΩ (δ1u
∗
1 − δ2u

∗
2) − (−δ1v

∗
2 + δ2v

∗
1) eiΩ (−δ1v

∗
1 + δ2v

∗
2)

δ1
2 + (−u∗

1u2 − u∗
2u1 − v ∗

1v2 − v ∗
2v1) δ2δ1 + δ2

2 . (37)

The expressions above represent two-soliton solutions to the equation of motion and are
related through the duality transformation of (15).

Multi-soliton solutions can also be obtained by following the same technique. Instead
of the vacuum solution, one can start from any given n-soliton solution Sn and add solitons
through the method described above, ending up with a Sn+2 solution. Nevertheless, multi-
soliton solutions for this model are quite large and their calculation is beyond the scope of
this paper.
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2.4 Soliton - Antisoliton duality

In this section we argue that soliton-soliton and soliton-antisoliton solutions presented
in the literature by previous treatments, do not represent distinct classes of solutions.
Charged solitons are non-topological solutions, therefore a distinction between a soliton
and an antisoliton is impossible. On the other hand chargeless solutions may be realised
as topological solitons and identified with the sine-Gordon solitons.

The sine-Gordon theory appears as the limit of the CSG model when the charge pa-
rameter a is set to zero. We can substitute in the equation of motion of (2)

u = sin φe2iη , (38)

where η is now a constant to recover the sine-Gordon model in the usual form

∂2
0φ − ∂2

1φ + 2β sin 2φ = 0 . (39)

The sine-Gordon theory has topological solitons (both kinks and antikinks) interpolating
between its degenerate vacuaa. In contrast the CSG theory has a single vacuum for β > 0,
and therefore its solitons are not topological in nature, but are stable because of integra-
bility alone. The topological nature is hidden within the mapping of (38) and one has to
be careful when trying to recover the sine-Gordon soliton as a limit of the CSG theory.
Nonetheless a subtle remnant of the topology survives the mapping to the complex sine-
Gordon theory. To see this consider how a SG soliton is mapped to CSG soliton. This is
shown in Fig.1.

�

SS��

�

X

II

SS

Figure 1: The φ and u solitons

Consider now how the potential term behaves as x increases for the single soliton
solution. As a function of u we can express the potential as

sin 2φ = 2 sin φ cosφ = ±2u
√

1 − uu∗ , (40)
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where η has been ignored as a total phase. Note that we should take the branch cut with
opposite signs on each side of the point φ = π

2
, u = 1. We shall see that the changing sign

of the branch cut for a chargeless soliton will be important when we come to consider the
theory with a boundary.

In some sense the topology of the chargeless u-soliton is embedded in the the branch cut
that appears at the singular point u = 1. The choice of branch corresponds to a different
vacuum for φ and therefore to a different topological charge.

However, when the charge parameter a is not zero, then the u-soliton does not reach
the sick point u = 1 and remains non-topological. In this case no real distinction can
be made between a soliton and an antisoliton. In the sine-Gordon case, the antikink
solution is derived from the kink by changing the sign of the parameter δ of the Bäcklund
transformation. This effectively corresponds to a parity and time reversal transformation
which finally produces an antikink solution. Examining (29) we see that in the CSG case
this change actually leads to the complex conjugate solution, by changing the sign of the
complex phase. The change of sign in both t and x, can be cancelled by taking the charge
parameter a → −a. It is thus clear that instead of changing the sign of δ, one could
effectively change the sign of a to derive an antisoliton. Since the soliton solution is a
smooth function in a, the antisoliton is not a distinct object but can be identified with the
soliton itself.

This also has an effect on the two-soliton solution. If we follow the same steps as in
the sine-Gordon two-soliton solution then the solution u2s of (34) corresponds to both a
soliton-soliton and a soliton-antisoliton solution depending on the choice of sign for the
Bäcklund parameter δ2. The parameter δ2 can be chosen in such a way as to describe one
of the following

δ1 = −(δ2)
−1 =

√
1 − V

1 + V
soliton-soliton scattering (41)

δ1 = (δ2)
−1 =

√
1 − V

1 + V
soliton-antisoliton scattering (42)

Here we have taken the two solitons to have equal and opposite velocity (In general this is
not the centre of mass since differently charged solitons have different masses, but it will
be convenient for our discussion when we introduce a boundary later on). Also for reasons
of simplicity we will refer to the soliton-soliton solution as uss ( δ2 = −1/δ1 ) and to the
soliton-antisoliton as usa (δ2 = 1/δ1).

However since no topological distinction exists between the soliton and antisoliton sec-
tor, it is possible to find a transformation of the parameters of the solution which effectively
acts as a change of sign for the parameter δ2. In fact, a set of transformations exists that
maps uss to usa but we restrict ourselves to the simplest cases.

Before introducing the transformation, we need to introduce arbitrary shifts in x, which
are crucial not only for this mapping but also later when we consider breathers and soliton
reflections. The shifts appear in exponentials, so it is more helpful to consider the shifts
in the following forms

Ki = exp

(
2
√

β cos ai

xi√
1 − V 2

)

9



Ji = exp

(
2i
√

β sin ai

V yi√
1 − V 2

+ iRi

)
; i = 1, 2 . (43)

The parameters Ki, Ji are directly related with both V and a and correspond to the ar-
bitrary initial positions in x, in the real (Σi) and imaginary phases (Θi) respectively, that
appear in the one-soliton solution. Specifically the parameter K represents a translation in
x, while the J parameter represents a phase shift in the internal U(1) space. For reasons of
simplicity, we include in the definition of J the total phase Nk = exp(iRk) which appears
in (29). Henceforth these parameters will be referred as phase shifts, since they are directly
related to the time-delay effect of the scattering process.

Now that we have defined the arbitrary phase shifts we start with the soliton-soliton
solution uss which comes from the two-soliton solution u2s when we choose δ2 = −1/δ1.
We consider the following transformation

a2 → −a2 . (44)

Although this is enough to change a single soliton to an antisoliton, this is not the case
for the two-soliton solution. The phase shifts have also to be fixed in a specific way to
complete the mapping between uss and usa

J1 → −J1 (45)

K2 → 1/K2 . (46)

This effectively changes the sign of δ2 in the expression uss converting one of the solitons to
an antisoliton. In contrast with the single soliton where the antisoliton can not be properly
defined, in the two-soliton case there is a point of reference. A distinction between a soliton
and an antisoliton can only be realised as a specific choice of the relative sign between the
parameters a1, a2 and V which does not in any case lead to topologically distinct solutions.

The same mapping between uss and usa can also be achieved by making the following
transformation

a2 → a2 + π , (47)

which effectively changes the sign of all trigonometric functions involving the parameter a2

sending the solution uss → −usa . This transformation will be used again on a later section
when we come to consider soliton reflections, to demonstrate exactly the equivalence of the
two sets of solutions.

2.5 Breather solutions.

There are conflicting views in the literature concerning the existence of breathers [17, 18].
The problem arises because the transformation V → iV which is usually used to generate
breathers from a two-soliton solution traveling with equal and opposite velocities, does not
necessarily lead to a solution of the equations of motion. While the technique has been
widely used before on other models, the fact that the CSG equation involves both u and u∗,
implies that naively analytically continued solutions do not necessarily satisfy the equation
of motion.
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So it is not clear, for instance, that all the breather like ”solutions” of [14] do satisfy the
CSG equations of motion. However, since the sine-Gordon is embedded in CSG model by
taking u to be chargeless, the sine-Gordon breather solutions do satisfy the CSG equations
of motion. In fact a family of charged, complex breather solutions does exist in CSG
model. Although it is quite hard to actually check if a general breather solution satisfies
the equation of motion, a trick can be used instead. We consider the two-soliton solution
of (34) and we demand that this solution is even in V so that is effectively a function of V 2.
Now the transformation V → iV , doesn’t change the reality properties of the solution but
simply introduces an overall minus sign into the arbitrary parameter V 2, which is irrelevant.
Making the solution even in V , means that a few restrictions have to be imposed. Firstly,
the charge parameters have to be taken equal or opposite according whether δ1δ2 is plus
or minus one respectively. Secondly, some of the arbitrary position parameters, have now
to be fixed. However, up until now all the arbitrary phase shifts that appeared were either
complex (Ji) or real (Ki) and there was no distinction between the shifts that originated
from the space or time part of the phase. However, when constructing a breather solution,
by analytical continuation of the V parameter a separation between the space and time
shifts is induced. All shifts that associated with space end up as real parameters, while time
shifts become imaginary. We can restrict ourselves to shifts only in the x direction. One
could also consider more general phases which are complex and also depend on time and
the parameter V. These however correspond to either U(1) rotations or time translations
which make their use obsolete. The arbitrary shift parameters are now both real

Ks = exp

(
2
√

β cos as

xs√
1 + V 2

)

Js = exp

(
2
√

β sin as

V ys√
1 + V 2

)
; s = 1, 2 . (48)

and should be compared with the general form of (43). In order to make a breather solution
from the soliton-soliton case the following relations are required

K1 = ± 1

K2
and J1 = ∓ 1

J2
, (49)

where the signs in these equation are correlated.
It should be noted that more breather solutions may exist. It is possible that through

certain restrictions a more general breather solution can be obtained, but a direct confir-
mation through the equations of motion is rather difficult.

2.6 Collapse of a Breather.

An analysis of the quantum CSG model [18] suggests that the soliton can be identified
with the elementary particle since the vacuum of the theory and the one-soliton are not
topologically distinct solutions. Evidence of this conjecture exists even in the classical
picture. From our experience with the sine-Gordon model, we would expect to identify the
particle with the lowest energy breather solution. It would seem to follow that the breather
whose energy and charge correspond to that of a single particle should be equivalent to a
single soliton. This remarkable fact can be shown as follows.
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We consider the static single-soliton solution

us =
cos(a) exp(im sin(a)t)

cosh(m cos(a)(x + x0)
, (50)

where m = 2
√

β. The mass of the static soliton is given by (14) which after integration
gives

Ms = 4m cos(as) , (51)

while the charge of the soliton is given by

Qs = i
∫

u∗∂0u − u∂0u
∗

1 − uu∗ = 4
(
sign[as]

π

2
− as

)
. (52)

The mass of a breather is twice the mass of a single soliton solution at velocity V , which
has been analytically continued V → iV

MB =
8m cos(aB)
√

1 + VB
2

. (53)

The breather solution is effectively constructed from two one-soliton solutions, each with
charge

QB = 4
(
sign[aB]

π

2
− aB

)
. (54)

In order to have a chance of identifying the breather with the soliton, we demand that the
mass of a breather is equal to the mass of a static single soliton and that their charges also
coincide

Ms = MB , Qs = 2QB . (55)

From the above relations, one can solve for the parameter VB

VB =

√√√√2 cos(aB)

cos(as)
− 1 . (56)

If this value is substituted into the breather, then the solution collapses to a static single-
soliton carrying double the charge QB. In other words, the single-soliton can always be
considered as a bound state of two single-solitons carrying half the charge. The argument
can be used recursively so that a soliton can be regarded as an infinite collection of solitons
carrying fractions of the original charge. At each level a soliton is identified with a breather
emerging out of a soliton pair of half the original charge. In the classical picture this process
can be carried out indefinitely, but in the quantum case the finite character of the mass
states restricts this procedure.

This is not surprising since the static single-soliton of (50) can be viewed as a bound
state due to the oscillation effect which creates a breather-like behaviour. This is consistent
with the fact that any breather can collapse to to this solution when the parameter V
is properly fixed. It can therefore be realised as a breather solution after the collapse,
exhibiting all of its former properties.
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One point that has to be emphasized is that breathers constructed with the method
described in the previous section are not chargeless. This is due to the fact that the
choice of the charge parameters ai is such that both solitons that are combined to create
a breather have the same charge. This is confirmed by the above demonstration in which
a breather collapses to a single soliton solution which carries double the charge of the
breather’s solitons. Neutral breathers do exist but only at the chargeless limit and can be
identified with the breathers of the simple sine-Gordon theory.

3 Reflections.

In the following sections we consider the effect of introducing a boundary into the CSG
model. Although we are free to add any boundary potential to the Lagrangian, we choose
to investigate those potentials and their corresponding boundary conditions which preserve
integrability. Such choices allow the non-perturbative solution of the model which is one
of the main motivation for its study. Once such suitable conditions are introduced we
examine the scattering of particles and solitons, and determine the necessary conditions
for the existence of boundary bound states.

3.1 Abelianisation of the Lax pair and conserved currents.

We shall consider a boundary condition to have preserved the integrability of the CSG
model, if we can still construct an infinite number of commuting conserved charges. In
contrast with the theory in the bulk, the introduction of a boundary destroys the translation
invariance of the model but preserves the time translation invariance. It is thus expected
that the momentum will not be conserved, whilst the energy will. This situation also
holds for the higher-spin conserved quantities. All energy-like, parity-even quantities can
be conserved, unlike their momentum-like, parity-odd partners. Nevertheless, since there
is an infinite number of conservation laws, the main goal would be to concentrate on the
conservation of the parity-even quantities.

The presence of the spectral parameter λ in the Lax pair of (12) implies the existence
the infinite conserved currents in the bulk that can be determined through the method
used by Turok and Olive [21]. This is achieved by performing a gauge transformation U

A = UAU−1 + ∂UU−1 , (57)

in such a way that the commutator of the transformed gauge fields A and Ā of the Lax
pair to be zero. The equation of motion becomes

∂0(Ā − A) = ∂1(Ā + A) , (58)

where the normal time and space derivatives are used. In the theory in the bulk we
integrate over x. If Q(λ) =

∫ +∞
∞ (Ā − A)dx, then

d

dt
Q(λ) =

∫ ∞

−∞
∂0(Ā − A) dx =

∫ ∞

−∞
∂1(Ā + A) dx =

[
(Ā + A)

]∞
−∞

. (59)
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Since at infinity the fields are taken to vanish so that A and Ā approach a fixed value,
it follows that the right-hand side vanishes. As A and Ā can be expanded as an infinite
Laurent series in λ, the coefficients of each power of λ, provides us with an infinite number
of conserved charges.

When a boundary is introduced the left-hand side involving the spatial derivative does
not vanish since now the integration takes place over the semi-infinite interval. Instead one
is left with an equation of the form

∫ 0

−∞
∂0(Ā − A) dx =

[
(Ā + A)

]

x=0
(60)

where the left-hand side is evaluated at the boundary. Instead of demanding that the
right-hand side vanishes, we instead ask that it can be expressed as a total time derivative
with the help of suitable conditions, thus leading to a conserved quantity.

We begin by finding explicit expressions for “low-spin” conserved charges of the CSG
model in the bulk by solving for the abelianizing gauge transformation U order by order
in the spectral parameter.

Let U be a general real SU(2) matrix, with det(U) = 1. The diagonal elements of U
can be taken equal due to residual gauge freedom which leave A and Ā in an abelian form.
Thus U takes the form

U =
1√

1 − χχ̄

(
1 χ
χ̄ 1

)
, (61)

where χ is a function of the fields and should not be associated with the space variable.
We demand that U diagonalises both A and Ā at the same time. The transformed fields
lie both in the σ3 direction and the non-zero diagonal elements can be identified with the
conserved currents. Taking A to be

A =

(
iΛ E
−E∗ −iΛ

)
, (62)

with Λ = βλ and E = i(u∗∂v∗ − v∗∂u∗), we demand that the non-diagonal part of α
vanishes

2iΛχ + χ2E∗ + E + ∂χ = 0 ,

(63)

2iΛχ̄ + χ̄2E∗ + E + ∂χ̄ = 0 .

The conserved quantities can also be written in terms of χ and χ̄

J = −iΛ
1 − χχ̄

1 − χχ̄
− χE∗ + χ̄E

1 − χχ̄
+

χ∂χ̄ − χ̄∂χ

2(1 − χχ̄)
. (64)

The same matrix U , should also diagonalise Ā, which is given by (13)

Ā =

(
D P
P ∗ −D

)
, (65)

where D = uu∗ − vv∗ and P = −2iu∗v∗. The choice of E, P and D is not accidental.
They actually represent the electric field, the polarization and the population inversion
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field variables respectively, when this theory is used to describe the propagation of optical
pulses in a non-linear medium [10]. When U acts on Ā, we again demand the off diagonal
parts to vanish. Examining the matrix explicitly yields

i

λ
(−2Dχ + P − P ∗χ2) + ∂̄χ = 0 ,

(66)
i

λ
(2Dχ̄ + P ∗ − P χ̄2) + ∂̄χ̄ = 0 .

It is easy to see that these equations are equivalent to equations (63).
The diagonal part yields the other component of the conserved current

J̄ =
i

2λ

(
2
1 + χχ̄

1 − χχ̄
D + 2

1P ∗χ − χ̄P

1 − χχ̄

)
+

(χ∂χ̄ − χ̄∂̄χ)

2(1 − χχ̄)
. (67)

In order to solve the two sets of equations (63) or equivalently (66), we consider an expan-
sion of χ and χ̄ in powers of Λ

χ =
χ1

Λ
+

χ2

Λ2
+

χ3

Λ3
+ ... ,

(68)

χ̄ =
χ̄1

Λ
+

χ̄2

Λ2
+

χ̄3

Λ3
+ ... .

The coefficients χi and χ̄i can be determined by direct substitution into (63) and (66), and
by demanding that the coefficients in all powers of Λ vanish. Up to order O(Λ−2) one finds

χ =
(

i
2Λ

)
E +

(
i

2Λ

)2
∂E +

(
i

2Λ

)3
(E2E∗ + ∂2E) + ... ,

χ̄ =
(

i
2Λ

)
E∗ +

(
i

2Λ

)2
∂E∗ +

(
i

2Λ

)3
(EE∗2 + ∂2E∗) + ... ,

(69)

Now that χ and χ̄ have been defined, we can also express the conserved quantities as a
series in λ. Each order of λ, provides a conserved quantity and since the series of λ in
χ and χ̄ does not terminate, we thus have an infinite number of conserved quantities as
expected from the integrability of the CSG model. The two components of the conserved
current up to O(λ−2) can be read off as coefficients in the following expansion of J and J̄

J = −λβ − i

2β
EE∗

(
1

λ

)
− 1

8β2
(E∂E∗ − E∗∂E)

(
1

λ2

)
+ ... , (70)

J̄ = iD
(

1

λ

)
+

1

4β
(E∗P − EP ∗)

(
1

λ2

)
+ ... , (71)

and it can be checked that this current is conserved explicitly from the equation of motion.
In the above we have constructed conserved currents that lead to conserved charges in

the bulk. However, as we have previously argued, conserved charges on the half line are
expected to take the form of an integral over a parity-even conserved current. The conserved
currents above are neither parity even or odd. To rectify this we note that our system of
equations and constraints possess a Z2 invariance involving parity transformations which
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can be used to construct a “reflected” set of conserved currents. The “reflected” set of
conserved currents is easily obtained through the substitution ∂ → ∂̄ in the expressions
(70) including those derivatives involved in the definition of E. The new set of currents J̃ ,
˜̄J , can now be combined with the former set to produce pure parity odd and even currents.

In the presence of a boundary only parity even quantities are conserved. The desired
form of the equations to emerge is

∂0 (parity even) = ∂1 (parity odd). (72)

By combining the two sets of currents one can separate the odd and even quantities for all
powers of λ.

∂0

[
(J̄ + ˜̄J) − (J + J̃)

]
= ∂1

[
(J − J̃) + (J̄ − ˜̄J)

]
(73)

We examine the λ−1 term in the expansion which gives

∂0

(
EE∗ + ẼẼ∗ + 2β(D + D̃)

)
= ∂1

(
ẼẼ∗ − EE∗ + 2β(D − D̃)

)
, (74)

where Ẽ = E(∂ → ∂̄), etc. After integration over the semi-infinite interval, the right hand
side representing the parity odd part is

∂0W(u, u∗) =

(
2∂1u

∗

1 − uu∗

)
∂0u +

(
2∂1u

1 − uu∗

)
∂0u

∗ . (75)

This is a total derivative provided that

2∂1u
∗

1 − uu∗ =
∂W
∂u

,
2∂1u

1 − uu∗ =
∂W
∂u∗ . (76)

The conserved quantity at hand, in terms of u and u∗, is then

H =
∫ 0

−∞

(
2
|∂0u|2 + |∂1u|2

1 − |u|2 + 4β(2|u|2 − 1)

)
dx − [W]x=0 , (77)

Since this quantity actually represents the energy of the system, W can be identified with
the energy contribution of the boundary term.

When constructing the odd and even quantities of the λ−2 term, one ends up with

∂0

(
1

2
(E∗∂E − E∂E∗ + Ẽ∂̄Ẽ∗ − Ẽ∗∂̄Ẽ) − β(E∗P − EP ∗ + Ẽ∗P̃ − ẼP̃ ∗)

)
=

∂1

(
1

2
(−E∗∂E + E∂E∗ + Ẽ∂̄Ẽ∗ − Ẽ∗∂̄Ẽ) − β(E∗P − EP ∗ − Ẽ∗P̃ + ẼP̃ ∗)

)
(78)

Once more the parity-odd right hand side which after integration yields

4
∂0u∂0∂1u

∗

1 − uu∗ − 4
∂0u

∗∂0∂1u

1 − uu∗ − 4
(∂1u∂1u

∗ + ∂0u∂0u
∗)(u∂1u

∗ − u∗∂1u)

(1 − uu∗)2

−4β(u∂1u
∗ − u∗∂1u) + 4

∂1u∂2
0u

∗

1 − uu∗ − 4
∂1u

∗∂2
0u

1 − uu∗ , (79)
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should be written as a total time derivative in order to force the currents to be conserved
at the boundary. A set of boundary conditions have to be introduced to ensure that his
is the case (App. A.1). Using the equations of motion, the parity-odd part of (79) can be
written as a total derivative if the following restrictions are enforced

∂1u = −Cu
√

1 − uu∗ ,

(80)

∂1u
∗ = −Cu∗√1 − uu∗ .

The boundary constant C is defined by the theory and is responsible for the way fields
react to the boundary. Consistency of the two equations in (80) implies that C should be
considered a real parameter. When one makes the transformation described in (3), the
new boundary conditions for the fields φ and η are

∂1φ = −C sin(φ) , ∂1η = 0 , (81)

which clearly shows that C has to be real.
It has to be pointed out that (80) is not the only set of boundary conditions that can be

derived. A number of isolated “Dirichlet”-like conditions also exists. However, we restrict
ourselves only to cases where the space derivatives of the fields appear. If we take the field
u to be real, the system is reduced to the sine-Gordon equation with a boundary condition
∂1φ = −C sin φ . This is the subset of integrable boundary conditions of the sine-Gordon
model presenting the Z2 symmetry φ → −φ. The corresponding conserved quantity, is
rather large and is omitted.

4 Soliton scattering and boundary bound states

Since the necessary conditions for the integrability of the model have been established, we
study the scattering of particles and solitons off the boundary. We begin this section with
the effects of introducing a boundary potential to the vacuum of the theory. We continue
with the scattering of particles and solitons and derive the phase shifts induced by the
process. Finally, we investigate the necessary conditions for the existence of boundary
bound states.

4.1 Vacuum

When a boundary term is introduced, the vacuum of the theory that we discussed in sec-
tion (2.2), does not necessarily remain unchanged. It is exactly this contribution that
needs to be carefully examined before any statements are made about the minimum en-
ergy configuration. Although, the vacuum solution of the theory in the bulk is a strong
candidate, soliton solutions could also be considered in the attempt to both minimize the
energy functional and satisfy the boundary conditions of (80).

We begin by first determining the energy contribution of the boundary term. The full
Lagrangian of the model is now

Ltot = L + LB. (82)
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The boundary term LB, can be determined by the variation principle of the total action.
The variation of the L term yields

δL =
∂L
∂u

δu +
∂L
∂u∗ δu∗ +

∂L
∂(∂µu)

δ(∂µu) +
∂L

∂(∂µu∗)
δ(∂µu

∗) . (83)

When the Euler-Lagrange equations are used, two terms survive since the model is consid-
ered in the semi-infinite interval where the fields do not vanish at the boundary

δL = ∂µ

(
∂L

∂(∂µu)
δu

)
+ ∂µ

(
∂L

∂(∂µu∗)
δu∗

)
. (84)

From the variation of the boundary term one has

δLB =
∂LB

∂u
δu +

∂LB

∂u∗ δu∗ . (85)

The variation of the action vanishes when the remaining terms evaluated at the boundary
are forced to cancel. The two interrelated equations that emerge are

∂L
∂(∂1u∗)

=
−∂1u

1 − uu∗ = −∂LB

∂u∗ , (86)

∂L
∂(∂1u∗)

=
−∂1u

∗

1 − uu∗ = −∂LB

∂u∗ . (87)

By substituting the boundary conditions of (80), these can easily be solved for the
boundary term

LB = 2C
√

1 − uu∗ . (88)

We now consider the total energy of the system , now comprising of two parts

Htot = Hbulk + HB , (89)

where the term Hbulk, represents the energy in the bulk and the second term HB represents
the energy contribution from the boundary

HB = −2C
√

1 − uu∗ , (90)

which is evaluated at x = 0. This energy contribution makes the determination of the
vacuum difficult. The sign of the boundary constant C is not set, which could provide
either a positive or negative contribution to the total energy of the system. This clearly
shows that although the original choice for a vacuum should not be discarded, one should
also consider other static solutions which in conjunction with the sign of C could provide
a lower energy vacuum than before.

Apart from the original choice for a vacuum, one can consider static multi-soliton so-
lutions. We restrict ourselves to one-soliton solutions since experience with similar models
usually makes multi-soliton solutions unsuitable candidates.
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When considering one-soliton solutions, one has the equations of the Bäcklund trans-
formation (23) which are always true to simplify expressions. In particular we first consider
the Hbulk term representing the energy in the bulk

Hbulk =
∫

dx

(
|∂0u|2 + |∂1u|2

1 − uu∗ + m2uu∗
)

, (91)

with m = 2
√

β. By direct substitution of the Bäcklund equations a simplified expression
of the bulk energy is acquired

Hbulk =
∫

dx(2m2uu∗) . (92)

When the above expression is integrated throughout space, the result can be identified
with the mass of the soliton solution u. However, now the integration is over the half line
and specifically over the [−∞, 0] region.

The same equations can be used to express the HB term of (90) . Specifically, the
boundary constant C is determined by direct comparison of the Bäcklund equations of
(23) and the boundary condition which appears in (80)

C =
m

2

(
δ ei(θ+Ω) +

1

δ
e−i(θ+Ω)

)
. (93)

with θ given by (25). At x = 0 and assuming that V = 0, the above expression simplifies
to

C = ± m
√

1 + tan2(a) coth2(m cos(a)x0)
. (94)

This implies that |C| ≤ |m|. Since both m and C are defined by the theory, the above
relation is true only for specific choices of the boundary parameter C. Alternatively, one
can think of this restriction emerging from the fact that for |C| > |m|, no choice of x0

satisfies the boundary condition.
In the case where we choose u = 0 as a possible vacuum, the only remaining term in

the total energy is
Htot = −2C . (95)

Alternatively, one can consider a one-soliton solution where V is set to zero which appears
in (50). In this case, both terms of (89) depend on the initial position of the soliton.
However, after some calculations, the x0 dependence drops out and the total energy is
given by a the following expression

Htot = 2m cos(a) . (96)

It is far from obvious, which vacuum choice provides the minimum energy configuration.
To determine this, one has to look at the expression of the boundary constant C in (94).
This can be rewritten in the following form

y2 +
y2 − y4

y2 + F 2
= cos2(a) , (97)
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where

F 2 = sinh2(m cos(a)x0) , y =
C

m
. (98)

In the above relation m and C should be treated as fixed parameters, while F can be varied
through x0. The left hand side of (97) is monotonically decreasing as F increases since
0 < y2 < 1. We observe the following

cos2(a) = 1 when F → 0 ,

(99)

cos2(a) = y2 when F → ±∞ .

This shows that moving the soliton away from the boundary decreases the energy of the
system. On the extreme case where the soliton is placed at infinity, the model behaves as if
no soliton exists, and the only contribution is the boundary term which coincides with the
vacuum solution of u = 0. On the contrary as the soliton is placed closer to the boundary
the energy increases. The maximum energy occurs when F = 0 at which point cos2(a) = 1
so that Htot = 2m which is greater than the energy Htot = 2C of the u = 0 vacuum.

Although the choice of vacuum in the bulk seems to be the most suitable choice in the
boundary case too, one cannot rule out multi-soliton solutions that might provide lower
energy configurations. This demands tedious calculations and remains as one of the open
questions for this model.

4.2 Soliton reflections

In this section we investigate the reflection of solitons from the boundary. Mathematically
this can be represented by a two-soliton solution satisfying the boundary condition. One
of the solitons represents the incoming soliton whilst the other represents the reflected
one. The point where the two solitons actually meet along the whole line as well as the
phase shift due to their collision create an overall time-delay effect which can be calculated
directly through the parameters of the scattering. This time-delay can be attributed to
the interaction of the soliton with the boundary.

However, the most difficult step is to determine the restrictions that have to be imposed
so that the two-soliton solution satisfies the boundary condition

∂1u2s = −Cu2s

√
1 − u2su

∗
2s . (100)

Energy and charge conservation laws demand that both the mass and the charge of the
soliton are conserved by the boundary. This restricts the choice of the charge parameters
a1, a2 to be either equal or opposite.

Due to the large expressions involved in the calculation, one is forced to expand both
sides of the equation (100) to a Taylor series in exponentials of t, and match each term of
the same order. Each term provides us with an equation involving the boundary parameter
C. As mentioned in the previous section, the boundary constant has to be a real parameter.
The real and imaginary parts of the equation yield two constrains on the parameters.

Let us consider this in more detail. We begin with a two-soliton solution, where the
parameters are chosen in such a way so as to describe a soliton-soliton scattering. In
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this case, the charge parameters are taken to be opposite a1 = −a2 and the Bäcklund
parameters to be δ1 = −1/δ2.

Furthermore, we adopt the following parametrisation which is more natural

K1

K2
= eλ ,

J1

J2
= eiζ , V = tanh(ϑ) . (101)

After both sides of the boundary equation are expanded as a Taylor series in time, we can
discard the imaginary parts from all terms by using the following relation

sin(ζ) = − tanh(ϑ) tan(a) sinh(λ). (102)

When the above equation is used the infinite set of equations collapse to a single constraint

C = m cos(a) cosh(ϑ)

(
cos(ζ) + cosh(λ)

sinh(λ)

)
. (103)

When the shift parameters are fixed according to the above relations, the two-soliton
solution satisfies the boundary condition and this process describes a soliton being reflected
by the boundary.

The fact that only relative shifts in both normal and internal U(1) space are important
should be expected from time translational and U(1) invariance of the model. The non-
topological solitons in the CSG theory are reflected as solitons carrying the same charge
Q. This is because the boundary potential does not break the U(1) symmetry since it
depends only on |u|.
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Figure 2: C in terms of λ

We shall consider a and ϑ as fixed parameters and use equations (102) and (103) to
determine the parameter λ in terms of C. By eliminating the parameter ζ , one ends up
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with the following quadratic equation for C

C2 − 2
Cm cos(a) cosh(ϑ) cosh(λ)

sinh(λ)
+
(
sinh(ϑ)2 + cos(a)2

)
m2 = 0 . (104)

The solutions of the above equation can be plotted to present the dependence on λ.
The plot involves two branches (Fig. 2) due to the sign ambiguity, which are mutually
exclusive. The plot shows that a soliton can always be reflected by the boundary. The
branches meet at the points

C = ±m
√

cos2(a) + sinh2(ϑ) , coth(λ) =

√
sinh2(ϑ) + cos2(a)

cos(a) cosh(ϑ)
. (105)

In the limit a → 0 the two branches of the plot can be identified with the soliton-soliton
and soliton-antisoliton sector of the reflection process at the sine-Gordon limit (Fig. 3).
For fixed values of ϑ and a = 0, it is the value of the boundary constant C which determines
whether a soliton is reflected as a soliton or an antisoliton. For C small, a soliton is reflected
as an antisoliton (Neumann boundary conditions for C = 0), while for C large a soliton
is reflected as a soliton (Dirichlet boundary conditions for C = ∞). For C = m cosh(ϑ)
the branches do not meet as in the CSG case. This specific value of C corresponds to
a logarithmic divergence that appears in the classic time delay for the sine-Gordon case.
These results coincide with the results derived by previous treatments of the boundary
sine-Gordon model [2].
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Figure 3: C in terms of λ for chargeless case
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4.3 The classical time delay

The time delay which appears at the scattering of a soliton off the boundary, can be
calculated directly from the asymptotic values of the solution at t = ±∞. We begin with
the two-soliton solution and change to a frame of reference which moves with the incoming
soliton (i.e. x = V t + x̃. In the limit t = −∞ the solution becomes

S− = lim
t→−∞

u2s =
cos(a) ei(A1+B1)

cosh(P (−x̃ + x1) + r)
, (106)

where

A1 =
P sin(a)

cos(a)

[
(1 − V 2)t − V x̃ − y1

]
, tan(B1) = −V sin(a)

cos a
(107)

and

P =
m cos(a)√

1 − V 2
, r =

1

2
ln

V 2

cos2(a) + V 2 sin2(a)
. (108)

The parameters xi and yi represent regular shifts that were introduced in (43). The so-
lution, as expected, describes a single incoming soliton at early time far away from the
boundary.

We repeat the same calculation, but now we change to the frame of reference of the
outgoing soliton (i.e. x = −V t) and calculate the limit of the two-soliton solution at
t = +∞ which yields

S+ = lim
t=+∞

u2s =
cos(a) ei(A2+B2+π)

cosh(P (−x̃ − x2) + q)
, (109)

where

A2 =
P sin(a)

cos(a)

[
(1 − V 2)t + V x̃ − y2

]
, tan(B2) =

V sin(a)

cos(a)
, (110)

and

q =
1

2
ln

V 2

cos2(a) + V 2 sin2(a)
. (111)

Once again this is a single soliton solution representing the reflected soliton far away from
the boundary wall.

The asymptotic solutions S+, S− contain all the information needed to calculate the
time-delay. The latter is a combination of two separate events. Firstly, a phase shift is
induced during the scattering of the two solitons. Before the two solitons re-emerge as
two separate entities, the reconfiguration of the solution creates a phase shift which is
equivalent to a time delay. Secondly, the centre of mass of the two-soliton solution does
not necessarily lies at the boundary. This implies that the two solitons actually meet at a
different point than x = 0. This creates again a time delay which may be either positive
or negative corresponding to an attractive or repulsive boundary potential respectively.

Ignoring any interaction between the two solitons, one can project the trajectories of
S+ and S− on x− t diagram and find the point where these cross (Fig. 4). The distance of
this point from the boundary is proportional to the time delay ∆τ which in the diagram
is given by the distance (AC). The time delay corresponds to the time interval in which
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Figure 4: Scattering diagram

the soliton appears to be absorbed by the boundary before it reemerges as a well defined
entity . The two solitons move across the following lines

S− : t =
1

V
(P (−x + x1) + r) ,

S+ : t =
1

V
(P (x + x2) − q) ,

as dictated by (109) and (106). The lines cross at

x0 =
1

2

(
x1 − x2 +

r + q

P

)
=

x1 − x2

2
+

r

P
, (112)

since r = q. The time delay is finally

∆τCSG =
2x0

V
=

(x1 − x2)

V
+

√
1 − V 2

mV cos(a)
ln

(
V 2

cos2(a) + V 2 sin2(a)

)
. (113)

In the expression above, the first term of the right-hand side represents the time delay
caused by the non-symmetric character of the solution with respect to the boundary. In
the special case where x1 = x2, the centre of mass lies on the boundary and the term
vanishes. The second term is independent of the initial position of the two solitons or the
boundary potential and is caused by the phase shift of the scattering process.

The relative position of the two solitons are however fixed according to the constraint
equations (102) and (103) which ensure that solution satisfies the boundary condition.
Specifically the parameter λ corresponds exactly to the x1 −x2 difference up to the overall
factor P . It is thus possible to express the time delay in terms of the boundary constant,
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by solving the constraint equations and substituting the relative position of the solitons.
We choose to express the velocity parameter V in terms of the rapidity ϑ for simplicity
reasons. After a few straightforward calculations we recover the following expression for
the time delay

∆τCSG =
ln Q

2m cos(a) sinh(ϑ)
(114)

where

Q =
sinh4 ϑ

(
(cos2(a) + sinh2(ϑ))m2 + 2Cm cos(a) cosh(ϑ) + C2

)

(cos(a)2 + sinh2(ϑ))2
(
(cos2(a) + sinh2(ϑ))m2 − 2Cm cos(a) cosh(ϑ) + C2

) (115)

In the special limit of a = 0, the time delay for the sine-Gordon model is recovered

∆τSG =
1

m sinh(ϑ)
ln

(
tanh2(ϑ)

m cosh(ϑ) + C

m cosh(ϑ) − C

)
. (116)

This is exactly the time delay calculated for the sine-Gordon theory in the presence of a
boundary [2] for the restricted class of boundary conditions which admit φ = 0 as a vacuum
to which the chargeless limit of CSG correspond.

4.4 Boundary bound states

In this section we examine the spectrum of bound states. Once again, for the the boundary
condition to be satisfied we need to restrict some of the parameters in the solution.

The simplest bound state that we can have is the static single soliton that was intro-
duced in (50). The solution is not really static, as the imaginary phase survives the setting
of the speed parameter V to zero. The solution is static only in the sense that the centre of
mass doesn’t translate in the x direction, although the wave oscillates with fixed angular
velocity ω = m sin(a).

When a boundary is introduced a static soliton can satisfy the boundary condition for
|C| ≤ |m| when its position is fixed according to equation (94). At the chargeless limit
any time dependence vanishes and the solution collapses to a static single soliton of the
sine-Gordon theory, fixed at the boundary.

Breathers that have been constructed by the method described in section (2.5) can
also be shown to satisfy the boundary condition. The condition that C is real still holds.
However, all the arbitrary phase shifts are now real numbers and constrained. We ex-
amine breather solutions that emerge from the soliton-soliton case. Just as before, the
solution does satisfy the boundary condition with some restrictions involving the arbitrary
parameters. Once more a Taylor expansion of the boundary equation is needed. The
parametrization used in this case is

K1 = eλ , J1 = eζ , V = tan(ϑ) , (117)

while the parameters K2 and J2 have been been properly fixed so that this is a breather
solution. The first restriction needed for the solution to satisfy the boundary condition is

sinh(2ζ) = − tan(a) tan(ϑ) sinh(2λ) . (118)
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The parameter ϑ plays the role of the rapidity, which has now been analytically continued.
The second restriction which completes the necessary requirements for a boundary bound
state is

C = m cos(a) cos(ϑ)

(
cosh(2ζ) − cosh(2λ)

sinh(2λ)

)
. (119)

Both relations can be recovered by analytical continuation of the corresponding relations
of (102) and (103) after the necessary restrictions for a breather solution have been already
taken into account. It is instructive to examine the relation between the parameters C and

�
OO

&

Figure 5: C in terms of λ for Breather case

λ (Fig. 5) since it provides valuable insight to the structure of bound states. There are
two distinct regions of values of C that do not correspond to any bound state. This regions
are defined by the limit values

C = ±m (cos(a) cosh(θ) ± sin(a) sinh(θ)) . (120)

At the chargeless limit, the regions collapse to the single values

C = ±m cosh θ , (121)

which coincided with the logarithmic divergence appearing in the time delay for the soliton
reflection.

4.5 Particle Reflections.

In this section we consider the spectrum of particles and their reflection factors in the
presence of a boundary.
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For small fluctuations around the vacuum u = 0, the boundary condition (80) becomes

∂1ǫ(x, t) = −Cǫ(x, t). (122)

In order to calculate the reflection factor when particles bounce of the boundary wall, we
substitute in the last relation the particle solutions presented in (19). The constant A of the
right propagating waves is taken to be one, since it has to do with the characteristics of the
particle beam. The reflection factor is identified with the constant B, which corresponds
to a phase change as the particles encounter the boundary

B =
ik + C

ik − C
. (123)

The reflection factor, as expected, depends on C which as stated before, appears as a
free, real parameter in the boundary condition. For C = 0, the reflection factor is equal to
B = 1 and no phase appears between the two waves upon their scattering off the boundary.
This is consistent with the fact that the boundary term is proportional to the boundary
constant, so when C is set to zero, the boundary term vanishes.

Particle solutions can be related to bound states through the pole appearing in B.
Indeed one may choose k = −iC and apply this to a solution of the form 1

B
ǫ(x, t). The

remaining terms depend explicitly on the boundary constant

ǫ(x, t) = e−i(
√

m2−C2t+−iCx) . (124)

This solution is square integrable only for a specific range of values for the boundary
constant. Specifically if C is positive then the solution is not square integrable since it is
exponentially increasing as x → ∞.

When −m < C < 0 , then ǫ(x, t) represents a square integrable exponentially decreasing
solution as x → ∞. It oscillates with constant angular velocity ω =

√
m2 − C2 and is

therefore a stable bound state. It can also be viewed as the tail of a static one-soliton
solution satisfying the boundary condition, with the parameters adjusted in such a way its
centre of mass goes to positive infinity. Examining the condition (94) for the static soliton
to obey the boundary condition, this limit can be achieved as x0 → ∞, i.e. we must take
the charge is such a way that C = −m cos a.

Finally in the region C < −m, the solution can increase exponentially in time. This
shows that the vacuum solution u = 0 is no longer stable. In fact the particle behaviour
which corresponds to a small perturbation around the vacuum seems to be ever increasing.
This instability can be understood through a rather impressive mechanism in which a
chargeless soliton is emitted from the boundary, effectively changing the value of C so that
u = 0 is now stable.

Recall from section (2.4) that for a chargeless soliton we should take the opposite sign
for

√
1 − uu∗ on each side of the centre of the soliton where |u| = 1. The instability can be

viewed as a left moving chargeless soliton which approaches the boundary from x = ∞. In
the beginning while the soliton is far away from the boundary u = 0 so that the boundary
potential of (90) is HB = −2C. As the centre of the soliton passes through x = 0, the sign
of the square root in the boundary potential changes. As the soliton moves to x = −∞,
u returns to 0 near the boundary but now we take the boundary energy with the opposite
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sign HB = 2C. Effectively the sign of C has been flipped to a positive value. The energy
released from the boundary is 4C > 4m, which is greater than the rest mass of a single
chargeless soliton. At C = −m, the soliton is emitted with infinitesimal velocity. As C
decreases, more energy is given up by the boundary and the soliton can be emitted with
larger V . This process agrees with the infinite time-delay effect which was encountered in
the soliton reflections section. The soliton emission represents the time reversal picture of
that effect in the chargeless soliton case (Fig. 3). It follows that we need never consider
the situation where C < −m.

5 Discussion

The CSG model is one of the simplest generalisations of the sine-Gordon theory, but
nonetheless has a rich and fascinating mathematical structure.

In the first part of the paper we have examined the spectrum of the theory in the
bulk and written down explicit two-soliton solutions within the framework of the matrix
potential. We also demonstrated how to construct breather solutions in an elegant way
avoiding the problems that arise by the analytical continuation of the parameter V . There
are two ways in which soliton solutions of the CSG model differ qualitatively from those of
the Sine-Gordon model. Firstly, the solitons can be charged, so that whilst there centre of
mass remains fixed, the solutions are not static. The second feature is that the CSG does
not possess degenerate vacua, and so the solitons are non-topological. There is therefore
no distinction between solitons and antisolitons which can be interchanged by a continuous
variation of the charge parameter a. Nevertheless, the topological nature of the sine-Gordon

theory can be recovered as the choice of branch cut of
√

1 − |u|2 in the chargeless limit
as was demonstrated in section 2.4 . A direct consequence of the non-topological nature
of the CSG soliton is that the breather solution can collapse to a single soliton when the
parameter V is properly fixed, tying in with the picture presented in [18] that particle and
solitons can be identified in the quantum limit.

In the second part of the paper we introduced a boundary term in the CSG Lagrangian
and demanded that the system remains integrable. First we constructed low-spin conserved
quantities of the theory using abelianisation of the Lax pair, and then derived suitable
boundary conditions in order to preserve these. In the presence of a boundary, we examined
the vacuum structure and showed that the bulk vacuum u = 0 remained the true vacuum
in the boundary case.

Soliton reflections off the boundary were also studied and the necessary constraint
equations were written down in terms of the phase shift parameters. The set of equations
was derived by demanding that the two-soliton solution satisfies the boundary condition.
Moreover the time delay induced by the scattering process was calculated in terms of the
boundary constant C and was found to coincide in the chargeless limit with the time delay
of the sine-Gordon theory.

Finally we looked for classical solutions corresponding to boundary bound states. We
found that it was possible to construct both bound soliton and bound breather solutions.
We also found a bound state in the particle spectrum. This was unstable when parameter C
associated with the boundary energy was in the range C < −m. In this case the boundary
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emits a chargeless soliton, effectively changing the sign of the boundary parameter C to
C > m.

We end our discussion by pointing out a few aspects of the model that appear quite
interesting and deserve further study. As mentioned in the introduction the CSG theory
was used to generalise the existing field theory approach of optical pulse propagating in a
non-linear medium. A physical interpretation of the results appearing in this paper would
be extremely interesting, especially the physical meaning of breather solutions and their
application to physical geometries.

An obvious extension of our results is to consider the quantum case of the boundary
CSG model. The S-matrix for the model in the bulk, which corresponds to perturbed Zn

parafermions, is known. It would be interesting to see if one can find a quantum reflection
matrix, compatible with this S-matrix and with the classical results presented in this paper.
As the simplest case in the family of homogeneous sine-Gordon theories, the results might
shed light on the more complicated models in the family.
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A Appendix

A.1 The boundary condition from the λ−2 term

In order to construct an infinite number of conserved quantities when a boundary is intro-
duced, we need to express the parity odd terms of the equations of motion as total time
derivatives. The corresponding term of order λ2 is in terms of the fields u and u∗

− 2
(∂1u

∗) (∂2
0u + ∂2

1u)

1 − uu∗ − 4
(∂0u

∗) ∂1∂0u

1 − uu∗ + 2
(∂1u) (∂2

0u
∗ + ∂2

1u
∗)

1 − uu∗ + 4
(∂0u) ∂1∂0u

∗

1 − uu∗

+2
u∗ (∂1u)2 ∂1u

∗

(1 − uu∗)2 − 2
u (∂1u

∗)2 ∂1u

(1 − uu∗)2 − 4
u (∂0u

∗) (∂1u
∗) ∂0u

(1 − uu∗)2 + 2
u∗ (∂0u)2 ∂1u

∗

(1 − uu∗)2

−2
u (∂0u

∗)2 ∂1u

(1 − uu∗)2 + 4
u∗ (∂0u) (∂1u) ∂0u

∗

(1 − uu∗)2 + 4 (u∂1u
∗ − u∗ ∂1u)β .

Since we need the above expression to be a total time derivative we can eliminate any
second order spatial derivatives of the fields by using the equations of motion of (2)

4
∂0u∂0∂1u

∗

1 − uu∗ − 4
∂0u

∗∂0∂1u

1 − uu∗ − 4
(∂1u∂1u

∗ + ∂0u∂0u
∗)(u∂1u

∗ − u∗∂1u)

(1 − uu∗)2

−4β(u∂1u
∗ − u∗∂1u) + 4

∂1u∂2
0u

∗

1 − uu∗ − 4
∂1u

∗∂2
0u

1 − uu∗ , (125)

We take advantage of the fact that we are free to add total time derivatives on this expres-
sion, since this represents a conserved quantity. The expression simplifies significantly by
adding the following term

∂0

(
4
∂1u

∗∂0u − ∂1u∂0u
∗

1 − uu∗

)
, (126)

which yields

− 4
(∂1 u∗) ∂2

0u

1 − uu∗ + 4
(∂1 u) ∂2

0u
∗

1 − uu∗ + 4
(∂0u) ∂1∂0u

∗

1 − uu∗ − 4
(∂0u

∗) ∂1 ∂0u

1 − uu∗

+4
(−u∂1 u∗ + u∗ ∂1 u) ((∂1 u∗) ∂1 u + (∂0u) ∂0u

∗)

(1 − uu∗)2

+4 (−u∂1 u∗ + u∗ ∂1 u)β . (127)

We are looking for boundary conditions that are of the form

∂1u = F (u, u∗) , ∂1u
∗ = G(u, u∗) , (128)

where F and G are functions of the fields not involving derivatives. By direct substitution
of the above into (127) we get

4

(
2 ∂G

∂u
(1 − uu∗) + Gu∗

)
(∂0u)2

(1 − uu∗)2 − 4
(∂0u

∗)2
(
2 ∂F

∂u∗
(1 − uu∗) + Fu

)

(1 − uu∗)2

8
(∂0u

∗)
(
−∂F

∂u
+ ∂G

∂u∗

)
∂0u

1 − uu∗ + 4
(−uG + u∗ F )GF

(1 − uu∗)2

+4 (−uG + u∗ F )β .
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The expression above does represent a total derivative when all terms are forced to vanish
by selecting suitable functions F and G. The two separate differential equations that
appear involving the undefined functions

2(1 − uu∗)
∂F

∂u∗ + uF = 0 ,

2(1 − uu∗)
∂G

∂u
+ u∗G = 0 ,

can easily be solved to yield

F (u, u∗) = S1(u)
√

1 − uu∗ , G(u, u∗) = S2(u
∗)
√

1 − uu∗ . (129)

In addition, the last two terms in (129) imply that

F =
u

u∗ G , (130)

Using the above relation and solutions of (129) into the remaining terms of (129), we can
determine the remaining undefined functions S1 and S2. The final form of the boundary
conditions are

∂1u = −Cu
√

1 − uu∗ ,

(131)

∂1u
∗ = −Cu∗√1 − uu∗ .

where C is a real constant.
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