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TOPOLOGY OF BILLIARD PROBLEMS, Il

MICHAEL FARBER

Abstract

In this paper we give topological lower bounds on the number of periodic and c
closed trajectories in strictly convex smooth billiardssTR™ 1. Namely, for given n,
we estimate the number of n-periodic billiard trajectories in T and also estimate th
number of billiard trajectories which start and end at a given poing AT and make

a prescribed number n of reflections at the bound&ryof the billiard domain. We use
variational reduction, admitting a finite group of symmetries, and apply a topologica
approach based on equivariant Morse and Lusternik-Schnirelman theories.

1. Introduction

Let X ¢ R™1 pe a closed smooth strictly convex hypersurface. We consider th
billiard system in th&m+ 1)-dimensional convex bod¥, bounded byX. Recall that
we view the billiard ball as a point that movesTnin a straight line except when it
hits X = 9T, where it rebounds, making the angle of incidence equal the angle «
reflection.

G. Birkhoff [2] studied periodic billiard trajectories in plane convex billiards.
Papers I] and [8] deal with the problem of estimating the number of periodic trajec-
tories in convex billiards iR™1, wherem > 1. In [7] we studied the number of
billiard trajectories having fixed distinct end points and making a prescribed numb
of reflections.

The purpose of this paper, which is a continuation/@fig twofold. First, we ob-
tain estimates of the number of closed billiard trajectories that start and end at a giv
point A € X and make a prescribed numbeof reflections at the hypersurfacé
This problem may seem to be a special case of the fixed-end billiard proBjeibuf,
as we show, the presence of symmetry allows us to get much stronger estimates t
in [7]. Second, we give a linear imestimate of the number ofperiodic trajectories.

The following theorem, Theorem, gives an estimate of the number of closed
billiard trajectories. It deals witl >-orbits of billiard trajectories. Any suchz-orbit
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is determined by a sequence of reflection poiatsx, ..., Xn € X such thatx; #
xir1fori =1,...,n—1andx; # A, Xy # A. The reverse sequengg, Xn—1, ..., X1
determines the san¥-orbit.

THEOREM 1

Let X ¢ R™1 be a closed smooth strictly convex hypersurface, X.

0] For any even re> 2, the number of distinc »-orbits of closed billiard trajec-
tories inside X which start and end at A and make n reflections is at least

n if m> 3is odd
g+ 1 ifm>2iseven (1.1)

xm For any even > 2, the number of distincZ »-orbits of closed billiard trajec-
tories inside X which start and end at A and make n reflections is at least

[logon]+m—1 ifm > 3is odd
[logon]+m—2 ifm > 2isevenand e 4,
m if m> 2is even and = 2. (1.2)

(I Ifn > 2is even and if the billiard dat&X, A, n) is generic (cf. below), then
the number of distinc »-orbits of closed billiard trajectories inside X which
start and end at A and make n reflections is at least

mn

— 1.3

> (1.3)
First we explain thegenericity assumption in statement (Ill). The billiard data

(X, A, n) determines a continuous function

n
XM >R, (X Xe) e Y X — Xl (1.4)
i=0

(the total length), where we understand thgi= A = Xn41. This function is smooth
at all configurationgxs, ..., xn) € X*" with x; # X471 fori = 0,...,n. The
data(X, A, n) is genericif any critical configuration(x, ..., x,) € X*" of the total
length function {.4), satisfying the above conditiof # X;11, is Morse (cf. [L], [8]).

Statements (I) and (ll) give different lower bounds on the number of closed bi
liard trajectories. (1) is linear im; it is better than (11) for large. On the other hand,
(1) may be better than (1) if the dimensian = dim X of the boundary of billiard
domain is large.

Let us compare Theoremwith the lower bound on the number of billiard tra-
jectories with fixed distinct end points, obtained 1. [n Theorem1 we speak about
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Z»-orbits of billiard trajectories. EacH2-orbit contains one or two billiard trajec-
tories. Fom even, eaclZ»-orbit contains precisely two distinct billiard trajectories.
Hence we see that, foreven, statement (I) of Theoreimpredicts twice the number
of closed billiard trajectories, compared to the estimaterpfdr the billiard trajec-
tories with fixed ends. Also, for large, statements (II) and (lll) give much larger
lower bounds than the corresponding estimated of heorem 1].

Statement (111) includes the cage = 1 (the plane billiards) and gives the es-
timaten/2. The billiard in the unit circle has precisety2 orbits of closed billiard
trajectories with a given initial point.

It is reasonable to expect that, for any everr 2, the number of distincE »-
orbits of closed billiard trajectories insidé¢ which start and end aA and maken
reflections is at least

n+m-1 ifm> 3isodd

g+m—1 ifm> 2is even (1.5)

Such an estimate implies both statements (I) and (1) of Thedrehime methods of
this paper do not prove this assertion, although the gap looks very small.

The proof of Theorem. is based on a computation of the cohomology ring of a
relevant configuration space of points on the spt&@teWe apply the technique of
the critical point theory, based on the cup-length estimates together with a refineme
suggested by E. Fadell and S. Husseffjj felated to the notion of category weight
of cohomology classes.

Next we state the main result concernmgeriodic trajectories.

THEOREM2
Let X ¢ R™ ! be a smooth strictly convex hypersurface. For any odd printhere
exist at least

n ifm> 1is odd
n+1

if m is even (1.6)

distinct Dy-orbits of n-periodic billiard trajectories inside X.

Here Dy, denotes the dihedral group of ordar, 2vhich acts naturally on the billiard
trajectories (se€f]).

This theorem complements the results &f [n [8] it is shown that, form > 3
andn odd, the number of distindD,-orbits of n-periodic billiard trajectories inside
X ¢ R™1 s not less tharilog,(n — 1)] + m and is at leas{n — 1)m for generic
billiards X ¢ R™. These results frong] are similar to statements (Il) and (111) of
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Theoreml. Theorem? has several advantages compared}olf gives a linear im
estimate that is better for largethan the logarithmic estimate df][ Also, it allows
the casen = 2, which corresponds to convex billiards in 3-dimensional Euclidear
space. On the other hand, the result&)fi§ better for largem.

The proof of Theoren® is based on a computation of the cohomology rings
of cyclic configuration spaces of spheres with rational coefficients. The cagg of
coefficients was computed ig][

2. Cohomology of the closed string configuration spaces of spheres
Let
Gh=G(S™ A AN (2.2)

denote the closed string configuration spac&Bfthat is, the space of all configura-
tions (x1, ..., Xn), wherex; € S™, such thatxy # A, Xy # A, andx; # X1 for all
i =1,...,n— 1. There is a natural involution

T:Gph — Gy, T(X1, ...y Xn) = (Xny Xn—1, - - - » X1) (2.2)
which is important for the sequel.
THEOREM3
The cohomology group HGy; Z) is nonzero only in dimensions
i=0, (m-1),2(m-1),....,(n—D(M—-1),

and for these values i the groupi kGn; 2) is free abelian of rank. One may choose
additive generators

oi e HHM™D(G:2), i=01...,n—1,

such that, for n> 3 odd, the multiplication is given by

G i ifi+j<n—1
oioj ={ ! o+ _+J_ - ’ (2.3)
0 ifi+j>n-1
and, for m> 2 even, it is given by
[G+D/210 . e S
oo — G722 Oii !f|.+J én.—landlorjlse\./en, | (2.4)
0 if eitheri+ j > n— 1orbothi and j are odd.
Reflection 2.2) acts for m> 1 odd by
T*(oi) = (D' 0y (2.5)

and for m> 1 even by

T*(0) = (=DI/&+nis  j=0,1,...,n— 1L (2.6)
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Proof
Consider the map

Gh=G(S"; A, An —»> S"— A, (X1, ..., Xn) > Xn.

It is a smooth fibration with fibeG (S™; A, B, n — 1), whereA £ B. Since the base
S™ — Ais contractible, we conclude that the inclusion

G(S™ A B,n—1) C G, 2.7)

is a homotopy equivalence. Hence the integral cohomology rit@hafoincides with
H*(G(S™ A, B,n — 1); Z), which we calculate below.

Theorem 8 of T] describes algebréd*(G(S™; A, B, n — 1); k), wherek is an
arbitrary field. From this description it is clear that the dimension of the cohomol
ogy does not depend on fiekd Therefore we conclude that the integral cohomology
HI(G(S™ A, B,n — 1); Z) has no torsion; it is a free abelian group of rank 1 for
i =r(m-1),wherer =0,1,...,n— 1, and vanishes for all other valuesiof

Let C € S™ be a point distinct fromA and B. We obtain an inclusion of con-
figuration spaceg* : G(S™" - C; A,B,n—1) — G(S™ A, B,n — 1), where we
identify S™ — C with R™. The cohomology algebrd *(G(R™; A, B,n — 1); Z) has
generatorsy, ..., Sh—1, and the full list of relations is described i, [Proposition 7].
From [7, Remark 9] we know that the induced m@p on cohomology with an arbi-
trary field of coefficientk is injective. This implies that the induced map on integral
cohomology

¢* : H*(G(S™; A, B,n—1); Z) > H*(G(R™ A, B,n—1); Z) (2.8)

is injective and thap* maps indivisible classes frol*(G(S"; A, B, n—1); Z) into
indivisible classes iH*(G(R™; A, B,n — 1); Z).
We claim that, forany =0, 1, ..., n — 1, there exists an indivisible class

or € H'MD(G(S™ A B,n—1); 2)

such that
3 S, S, for m odd
o 0<ii<--<ir<n
S _ _ 2.9
¢"(or) (—1)lr/2+nr Y (=1irtrtirg ... formeven g

O<ip<--<ir<n

(cf. [7, (4.3), (4.4)]). Indeed, applying’[ Remark 9] withk = Q, we see that the
image of the generator of the group

H' ™ D(GES™ A B,n-1;2)~Z
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under homomorphism* equals an integral multiple of the expression on the right-
hand side 0fZ.9). Since the classes on the right-hand side&2df)(are indivisible, and
since we know tha®* maps indivisible classes to indivisible classes, we conclude
that there exists a generatgrwith the required property.

The product formulae(3) and @.4) for classes; follow since they hold for the
productsp*(ci)¢ (oj) € H*(G(R™; A, B,n—1); Z), as can be easily checked using
the arguments of the proof of [Theorem 8].

Now we want to find the action of the reflectidn: G, — Gp on classes;. It
is clear thafl *(oi) = + oj, and we need to calculate the sign. Consider the following
diagram of natural inclusions,

GR™ A, B,n—-1 — G(S™ABnNn-1

| i

GR™ A, A,n) — G(S™M A AN

(whereR™ = S" — C as above), and the induced diagram of conomology groups,

H*(GR™ A, An);Z) <—— H*(G(S™ A A n);2)

d |
H*(G(R™ A, B,n—1);Z) - H*(G(S™ A, B,n—1);Z)

where o is an isomorphism and* is injective. To understang, note that
G(R™; A, A, n) is homotopy equivalent to the cyclic configuration sp&t&™, n +
1) (cf. [8]) and so the cohomologh *(G(R™; A, A, n); Z) has(m — 1)-dimensional
generatorsy, Si, . . ., Sy Which satisfy the relations oB[ Proposition 2.2]. (We shift
indices for convenience.) The proof df, [Proposition 7] shows tha(s) = s for
i =0,1...,n—1andB(sy) = 0. Henceg is an epimorphism with a kernel equal
to the ideal generated lsy.

The reflectionT also acts orG(R™; A, A, n) (by formula @.2)). It is clear that
the induced mag* : H*(G(R™; A, A, n); Z) — H*(G(R™; A, A, n); Z) acts on
the generators as follows:

T*@s) = (—1)Ms,_j, wherei =0,1,...,n. (2.10)

Now we may calculatel *(oy), wherer = 1,...,n — 1. Fix a subsequence
0<i1<--- <iy <n.(Weavoid indices 0 and.) Suppose first thah is odd. Then
¢*(a(or)) contains monomiad; s, - - - S, ; thereforey (oy ) contains the same mono-
mial with coefficient 1. ThenT *(y (oy)) contains monomiabn_i, Sn—i, ; - - - Sn—i;
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with coefficient(—1)™" = (—1)'. The last monomial appears in(o;) with coef-
ficient 1. Since we know that*(oy) = & oy, we conclude thal *(oy) = (—1)" or.
Assume now thamn is even. The* («(oy)) contains monomias, s, - - - S, with

coefficient
(_1)["/2]+nf+i1+~~~+ir .

Applying T* and using .10, we see that the monomis_;, Sh—i, _, - - - Sh—i, appears

in T*(y (o7)) with coefficient
(_l)nr+i1+---+ir

and iny (oy) with coefficient

(_1)[r/2]+i1+--~+ir'
This shows thal *(o;) = (—1)[//2+" 4, . 0

3. Calculation of equivariant cohomology
Our purpose in this section is to compute the cohomolod$fZ2, the factor space
of the space of closed string configuratios = G(S™; A, A, n) with respect to
the Zo-action given by the reflectiom : G, — Gp. Forn even,T acts freely, and
H*(Gn/Z2; Z) coincides with the equivariant conomology @f,.

The problem is trivial fom = 1; therefore everywhere in this section we assume
thatm > 1.

To compute the equivariant cohomology, we apply the Morse theory methol
Namely, we consider the simplest billiard in the standard unit spB8re R™! and
the function of negative total length

n
L:Gnh=G(S™ A An) — R, (X1, ..\ Xn) > —Z|xi —Xi41. (3.1)
i=0

Here we understand that = x,+1 = A. The critical points ofL are the billiard
trajectories irS™ which start and end & and maken reflections. All such trajectories
can easily be described.

Namely, fix a vectoa € S", a L A, orthogonal toA and an angle

2wk n+1
=——, k=12... . 3.2
V= oo e [ 2 ] (3.2)
This choice(a, ¥) determines the billiard trajectoiixy, . . ., Xn), Where

xj = Acogjy) +asin(jyk), j=1,...,n.

Note that fom odd the trajectory determined by the p@ir ¥(n+1),2) does not depend
ona; it has the form(xy, ..., Xn), wherex; = Afor j even andkj; = —Afor j odd.



594 MICHAEL FARBER

We denote by

Vp C G, p:O,l,...,[n_l],

2
the variety of trajectories determined by all pais v), where
n+1
k= [ . ] —p (3.3)

anda L Ais an arbitrary point of the sphe@"~1 ¢ S™ orthogonal toA.

If nis even, then every submanifolg, is diffeomorphic to spher&™-1,

If nis odd, thenvy is a single point and/y, . . ., Vin-1)/2] are diffeomorphic to
the spheres™ 1,

The following statement is similar to that of I. Babenko in Proposition 3.1].

PROPOSITION4
Each \p C Gy, is a nondegenerate critical submanifold of function L in the sense o
R. Bott.

If nis even, then the index of each ¥quals2p(m—1) forp=10,1,...,(n—
2)/2.

If nis odd, then the index ofg\équals zero and, for p= 1, ..., (n — 1)/2, the
index of \} equals(2p — 1)(m — 1).

Proof
Leter,...,e8m41 € R™*1 be an orthonormal base. We may assume gat e;. We
want to calculate the Hessian of functibrat a billiard trajectorngy = (X1, ..., Xn) €
Gn, where

Xj = cogyer +sin(Ye, j=1,...,n,
and

Yk 2 k:l,...,[n+1].

Tnt+1 2
Let le denote the vector orthogonalx lying in the (e1, &)-plane, that is,

n Y+

Xi- = COS(

. Ykt
Jer+sin(Z5 7 )e:
Any tangent vectolY € T, Gn = @j Tx; S" is determined by numbers j € R,
wherer =0,1,...,m—21andj =1,...,n, such that the component %fin Tx; Sm

equals
m-—1
1
Mo, jXj" + Z Mr,j€ 2.
r=1
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A direct calculation of the Hessia (L)¢, (Y, Y) of L gives the following quadratic
form in variablesu ;-

1 :
HLa (YY) = 5 5in( %) > (o — o1
j=0

A
+ (2 sin<7>) . [Z Quy (er .1, .--,Mr,n)], (3.4)
r=1

where in the first sum we understand thato = 0 = uo,n+1 and in the second sum
the symbolQy, (y1, . . ., Yn) denotes the following quadratic form:

n n-1
Qu(YL. ... Yn) = —2C0%¥) - D Y2 +2)  yivis1.
i=1 i=1
We see that the Hessian splits as a direct sum gfiadratic forms corresponding
to different values =0, 1, ..., m — 1. The terms involving.o j (the first sum) give
a positive definite quadratic form. The remaini¢rg — 1)-forms are identical, and
their index and nullity equal the index and nullity Qf,. Hence we conclude that
the index and nullity of the Hessian equats— 1 times the index and nullity of the
form Qy,.
In order to calculate the index @y,, we observe that the eigenvalues of the
symmetric(n x n)-matrix

0 1 0 0O O
1 0 1 0O O
0 1 0 0O O
0 0 0 0 1
| O 0 0 1 0 |
are given by S
b
AS=2005<n+1), s=12...,n, (3.5)
and the eigenvectdws s, . . ., vn s) corresponding ta.s is given by
L Tjs -
vJ,S_sm(—n_i_l), j=1,...,n. (3.6)

This claim can be checked directly.
Therefore the eigenvalues Qfy, are

Z[Cos(njf]_) - cos(nzj_kl)], s=12,...,n, (3.7)
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and the eigenvectors @y, are given by §.6).

Hence the index 0Qy, equals the number of integessuch that R < s < n,
which isn — 2k for 2k < nand zero itk = (n + 1)/2 andn is odd. Since (according
to (3.9) k =[(n+1)/2] — p, we conclude that the index @y, equals

n—2k=n_2<[n+l]_ )Z{Zp if nis even,

2 2p—1 ifnisodd

The special case = (n+ 1)/2 for n odd corresponds tp = 0O; in this case the index
and nullity of Qy, equal zero.

From (3.7) we see that the nullity oQ,, equals 1 for ank unlessn is odd and
k=(n+1)/2.

The discussion above proves that on any critical subman¥glthe dimension
of the kernel of the Hessian &f equals the dimension &f,; hence all submanifolds
Vp are nondegenerate in the sense of Bott and their indices are as stated. O

The normal bundlev(Vp) splits as a direct sum, (Vp) @ v_(Vp) of the positive
and negative normal bundles with respect to the Hessidan @he may describe the
negative normal bundle_(Vp) as follows.

LEMMA 5
The negative normal bundle (Vp) to Vp is

EDED---DE ifniseven
—/_J

_ 2p times
v_(Vp) = EQE®---®E ifnisoddand p> 0, &)
—_—

2p—1times

whereg¢ denotes the tangent bundle of sphefer§

Proof
Let S™1 < 3™ be the equatorial sphere consisting of unit vectors orthogonal t
A. Any pointa € S™1 and angle §.2) determine a critical submanifoldp. Fix
an eigenvalue\s (given by (3.5) such that expressiorB (/) is negative. Consider
the subbundles(Vp) of the normal bundle(V,) consisting of eigenvectors of the
Hessian with eigenvalugs. We show thatvs(Vp) is isomorphic toz. This would
clearly imply the lemma.

Consider a billiard trajectorgx = (X1, ..., Xn) € Gp in the plane of vectora
andA, where

Xj = cogyx)A+sin(yyxa, j=1,...,n,
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and

2k n+1
=iy K= [ 2 ] N

Denote by&, the (m — 1)-dimensional subspace orthogonaatand A. We show that
there is an isomorphism between the fibengfVy) overck andé, which depends
continuously ora.

Letvj € TXj S", wherej =1, 2,...,n, be asequence of tangent vectors. Using
(3.4) and @3.6), we find that a sequence of vectdts, . .., vy) belongs to the fiber of
vs(Vp) over the configuratiogk = (X, ..., Xp) if and only if

_ sin(zjs/(n+1))

vj € and Vi = — vi, j=1,...,n 3.9
i €ta 1= Sins/n+ 1) b (3.9)
We see that the first vecteg uniquely determines a tangent vectoi, ..., vp) to a
configurationcg in the eigendirection.s. Moreover,v1 can be an arbitrary vector in
§a. o

Since¢ is orientable, we obtain the following.

COROLLARY 6
The negative normal bundle (Vp) is orientable.

Note that this corollary is trivial fom > 2 since the spher&™1 is then simply
connected.

COROLLARY 7
The function L: G, — R (cf. (3.1)) is a perfect Bott function.

Proof
Note that the critical valué (Vp) equals

k1>, wherek = [ngrl] -p

Hence, forp < p’, we havel (Vp) < L(Vp).
Choose constanty, C1, . .., C(n-1)/2] € R such that

L(Vp) = —2(n + 1) sin nzi

n—3]7

L(Vp) < Cp < L(Vprn), P=0.1,....[ .

and

LMMa-1/21) < Cn-1)/21-
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EachFp = L1 (—o0, cpl) C Gp is a compact manifold with boundary, and we
obtain a filtration
Foc FrC .- C Fn-1/2-

The inclusionFn_1y/2) — Gn is @ homotopy equivalence (as follows easily from [
Proposition 4]). Using Corollarg and the Thom isomorphism, we obtain

HI(Fp, Fp_1; Z) =~ HITVp) v 7)

_ Z ifj= ihd(vp) orj =ind(Vp) + m—1, (3.10)
0 otherwise
This also holds true fop = 0 if we understand thef_1 = .
Suppose that is even. Then cohomology grou! (Fp, Fp—1; Z) is isomorphic
toZ for j = 2p(m—1) andj = (2p + 1)(m — 1) and vanishes for all othey.
Comparing this with the additive structure bif*(Gp; Z) given by TheorenB, we

find that
[(n-1)/2]

H*Gn:2)~ € H*(Fp. Fp1:2), (3.12)
p=0
which means thatt is perfect.
Suppose now thatis odd. TherH 1 (F, F_1; Z) is Z for j = 0 and vanishes for
all other values of . If p > 0, then

Z forj=@2p—-1)(mM—-21orj=2p(m-—1),

HI(Fp, Fp_1; Z) ~
iy =) 0 otherwise,

and thus the perfectness Gf{1) also holds.
Alternatively, form > 2, the perfectness o%(11) follows without using Theorem
3 by considering the spectral sequence of filtratigy

EPY = HPHI(Fp, Fp_1;Z) = HPYI(Gp; 2),

and observing that for any of its differentials, withr > 1, either the source or the
target vanishes. Therefole, = E.,. Moreover, every diagong + q = ¢ of E
contains at most one nonzero groupml= 2, the differentiald; has a nonzero source
and target, and so the above argument does not work. O

From this point on we assume thats even.

Then the reflectio : G, — Gy, acts freely, and our purpose is to calculate the
cohomology of the factor spad®), = Gn/Z2. Function @.1) is reflection invariant
and so determines a smooth function

L': G, —> R
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The critical points ofL’ form nondegenerate (in the sense of Bott) critical submani:
folds

V/ V/ /

00 V1r--+» Vnj2-1s

whereV|, = Vp/Z5. The index oV}, equals 2(m — 1) (as follows from Proposition
4). Since eaclv, can be identified witt§™~! and under this identification the reflec-
tion T acts as the usual antipodal map, we see that ¥gdb diffeomorphic to the
projective spac®&P™ 1,

COROLLARY 8

The Poincaé polynomial of G = G(S™; A, A, n)/Z5 with coefficients in field is
tm_1 tn(mfl) -1
t—1 t2m-1_7’

and the sum of Betti numbers with coefficientZ sgris mn/2.

Proof
We give here a simple proof that works for > 2. The casen = 2 follows from
Theoreml 1

Consider the filtrationFp C F1 C --- C Fn2-1 C Gp, as in the proof of
Corollary7. Let F, denoteF,/Z,. We obtain a filtratiorFy ¢ Fj  --- C F 5 4 C
G, such that the inclusioﬁr’l/}1 C Gp, is a homotopy equivalence and

HI(Fp, Fy1:29) ~ HITPMDRPT4 75, p=0,1,...,5 -1

(using the Thom isomorphism). Hendd ! (F/, Fé_f Z5) is nonzero (and 1-
dimensional) only for p(m — 1) < j < (2p + 1)(m — 1). The spectral sequence of

filtration Fy,
Elp’q —H |0+0I(|:’/)’ ,/)_1; Z;) = HPTU(G},; Zo),

hasEf ~ Z, for p2m—3) < q < p(2m—3) + (m— 1) andE]" = 0 otherwise.
Hence, for any differentiad,, wherer > 1, either the source or the target vanishes.
ThereforeE; = E,, and our statement follows. O

We now calculate the Stiefel-Whitney classes of the negative normal buncig).
In particular, we find out for whichp this bundle is orientable. This information is
needed for computing the integral cohomologyGif.

LEMMA 9
The total Stiefel-Whitney class of the negative normal bund{®&/(,) equals

(L4 a)PMD e H*V/: Zy),
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wherea € H1(V/; Z») ~ Z, denotes the generator.

Proof
As in the proof of Lemm&, we obtain that the negative normal bundle(vlg) splits
as a direct sum of 2vector bundlegs of rankm—1, one for each negative eigenvalue

TS 2k
As = 2[00 ) — cos( ]
s S(n +1 n-+ 1)
of the Hessian. Here = n/2 — p.

Let r denote the tangent bundleRP™ 1. Lety L be a rankm — 1 vector bundle
overRP™-1 such that its fiber over a line € RP™1 is the orthogonal complement
ot

We claim that

T if sis even,
Ns = I
y if sis odd.

Indeed, this bundle is obtained from the tangent busdié S™1 (cf. Lemma5) by
identifying the antipodal points, and under this identification the first vegtehould
be replaced by the last vectay (cf. (3.9)). Formulae 8.9) show that

vn = —Cos(rs) - vy = (—1)¥ vy,

and hence the bundig is obtained front by identifying the fibers over poinssand
—a with a twist(—1)S*1. This implies our claim (cf.12]).

For a givenp there is an equal number of negative eigenvaluasf the Hessian
on Vp with even and odd. Therefore the bundle_ (vg,) is isomorphic to a direct
sum of p copies ofr @ y=.

The total Stiefel-Whitney class gf*- is (14 «) ™1, and the total Stiefel-Whitney
class ofr is (1 + )™ (cf. [12]). Hence the total Stiefel-Whitney class of the negative
bundle is

[A+a)™ A+ a)™]? = A+ o)™ P, O

COROLLARY 10

If m is odd, then the negative normal bundale(Vy) is orientable for any p. If m
is even, then the negative normal bundle(V)) is orientable for all even p and
nonorientable for all odd p.

Proof
By Lemmay, the first Stiefel-Whitney class of_ (VF’J) is p(m — D). This implies
our statement. O
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Recall our permanent assumption that- 1 andn is even.

THEOREM11
If m > 1is odd, then

Z forj=2i(m—-1),wherei=0,1,...,n/2—1,

: Z, for j even satisfyin@i (m—1 <@ +1H(m-1

MG )~ 122 P fyin@i(m—1) < j < (2 +H(m—1)
with i as above

0 otherwise

If m is even, then

Z forj=@& +e)(m—-21),r=0,1,...,[(n—2)/4],¢e =0, 1,

Zy, forj=4(m-1)+i,orj=@&"+2(m-1) +i’, where

HI(G;Z) ~ i=24,.... m—2risasabove/i=13 ...,m—1, and
0<r' <(n-4/4

0 otherwise

Proof
Consider filtrationF; Cc F; C --- C Fr’1/27l C G, (cf. the proof of Corollary8) and
the associated spectral sequence

E/f’q = HPHI(F., ;)_1; Z) = HPY(Gy;: 2).

FE) - Flg_l contains a single critical submanifo‘t{, ~ RP™ 1 with index 2p(m—1).
The normal bundle WF’J is orientable ifp(m—1) is even and nonorientablefi{m—1)
is odd. The Thom isomorphism gives

Hi=2pm-DRpM-1. 7y if p(m— 1) is even,

HI(FL,F. 1:2) ~ .
( ) Hi-2pm-DRp™-1. +7) if p(m— 1) is odd.

L (3.12)

Here+Z denotes the nontrivial local system of groubsverRP™1; its monodromy
along the generator of (RP™1) is multiplication by—1.
Form even, we have

Z forj=0andj =m-1,
HIRP™ L 2)=1Z, forj=24....m—2
0 otherwise
and
Zy, forj=13...,m—1,

HI(RP™ L +7) = ,
0 otherwise.
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For m odd, we have

Z forj=0,
HIRP™ . 2) =17, forj=24,....m—1,
0 otherwise

Therefore, in the above spectral sequefﬁf@;q =0holdsforp2m—3) < g <
p2m — 3) + (m — 1). This implies that form > 2 either the source or the target of
any differentiald, vanishes.

Hence, form > 2, E’; = E’, holds and any diagonal + g = const contains at
most one nonzero group. This proves our statementfer 2.

Assume now thain = 2, and consider the first differentidj : E/rl_l’r — E"
We have

) Z ifrisodd,
BV Y ~HZ YR, R 2) = P
Z> ifriseven

and
0 ifrisodd,

EY ~H¥(F Fo:2)=1_
Z ifriseven.

We see thatl; vanishes since there are no nonzero homomorphE’r‘ln_sLr — E’rl’r
for anyr.

The higher differentialgl,, r > 2, vanish for obvious reasons. Hence the conclu-
sion we made fom > 2 also holds fom = 2. O

The following theorem is the main result of this section. It describes the multiplicativ
structure ofH*(G/,; Z). Recall that we assume thais even.

THEOREM 12
For m > 1 odd, H*(G/,; Z) is the commutative ring given by the sequence of gener
ators

§ e HIMD(@G.zy~7Z, i=012...,
and
ee HAG; 2) ~ Z,,

satisfying the following relations:

o @ +2p
T @nepr
2e=0, eMb/2 — o,

i 1

8n/2 =0, do
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If m is even, then B(G/,; Z) is the graded commutative ring given by the generators
§ e HAM V(G Zy~Z, i=012...,

and also

ec HXG:2)~Z  aeH™XG:2)~Z, beH™XG,:2)~ 2,

satisfying the following relations:
2 +2j)!

' @i
2e=0, €V2=0,
a? =0, ab=0, ae=0,
2b=0, b?>=0,

b =0 (ifn=4k+2).

i Siin+2)/41 = 0, do=1,

RemarkForm = 2 the generatoe disappears since one of the above relations read
e = 0. If mis even andh = 2, thenb = 0 since one of the relations givégb = 0.

Proof

Consider the universaly-bundleS™ — RP> and the associated fibrati®@© xz,

Gn — RP*, havingGy, as the fiber. The total spa&® xz, G, is homotopy equiva-
lent toG;,. The Serre spectral sequence of this fibration converges to the cohomolo
algebraH*(G},; Z). The initial term is

E)Y = HP(RP®; #9(Gp; 2)),

wheres7%(Gy; Z), the cohomology of the fiber, is understood as a local system ove
RP>.

From TheorenB we know thatH9(Gp; Z2) is eitherZ or trivial. There are two
types of local systems with fibed over RP*°, which we denote&Z and+Z. Their
structure is determined by the monodromy along any noncontractible |0BPf,
which is 1 in the case & and—1 in the case of:Z.

Assume first thai > 1 is odd. From formula4.6) we find that

Z forq=2i(m-1),

HYGp; Z) ~ .
+Z forqg=(2 +1)(mMm-1),
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wherei =0,1,...,n/2— 1. Hence we find that

Z forp=0andg=2i(m-1),

Zy ifp>0isevenand) =2i(m—1)
orif pisoddandy = (2i + 1)(m — 1),

0 otherwise

wherei = 0,1,...,n/2 — 1. As a bigraded algebr&, can be identified with the
tensor product
ES*QE;°® A,

where
Eg,* ~ HZ*(Gn, Z), E>2k,0 ~ H*(RPOO, Z),

and A is an exterior algebra with®% ~ Z and AY™1 ~ 75 If x € E;’m’l is the
generator, then relatior? = 0 follows from relationol2 = 207 (in the notation of
Theorem3). Here we denote bid?*(Gp; Z) € H*(Gp; Z) the graded subring

H*(Gn; 2) = @B H? ™ D(Gn; 2).

The structure of the ring 2*(Gy; Z) follows from Theoren®.
The first nontrivial differential isdy. Since we know the additive struc-
ture of H*(Gy; Z) (cf. Theorem11), we find that the differentiad = dn

E;™* — EJ'"? must be an isomorphism. On the other haahd, Eg’Zi m-1 _,

Egr@ D™D vanishes (since the range is the zero group). It follows that
ERIM=D _, gD U-DMD 5 nonzero if and only if bottp andj are odd.
Figurel shows the nontrivial differential = d. The large circles denote group
Z, and the small circles denote.
We conclude that the bigraded algelfta 1 is isomorphic to the tensor product
of algebras
H?(Gn: Z) ® H*(RP™ % 2),

whereH2 ™M-1(G,: Z) has bidegre€0, 2i (m—1)) andH2 (RP™; Z) has bidegree
(2j, 0). It is clear that all further differentials vanish, and heittg = Eny1. Any
diagonalp + g = c contains at most one nonzero group, and hence the algeb
H*(G/;; Z) coincides withE,. This proves our statement for > 1 odd.

Assume now tham is even. Recall that we always assume th#& even. From
formula @.6) we find that

Z forg=4i(m—-1)orqg= (4 +1)(m-1),

AN Gn; Z) ~ . .
+Z forg= Ui +2)(m—1)orq= (4 +3)(m—1),
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q
5(m-1) . . o . .
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3(m-1)
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1 2 m+1 m+3 m+5 p

Figure 1. TermEn, of the spectral sequence farodd

assuming thafg < n(m — 1). Hence we find that

Z forp=0andq= (4 +¢)(m—1), wheree =0, 1,
£PA _ Z, if p>0isevenand] = (4i +¢)(m—1)
2 orif pisoddandy = (4i + 2+ ¢)(m—1),
0 otherwise

As a bigraded algebr&, can be identified with the tensor product
EX* ® Ex° @ B,

where
E3* ~H*Gn2)®C*,  E}°~H'RP™;2),

C* is an exterior algebra witlt® ~ Z andC™ 1 ~ Z, and B** is an exterior
bigraded algebra witB%° ~ Z andBL2M-D ~ 7, If y ¢ E;*™ Y denotes the
generator, they? = 0 follows from relationa22 = 204 (cf. Theorem3). We denote
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Figure 2. TermEn, of the spectral sequence fareven

by H¥(Gn; Z) € H*(Gp; 2) the graded subring

H*(Gn; 2) = P H* ™ P(Gn; 2).
i

Consider now the first nontrivial differentidl = dy : ES% — E2p+m,q7m+1.

It is clear that it may be nonzero only fgrof the formg = (2i + 1)(m — 1). On
the other hand, since we know the additive structure of the limit (cf. Thear@nwe
conclude thad : Eg’m’l =7Z— E;“’O = Z, is surjective. Using the multiplicative
properties of the spectral sequence, we find that all the differentials shown in Figu
2 are epimorphic. In fact, all differentials in Figufe except those that start at the
g axis, are isomorphisms (since they act between isomorphic groups). As before,
large circles denotg and the small circles denofe.

Hence, moving to the next termgy.1, classess = §i survive, as da = 201,
ec Erzr;f:l ~ Z,, andb e E#i(lm_l) and their products;a, siel, andsjbel with
j < m/2.1tis clear that all further differentials vanish and that in each diagona
p + g = c there is at most one nonzero group. Therefore we conclude that the rir
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H*(G/,; Z2) is isomorphic toEm, 1. Its structure coincides with the description given
in Theoreml2. O

4. Equivariant Lusternik-Schnirelman theory via nonsmooth critical

point theory
In this section we first recall the basic notions of the critical point theory for nons
mooth functions, suggested recentlydhénd [5]. Then we apply the nonsmooth crit-
ical point theory to get a simple independent exposition of a version of the equivaria
Lusternik-Schnirelman theory oi [] and [3], which we need for our applications to
the billiard problems. One of the advantages of our approach is its applicability 1
manifolds with boundary.

Let X be a metric space endowed with the metticGiven a pointp € X and

8 > 0, we denote byB(p, §) C X the ball of radius$ centered ap.

Definition 13
Let f : X — R be a continuous function. Theeak slope of fat a pointp € X,
denoteddf|(p), is defined as the supremum of alle [0, co] such that there exist
8 > 0 and a continuous deformation: B(p, §) x [0,8] — X with the following
properties:
d(n(a.t),q) <t, f(n@.t) < f(@ —ot

forallq € B(p, 8),t € [0, 3].

A point p € X is said to be aritical point of function fif |df|(p) = 0.

Example 14

Let X be a smooth Riemannian manifold without boundary, andflet X — R

be a smooth function. Then the weak sldpé|(p) coincides with the norm of the
differential ||df (p)||, viewed as a bounded linear functional on the tangent spac
Tp(X).

Example 15

Let X be a smooth Riemannian manifold with boundary, andflet X — R be
a smooth function. A point on the boundapye 9 X is a critical point of f if and
only if there is no tangent vectar € T, X pointing insideX such that the derivative
v(f) < Ois negative. The last condition implies that

dfplt,ax =0, (4.1)

that is, that the gradient of at pointp € 9X is orthogonal to the boundag/X.

A point p € dX is a critical point of f if and only if (4.1) holds and the gradient
of f at p points inwards. It is clear that the above conditions are independent of tt
Riemannian metric.
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PROPOSITION16

Let f : X — R be a continuous function on a compact metric space X. Then th
number of critical points of f (in the sense of Definitidd) is at leastcat(X), the
Lusternik-Schnirelman category of X.

This follows from the much more gener&l, [Theorem 3.7].
We apply the nonsmooth critical point theory to the equivariant critical poin
theory of smooth functions (cf1[], [3]).

PROPOSITION17

Let M be a smooth compact G-manifold with boundary, where G is a finite grouj
Let f : M — R be a G-invariant smooth function. Suppose that at points of the
boundary pe dM the gradient of f does not vanish and is directed outwards. Thel
the number of G-orbits of points ¢ M with df, = Ois at leastcatM/G).

Proof
Let X denote the space of orbidé = M/G. Function f determines a continuous
function f : X — R. We want to show that any orbit € X, representing points
p € X with dfy # 0, is not a critical point off : X — R in the sense of Definition
13. This implies that the number of critical orbits bfis at least the number of critical
points of f; the latter can be estimated from below by(é&tin Propositionl6.

We assume tha¥l is supplied with &-invariant Riemannian metric. Lgt € M
be a point withd f, # 0. We want to construct a smooth vector fielth a neighbor-
hood of the orbit ofp having the following properties:
@ v(f)p<0O;
(b)  the norm of vecton, equals 1,
(c)  wvisG-invariant;
(d) if pbelongs the boundaM, the vectorn points insideM.
To construct such a vector field one first finds a vector, € TpM for each point
p of the orbit so that (a), (b), and (d) are satisfied. It is then possible to extend tl
vectorsvy, to form a smooth vector field in a neighborhood of the orbit gb with
properties (a), (b), and (d). Then (c) can be achieved by averaging.

The flow determined by the vector fieldgives a deformation of the ball around
the point{p} € X, which represents the orbit @ showing that the slop f|(p) is
positive. O

5. Proof of Theorem1
LetT ¢ R™ be a compact strictly convex domain bounding a smooth hypersurfac
X = 9T. Given a pointA € X and an integen, consider the configuration space
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Gnh = G(X; A, A, n) (cf. (2.1)) and the smooth function

I=n
Lx:Gn—R,  Lx(Xt,....Xn) ==Y |X — Xl
i=0

(the negative total length), where we understandtbat A = xn41. This function is
invariant with respect to the reflectidn: G, — G, (cf. (2.2)). Hencel x determines
a continuous function

Ly :G, >R,  G,=Gn/T, (5.1)

and the critical points of (in the sense of Definitiori3) are in one-to-one cor-
respondence with th&,-orbits of the closed billiard trajectories i which start
and end atA and maken reflections. This follows from7, Lemma 2] and from the
argument in the proof of Propositidry.

Note that, forn even,T acts freely onGy, the factorG,, = Gn/T is a smooth
manifold, and the functioh.}, is smooth. In this case the nonsmooth critical point
theory coincides with the usual one.

We claim the following.

The number of critical points of'L is at least the Lusternik-Schnirelman category
cat(Gy,); moreover, assuming that n is even and the functigrid Morse, the number
of critical points of §.1) is at least the sum of the Betti numbers of Gith Z,
coefficients.

The italicized statement does not follow directly from the traditional Morse-
Lusternik-Schnirelman theory sin€&, is not compact. However, as ig][and [7],
one may fixe > 0 and consider the following compact subset:

n
G, Cc Gy Ge= {(Xl,...,Xn) e X*n. 1_[|Xi — Xjy1| > 6}.
i=0

If ¢ > 0 is small enough, then

(@)  G¢is a compact manifold with boundary;

(b)  theinclusionG, C Gy is aZ»-equivariant homotopy equivalence;
(c)  all critical points ofL x are contained if5;

(d)  atevery point obG,, the gradient oL x is directed outwards

(cf. [8, Proposition 4.1], 7, Proposition 4]).

SinceG, = G./T is a compact smooth manifold with boundary, we may ap-
ply the Morse-Lusternik-Schnirelman theory to it. Condition (d) implies that the
critical points of the restriction ot on dG, should not be taken into account
(cf. Proposition17). Therefore the number of critical points &fy | is at least
calG,) = catGyp). If L|c, is Morse, then the number of its critical points is at
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least the sum of Betti numbers G, which is the same as the sum of Betti numbers
of Gj,.
In the proof of Theoremi(l), we use the following general simple remark.

For any regular covering map pX — X with connectedX,
cat(X) > cat(X). (5.2)

Indeed, if A C X is an open subset that is contractible to a poinKinthen A =
p~1(A) is a disjoint union of open subsets B such that each is contractible to a
point in X. Hence any categorical open cover U A, U --- U Ay = X produces a
categorical open covek; U Ay U - - - U Ay of X.

The above remark applies to the two-fold coGy — G}, giving

cat(G,) > catGy) > cl(Gp) + 1,

where c{(G) is the cohomological cup length &, (Froloff-Elsholz theorem).

Now we use Theoremd to compute the cup length &,. If m > 3 is odd,
thenof ™t = (n — Dlon_1 # 0 € HM-D™=D(Gy; Z) and hence ¢Gp) = n — 1.
Therefore caiGy,) > n. This proves Theorem 1(l) in the case when> 3 is odd.

If mis even, then the longest nontrivial cup productHri(Gn; Z) is olazk‘l
wheren = 2k. We conclude that, fom even, the cup length d&,, equalsn/2 and
therefore caG;) > n/2 + 1. Together with the information collected above, this
proves Theorem 1(I) fom even.

To prove Theoreml(ll), we use Theoreml2 to estimate the Lusternik-
Schnirelman category db;,. Note that Theoreni2 requires the assumption that
is even. Suppose first that > 3 is odd. Then (in the notation of Theoreii) we

have a nonzero cohomology product
8182852 - - - 8ps€M~D/2, (5.3)

wheres is the largest integer with®2! —1 < n/2—1, that is, whers = [log,(n)]—2.
Note that the class € H2(G/;; Z) has order 2; that is,&= 0. Nontriviality of the
above product is equivalent to the claim that the produésso. - - - §2s is an odd
multiple of the class; ,,, 2, ..., s. Indeed, we use the relation

i5) = ( 2i ;21 >3i+j
and the well-known fact that the binomial coefficie(ﬁitzzj) is even if and only if
andj, in their binary expansions, have a 1 in the same position.

Now we use the notion afategory weight of a cohomology clagstroduced by
Fadell and Husseinig]. They associate weights to cohomology classes, so that nor
triviality of a cup produciv; UvaU- - -Uvy, implies that the Lusternik-Schnirelman cat-
egory of the space is greater than the sum of the weights of the classegs. . ., vm.
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Hence, instead of counting each cohomology classs contributing 1 into the total
cup-length estimate, in the approach of Fadell and Husseini we count the contributi
of v; according to its category weight.

We claim that the category weight & € HZ2(G.;Z) equals 2. Indeede
equals the image of a class € H(G/,; Z») under the Bockstein homomorphism
B : HY(G/: Zo) — H2(G/; Z2); thatis,e = B(€). Hence, by Fadell and Husseini in
[6, Theorem (1.2)], the category weight @fs 2. Therefore nontriviality of product
(5.9 implies

m-1
cat(G;])z(s+1)+2-T+1=[Iogzn]+m—1.

This proves Theorem 1(1l) fan > 3 odd.
Consider now the case whem> 2 is even. First we assume that- 8 and that
n + 2 is not a power of 2. Then we have a nontrivial conomological product

818282 - - - 8psbeM=2/2, (5.4)
wheres = [log,[(n + 2)/4]] — 1. As above, nontriviality ofZ.3) implies

n—+2

-2
catlG,) > (s+1)+1+2- mTJrl: [Iogz[ H +m> [log,n]+m—2.

If n+2 = 2" is a power of 2, where > 4, then the product

8182852 - - - 8ps€M=2)/2
(we skipb because of the last relation in Theoré®) is nonzero, whergs =r — 3.
In this case we obtain

m-—2
cai(G;)z(s+1)+2~T+1=s+m=[log2n]+m—2.

We are left to consider the casas= 2, 4, 6 with m even. Here we have a
nontrivial cup producbe™2/2 and hence

m-—2
cat(Gg)21+2~T+1=m.

This implies the estimate of Theoreifil) for the specified values af andm.

Form > 1, Theoreml(lll) follows from Corollary 8. If m = 1, then the space
G| = G(St: A, A, n)/Z, consists ofn/2 connected components and each is con-
tractible; this can be established by arguments similar to those usédSn][ Hence
the sum of Betti numbers @’ isn/2. O
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6. Cohomology of cyclic configuration spaces of spheres

The cyclic configuration spacg(X, n) of a spaceX is defined (cf. §]) as the set
of all configurations(xy, ..., Xn) € X*" with x; # Xj;1fori =1,...,n—1and
Xn # X1. The dihedral grouf,, acts naturally orG (X, n).

In [8] M. Farber and S. Tabachnikov showed that information about the cohc
mology ring of the factor spac&(S™, n)/Dy leads to estimates of the number of
n-periodic orbits of convex billiards itm + 1)-dimensional spacR™L. The rings
H*(G(S™, n); Z2) andH*(G(S™, n)/Dp; Z2) were computed ing].

In this section we describe the cohomology of the cyclic configuration spac
G(S™, n) with other fields of coefficients. It turns out that the answer depends on tt
parity of m; therefore we state the even- and odd-dimensional cases in the form
two separate theorems.

The results of this section are used in the proof of Thedtem

THEOREM 18
Let m> 3 be odd. The ring BI(G(S™, n); Q) is given by generators

ue H"(G(S™n):Q), o e H™D(GE™n);Q), i=1,...,n-2
and relations
GHY oy ifi+j<n-2

o (6.1)
0 ifi+j>n-2

One may show that the statement of Theorghholds, withQ replaced by an arbi-
trary field of coefficient&. However, the short proof we give below works only in the
casek = Q. On the other hand, for the purposes of this paper, it is enough to kno
the rational cohomologyi*(G(S™, n); Q). The case of a fiel# of positive charac-
teristic may be proven by using,[Theorem 3] and computing the spectral sequence
as in the proof of§, Theorem 4].

The following theorem gives the answer foreven.

THEOREM 19

Letk be a field of characteristic not equal & For any even n» 2 and odd n> 3,

the cohomology algebra HG(S™, n); k) is given by generators

n—3
2 9

w E H2m_1(G(Sm, n); k), o9 € HZi(m_l)(G(Sm, i k), .
and relations
gwijj'l copi4jy Fi+]< an3

2
we=0, oo = . .
7 o if i+ > 052
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X3

\ V(%)

Xn = —X Xn_1

Figure 3. Continuous family of configurations

Proof of Theoreni8
Consider the fibration

p:G(S",n)— S", (6.3)
where the image of a cyclic configurati@ry, ..., x,) € G(S™, n) under projec-
tion p is given by p(x1, ..., Xn) = X1. The fiber of p is the configuration space

G(S™; A, A, n—1). Consider the Serre spectral sequence of this fibration. The coht
mology of the fibeiG(S™; A, A, n — 1) is described by Theoref) it has generators
o1, ..., on—2, Which multiply according to4.3).

This spectral sequence may have only one nonzero differeltiale show that
this differential vanishes; that idy, = 0. This clearly implies our statement.

Since we may writesj = (i D=L, it is enough to show thady(o1) = O.
Vanishingdm(o1) = 0 follows from the fact that fibration5(3) admits a continuous
sections : ST — G(S", n), and thus the transgression is trivial. To constisditx
a nowhere zero tangent vector fidldon the spher&™. (Recall thaim is odd.) For
x € S the tangent vectoY (x) determines a half-circle starting &t tangent to
V (x), and ending at the antipodal poirix. Then the sectios can be defined by

S(X) = (X17 X25 sy Xn), X e Sn'\’
wherex; = X, X, = —Xx and the pointxo, ..., Xy—1 are situated on the half-circle
making equal angles as shown in Figure 3. Analytically, we may write
_yUi=Dx (=D o
Xj = cos( )x+sm< r—] )V() j=1...,n O

Proof of Theorem 9
First we assume tham > 2; the casen = 2 is treated separately later.
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We describe the additive structure Hf*(G(S™, n); k) using the Morse theory
approach. LeB™ ¢ R™! pe the unit sphere. Consider the total length function

L:GES"n — R,
where for(xy, ..., Xn) € G(S™, n) we have
L(X1, X2, ..., Xn) = —|X1 — X2| — [X2 — X3| — -+ — [Xn — Xa|.

The critical points ofL aren-periodic billiard trajectories in the unit sphere; hence
the critical configurations are regulargons lying in 2-dimensional central sections
of the sphere. A regular-gon is determined by two first vectoxs, xo € S™, which
must make an angle of the form

2r /-1 n—3
ap=7-( 5 —p), wherep:O,l,...,T.
Recall that we assume thatis odd. Fixingp = 0,1, ..., (n — 3)/2, we obtain a

variety of critical configurations, which we denote Wy c G(S™, n). EachV, has
dimension 2n — 1 and is diffeomorphic to the Stiefel manifold of pairs of mutually
orthogonal vectors iIR™ 1. Since we assume that is even and that the character-
istic of k is # 2, we haveH*(Vp; k) ~ H*(S?™1; k). Note also thaV/, is simply
connected (since > 2).

Babenko has shown (cfL[Proposition 3.1]) that functioh is nondegenerate in
the sense of Bott and that the index of each critical submanifglequals (m—1).
Moreover, it is clear thak (Vp) < L(Vy) for p < p'.

Fix ¢ > 0 small enough, and consider the submanif@ldS™, n) ¢ G(S", n),
where

n
Ge(S™m = {0, % € (S ]I = xisal = e}
i=1

If ¢ > 0is sufficiently small, then (according t8,[Proposition 4.1])G.(S", n) is
a compact manifold with boundary containing all the critical pointdcdnd such
that the inclusiorG, (S", n) ¢ G(S™, n) is a Dy-equivariant homotopy equivalence.
Moreover, at every point of the bounda®,. (S™, n), the gradient ol extends out-
ward.

Choose constantsy, Cy, ..., Cn—3),2 such thatL(Vp) < cp < L(Vpya) for
0<p<(n-3)/2andcn_3)2 =0. Let

Fp = L™((~00, cpl) N Gx(S™, n).

We obtain a filtrationFg C F1 C --- C Fn—3)2 = G,(S™, n). Since the inclusion
Fin—32 C G(S™, n) is a homotopy equivalence, we may use the spectral sequen:
of this filtration to calculate the cohomology Gf(S™, n).
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We claim that this filtration iperfect that is, that the Poincampolynomial of the
cyclic configuration spac&(S™, n) equals the sum of the Poinéapolynomials of
the pairs(Fp, Fp—1). The initial term of the spectral sequence is

EPY9 = HPY(Fp, Fp_1; k).

Using the Thom isomorphism (recall th&f, is simply connected), we find that
HI (Fp, Fp_1; k) is isomorphic toH)=2PM=D(v: k); henceH ! (Fp, Fp_1; k) is
1-dimensional forj = 2p(m— 1) and forj = 2p(m — 1) 4+ 2m — 1 and vanishes for
all other values of . This follows since inFp, 1 — Fp there is a single nondegenerate
critical submanifoldv, which has index p(m—1) and is diffeomorphic to the Stiefel
manifold Vipy1 2.

The gradient ofL at points of the boundar§G,(S™, n) extends outward, and
hence, the points of the boundary do not contribute to the usual statements of
Morse-Bott critical point theory.

For a givenp there are precisely two values @such thatEf’q is nonzeroq =
p(2m — 3) andg = p(2m — 3) + 2m — 1). From the geometry of the differentials,
we see that all the differential$, r > 1, must vanish ifm > 2. This proves that
the cohomolongj(G(Sm, n); k) is 1-dimensional forj = 2p(m — 1) andj =
2p(m—1)+2m—1,wherep=0,1, ..., (n—3)/2, andH 1(G(8M, n); k) vanishes
for other values of .

Having recovered the additive structuretef (G(S™, n); k), we may use The-
orem 3 to find its multiplicative structure. The mappirig:, X2, ..., Xp) — X1 is a
Serre fibrationG(S™, n) — S"; its fiber isG(S™ : A, A, n — 1). The Serre spectral
sequence has only two nonzero columns, &nds the only differential that could be
nonzero. In the zeroth columns we have classeés dimensions (m — 1), and in the
mth column we have classesu having dimension(m — 1) + m (cf. Theorem3).
Since we already know the additive structurettf(G(S™, n); k), we conclude that

the differential _ _
O : E'™ D  g0-Dm=D

is an isomorphism for odd and vanishes fareven. Hence the classes andosi;1u
survive. Now, we setv = 01U, and we conclude thati *(G(S™, n); k) has the mul-
tiplicative structure stated in Theorels.

Form = 2 the above argument, based on the spectral sequence of the filtrati
FoCFiC - C Fnogy2 = G:(S", n), is not sufficient since, in principle, this
spectral sequence could have a nonzero differential, as shown in Figure 4. Also,
m = 2 the critical submanifold¥ are not simply connected, and so the Thom iso-
morphisms for the negative normal bundles of the Hessian may require additior
twists by flat line bundles (depending on the orientability of the negative normal bur
dles of the critical submanifolds).
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Figure 4. Nonzero terms of the spectral sequencefer 2

However, in the case = 2, a different argument can be applied. Consider the
action of S@3) on G(S?, n) arising from the standard action of &8 on 2. Fix a
point A € %, and consideG(S?; A, A, n — 1) as being canonically embedded in
G(S?, n). We obtain the map

SOM3) x G(S%; A, A,n—1) —> G(S, n), (R,c) —~ Rc, (6.4)

given by applying an orthogonal matrix € SO(3) to a configuration of points on the
sphere € G(S?; A, A, n—1). Itis easy to see thab(4) is a fibration with fiberS. If
c= (A X, ..., X—1) is a configuration of points 08? such thatA # X1, Xi # Xi4+1
fori =1,...,n—1andx,_1 # A, then the fiber of fibrationd(4) overc consists of
the space of all pair6R_y, Rs(c)), whereR; € SQO(3) denotes the rotation by angle
¢ € [0, 2] aboutA.

The cohomology algebra of the total space of this fibration,

H*(SO3) x G(S% A, A,n—1); k) = H*(S% k) ® H*(G(S% A, A,n — 1); k),

is given by Theorem. It has a generatap with degw = 3 (coming from a generator
of H3(SO(3); k)) and also classes, wherei = 0,1,...,n — 2, with degs; = i,
which are pullbacks of the generatorstdf (G(S?; A, A, n — 1); k) (cf. Theoren®).
We have the relatiom? = 0, and each produet; oj equals a multiple oé; . j, the
coefficient indicated in formula2(4).

Let us show thathe restriction map from the total space to the fiber

H(SO@B) x G(S% A, A,n—1); k) — H(Sh k)
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is surjective SinceH1(SO(3); k) = 0, our statement is equivalent to the following.
Letc = (A, X1,...,Xn—1) be a fixed configuration. We obtain an embeddiing
St — G(S% A, A,n — 1) given byg > R4(c), wheres € [0, 27]. We claim that
the induced mag * : H1(G(S%; A, A, n—1);: k) — HL(S%: k) is surjective. In other
words, we want to show that the cohomology clé$éoq) € HL(S!; k) is nonzero.
We may assume that the antipo&eof A does not appear in the configuration
Identify S — A’ with R? using the stereographic projection witti as a center; this
leads to the following commutative diagram:

st 2+ GR200.n-1

\ \L
h
G(S% A A n—1)
whereg is given by rotations of a fixed configurati@h = (0, y1, o, ..., Yn—1) of
points on the plane’ € G(R?; 0,0, n — 1), around the origin G R2. Clearly, the
spaceG(R?%; 0,0,n — 1) is homotopy equivalent t&(R2, n), and thus the coho-
mology algebraH*(G(R?; 0,0, n — 1); k), as given by §, Proposition 2.2], has 1-

dimensional generatoss, . . ., S, which satisfy the relationq2 =0fori=1,...,n
and also arelation of degree- 1 (cf. [8, formula (4)]). From }, Remark 9] we obtain

h*(o1) = ) (-D'*s. (6.5)
i=1

Lets € H1(S%:; k) denote the generator corresponding to the usual anticlockwis
orientation of the circle. Then

gs)=s i=12...,n (6.6)

Indeed g*(s) = d;s, whered; is the degree of the following ma@ — S,

Ry (¥i) — Rp(Yi—1) _ ( Yi —VYi-1
IRy (Vi) — Rp(Yi-1)l lYi — Yi-1l

and hence it is clear tha = 1. HereR; denotes the plane rotation by angle
Comparing 6.5 and (.6), we obtain

6> ). ¢elo.2xl,

n
(o0 = g"h* (o) = g*( Y (-1'*'s ) =5,
i=1
where we have used the assumption thét odd. (Note that, fon even, the above
arguments givef *(o1) = 0.)
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Let us examine the Serre spectral sequence of fibratigh. FFirst we observe
that the fundamental group of the base acts trivially on the cohomology of the fibe
This follows since §.4) is induced from the standard fibration

q:S03B) —» S, whereq(R) = R(A), R e SO?3),

by the mapG(S?, n) — S? given by(xq, ..., X)) — X1. The Serre spectral sequence
of (6.4) has two rows and may have one nontrivial differential. Since we know the
the fundamental class of the fibee H(S!; k) survives, that is, applying the differ-
ential to it gives zero, it follows that all the differentials in the Serre spectral sequen
vanish. We conclude that the cohomology algebra of the bEg6& (S, n); k) is the
factor of H*(SO(3) x G(S?; A, A, n — 1); k) with respect to the ideal generated by
classoi. Sinceoy +1 = o109, we obtain that *(G(S?, n); k) has generators with
degw = 3 andoy with degoy = 2i, wherei = 0,1, ..., (n — 3)/2, which satisfy
relations 6.2). O

Relation between cyclic configuration spaces of spheres and spaces of paths

In this section we describe the relations between the cyclic configuration spaces
spheres and some spaces of paths. We do not give the proofs since they are sin
(almost identical) to the proof of[ Theorem 12]. The results mentioned here are no
used in the rest of this paper.

Let .2(S™) denote the space of free loops Y, that is, the space of aH*-
smooth mapsSt! — S™. We refer to P, Chapter 5] for the basic definitions. We
denote byZ(S™, c £ (S™) the subspace of all loops having length less than

Forn even, there is a continuous mgp: G(S™, n) — £ (S™, which acts as
follows. Given a configuration of points = (X1, X2, ..., Xn) € G(S", n), define a
sequenceyi, ..., yn) € (SM*" wherey; = (—1)'x;. Then foranyi = 1,...,n,
the pointsy; andy;+1 are not antipodal and hence we may join them by a shortes
geodesic arc o8™; hereyn,1 is understood to bgy. Union of these arcs gives a
closed loop/ (c) having length< n. In a manner similar to that of [ Theorem 12],
one may show that is a homotopy equivalence.

For the billiard problem we are mainly interested in the sp&€3", n) with n
odd. The corresponding space of paths can be described as follow&*I(8f") de-
note the space of al 1-smooth paths : [0, 1] — S™, such that the end points are
antipodal,w(0) = —w(1). Projecting ontoRP™, we obtain closed noncontractible
loops inRP™. In fact, #*(S™) may be identified with a two-fold cover of the con-
nected component of the free loop spaéeéRP™), consisting of noncontractible free
loops inRP™.

We denote by?*(S™, c £*(S") the subspace of paths having length less thar
n. In a manner similar to the casemgven and, Theorem 12], one may show the
following.



TOPOLOGY OF BILLIARD PROBLEMS, II 619

For any n > 2 odd, there exists a natural homotopy equivaletice
G(S™" n) — Z*(SMy. In particular, for odd n — oo, the space
G(S", n) approximates the spac#*(S™M).

It is easy to show that, fan odd, the path spac&*(S") is homotopy equivalent to
the free loop space’(S™). It follows using the remark that, fan odd, the antidi-
agonalD : S" — S™ x S", whereD(x) = (X, —x), is homotopic to the diagonal
X = (X, X).

For m even, the space&’(S™) and.#*(S") are not homotopy equivalent. For
exampleyr1(Z(S?) ~ Z andr1(L*(SP)) ~ Z.

7. Proof of Theorem?2
Let T ¢ R™1 be a compact strictly convex domain with smooth boundéry 9T .
Consider the smooth function

1=n
Lx:G(X,m —> R, Lx(X1,....Xn) ==Y [% — X1l
i=1

(the negative total length), where we understand the indices cyclically magthat
is, wherexn11 = x1. The critical points oL x are in one-to-one correspondence with
n-periodic billiard trajectories irX.

Fix e > 0, and consider

n
Ge C G(X,n), G, = {(xl,...,xn) e XXM T 1% —isal 2 e}.
i=1
According to B, Proposition 4.1], it > 0 is small enough, then
(@)  G¢is a compact manifold with boundary;
(b)  theinclusionG. C G(X, n) is a Dy-equivariant homotopy equivalence;
(c)  all critical points ofL x are contained ii5;
(d) atevery point obG,, the gradient oL x extends outwards.

Now we apply Propositiol7 with M = G, f = Lx, andG = Dp. We
conclude that the number @pj-orbits of n-periodic billiard trajectories irX is at
least

cat(G/Dp) = ca{G(X, n)/Dp).
Since we assume thatis an odd prime, the action &, on G(X, n) is free, and we
may use inequalitys), which gives

caf(G(X, n)/Dy) > ca{G(X, n)) > cl(G(S™, n)) + 1.

Theoremsl8 and19 allow us to estimate c&B(S™, n)). Assume first tham is
odd,m > 1. Then (according to Theoreih®) we have a nonzero cup product

n-2
o, U
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which shows that the cup length &f(S™, n) for oddm > 1 is at leash — 1. This
gives a lower bound on the number oDy-orbits of n-periodic billiard trajectories
in X for m odd.

If mis even, then (by Theorer) we have a nonzero cup product

o % e H(G(S™, n); k),

wherek is a field of characteristic not equal to 2. This shows thatpf@ven, the cup
length of G(S™, n) is at least(n — 1)/2. This gives a lower boun¢h + 1)/2 on the
number ofD,-orbits ofn-periodic billiard trajectories irX. O
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References

[1] I. BABENKO, Periodic trajectories of three-dimensional Birkhoff billiarddath.
USSR-Sbh71(1992), 1-13MR 91m:58128 587, 588 594, 614

[2] G. BIRKHOFF, Dynamical System#&mer. Math. Soc. Collog. Pub®, Amer. Math.
Soc., Providence, 19661R 35:1 587

[3] M. CLAPP andD. PUPPE Critical point theory with symmetries. Reine Angew. Math.
418(1991), 1-29MR 92d:58031 607, 608

[4] J.-N. CORVELLEG Morse theory for continuous functionals Math. Anal. Appl196
(1995), 1050-1072VIR 96m:58037 607

[5] M. DEGIOVANNI andM. MARZOCCHI, A critical point theory for nonsmooth
functionals Ann. Mat. Pura Appl. (4167 (1994), 73—100MR 96a:58043607,
608

[6] E. FADELL andS. HUSSEIN] Category weight and Steenrod operatipBsl. Soc. Mat.
Mexicana (2)37 (1992), 151 —161MR 95m:55007 589, 610, 611

[7] M. FARBER, Topology of billiard problems, IDuke Math. J115(2002), 561 —587.
587, 588 589 591, 592 598 609 611, 617, 618

[8] M. FARBER ands. TABACHNIKOV, Topology of cyclic configuration spaces and

periodic trajectories of multi-dimensional billiard$opology41 (2002),
553-589.CMP 1 910 041587, 588 589, 590, 592, 609,612 614, 617, 619

[9] J. JOST Riemannian Geometry and Geometric Analysisiversitext, Springer, Berlin,
1995.MR 969:53049 618

[10] V. KOZLOV andD. TRESHCHV, Billiards: A Genetic Introduction to the Dynamics of
Systems with Impact$ransl. Math. Monogr89, Amer. Math. Soc., Providence,
1991.MR 93k:58094a

[11] W. MARZANTOWICZ, A G-Lusternik-Schnirelman category of space with an action of
a compact Lie groupTopology28 (1989), 403 -412VIR 91¢:55002 607, 608

[12] J. W. MILNOR andJ. D. STASHEFE Characteristic ClasseAnn. of Math. Stud76,
Princeton Univ. Press, Princeton, 19F4R 55:13428 600


http://www.ams.org/mathscinet-getitem?mr=91m:58128
http://www.ams.org/mathscinet-getitem?mr=35:1
http://www.ams.org/mathscinet-getitem?mr=92d:58031
http://www.ams.org/mathscinet-getitem?mr=96m:58037
http://www.ams.org/mathscinet-getitem?mr=96a:58043
http://www.ams.org/mathscinet-getitem?mr=95m:55007
http://www.ams.org/mathscinet-getitem?mr=1 910 041
http://www.ams.org/mathscinet-getitem?mr=96g:53049
http://www.ams.org/mathscinet-getitem?mr=93k:58094a
http://www.ams.org/mathscinet-getitem?mr=91c:55002
http://www.ams.org/mathscinet-getitem?mr=55:13428

TOPOLOGY OF BILLIARD PROBLEMS, II 621

[13] S. TABACHNIKOV, Billiards, Panor. Synthl, Soc. Math. France, Montrouge, 1995.
MR 96¢:58134

[14] B. TOTARO, Configuration spaces of algebraic varieti®pology35 (1996),
1057 -1067MR 979:57033

Department of Mathematics, Tel Aviv University, Tel Aviv 69978, Israefarber@post.tau.ac.ll


http://www.ams.org/mathscinet-getitem?mr=96c:58134
http://www.ams.org/mathscinet-getitem?mr=97g:57033
mailto:mfarber@post.tau.ac.il

	Introduction
	Cohomology of the closed string configuration spaces of spheres
	Calculation of equivariant cohomology
	Equivariant Lusternik-Schnirelman theory via nonsmooth critical point theory
	Proof of Theorem 1
	Cohomology of cyclic configuration spaces of spheres
	Proof of Theorem 2
	References

