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TOPOLOGY OF BILLIARD PROBLEMS, II

MICHAEL FARBER

Abstract
In this paper we give topological lower bounds on the number of periodic and of
closed trajectories in strictly convex smooth billiards T⊂ Rm+1. Namely, for given n,
we estimate the number of n-periodic billiard trajectories in T and also estimate the
number of billiard trajectories which start and end at a given point A∈ ∂T and make
a prescribed number n of reflections at the boundary∂T of the billiard domain. We use
variational reduction, admitting a finite group of symmetries, and apply a topological
approach based on equivariant Morse and Lusternik-Schnirelman theories.

1. Introduction
Let X ⊂ Rm+1 be a closed smooth strictly convex hypersurface. We consider the
billiard system in the(m+1)-dimensional convex bodyT , bounded byX. Recall that
we view the billiard ball as a point that moves inT in a straight line except when it
hits X = ∂T , where it rebounds, making the angle of incidence equal the angle of
reflection.

G. Birkhoff [2] studied periodic billiard trajectories in plane convex billiards.
Papers [1] and [8] deal with the problem of estimating the number of periodic trajec-
tories in convex billiards inRm+1, wherem > 1. In [7] we studied the number of
billiard trajectories having fixed distinct end points and making a prescribed number
of reflections.

The purpose of this paper, which is a continuation of [7], is twofold. First, we ob-
tain estimates of the number of closed billiard trajectories that start and end at a given
point A ∈ X and make a prescribed numbern of reflections at the hypersurfaceX.
This problem may seem to be a special case of the fixed-end billiard problem [7], but,
as we show, the presence of symmetry allows us to get much stronger estimates than
in [7]. Second, we give a linear inn estimate of the number ofn-periodic trajectories.

The following theorem, Theorem1, gives an estimate of the number of closed
billiard trajectories. It deals withZ2-orbits of billiard trajectories. Any suchZ2-orbit
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is determined by a sequence of reflection pointsx1, x2, . . . , xn ∈ X such thatxi 6=

xi +1 for i = 1, . . . ,n−1 andx1 6= A, xn 6= A. The reverse sequencexn, xn−1, . . . , x1

determines the sameZ2-orbit.

THEOREM 1
Let X ⊂ Rm+1 be a closed smooth strictly convex hypersurface, A∈ X.
(I) For any even n≥ 2, the number of distinctZ2-orbits of closed billiard trajec-

tories inside X which start and end at A and make n reflections is at least

n if m ≥ 3 is odd,
n

2
+ 1 if m ≥ 2 is even. (1.1)

(II) For any even n≥ 2, the number of distinctZ2-orbits of closed billiard trajec-
tories inside X which start and end at A and make n reflections is at least

[log2 n] + m − 1 if m ≥ 3 is odd,

[log2 n] + m − 2 if m ≥ 2 is even and n≥ 4,

m if m ≥ 2 is even and n= 2. (1.2)

(III) If n ≥ 2 is even and if the billiard data(X, A,n) is generic (cf. below), then
the number of distinctZ2-orbits of closed billiard trajectories inside X which
start and end at A and make n reflections is at least

mn

2
. (1.3)

First we explain thegenericity assumption in statement (III). The billiard data
(X, A,n) determines a continuous function

X×n
→ R, (x1, . . . , xn) 7→

n∑
i =0

|xi − xi +1| (1.4)

(the total length), where we understand thatx0 = A = xn+1. This function is smooth
at all configurations(x1, . . . , xn) ∈ X×n with xi 6= xi +1 for i = 0, . . . ,n. The
data(X, A,n) is genericif any critical configuration(x1, . . . , xn) ∈ X×n of the total
length function (1.4), satisfying the above conditionxi 6= xi +1, is Morse (cf. [1], [8]).

Statements (I) and (II) give different lower bounds on the number of closed bil-
liard trajectories. (I) is linear inn; it is better than (II) for largen. On the other hand,
(II) may be better than (I) if the dimensionm = dim X of the boundary of billiard
domain is large.

Let us compare Theorem1 with the lower bound on the number of billiard tra-
jectories with fixed distinct end points, obtained in [7]. In Theorem1 we speak about
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Z2-orbits of billiard trajectories. EachZ2-orbit contains one or two billiard trajec-
tories. Forn even, eachZ2-orbit contains precisely two distinct billiard trajectories.
Hence we see that, forn even, statement (I) of Theorem1 predicts twice the number
of closed billiard trajectories, compared to the estimate of [7] for the billiard trajec-
tories with fixed ends. Also, for largem, statements (II) and (III) give much larger
lower bounds than the corresponding estimates of [7, Theorem 1].

Statement (III) includes the casem = 1 (the plane billiards) and gives the es-
timaten/2. The billiard in the unit circle has preciselyn/2 orbits of closed billiard
trajectories with a given initial point.

It is reasonable to expect that, for any evenn ≥ 2, the number of distinctZ2-
orbits of closed billiard trajectories insideX which start and end atA and maken
reflections is at least

n + m − 1 if m ≥ 3 is odd,
n

2
+ m − 1 if m ≥ 2 is even. (1.5)

Such an estimate implies both statements (I) and (II) of Theorem1. The methods of
this paper do not prove this assertion, although the gap looks very small.

The proof of Theorem1 is based on a computation of the cohomology ring of a
relevant configuration space of points on the sphereSm. We apply the technique of
the critical point theory, based on the cup-length estimates together with a refinement,
suggested by E. Fadell and S. Husseini [6], related to the notion of category weight
of cohomology classes.

Next we state the main result concerningn-periodic trajectories.

THEOREM 2
Let X ⊂ Rm+1 be a smooth strictly convex hypersurface. For any odd prime n, there
exist at least

n if m> 1 is odd,

n + 1

2
if m is even (1.6)

distinct Dn-orbits of n-periodic billiard trajectories inside X.

HereDn denotes the dihedral group of order 2n, which acts naturally on the billiard
trajectories (see [8]).

This theorem complements the results of [8]. In [8] it is shown that, form ≥ 3
andn odd, the number of distinctDn-orbits ofn-periodic billiard trajectories inside
X ⊂ Rm+1 is not less than[log2(n − 1)] + m and is at least(n − 1)m for generic
billiards X ⊂ Rm+1. These results from [8] are similar to statements (II) and (III) of
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Theorem1. Theorem2 has several advantages compared to [8]. It gives a linear inn
estimate that is better for largen than the logarithmic estimate of [8]. Also, it allows
the casem = 2, which corresponds to convex billiards in 3-dimensional Euclidean
space. On the other hand, the result of [8] is better for largem.

The proof of Theorem2 is based on a computation of the cohomology rings
of cyclic configuration spaces of spheres with rational coefficients. The case ofZ2-
coefficients was computed in [8].

2. Cohomology of the closed string configuration spaces of spheres
Let

Gn = G(Sm
; A, A,n) (2.1)

denote the closed string configuration space ofSm, that is, the space of all configura-
tions(x1, . . . , xn), wherexi ∈ Sm, such thatx1 6= A, xn 6= A, andxi 6= xi +1 for all
i = 1, . . . ,n − 1. There is a natural involution

T : Gn → Gn, T(x1, . . . , xn) = (xn, xn−1, . . . , x1) (2.2)

which is important for the sequel.

THEOREM 3
The cohomology group Hi (Gn; Z) is nonzero only in dimensions

i = 0, (m − 1), 2(m − 1), . . . , (n − 1)(m − 1),

and for these values i the group Hi (Gn; Z) is free abelian of rank1. One may choose
additive generators

σi ∈ H i (m−1)(Gn; Z), i = 0,1, . . . ,n − 1,

such that, for m≥ 3 odd, the multiplication is given by

σi σ j =

{
(i + j )!
i !· j ! · σi + j if i + j ≤ n − 1,

0 if i + j > n − 1
(2.3)

and, for m≥ 2 even, it is given by

σi σ j =

{
[(i + j )/2]!

[i /2]!·[ j/2]!
· σi + j if i + j ≤ n − 1 and i or j is even,

0 if either i + j > n − 1 or both i and j are odd.
(2.4)

Reflection (2.2) acts for m> 1 odd by

T∗(σi ) = (−1)i σi (2.5)

and for m> 1 even by

T∗(σi ) = (−1)[i /2]+niσi , i = 0,1, . . . ,n − 1. (2.6)
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Proof
Consider the map

Gn = G(Sm
; A, A,n) → Sm

− A, (x1, . . . , xn) 7→ xn.

It is a smooth fibration with fiberG(Sm
; A, B,n − 1), whereA 6= B. Since the base

Sm
− A is contractible, we conclude that the inclusion

G(Sm
; A, B,n − 1) ⊂ Gn (2.7)

is a homotopy equivalence. Hence the integral cohomology ring ofGn coincides with
H∗(G(Sm

; A, B,n − 1); Z), which we calculate below.
Theorem 8 of [7] describes algebraH∗(G(Sm

; A, B,n − 1); k), wherek is an
arbitrary field. From this description it is clear that the dimension of the cohomol-
ogy does not depend on fieldk. Therefore we conclude that the integral cohomology
H i (G(Sm

; A, B,n − 1); Z) has no torsion; it is a free abelian group of rank 1 for
i = r (m − 1), wherer = 0,1, . . . ,n − 1, and vanishes for all other values ofi .

Let C ∈ Sm be a point distinct fromA and B. We obtain an inclusion of con-
figuration spacesφ∗

: G(Sm
− C; A, B,n − 1) → G(Sm

; A, B,n − 1), where we
identify Sm

− C with Rm. The cohomology algebraH∗(G(Rm
; A, B,n − 1); Z) has

generatorss0, . . . , sn−1, and the full list of relations is described in [7, Proposition 7].
From [7, Remark 9] we know that the induced mapφ∗ on cohomology with an arbi-
trary field of coefficientsk is injective. This implies that the induced map on integral
cohomology

φ∗
: H∗

(
G(Sm

; A, B,n − 1); Z
)

→ H∗
(
G(Rm

; A, B,n − 1); Z
)

(2.8)

is injective and thatφ∗ maps indivisible classes fromH∗(G(Sm
; A, B,n−1); Z) into

indivisible classes inH∗(G(Rm
; A, B,n − 1); Z).

We claim that, for anyr = 0,1, . . . ,n − 1, there exists an indivisible class

σr ∈ H r (m−1)(G(Sm
; A, B,n − 1); Z

)
such that

φ∗(σr ) =


∑

0≤i1<···<ir<n
si1 · · · sir for m odd,

(−1)[r/2]+nr
·

∑
0≤i1<···<ir<n

(−1)i1+···+ir si1 · · · sir for m even
(2.9)

(cf. [7, (4.3), (4.4)]). Indeed, applying [7, Remark 9] withk = Q, we see that the
image of the generator of the group

H r (m−1)(G(Sm
; A, B,n − 1); Z

)
' Z
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under homomorphismφ∗ equals an integral multiple of the expression on the right-
hand side of (2.9). Since the classes on the right-hand side of (2.9) are indivisible, and
since we know thatφ∗ maps indivisible classes to indivisible classes, we conclude
that there exists a generatorσr with the required property.

The product formulae (2.3) and (2.4) for classesσr follow since they hold for the
productsφ∗(σi )φ(σ j ) ∈ H∗(G(Rm

; A, B,n − 1); Z), as can be easily checked using
the arguments of the proof of [7, Theorem 8].

Now we want to find the action of the reflectionT : Gn → Gn on classesσi . It
is clear thatT∗(σi ) = ± σi , and we need to calculate the sign. Consider the following
diagram of natural inclusions,

G(Rm
; A, B,n − 1) //

��

G(Sm
; A, B,n − 1)

��

G(Rm
; A, A,n) // G(Sm

; A, A,n)

(whereRm
= Sm

− C as above), and the induced diagram of cohomology groups,

H∗
(
G(Rm

; A, A,n); Z
)

β

��

H∗
(
G(Sm

; A, A,n); Z
)γoo

'α

��

H∗
(
G(Rm

; A, B,n − 1); Z
)

H∗
(
G(Sm

; A, B,n − 1); Z
)φ∗

oo

where α is an isomorphism andφ∗ is injective. To understandβ, note that
G(Rm

; A, A,n) is homotopy equivalent to the cyclic configuration spaceG(Rm,n +

1) (cf. [8]) and so the cohomologyH∗(G(Rm
; A, A,n); Z) has(m− 1)-dimensional

generatorss0, s1, . . . , sn which satisfy the relations of [8, Proposition 2.2]. (We shift
indices for convenience.) The proof of [7, Proposition 7] shows thatβ(si ) = si for
i = 0,1, . . . ,n − 1 andβ(sn) = 0. Henceβ is an epimorphism with a kernel equal
to the ideal generated bysn.

The reflectionT also acts onG(Rm
; A, A,n) (by formula (2.2)). It is clear that

the induced mapT∗
: H∗(G(Rm

; A, A,n); Z) → H∗(G(Rm
; A, A,n); Z) acts on

the generatorssi as follows:

T∗(si ) = (−1)msn−i , wherei = 0,1, . . . ,n. (2.10)

Now we may calculateT∗(σr ), wherer = 1, . . . ,n − 1. Fix a subsequence
0< i1 < · · · < i r < n. (We avoid indices 0 andn.) Suppose first thatm is odd. Then
φ∗(α(σr )) contains monomialsi1si2 · · · sir ; thereforeγ (σr ) contains the same mono-
mial with coefficient 1. ThenT∗(γ (σr )) contains monomialsn−ir sn−ir −1 · · · sn−i1



TOPOLOGY OF BILLIARD PROBLEMS, II 593

with coefficient(−1)mr
= (−1)r . The last monomial appears inγ (σr ) with coef-

ficient 1. Since we know thatT∗(σr ) = ± σr , we conclude thatT∗(σr ) = (−1)r σr .
Assume now thatm is even. Thenφ∗(α(σr )) contains monomialsi1si2 · · · sir with

coefficient
(−1)[r/2]+nr+i1+···+ir .

Applying T∗ and using (2.10), we see that the monomialsn−ir sn−ir −1 · · · sn−i1 appears
in T∗(γ (σr )) with coefficient

(−1)nr+i1+···+ir

and inγ (σr ) with coefficient

(−1)[r/2]+i1+···+ir .

This shows thatT∗(σr ) = (−1)[r/2]+nrσr .

3. Calculation of equivariant cohomology
Our purpose in this section is to compute the cohomology ofGn/Z2, the factor space
of the space of closed string configurationsGn = G(Sm

; A, A,n) with respect to
theZ2-action given by the reflectionT : Gn → Gn. For n even,T acts freely, and
H∗(Gn/Z2; Z) coincides with the equivariant cohomology ofGn.

The problem is trivial form = 1; therefore everywhere in this section we assume
thatm> 1.

To compute the equivariant cohomology, we apply the Morse theory method.
Namely, we consider the simplest billiard in the standard unit sphereSm

⊂ Rm+1 and
the function of negative total length

L : Gn = G(Sm
; A, A,n) → R, (x1, . . . , xn) 7→ −

n∑
i =0

|xi − xi +1|. (3.1)

Here we understand thatx0 = xn+1 = A. The critical points ofL are the billiard
trajectories inSm which start and end atA and maken reflections. All such trajectories
can easily be described.

Namely, fix a vectora ∈ Sm, a ⊥ A, orthogonal toA and an angle

ψk =
2πk

n + 1
, k = 1,2, . . . ,

[n + 1

2

]
. (3.2)

This choice(a, ψk) determines the billiard trajectory(x1, . . . , xn), where

x j = Acos( jψk)+ a sin( jψk), j = 1, . . . ,n.

Note that forn odd the trajectory determined by the pair(a, ψ(n+1)/2) does not depend
ona; it has the form(x1, . . . , xn), wherex j = A for j even andx j = −A for j odd.
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We denote by

Vp ⊂ Gn, p = 0,1, . . . ,
[n − 1

2

]
,

the variety of trajectories determined by all pairs(a, ψk), where

k =

[n + 1

2

]
− p (3.3)

anda ⊥ A is an arbitrary point of the sphereSm−1
⊂ Sm orthogonal toA.

If n is even, then every submanifoldVp is diffeomorphic to sphereSm−1.
If n is odd, thenV0 is a single point andV1, . . . ,V[(n−1)/2] are diffeomorphic to

the sphereSm−1.
The following statement is similar to that of I. Babenko in [1, Proposition 3.1].

PROPOSITION4
Each Vp ⊂ Gn is a nondegenerate critical submanifold of function L in the sense of
R. Bott.

If n is even, then the index of each Vp equals2p(m − 1) for p = 0,1, . . . , (n −

2)/2.
If n is odd, then the index of V0 equals zero and, for p= 1, . . . , (n − 1)/2, the

index of Vp equals(2p − 1)(m − 1).

Proof
Let e1, . . . ,em+1 ∈ Rm+1 be an orthonormal base. We may assume thatA = e1. We
want to calculate the Hessian of functionL at a billiard trajectoryck = (x1, . . . , xn) ∈

Gn, where
x j = cos(ψk)e1 + sin(ψk)e2, j = 1, . . . ,n,

and

ψk =
2πk

n + 1
, k = 1, . . . ,

[n + 1

2

]
.

Let x⊥

j denote the vector orthogonal tox j lying in the(e1,e2)-plane, that is,

x⊥

j = cos
(ψk + π

2

)
e1 + sin

(ψk + π

2

)
e2.

Any tangent vectorY ∈ Tck Gn =
⊕

j Tx j S
m is determined by numbersµr, j ∈ R,

wherer = 0,1, . . . ,m− 1 and j = 1, . . . ,n, such that the component ofY in Tx j S
m

equals

µ0, j x
⊥

j +

m−1∑
r =1

µr, j er +2.
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A direct calculation of the HessianH(L)ck(Y,Y) of L gives the following quadratic
form in variablesµr, j :

H(L)ck(Y,Y) =
1

2
sin

(ψk

2

)
·

n∑
j =0

(µ0, j − µ0, j +1)
2

+

(
2 sin

(ψk

2

))−1

·

[m−1∑
r =1

Qψk(µr,1, . . . , µr,n)
]
, (3.4)

where in the first sum we understand thatµ0,0 = 0 = µ0,n+1 and in the second sum
the symbolQψ (y1, . . . , yn) denotes the following quadratic form:

Qψ (y1, . . . , yn) = −2 cos(ψ) ·

n∑
i =1

y2
i + 2

n−1∑
i =1

yi yi +1.

We see that the Hessian splits as a direct sum ofm quadratic forms corresponding
to different valuesr = 0,1, . . . ,m − 1. The terms involvingµ0, j (the first sum) give
a positive definite quadratic form. The remaining(m − 1)-forms are identical, and
their index and nullity equal the index and nullity ofQψk . Hence we conclude that
the index and nullity of the Hessian equalsm − 1 times the index and nullity of the
form Qψk .

In order to calculate the index ofQψk , we observe that the eigenvalues of the
symmetric(n × n)-matrix

0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 1
0 0 0 . . . 1 0


are given by

λs = 2 cos
( πs

n + 1

)
, s = 1,2, . . . ,n, (3.5)

and the eigenvector(v1,s, . . . , vn,s) corresponding toλs is given by

v j,s = sin
( π js

n + 1

)
, j = 1, . . . ,n. (3.6)

This claim can be checked directly.
Therefore the eigenvalues ofQψk are

2
[
cos

( πs

n + 1

)
− cos

( 2πk

n + 1

)]
, s = 1,2, . . . ,n, (3.7)
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and the eigenvectors ofQψk are given by (3.6).
Hence the index ofQψk equals the number of integerss such that 2k < s ≤ n,

which isn − 2k for 2k ≤ n and zero ifk = (n + 1)/2 andn is odd. Since (according
to (3.3)) k = [(n + 1)/2] − p, we conclude that the index ofQψk equals

n − 2k = n − 2
([n + 1

2

]
− p

)
=

{
2p if n is even,

2p − 1 if n is odd.

The special casek = (n+ 1)/2 for n odd corresponds top = 0; in this case the index
and nullity of Qψk equal zero.

From (3.7) we see that the nullity ofQψk equals 1 for anyk unlessn is odd and
k = (n + 1)/2.

The discussion above proves that on any critical submanifoldVp the dimension
of the kernel of the Hessian ofL equals the dimension ofVp; hence all submanifolds
Vp are nondegenerate in the sense of Bott and their indices are as stated.

The normal bundleν(Vp) splits as a direct sumν+(Vp) ⊕ ν−(Vp) of the positive
and negative normal bundles with respect to the Hessian ofL. One may describe the
negative normal bundleν−(Vp) as follows.

LEMMA 5
The negative normal bundleν−(Vp) to Vp is

ν−(Vp) =


ξ ⊕ ξ ⊕ · · · ⊕ ξ︸ ︷︷ ︸

2p times

if n is even,

ξ ⊕ ξ ⊕ · · · ⊕ ξ︸ ︷︷ ︸
2p−1 times

if n is odd and p> 0,
(3.8)

whereξ denotes the tangent bundle of sphere Sm−1.

Proof
Let Sm−1

⊂ Sm be the equatorial sphere consisting of unit vectors orthogonal to
A. Any point a ∈ Sm−1 and angle (3.2) determine a critical submanifoldVp. Fix
an eigenvalueλs (given by (3.5)) such that expression (3.7) is negative. Consider
the subbundleνs(Vp) of the normal bundleν(Vp) consisting of eigenvectors of the
Hessian with eigenvalueλs. We show thatνs(Vp) is isomorphic toξ . This would
clearly imply the lemma.

Consider a billiard trajectoryck = (x1, . . . , xn) ∈ Gn in the plane of vectorsa
andA, where

x j = cos(ψk)A + sin(ψk)a, j = 1, . . . ,n,
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and

ψk =
2πk

n + 1
, k =

[n + 1

2

]
− p.

Denote byξa the(m− 1)-dimensional subspace orthogonal toa andA. We show that
there is an isomorphism between the fiber ofνs(Vp) over ck andξa which depends
continuously ona.

Let v j ∈ Tx j S
m, where j = 1,2, . . . ,n, be a sequence of tangent vectors. Using

(3.4) and (3.6), we find that a sequence of vectors(v1, . . . , vn) belongs to the fiber of
νs(Vp) over the configurationck = (x1, . . . , xn) if and only if

v j ∈ ξa and v j =
sin(π js/(n + 1))

sin(πs/(n + 1))
· v1, j = 1, . . . ,n. (3.9)

We see that the first vectorv1 uniquely determines a tangent vector(v1, . . . , vn) to a
configurationck in the eigendirectionλs. Moreover,v1 can be an arbitrary vector in
ξa.

Sinceξ is orientable, we obtain the following.

COROLLARY 6
The negative normal bundleν−(Vp) is orientable.

Note that this corollary is trivial form > 2 since the sphereSm−1 is then simply
connected.

COROLLARY 7
The function L: Gn → R (cf. (3.1)) is a perfect Bott function.

Proof
Note that the critical valueL(Vp) equals

L(Vp) = −2(n + 1) sin
( 2πk

n + 1

)
, wherek =

[n + 1

2

]
− p.

Hence, forp < p′, we haveL(Vp) < L(Vp′).
Choose constantsc0, c1, . . . , c[(n−1)/2] ∈ R such that

L(Vp) < cp < L(Vp+1), p = 0,1, . . . ,
[n − 3

2

]
,

and

L(V[(n−1)/2]) < c[(n−1)/2].
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Each Fp = L−1(−∞, cp]) ⊂ Gn is a compact manifold with boundary, and we
obtain a filtration

F0 ⊂ F1 ⊂ · · · ⊂ F[(n−1)/2].

The inclusionF[(n−1)/2] → Gn is a homotopy equivalence (as follows easily from [7,
Proposition 4]). Using Corollary6 and the Thom isomorphism, we obtain

H j (Fp, Fp−1; Z) ' H j −ind(Vp)(Vp; Z)

=

{
Z if j = ind(Vp) or j = ind(Vp)+ m − 1,

0 otherwise.
(3.10)

This also holds true forp = 0 if we understand thatF−1 = ∅.
Suppose thatn is even. Then cohomology groupH j (Fp, Fp−1; Z) is isomorphic

to Z for j = 2p(m − 1) and j = (2p + 1)(m − 1) and vanishes for all otherj .
Comparing this with the additive structure ofH∗(Gn; Z) given by Theorem3, we
find that

H∗(Gn; Z) '

[(n−1)/2]⊕
p=0

H∗(Fp, Fp−1; Z), (3.11)

which means thatL is perfect.
Suppose now thatn is odd. ThenH j (F0, F−1; Z) is Z for j = 0 and vanishes for

all other values ofj . If p > 0, then

H j (Fp, Fp−1; Z) '

{
Z for j = (2p − 1)(m − 1) or j = 2p(m − 1),

0 otherwise,

and thus the perfectness of (3.11) also holds.
Alternatively, form> 2, the perfectness of (3.11) follows without using Theorem

3 by considering the spectral sequence of filtrationFp,

Ep,q
1 = H p+q(Fp, Fp−1; Z) ⇒ H p+q(Gn; Z),

and observing that for any of its differentialsdr , with r ≥ 1, either the source or the
target vanishes. ThereforeE1 = E∞. Moreover, every diagonalp + q = c of E∞

contains at most one nonzero group. Ifm = 2, the differentiald1 has a nonzero source
and target, and so the above argument does not work.

From this point on we assume thatn is even.
Then the reflectionT : Gn → Gn acts freely, and our purpose is to calculate the

cohomology of the factor spaceG′
n = Gn/Z2. Function (3.1) is reflection invariant

and so determines a smooth function

L ′
: G′

n → R.



TOPOLOGY OF BILLIARD PROBLEMS, II 599

The critical points ofL ′ form nondegenerate (in the sense of Bott) critical submani-
folds

V ′

0,V ′

1, . . . ,V ′

n/2−1,

whereV ′
p = Vp/Z2. The index ofV ′

p equals 2p(m− 1) (as follows from Proposition
4). Since eachVp can be identified withSm−1 and under this identification the reflec-
tion T acts as the usual antipodal map, we see that eachV ′

p is diffeomorphic to the

projective spaceRPm−1.

COROLLARY 8
The Poincaŕe polynomial of G′n = G(Sm

; A, A,n)/Z2 with coefficients in fieldZ2 is

tm
− 1

t − 1
·

tn(m−1)
− 1

t2(m−1) − 1
,

and the sum of Betti numbers with coefficients inZ2 is mn/2.

Proof
We give here a simple proof that works form > 2. The casem = 2 follows from
Theorem11.

Consider the filtrationF0 ⊂ F1 ⊂ · · · ⊂ Fn/2−1 ⊂ Gn, as in the proof of
Corollary7. Let F ′

p denoteFp/Z2. We obtain a filtrationF ′

0 ⊂ F ′

1 ⊂ · · · ⊂ F ′

n/2−1 ⊂

G′
n such that the inclusionF ′

n/2−1 ⊂ G′
n is a homotopy equivalence and

H j (F ′
p, F ′

p−1; Z2) ' H j −2p(m−1)(RPm−1
; Z2), p = 0,1, . . . ,

n

2
− 1

(using the Thom isomorphism). HenceH j (F ′
p, F ′

p−1; Z2) is nonzero (and 1-
dimensional) only for 2p(m − 1) ≤ j ≤ (2p + 1)(m − 1). The spectral sequence of
filtration F ′

p,

Ep,q
1 = H p+q(F ′

p, F ′

p−1; Z2) ⇒ H p+q(G′
n; Z2),

hasEp,q
1 ' Z2 for p(2m− 3) ≤ q ≤ p(2m− 3)+ (m− 1) andEp,q

1 = 0 otherwise.
Hence, for any differentialdr , wherer ≥ 1, either the source or the target vanishes.
ThereforeE1 = E∞ and our statement follows.

We now calculate the Stiefel-Whitney classes of the negative normal bundleν−(V ′
p).

In particular, we find out for whichp this bundle is orientable. This information is
needed for computing the integral cohomology ofG′

n.

LEMMA 9
The total Stiefel-Whitney class of the negative normal bundleν−(V ′

p) equals

(1 + α)p(m−1)
∈ H∗(V ′

p; Z2),
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whereα ∈ H1(V ′
p; Z2) ' Z2 denotes the generator.

Proof
As in the proof of Lemma5, we obtain that the negative normal bundleν−(V ′

p) splits
as a direct sum of 2p vector bundlesηs of rankm−1, one for each negative eigenvalue

λs = 2
[
cos

( πs

n + 1

)
− cos

( 2πk

n + 1

)]
of the Hessian. Herek = n/2 − p.

Let τ denote the tangent bundle ofRPm−1. Letγ⊥ be a rankm−1 vector bundle
overRPm−1 such that its fiber over a linè∈ RPm−1 is the orthogonal complement
`⊥.

We claim that

ηs '

{
τ if s is even,

γ⊥ if s is odd.

Indeed, this bundle is obtained from the tangent bundleξ of Sm−1 (cf. Lemma5) by
identifying the antipodal points, and under this identification the first vectorv1 should
be replaced by the last vectorvn (cf. (3.9)). Formulae (3.9) show that

vn = − cos(πs) · v1 = (−1)s+1
· v1,

and hence the bundleηs is obtained fromξ by identifying the fibers over pointsa and
−a with a twist(−1)s+1. This implies our claim (cf. [12]).

For a givenp there is an equal number of negative eigenvaluesλs of the Hessian
on Vp with even and odds. Therefore the bundleν−(V ′

p) is isomorphic to a direct
sum of p copies ofτ ⊕ γ⊥.

The total Stiefel-Whitney class ofγ⊥ is (1+α)−1, and the total Stiefel-Whitney
class ofτ is (1+ α)m (cf. [12]). Hence the total Stiefel-Whitney class of the negative
bundle is [

(1 + α)−1
· (1 + α)m

]p
= (1 + α)(m−1)p.

COROLLARY 10
If m is odd, then the negative normal bundleν−(V ′

p) is orientable for any p. If m
is even, then the negative normal bundleν−(V ′

p) is orientable for all even p and
nonorientable for all odd p.

Proof
By Lemma9, the first Stiefel-Whitney class ofν−(V ′

p) is p(m − 1)α. This implies
our statement.
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Recall our permanent assumption thatm> 1 andn is even.

THEOREM 11
If m > 1 is odd, then

H j (G′
n; Z) '


Z for j = 2i (m − 1), where i= 0,1, . . . ,n/2 − 1,

Z2 for j even satisfying2i (m − 1) < j ≤ (2i + 1)(m − 1)

with i as above,

0 otherwise.

If m is even, then

H j (G′
n; Z) '



Z for j = (4r + ε)(m − 1), r = 0,1, . . . , [(n − 2)/4], ε = 0,1,

Z2 for j = 4r (m − 1)+ i , or j = (4r ′
+ 2)(m − 1)+ i ′, where

i = 2,4, . . . ,m − 2, r is as above, i′ = 1,3, . . . ,m − 1, and

0 ≤ r ′
≤ (n − 4)/4,

0 otherwise.

Proof
Consider filtrationF ′

0 ⊂ F ′

1 ⊂ · · · ⊂ F ′

n/2−1 ⊂ G′
n (cf. the proof of Corollary8) and

the associated spectral sequence

E′ p,q
1 = H p+q(F ′

p, F ′

p−1; Z) ⇒ H p+q(G′
n; Z).

F ′
p− F ′

p−1 contains a single critical submanifoldV ′
p ' RPm−1 with index 2p(m−1).

The normal bundle toV ′
p is orientable ifp(m−1) is even and nonorientable ifp(m−1)

is odd. The Thom isomorphism gives

H j (F ′
p, F ′

p−1; Z) '

{
H j −2p(m−1)(RPm−1

; Z) if p(m − 1) is even,

H j −2p(m−1)(RPm−1
; ±Z) if p(m − 1) is odd.

(3.12)

Here±Z denotes the nontrivial local system of groupsZ overRPm−1; its monodromy
along the generator ofπ1(RPm−1) is multiplication by−1.

Form even, we have

H j (RPm−1
; Z) =


Z for j = 0 and j = m − 1,

Z2 for j = 2,4, . . . ,m − 2,

0 otherwise

and

H j (RPm−1
; ±Z) =

{
Z2 for j = 1,3, . . . ,m − 1,

0 otherwise.
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For m odd, we have

H j (RPm−1
; Z) =


Z for j = 0,

Z2 for j = 2,4, . . . ,m − 1,

0 otherwise.

Therefore, in the above spectral sequence,E′ p,q
1 = 0 holds forp(2m−3) ≤ q ≤

p(2m − 3) + (m − 1). This implies that form > 2 either the source or the target of
any differentialdr vanishes.

Hence, form> 2, E′
1 = E′

∞ holds and any diagonalp + q = const contains at
most one nonzero group. This proves our statement form> 2.

Assume now thatm = 2, and consider the first differentiald1 : E′r −1,r
1 → E′r,r

1 .
We have

E′r −1,r
1 ' H2r −1(Fr −1, Fr −2; Z) =

{
Z if r is odd,

Z2 if r is even

and

E′r,r
1 ' H2r (Fr , Fr −1; Z) =

{
0 if r is odd,

Z if r is even.

We see thatd1 vanishes since there are no nonzero homomorphismsE′r −1,r
1 → E′r,r

1
for anyr .

The higher differentialsdr , r ≥ 2, vanish for obvious reasons. Hence the conclu-
sion we made form> 2 also holds form = 2.

The following theorem is the main result of this section. It describes the multiplicative
structure ofH∗(G′

n; Z). Recall that we assume thatn is even.

THEOREM 12
For m > 1 odd, H∗(G′

n; Z) is the commutative ring given by the sequence of gener-
ators

δi ∈ H2i (m−1)(G′
n; Z) ' Z, i = 0,1,2, . . . ,

and

e ∈ H2(G′
n; Z) ' Z2,

satisfying the following relations:

δi δ j =
(2i + 2 j )!

(2i )!(2 j )!
· δi + j , δn/2 = 0, δ0 = 1,

2e = 0, e(m+1)/2
= 0.
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If m is even, then H∗(G′
n; Z) is the graded commutative ring given by the generators

δi ∈ H4i (m−1)(G′
n; Z) ' Z, i = 0,1,2, . . . ,

and also

e ∈ H2(G′
n; Z) ' Z2, a ∈ Hm−1(G′

n; Z) ' Z, b ∈ H2m−1(G′
n; Z) ' Z2,

satisfying the following relations:

δi δ j =
(2i + 2 j )!

(2i )!(2 j )!
· δi + j , δ[(n+2)/4] = 0, δ0 = 1,

2e = 0, em/2
= 0,

a2
= 0, ab = 0, ae= 0,

2b = 0, b2
= 0,

δkb = 0 (if n = 4k + 2).

Remark.For m = 2 the generatore disappears since one of the above relations reads
e = 0. If m is even andn = 2, thenb = 0 since one of the relations givesδ0b = 0.

Proof
Consider the universalZ2-bundleS∞

→ RP∞ and the associated fibrationS∞
×Z2

Gn → RP∞, havingGn as the fiber. The total spaceS∞
×Z2 Gn is homotopy equiva-

lent toG′
n. The Serre spectral sequence of this fibration converges to the cohomology

algebraH∗(G′
n; Z). The initial term is

Ep,q
2 = H p(RP∞

; H q(
Gn; Z)

)
,

whereH q(Gn; Z), the cohomology of the fiber, is understood as a local system over
RP∞.

From Theorem3 we know thatHq(Gn; Z) is eitherZ or trivial. There are two
types of local systems with fiberZ over RP∞, which we denoteZ and±Z. Their
structure is determined by the monodromy along any noncontractible loop ofRP∞,
which is 1 in the case ofZ and−1 in the case of±Z.

Assume first thatm> 1 is odd. From formula (2.6) we find that

H q(Gn; Z) '

{
Z for q = 2i (m − 1),

±Z for q = (2i + 1)(m − 1),
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wherei = 0,1, . . . ,n/2 − 1. Hence we find that

Ep,q
2 =


Z for p = 0 andq = 2i (m − 1),

Z2 if p > 0 is even andq = 2i (m − 1)

or if p is odd andq = (2i + 1)(m − 1),

0 otherwise,

wherei = 0,1, . . . ,n/2 − 1. As a bigraded algebra,E2 can be identified with the
tensor product

E0,∗
2 ⊗ E∗,0

2 ⊗ A,

where
E0,∗

2 ' H2∗(Gn; Z), E∗,0
2 ' H∗(RP∞

; Z),

and A is an exterior algebra withA0,0
' Z and A1,m−1

' Z2. If x ∈ E1,m−1
2 is the

generator, then relationx2
= 0 follows from relationσ 2

1 = 2σ2 (in the notation of
Theorem3). Here we denote byH2∗(Gn; Z) ⊂ H∗(Gn; Z) the graded subring

H2∗(Gn; Z) =

⊕
i

H2i (m−1)(Gn; Z).

The structure of the ringH2∗(Gn; Z) follows from Theorem3.
The first nontrivial differential isdm. Since we know the additive struc-

ture of H∗(G′
n; Z) (cf. Theorem11), we find that the differentiald = dm :

E1,m−1
2 → Em+1,0

2 must be an isomorphism. On the other hand,d : E0,2i (m−1)
2 →

Em,(2i −1)(m−1)
2 vanishes (since the range is the zero group). It follows thatd :

Ep, j (m−1)
2 → Ep+m,( j −1)(m−1)

2 is nonzero if and only if bothp and j are odd.
Figure1 shows the nontrivial differentiald = dm. The large circles denote group

Z, and the small circles denoteZ2.
We conclude that the bigraded algebraEm+1 is isomorphic to the tensor product

of algebras
H2∗(Gn; Z)⊗ H∗(RPm−1

; Z),

whereH2i (m−1)(Gn; Z) has bidegree(0,2i (m−1)) andH2 j (RPm−1
; Z) has bidegree

(2 j,0). It is clear that all further differentials vanish, and henceE∞ = Em+1. Any
diagonal p + q = c contains at most one nonzero group, and hence the algebra
H∗(G′

n; Z) coincides withE∞. This proves our statement form> 1 odd.
Assume now thatm is even. Recall that we always assume thatn is even. From

formula (2.6) we find that

H q(Gn; Z) '

{
Z for q = 4i (m − 1) or q = (4i + 1)(m − 1),

±Z for q = (4i + 2)(m − 1) or q = (4i + 3)(m − 1),
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Figure 1. TermEm of the spectral sequence form odd

assuming thatq < n(m − 1). Hence we find that

Ep,q
2 =


Z for p = 0 andq = (4i + ε)(m − 1), whereε = 0,1,

Z2 if p > 0 is even andq = (4i + ε)(m − 1)

or if p is odd andq = (4i + 2 + ε)(m − 1),

0 otherwise.

As a bigraded algebra,E2 can be identified with the tensor product

E0,∗
2 ⊗ E∗,0

2 ⊗ B∗,∗,

where
E0,∗

2 ' H4∗(Gn; Z)⊗ C∗, E∗,0
2 ' H∗(RP∞

; Z),

C∗ is an exterior algebra withC0
' Z and Cm−1

' Z, and B∗,∗ is an exterior
bigraded algebra withB0,0

' Z and B1,2(m−1)
' Z2. If y ∈ E1,2(m−1)

2 denotes the
generator, theny2

= 0 follows from relationσ 2
2 = 2σ4 (cf. Theorem3). We denote
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Figure 2. TermEm of the spectral sequence form even

by H4∗(Gn; Z) ⊂ H∗(Gn; Z) the graded subring

H4∗(Gn; Z) =

⊕
i

H4i (m−1)(Gn; Z).

Consider now the first nontrivial differentiald = dm : Ep,q
2 → Ep+m,q−m+1

2 .
It is clear that it may be nonzero only forq of the formq = (2i + 1)(m − 1). On
the other hand, since we know the additive structure of the limit (cf. Theorem11), we
conclude thatd : E0,m−1

2 = Z → Em,0
2 = Z2 is surjective. Using the multiplicative

properties of the spectral sequence, we find that all the differentials shown in Figure
2 are epimorphic. In fact, all differentials in Figure2, except those that start at the
q axis, are isomorphisms (since they act between isomorphic groups). As before, the
large circles denoteZ and the small circles denoteZ2.

Hence, moving to the next term,Em+1, classesσ4i = δi survive, as doa = 2σ1,
e ∈ E2,0

m+1 ' Z2, andb ∈ E1,2(m−1)
m+1 and their productsδi a, δi ej , andδi bej with

j < m/2. It is clear that all further differentials vanish and that in each diagonal
p + q = c there is at most one nonzero group. Therefore we conclude that the ring
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H∗(G′
n; Z) is isomorphic toEm+1. Its structure coincides with the description given

in Theorem12.

4. Equivariant Lusternik-Schnirelman theory via nonsmooth critical
point theory

In this section we first recall the basic notions of the critical point theory for nons-
mooth functions, suggested recently in [4] and [5]. Then we apply the nonsmooth crit-
ical point theory to get a simple independent exposition of a version of the equivariant
Lusternik-Schnirelman theory of [11] and [3], which we need for our applications to
the billiard problems. One of the advantages of our approach is its applicability to
manifolds with boundary.

Let X be a metric space endowed with the metricd. Given a pointp ∈ X and
δ > 0, we denote byB(p, δ) ⊂ X the ball of radiusδ centered atp.

Definition 13
Let f : X → R be a continuous function. Theweak slope of fat a pointp ∈ X,
denoted|d f |(p), is defined as the supremum of allσ ∈ [0,∞] such that there exist
δ > 0 and a continuous deformationη : B(p, δ) × [0, δ] → X with the following
properties:

d
(
η(q, t),q

)
≤ t, f

(
η(q, t)

)
≤ f (q)− σ t

for all q ∈ B(p, δ), t ∈ [0, δ].
A point p ∈ X is said to be acritical point of function f if |d f |(p) = 0.

Example 14
Let X be a smooth Riemannian manifold without boundary, and letf : X → R
be a smooth function. Then the weak slope|d f |(p) coincides with the norm of the
differential ||d f (p)||, viewed as a bounded linear functional on the tangent space
Tp(X).

Example 15
Let X be a smooth Riemannian manifold with boundary, and letf : X → R be
a smooth function. A point on the boundaryp ∈ ∂X is a critical point of f if and
only if there is no tangent vectorv ∈ TpX pointing insideX such that the derivative
v( f ) < 0 is negative. The last condition implies that

d fp|Tp∂X = 0, (4.1)

that is, that the gradient off at point p ∈ ∂X is orthogonal to the boundary∂X.
A point p ∈ ∂X is a critical point of f if and only if (4.1) holds and the gradient
of f at p points inwards. It is clear that the above conditions are independent of the
Riemannian metric.
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PROPOSITION16
Let f : X → R be a continuous function on a compact metric space X. Then the
number of critical points of f (in the sense of Definition13) is at leastcat(X), the
Lusternik-Schnirelman category of X.

This follows from the much more general [5, Theorem 3.7].
We apply the nonsmooth critical point theory to the equivariant critical point

theory of smooth functions (cf. [11], [3]).

PROPOSITION17
Let M be a smooth compact G-manifold with boundary, where G is a finite group.
Let f : M → R be a G-invariant smooth function. Suppose that at points of the
boundary p∈ ∂M the gradient of f does not vanish and is directed outwards. Then
the number of G-orbits of points p∈ M with d fp = 0 is at leastcat(M/G).

Proof
Let X denote the space of orbitsX = M/G. Function f determines a continuous
function f̃ : X → R. We want to show that any orbitx ∈ X, representing points
p ∈ X with d fp 6= 0, is not a critical point off̃ : X → R in the sense of Definition
13. This implies that the number of critical orbits off is at least the number of critical
points of f̃ ; the latter can be estimated from below by cat(X) in Proposition16.

We assume thatM is supplied with aG-invariant Riemannian metric. Letp ∈ M
be a point withd fp 6= 0. We want to construct a smooth vector fieldv in a neighbor-
hood of the orbit ofp having the following properties:
(a) v( f )p < 0;
(b) the norm of vectorvp equals 1;
(c) v is G-invariant;
(d) if p belongs the boundary∂M , the vectorvp points insideM .
To construct such a vector fieldv, one first finds a vectorvp ∈ TpM for each point
p of the orbit so that (a), (b), and (d) are satisfied. It is then possible to extend the
vectorsvp to form a smooth vector fieldv in a neighborhood of the orbit ofp with
properties (a), (b), and (d). Then (c) can be achieved by averaging.

The flow determined by the vector fieldv gives a deformation of the ball around
the point{p} ∈ X, which represents the orbit ofp, showing that the slope|d f̃ |(p) is
positive.

5. Proof of Theorem1
Let T ⊂ Rm+1 be a compact strictly convex domain bounding a smooth hypersurface
X = ∂T . Given a pointA ∈ X and an integern, consider the configuration space
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Gn = G(X; A, A,n) (cf. (2.1)) and the smooth function

L X : Gn → R, L X(x1, . . . , xn) = −

i =n∑
i =0

|xi − xi +1|

(the negative total length), where we understand thatx0 = A = xn+1. This function is
invariant with respect to the reflectionT : Gn → Gn (cf. (2.2)). HenceL X determines
a continuous function

L ′

X : G′
n → R, G′

n = Gn/T, (5.1)

and the critical points ofL ′

X (in the sense of Definition13) are in one-to-one cor-
respondence with theZ2-orbits of the closed billiard trajectories inX which start
and end atA and maken reflections. This follows from [7, Lemma 2] and from the
argument in the proof of Proposition17.

Note that, forn even,T acts freely onGn, the factorG′
n = Gn/T is a smooth

manifold, and the functionL ′

X is smooth. In this case the nonsmooth critical point
theory coincides with the usual one.

We claim the following.
The number of critical points of L′X is at least the Lusternik-Schnirelman category

cat(G′
n); moreover, assuming that n is even and the function L′

X is Morse, the number
of critical points of (5.1) is at least the sum of the Betti numbers of G′

n with Z2

coefficients.
The italicized statement does not follow directly from the traditional Morse-

Lusternik-Schnirelman theory sinceG′
n is not compact. However, as in [8] and [7],

one may fixε > 0 and consider the following compact subset:

Gε ⊂ Gn, Gε =

{
(x1, . . . , xn) ∈ X×n

:

n∏
i =0

|xi − xi +1| ≥ ε
}
.

If ε > 0 is small enough, then
(a) Gε is a compact manifold with boundary;
(b) the inclusionGε ⊂ Gn is aZ2-equivariant homotopy equivalence;
(c) all critical points ofL X are contained inGε ;
(d) at every point of∂Gε, the gradient ofL X is directed outwards
(cf. [8, Proposition 4.1], [7, Proposition 4]).

SinceG′
ε = Gε/T is a compact smooth manifold with boundary, we may ap-

ply the Morse-Lusternik-Schnirelman theory to it. Condition (d) implies that the
critical points of the restriction ofL ′

X on ∂G′
ε should not be taken into account

(cf. Proposition17). Therefore the number of critical points ofL ′

X|G′
ε

is at least
cat(G′

ε) = cat(G′
n). If L ′

X|G′
ε

is Morse, then the number of its critical points is at
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least the sum of Betti numbers ofG′
ε , which is the same as the sum of Betti numbers

of G′
n.
In the proof of Theorem1(I), we use the following general simple remark.

For any regular covering map p: X̃ → X with connectedX̃,

cat(X) ≥ cat(X̃). (5.2)

Indeed, if A ⊂ X is an open subset that is contractible to a point inX, then Ã =

p−1(A) is a disjoint union of open subsets ofX̃, such that each is contractible to a
point in X̃. Hence any categorical open coverA1 ∪ A2 ∪ · · · ∪ Ak = X produces a
categorical open cover̃A1 ∪ Ã2 ∪ · · · ∪ Ãk of X̃.

The above remark applies to the two-fold coverGn → G′
n giving

cat(G′
n) ≥ cat(Gn) ≥ cl(Gn)+ 1,

where cl(Gn) is the cohomological cup length ofGn (Froloff-Elsholz theorem).
Now we use Theorem3 to compute the cup length ofGn. If m ≥ 3 is odd,

thenσ n−1
1 = (n − 1)!σn−1 6= 0 ∈ H (n−1)(m−1)(Gn; Z) and hence cl(Gn) = n − 1.

Therefore cat(G′
n) ≥ n. This proves Theorem 1(I) in the case whenm ≥ 3 is odd.

If m is even, then the longest nontrivial cup product inH∗(Gn; Z) is σ1σ
k−1
2

wheren = 2k. We conclude that, form even, the cup length ofGn equalsn/2 and
therefore cat(G′

n) ≥ n/2 + 1. Together with the information collected above, this
proves Theorem 1(I) form even.

To prove Theorem1(II), we use Theorem12 to estimate the Lusternik-
Schnirelman category ofG′

n. Note that Theorem12 requires the assumption thatn
is even. Suppose first thatm ≥ 3 is odd. Then (in the notation of Theorem12) we
have a nonzero cohomology product

δ1δ2δ22 · · · δ2se(m−1)/2, (5.3)

wheres is the largest integer with 2s+1
−1 ≤ n/2−1, that is, wheres = [log2(n)]−2.

Note that the classe ∈ H2(G′
n; Z) has order 2; that is, 2e = 0. Nontriviality of the

above product is equivalent to the claim that the productδ1δ2δ22 · · · δ2s is an odd
multiple of the classδ1+2+22+···+2s. Indeed, we use the relation

δi δ j =

(
2i + 2 j

2i

)
δi + j

and the well-known fact that the binomial coefficient
(2i +2 j

2i

)
is even if and only ifi

and j , in their binary expansions, have a 1 in the same position.
Now we use the notion ofcategory weight of a cohomology class, introduced by

Fadell and Husseini [6]. They associate weights to cohomology classes, so that non-
triviality of a cup productv1∪v2∪· · ·∪vm implies that the Lusternik-Schnirelman cat-
egory of the space is greater than the sum of the weights of the classesv1, v2, . . . , vm.
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Hence, instead of counting each cohomology classvi as contributing 1 into the total
cup-length estimate, in the approach of Fadell and Husseini we count the contribution
of vi according to its category weight.

We claim that the category weight ofe ∈ H2(G′
n; Z) equals 2. Indeed,e

equals the image of a classe′
∈ H1(G′

n; Z2) under the Bockstein homomorphism
β : H1(G′

n; Z2) → H2(G′
n; Z); that is,e = β(e′). Hence, by Fadell and Husseini in

[6, Theorem (1.2)], the category weight ofe is 2. Therefore nontriviality of product
(5.3) implies

cat(G′
n) ≥ (s + 1)+ 2 ·

m − 1

2
+ 1 = [log2 n] + m − 1.

This proves Theorem 1(II) form ≥ 3 odd.
Consider now the case whenm ≥ 2 is even. First we assume thatn ≥ 8 and that

n + 2 is not a power of 2. Then we have a nontrivial cohomological product

δ1δ2δ22 · · · δ2sbe(m−2)/2, (5.4)

wheres = [log2[(n + 2)/4]] − 1. As above, nontriviality of (2.3) implies

cat(G′
n) ≥ (s + 1)+ 1 + 2 ·

m − 2

2
+ 1 =

[
log2

[n + 2

4

]]
+ m ≥ [log2 n] + m − 2.

If n + 2 = 2r is a power of 2, wherer ≥ 4, then the product

δ1δ2δ22 · · · δ2se(m−2)/2

(we skipb because of the last relation in Theorem12) is nonzero, wheres = r − 3.
In this case we obtain

cat(G′
n) ≥ (s + 1)+ 2 ·

m − 2

2
+ 1 = s + m = [log2 n] + m − 2.

We are left to consider the casesn = 2, 4, 6 with m even. Here we have a
nontrivial cup productbe(m−2)/2, and hence

cat(G′
n) ≥ 1 + 2 ·

m − 2

2
+ 1 = m.

This implies the estimate of Theorem1(II) for the specified values ofn andm.
For m > 1, Theorem1(III) follows from Corollary 8. If m = 1, then the space

G′

1 = G(S1
; A, A,n)/Z2 consists ofn/2 connected components and each is con-

tractible; this can be established by arguments similar to those used in [7, §7]. Hence
the sum of Betti numbers ofG′

1 is n/2.
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6. Cohomology of cyclic configuration spaces of spheres
The cyclic configuration spaceG(X,n) of a spaceX is defined (cf. [8]) as the set
of all configurations(x1, . . . , xn) ∈ X×n with xi 6= xi +1 for i = 1, . . . ,n − 1 and
xn 6= x1. The dihedral groupDn acts naturally onG(X,n).

In [8] M. Farber and S. Tabachnikov showed that information about the coho-
mology ring of the factor spaceG(Sm,n)/Dn leads to estimates of the number of
n-periodic orbits of convex billiards in(m + 1)-dimensional spaceRm+1. The rings
H∗(G(Sm,n); Z2) andH∗(G(Sm,n)/Dn; Z2) were computed in [8].

In this section we describe the cohomology of the cyclic configuration space
G(Sm,n) with other fields of coefficients. It turns out that the answer depends on the
parity of m; therefore we state the even- and odd-dimensional cases in the form of
two separate theorems.

The results of this section are used in the proof of Theorem2.

THEOREM 18
Let m≥ 3 be odd. The ring H∗(G(Sm,n); Q) is given by generators

u ∈ Hm(
G(Sm,n); Q

)
, σi ∈ H i (m−1)(G(Sm,n); Q

)
, i = 1, . . . ,n − 2,

and relations

u2
= 0, σi σ j =

{
(i + j )!
i !· j ! · σi + j if i + j ≤ n − 2,

0 if i + j > n − 2.
(6.1)

One may show that the statement of Theorem18 holds, withQ replaced by an arbi-
trary field of coefficientsk. However, the short proof we give below works only in the
casek = Q. On the other hand, for the purposes of this paper, it is enough to know
the rational cohomologyH∗(G(Sm,n); Q). The case of a fieldk of positive charac-
teristic may be proven by using [8, Theorem 3] and computing the spectral sequence
as in the proof of [8, Theorem 4].

The following theorem gives the answer form even.

THEOREM 19
Let k be a field of characteristic not equal to2. For any even m≥ 2 and odd n≥ 3,
the cohomology algebra H∗(G(Sm,n); k) is given by generators

w ∈ H2m−1(G(Sm,n); k
)
, σ2i ∈ H2i (m−1)(G(Sm,n); k

)
, i = 1, . . . ,

n − 3

2
,

and relations

w2
= 0, σ2i σ2 j =

{
(i + j )!
i !· j ! · σ2(i + j ) if i + j ≤

n−3
2 ,

0 if i + j > n−3
2 .

(6.2)
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x
v(x)

x1 = x x2

x3

xn = −x xn−1

Figure 3. Continuous family of configurations

Proof of Theorem18
Consider the fibration

p : G(Sm,n) → Sm, (6.3)

where the image of a cyclic configuration(x1, . . . , xn) ∈ G(Sm,n) under projec-
tion p is given by p(x1, . . . , xn) = x1. The fiber of p is the configuration space
G(Sm

; A, A,n−1). Consider the Serre spectral sequence of this fibration. The coho-
mology of the fiberG(Sm

; A, A,n − 1) is described by Theorem3; it has generators
σ1, . . . , σn−2, which multiply according to (2.3).

This spectral sequence may have only one nonzero differentialdm. We show that
this differential vanishes; that is,dm = 0. This clearly implies our statement.

Since we may writeσi = (i !)−1(σ1)
i , it is enough to show thatdm(σ1) = 0.

Vanishingdm(σ1) = 0 follows from the fact that fibration (6.3) admits a continuous
sections : Sm

→ G(Sm,n), and thus the transgression is trivial. To constructs, fix
a nowhere zero tangent vector fieldV on the sphereSm. (Recall thatm is odd.) For
x ∈ Sm, the tangent vectorV(x) determines a half-circle starting atx, tangent to
V(x), and ending at the antipodal point−x. Then the sections can be defined by

s(x) = (x1, x2, . . . , xn), x ∈ Sm,

wherex1 = x, xn = −x and the pointsx2, . . . , xn−1 are situated on the half-circle
making equal angles as shown in Figure 3. Analytically, we may write

x j = cos
( ( j − 1)π

n − 1

)
x + sin

( ( j − 1)π

n − 1

)
V(x), j = 1, . . . ,n.

Proof of Theorem19
First we assume thatm> 2; the casem = 2 is treated separately later.



614 MICHAEL FARBER

We describe the additive structure ofH∗(G(Sm,n); k) using the Morse theory
approach. LetSm

⊂ Rm+1 be the unit sphere. Consider the total length function

L : G(Sm,n) → R,

where for(x1, . . . , xn) ∈ G(Sm,n) we have

L(x1, x2, . . . , xn) = −|x1 − x2| − |x2 − x3| − · · · − |xn − x1|.

The critical points ofL aren-periodic billiard trajectories in the unit sphere; hence
the critical configurations are regularn-gons lying in 2-dimensional central sections
of the sphere. A regularn-gon is determined by two first vectorsx1, x2 ∈ Sm, which
must make an angle of the form

αp =
2π

n
·

(n − 1

2
− p

)
, wherep = 0,1, . . . ,

n − 3

2
.

Recall that we assume thatn is odd. Fixing p = 0,1, . . . , (n − 3)/2, we obtain a
variety of critical configurations, which we denote byVp ⊂ G(Sm,n). EachVp has
dimension 2m − 1 and is diffeomorphic to the Stiefel manifold of pairs of mutually
orthogonal vectors inRm+1. Since we assume thatm is even and that the character-
istic of k is 6= 2, we haveH∗(Vp; k) ' H∗(S2m−1

; k). Note also thatVp is simply
connected (sincem> 2).

Babenko has shown (cf. [1, Proposition 3.1]) that functionL is nondegenerate in
the sense of Bott and that the index of each critical submanifoldVp equals 2p(m−1).
Moreover, it is clear thatL(Vp) < L(Vp′) for p < p′.

Fix ε > 0 small enough, and consider the submanifoldGε(Sm,n) ⊂ G(Sm,n),
where

Gε(S
m,n) =

{
(x1, . . . , xn) ∈ (Sm)×n

:

n∏
i =1

|xi − xi +1| ≥ ε
}
.

If ε > 0 is sufficiently small, then (according to [8, Proposition 4.1])Gε(Sm,n) is
a compact manifold with boundary containing all the critical points ofL and such
that the inclusionGε(Sm,n) ⊂ G(Sm,n) is a Dn-equivariant homotopy equivalence.
Moreover, at every point of the boundary∂Gε(Sm,n), the gradient ofL extends out-
ward.

Choose constantsc0, c1, . . . , c(n−3)/2 such thatL(Vp) < cp < L(Vp+1) for
0 ≤ p < (n − 3)/2 andc(n−3)/2 = 0. Let

Fp = L−1((−∞, cp]
)
∩ Gε(S

m,n).

We obtain a filtrationF0 ⊂ F1 ⊂ · · · ⊂ F(n−3)/2 = Gε(Sm,n). Since the inclusion
F(n−3)/2 ⊂ G(Sm,n) is a homotopy equivalence, we may use the spectral sequence
of this filtration to calculate the cohomology ofG(Sm,n).
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We claim that this filtration isperfect, that is, that the Poincaré polynomial of the
cyclic configuration spaceG(Sm,n) equals the sum of the Poincaré polynomials of
the pairs(Fp, Fp−1). The initial term of the spectral sequence is

Ep,q
1 = H p+q(Fp, Fp−1; k).

Using the Thom isomorphism (recall thatVp is simply connected), we find that
H j (Fp, Fp−1; k) is isomorphic toH j −2p(m−1)(Vp; k); henceH j (Fp, Fp−1; k) is
1-dimensional forj = 2p(m− 1) and for j = 2p(m− 1)+ 2m− 1 and vanishes for
all other values ofj . This follows since inFp+1 − Fp there is a single nondegenerate
critical submanifoldVp which has index 2p(m−1) and is diffeomorphic to the Stiefel
manifoldVm+1,2.

The gradient ofL at points of the boundary∂Gε(Sm,n) extends outward, and
hence, the points of the boundary do not contribute to the usual statements of the
Morse-Bott critical point theory.

For a givenp there are precisely two values ofq such thatEp,q
1 is nonzero (q =

p(2m − 3) andq = p(2m − 3) + 2m − 1). From the geometry of the differentials,
we see that all the differentialsdr , r ≥ 1, must vanish ifm > 2. This proves that
the cohomologyH j (G(Sm,n); k) is 1-dimensional forj = 2p(m − 1) and j =

2p(m− 1)+ 2m− 1, wherep = 0,1, . . . , (n− 3)/2, andH j (G(Sm,n); k) vanishes
for other values ofj .

Having recovered the additive structure ofH∗(G(Sm,n); k), we may use The-
orem3 to find its multiplicative structure. The mapping(x1, x2, . . . , xn) 7→ x1 is a
Serre fibrationG(Sm,n) → Sm; its fiber isG(Sm

: A, A,n − 1). The Serre spectral
sequence has only two nonzero columns, anddm is the only differential that could be
nonzero. In the zeroth columns we have classesσi in dimensionsi (m− 1), and in the
mth column we have classesσi u having dimensioni (m − 1) + m (cf. Theorem3).
Since we already know the additive structure ofH∗(G(Sm,n); k), we conclude that
the differential

dm : E0,i (m−1)
2 → Em,(i −1)(m−1)

2

is an isomorphism fori odd and vanishes fori even. Hence the classesσ2i andσ2i +1u
survive. Now, we setw = σ1u, and we conclude thatH∗(G(Sm,n); k) has the mul-
tiplicative structure stated in Theorem19.

For m = 2 the above argument, based on the spectral sequence of the filtration
F0 ⊂ F1 ⊂ · · · ⊂ F(n−3)/2 = Gε(Sm,n), is not sufficient since, in principle, this
spectral sequence could have a nonzero differential, as shown in Figure 4. Also, for
m = 2 the critical submanifoldsVp are not simply connected, and so the Thom iso-
morphisms for the negative normal bundles of the Hessian may require additional
twists by flat line bundles (depending on the orientability of the negative normal bun-
dles of the critical submanifolds).
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Figure 4. Nonzero terms of the spectral sequence form = 2

However, in the casem = 2, a different argument can be applied. Consider the
action of SO(3) on G(S2,n) arising from the standard action of SO(3) on S2. Fix a
point A ∈ S2, and considerG(S2

; A, A,n − 1) as being canonically embedded in
G(S2,n). We obtain the map

SO(3)× G(S2
; A, A,n − 1) → G(S2,n), (R, c) 7→ Rc, (6.4)

given by applying an orthogonal matrixR ∈ SO(3) to a configuration of points on the
spherec ∈ G(S2

; A, A,n−1). It is easy to see that (6.4) is a fibration with fiberS1. If
c = (A, x1, . . . , xn−1) is a configuration of points onS2 such thatA 6= x1, xi 6= xi +1

for i = 1, . . . ,n − 1 andxn−1 6= A, then the fiber of fibration (6.4) overc consists of
the space of all pairs(R−φ, Rφ(c)), whereRφ ∈ SO(3) denotes the rotation by angle
φ ∈ [0,2π ] aboutA.

The cohomology algebra of the total space of this fibration,

H∗
(
SO(3)× G(S2

; A, A,n − 1); k
)

' H∗(S3
; k)⊗ H∗

(
G(S2

; A, A,n − 1); k
)
,

is given by Theorem3. It has a generatorw with degw = 3 (coming from a generator
of H3(SO(3); k)) and also classesσi , wherei = 0,1, . . . ,n − 2, with degσi = i ,
which are pullbacks of the generators ofH∗(G(S2

; A, A,n − 1); k) (cf. Theorem3).
We have the relationw2

= 0, and each productσi σ j equals a multiple ofσi + j , the
coefficient indicated in formula (2.4).

Let us show thatthe restriction map from the total space to the fiber

H1(SO(3)× G(S2
; A, A,n − 1); k

)
→ H1(S1

; k)
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is surjective. SinceH1(SO(3); k) = 0, our statement is equivalent to the following.
Let c = (A, x1, . . . , xn−1) be a fixed configuration. We obtain an embeddingf :

S1
→ G(S2

; A, A,n − 1) given byφ 7→ Rφ(c), whereφ ∈ [0,2π ]. We claim that
the induced mapf ∗

: H1(G(S2
; A, A,n−1); k) → H1(S1

; k) is surjective. In other
words, we want to show that the cohomology classf ∗(σ1) ∈ H1(S1

; k) is nonzero.
We may assume that the antipodeA′ of A does not appear in the configurationc.

Identify S2
− A′ with R2 using the stereographic projection withA′ as a center; this

leads to the following commutative diagram:

S1
g //

f

&&NNNNNNNNNNNN G(R2
; 0,0,n − 1)

h
��

G(S2
; A, A,n − 1)

whereg is given by rotations of a fixed configurationc′
= (0, y1, y2, . . . , yn−1) of

points on the plane,c′
∈ G(R2

; 0,0,n − 1), around the origin 0∈ R2. Clearly, the
spaceG(R2

; 0,0,n − 1) is homotopy equivalent toG(R2,n), and thus the coho-
mology algebraH∗(G(R2

; 0,0,n − 1); k), as given by [8, Proposition 2.2], has 1-
dimensional generatorss1, . . . , sn which satisfy the relationss2

i = 0 for i = 1, . . . ,n
and also a relation of degreen−1 (cf. [8, formula (4)]). From [7, Remark 9] we obtain

h∗(σ1) =

n∑
i =1

(−1)i +1si . (6.5)

Let s ∈ H1(S1
; k) denote the generator corresponding to the usual anticlockwise

orientation of the circle. Then

g∗(si ) = s, i = 1,2, . . . ,n. (6.6)

Indeed,g∗(si ) = di s, wheredi is the degree of the following mapS1
→ S1,

φ 7→
Rφ(yi )− Rφ(yi −1)

|Rφ(yi )− Rφ(yi −1)|
= Rφ

( yi − yi −1

|yi − yi −1|

)
, φ ∈ [0,2π ],

and hence it is clear thatdi = 1. HereRφ denotes the plane rotation by angleφ.
Comparing (6.5) and (6.6), we obtain

f ∗(σ1) = g∗h∗(σ1) = g∗

( n∑
i =1

(−1)i +1si

)
= s,

where we have used the assumption thatn is odd. (Note that, forn even, the above
arguments givef ∗(σ1) = 0.)
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Let us examine the Serre spectral sequence of fibration (6.4). First we observe
that the fundamental group of the base acts trivially on the cohomology of the fiber.
This follows since (6.4) is induced from the standard fibration

q : SO(3) → S2, whereq(R) = R(A), R ∈ SO(3),

by the mapG(S2,n) → S2 given by(x1, . . . , xn) 7→ x1. The Serre spectral sequence
of (6.4) has two rows and may have one nontrivial differential. Since we know that
the fundamental class of the fibers ∈ H1(S1

; k) survives, that is, applying the differ-
ential to it gives zero, it follows that all the differentials in the Serre spectral sequence
vanish. We conclude that the cohomology algebra of the baseH∗(G(S2,n); k) is the
factor of H∗(SO(3) × G(S2

; A, A,n − 1); k) with respect to the ideal generated by
classσ1. Sinceσ2i +1 = σ1σ2i , we obtain thatH∗(G(S2,n); k) has generatorsw with
degw = 3 andσ2i with degσ2i = 2i , wherei = 0,1, . . . , (n − 3)/2, which satisfy
relations (6.2).

Relation between cyclic configuration spaces of spheres and spaces of paths
In this section we describe the relations between the cyclic configuration spaces of
spheres and some spaces of paths. We do not give the proofs since they are similar
(almost identical) to the proof of [7, Theorem 12]. The results mentioned here are not
used in the rest of this paper.

Let L (Sm) denote the space of free loops inSm, that is, the space of allH1-
smooth mapsS1

→ Sm. We refer to [9, Chapter 5] for the basic definitions. We
denote byL (Sm)n ⊂ L (Sm) the subspace of all loops having length less thanπn.

For n even, there is a continuous mapψ : G(Sm,n) → L (Sm)n which acts as
follows. Given a configuration of pointsc = (x1, x2, . . . , xn) ∈ G(Sm,n), define a
sequence(y1, . . . , yn) ∈ (Sm)×n, whereyi = (−1)i xi . Then for anyi = 1, . . . ,n,
the pointsyi and yi +1 are not antipodal and hence we may join them by a shortest
geodesic arc ofSm; here yn+1 is understood to bey1. Union of these arcs gives a
closed loopψ(c) having length< πn. In a manner similar to that of [7, Theorem 12],
one may show thatψ is a homotopy equivalence.

For the billiard problem we are mainly interested in the spacesG(Sm,n) with n
odd. The corresponding space of paths can be described as follows. LetL ∗(Sm) de-
note the space of allH1-smooth pathsω : [0,1] → Sm, such that the end points are
antipodal,ω(0) = −ω(1). Projecting ontoRPm, we obtain closed noncontractible
loops inRPm. In fact,L ∗(Sm) may be identified with a two-fold cover of the con-
nected component of the free loop spaceL (RPm), consisting of noncontractible free
loops inRPm.

We denote byL ∗(Sm)n ⊂ L ∗(Sm) the subspace of paths having length less than
πn. In a manner similar to the case ofn even and [7, Theorem 12], one may show the
following.
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For any n> 2 odd, there exists a natural homotopy equivalenceψ :

G(Sm,n) → L ∗(Sm)n. In particular, for odd n → ∞, the space
G(Sm,n) approximates the spaceL ∗(Sm).

It is easy to show that, form odd, the path spaceL ∗(Sm) is homotopy equivalent to
the free loop spaceL (Sm). It follows using the remark that, form odd, the antidi-
agonalD : Sm

→ Sm
× Sm, whereD(x) = (x,−x), is homotopic to the diagonal

x 7→ (x, x).
For m even, the spacesL (Sm) andL ∗(Sm) are not homotopy equivalent. For

example,π1(L (S2)) ' Z andπ1(L
∗(S2)) ' Z2.

7. Proof of Theorem2
Let T ⊂ Rm+1 be a compact strictly convex domain with smooth boundaryX = ∂T .
Consider the smooth function

L X : G(X,n) → R, L X(x1, . . . , xn) = −

i =n∑
i =1

|xi − xi +1|

(the negative total length), where we understand the indices cyclically modulon, that
is, wherexn+1 = x1. The critical points ofL X are in one-to-one correspondence with
n-periodic billiard trajectories inX.

Fix ε > 0, and consider

Gε ⊂ G(X,n), Gε =

{
(x1, . . . , xn) ∈ X×n

:

n∏
i =1

|xi − xi +1| ≥ ε
}
.

According to [8, Proposition 4.1], ifε > 0 is small enough, then
(a) Gε is a compact manifold with boundary;
(b) the inclusionGε ⊂ G(X,n) is a Dn-equivariant homotopy equivalence;
(c) all critical points ofL X are contained inGε ;
(d) at every point of∂Gε, the gradient ofL X extends outwards.

Now we apply Proposition17 with M = Gε , f = L X , and G = Dn. We
conclude that the number ofDn-orbits of n-periodic billiard trajectories inX is at
least

cat(Gε/Dn) = cat
(
G(X,n)/Dn

)
.

Since we assume thatn is an odd prime, the action ofDn on G(X,n) is free, and we
may use inequality (5), which gives

cat
(
G(X,n)/Dn

)
≥ cat

(
G(X,n)

)
≥ cl

(
G(Sm,n)

)
+ 1.

Theorems18 and19 allow us to estimate cat(G(Sm,n)). Assume first thatm is
odd,m> 1. Then (according to Theorem18) we have a nonzero cup product

σ n−2
1 u,
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which shows that the cup length ofG(Sm,n) for oddm > 1 is at leastn − 1. This
gives a lower boundn on the number ofDn-orbits ofn-periodic billiard trajectories
in X for m odd.

If m is even, then (by Theorem19) we have a nonzero cup product

σ
(n−3)/2
2 w ∈ H∗

(
G(Sm,n); k

)
,

wherek is a field of characteristic not equal to 2. This shows that, form even, the cup
length ofG(Sm,n) is at least(n − 1)/2. This gives a lower bound(n + 1)/2 on the
number ofDn-orbits ofn-periodic billiard trajectories inX.

Acknowledgments.I would like to thank H.-J. Baues and S. Tabachnikov for useful
discussions.
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