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TOPOLOGY OF BILLIARD PROBLEMS, |

MICHAEL FARBER

Abstract

Let T ¢ R™1 pe a strictly convex domain bounded by a smooth hypersurfac
X = dT. In this paper we find lower bounds on the number of billiard trajectories in
T which have a prescribed initial point A X, a prescribed final point B X, and
make a prescribed number n of reflections at the boundary X. We apply a topolo
cal approach based on the calculation of cohomology rings of certain configuratio
spaces of 8.

1. Introduction

In the early 1900s, G. Birkhoff initiated the mathematical theory of convex plane bil
liards. His main interest was in estimating the number of periodic billiard trajectorie:
He pioneered the use of topological methods based on variational reduction and us
the critical point theory.

Periodic trajectories in convex billiards in Euclidean spaces of dimension great
than 2 were studied in2] and [10]. The high-dimensional problem also allows an
approach based on the critical point theory, and the main difficulty lies in the mol
complicated topology of the appropriate configuration space. Thus the major effort
[10] was in computing the cohomology algebra of the cyclic configuration space «
the sphere.

The purpose of this paper is to strengthen the estimates obtairEd.im[partic-
ular, we obtain estimates, linearnnof the number oh-periodic billiard trajectories,
improving the logarithmic estimates df(]. On the other hand, in this work we study
a larger variety of billiard problems: besides the periodic trajectories, we are also i
terested in the number of ways the billiard ball can be brought from a given initie
point to a given final point after making a prescribed numbef reflections at the
boundary of the billiard domain.

Let X ¢ R™1 be a closed smooth strictly convex hypersurface. {ther 1)-
dimensional convex body, bounded byX, serves as our billiard table. The billiard
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560 MICHAEL FARBER

ball is a point that moves i in a straight line, except when it hidé = 9T, where it
rebounds making the angle of incidence equal the angle of reflection. In other wort
if A, B,C e X are three subsequent reflection points, then the norm¥élabpoint
B bisects the angle between the vectBra andBC (see Figure 1).

We consider the following billiard problems.

PROBLEM A

Given two distinct points AB € X and a number n, estimate the number of billiard
trajectories inside X which start at point A, end at point B, and make n reflections :
the hypersurface X.

PROBLEM B
Estimate the number of billiard trajectories inside X which start and end at a give
point Ae X and make a prescribed number n of reflections at the hypersurface X.

Problem B deals witltlosedbilliard trajectories. It is clear that any closed billiard
trajectory starting and ending & € X determines another closed billiard trajectory
that is obtained by passing the same route in the reverse order. This explains that tt
is a naturalZ-action on the set of closed billiard trajectories, and in Problem B on
actually asks abouhe number ofZ>-orbits of closed billiard trajectories.

Using thisZ,-symmetry, we give a better estimate for Problem B than the esti
mate for Problem A given by Theorein

PROBLEM C
Estimate the number of n-periodic billiard trajectories inside the billiard domain T .

In [10] we showed that the number of-periodic billiard trajectories is at least
[log,(n — 1)] + m and is at leastn — 1)m in the generic case. Helfg] denotes

the integer part ok, that is, the largest integer not exceeding

C

Figure 1
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In Part | of this paper we give an answer to Problem A.

THEOREM 1

Let X ¢ R™1 be a closed smooth strictly convex hypersurface, and J& A X be
two distinct points. Then for any integer n, the number of billiard trajectories inside
X which start at A, end at B, and make n reflections is at leastinf m is odd and
[(n+1)/2] + 1if m is even. In a generic situation (cf. DefinitiGh, for any m and

n the number of billiard trajectories inside X which start at A, end at B, and make |
reflections is at least A 1.

Consider the following simple example. L¥t = S™ ¢ R™1 be the unit sphere.
Any billiard trajectoryA = Ag, Ag, ..., An, Anr1 = B must lie in a 2-plane passing
through the center of the sphe@ If the endpointsA, B are distinct and not an-
tipodal, then there is a unique 2-plane passing throigB, andO; the circleL, the
intersection of this 2-plane wit8™, must contain all the reflection poinds, .. ., An.
Fix an orientation ori, and letp € (0, 2r) be the angle fronA to B. Then the angle
betweenA; and Aj 1 must be independent ofand may take the values

¢+ 27k

= , wherek=0,1,...,n.
ok n+1

Hence we see that in this example there exist precisefy 1 billiard trajectories
starting atA, ending atB, and making reflections.

This example shows that the statement of Theotdor the generic case and for
m odd cannot be improved. It looks reasonable to conjecture that fometea lower
bound on the number of billiard trajectories is atse- 1.

Problems B and C will be studied in Part II.

2. Billiard ball problem and Lusternik-Schnirelman category of configuration
spaces

In this section we use the variational method of Birkhoff to show that the problem c

estimating the number of billiard trajectories can be reduced to the topological pro

lem of estimating the Lusternik-Schnirelman category of a space of configurations

n points on the spherg™.

Let X be a manifold. Suppose that B € X are two fixed points. The symbol
G(X; A, B, n) denotes the subspace of the Cartesian power= X x X x --- x X,
consisting of the configuration&a, ..., Xn) € X*", such thatx; # xj1 for all
i=1...,n—1 andA # x; andx, # B. In the caseA £ B we callG(X; A, B, n)
the open string configuration spac€he spaces(X; A, A, n) is the closed string
configuration space
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The configuration spad8(X; A, B, n) is closely related to theyclic configura-
tion space GX, n) introduced in [L0], which consists of alh-tuples(xi, ..., Xp) of
points of X satisfying

Xi #ZXiy1 fori=1,2,...,n-1 and Xn # X1.

Let X ¢ R™ ! be a smooth closed strictly convex hypersurface, the boundary c
the billiard table. Denote by

Lx : G(X; A, B,n) — R

the perimeter length function taken with the minus sign,

n
Lx (.. %) == 1% —Xisal, i =0.....n,
i=0
where(Xq, X2, ..., Xp) € G(X; A, B, n) and the distance — Xj 11| is measured in

the ambient Euclidean spaE’éT‘“. Here we understand thag = A andx,+1 = B.
The functionL x is smooth. The reason for the minus sign becomes clear later.
The following lemma is well known.

LEMMA 2
A point (x1,...,Xn) € G(X; A, B, n) is a critical point of Lx if and only if the
sequence AXxi, ..., X, B determines a billiard trajectory inside X starting at point

A and ending at point B.

Proof
An easy calculation shows that a configuration, ..., xy) € G(X; A,B,n) is a
critical point of L x if and only if for anyi = 1, 2, ..., n the vector

Xi — Xji—1 Xi — Xi+1
IXi —Xi+1] X — X1l

is orthogonal to the tangent spagg (X). The last condition is clearly equivalent
to the requirement that the normal ¥oat x; bisects the angle betweenx;_; and
X Xi41. o

Definition 3
The data(X, A, B, n) are calledyenericif the corresponding perimeter length func-
tionLx : G(X; A, B, n) - R has only Morse critical points.

Compare [0, 84].
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Since X is homeomorphic t&™, the spaces(X; A, B, n) is homeomorphic to
G(S™; A, B, n). The shape of the billiard domaiX becomes encoded in the func-
tion Ly : G(S™; A, B,n) — R, and the problem of estimating the number of
billiard trajectories insideX which start atA and end atB turns into a problem
of Morse-Lusternik-Schnirelman theory. The difficulty is that we cannot apply th
Morse-Lusternik-Schnirelman theory directly®@g X; A, B, n) since this manifold is
not compact.

To avoid this difficulty, we replac&(X; A, B, n) by a compact manifold with
boundaryG,(X; A, B, n) Cc G(X; A, B, n), wheree > 0 is small enough and

n
G:(X: A, B,n) = {(xl,...,xn) e XXM T 1% — Xisal 2 e}; 2.1)
i=0

herexop = A andx,+1 = B. A similar approach can be found i][and in [9] and
[13] for the two-dimensional case (cf. alsb{] for the periodic case).

PROPOSITIONA

If ¢ > Ois sufficiently small, then

(@) G.(X; A, B, n) is a smooth manifold with boundary;

(b)  theinclusion G(X; A, B,n) C G(X; A, B, n) is a homotopy equivalence;

(c) all critical points of Lx : G(X;A,B,n) — R are contained in
GS(X; Av Ba n);

(d) at every point 0BG, (X; A, B, n), the gradient of lx has the outward direc-
tion.

This statement is analogous tb0[ Proposition 4.1]. The proof given inl(] also
applies in this case. The only modification is that in the casé B the arguments of
the proof of [LO, Proposition 4.1], which explain that a critical configuration cannot
lie entirely in a small neighborhood of, become redundant.

Recall that the Lusternik-Schnirelman category¥¢abf a topological spac¥ is
defined as the least inteder> 0 such thalY admits an open covef = F{U- - -U Fy,
such that each inclusiof; — Y is null-homotopic.

COROLLARY 5

Let X ¢ R™ be a smooth strictly convex hypersurface, and leBAc X be two
fixed points. For any n> 0, the number of billiard trajectories inside X which start
at A, end at B, and make n reflections is at lezeG(S™; A, B, n)), the Lusternik-
Schnirelman category of the open string configuration space of the spRere S

Proof
Chooses > 0 small enough so that the conclusions of Proposiibold. Since at the
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points of the boundar§G, (X; A, B, n) the gradient oL x has the outward direction,
the critical point theory for manifolds with boundary (séé]) applies; the conclu-
sion is that the critical points of the restrictitrx |5, (x; A, B,n) Should be ignored, and
the number of critical pints of x lying in the interior ofG.(X; A, B, n) is at least
the category oG, (X; A, B, n). Since caG.(X; A, B, n) = catG(S™; A, B, n) (be-
cause of Propositio#i(b)), the number of billiard trajectories insidéwhich start at
A, end atB, and maken reflections is at least c@® (S™; A, B, n)). O

In the closed case, that is, when the endpoints are eduai 8), we may USE& -
symmetry to give a better estimate. This result will appear in Part I1.

3. Spectral sequence computing the cohomology of the open string configuration
space of a manifold

The following theorem yields a spectral sequence computing the cohomology algel

of the open string configuration spaG& X; A, B, n), whereX is an arbitrary mani-

fold. It is a Leray spectral sequence associated to the embe@diXgA, B, n) —

XXM = X x X x --- x X (thenth Cartesian power).

This method was first suggested by B. Totai@][for the usual configuration
space (i.e., for the space of all configurati@rs, ..., xn) € X*" with x; # x; for
alli, j). In [10] we used a similar spectral sequence for the cyclic configuration spac
G(S", n).

The symbok denotes a field.

THEOREMG6
Let X be a connected oriented manifold of dimensios-m, and let A B € X be
two distinct points.

(A) There exists a spectral sequence of bigraded differential algebras which co
verges to H(G(X; A, B, n); k) whose Ek-term is the quotient of the bigraded com-
mutative algebra

H*(Xxn; k)[%? Sl’ e S’]]v

where HP(X*"; k) has bidegreép, 0) and each generatoi $ias bidegre€0, m—1),
by the relations

=0 fori=0,1,...,n,

oSt S =0,

p1(v)so =0,

p(v)s = P (v)s fori=12...,n-1,
Pr()sh =0,
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wherev € H*(X; k) denotes an arbitrary cohomology class of positive degree ant
pj : X*" — X denotes the projection onto the jth factoe=j1, 2, ..., n.
(B) The first nontrivial differential is g, where m= dim X. It acts by

dm(s0) = (=1 p1 ([XD),

dn(s) =q*(A), i=1,2...,n-1,
dm(sn) = pp([XD),

dm(H*(X*™; k) = 0,

where g : X*" — X x X denotes the projection onto the factors j and-ji,
[X] € HM™(X; k) is the fundamental class, amd € H™(X x X; k) denotes the
cohomology class of the diagonal.

Proof
Consider the inclusionr : G(X; A, B,n) — X*" and the Leray spectral sequence
(see B]) of the continuous mayg,

EF9 = HP(X*™ Riy.k) = HPTI(G(X; A, B, n); k),
whereRY,k is the sheaf orX*" associated with the presheaf
U~ HY(UNG(X; A, B, n); k).

To describe the sheav&8y,.k, consider partitions of the s@d, 1, ..., n, n+ 1}

into intervals, that is, subsets of the fofimi + 1,i +2,...,i + j}. For any such
partition J, we denote byX; the subset oX*", consisting of all configurations =
(X1, X2, ..., Xn) € X*N satisfying the following conditions:

xi = Xj if i andj lie in the same interval of the partitiady
Xi = A ifindexi lies in the same interval as 0
Xxi = B ifindexi lies in the same interval as+ 1.

Given two interval partitiond and J, we say that] refines land writel < J if
the intervals ofl are unions of the intervals af. We denote byJ| the number of
intervals in the partitiord. Note thatl < J implies X; c Xj and|l| < |J|. For the
partition J with |J| = 1, X3 = @ holds (since we assume that=~ B). If |J| = 2,
thenX is a single point. ForJ| > 2 the spaceéX; is homeomorphic to the Cartesian
power X *(191=2)

As in [10], we denote byD(X, n) the subset ofX*" satisfying the conditions
Xi # X1 fori = 1,...,n — 1. The configuration spacB(R™, n) is homo-
topy equivalent to the product of sphere®"—1)*M-D A homotopy equivalence
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D(R™, n) — (S™1)x("-D s given by the map

(3.1)

X1 — X2 Xn—1 — Xn )

(xl,...,xn)|—>(
[X1 — Xo| [Xn—1 — Xn|

Fixing an orientation of the sphef&™1] ¢ H™1(S"1. k) determines @anoni-
cal top-dimensional class H"-D™-D(D(R™M n); k) which is the pullback of the
product{S™ 1] x - .- x [S™1] under B.1).

If A, B € X are two points, we denote liy(X; A, @, n) the subspace db (X, n)
consisting of configurationsx, ..., Xy) with x; # A; similarly, we denote by
G(X; @, B, n) c D(X, n) the subspace of configurations wih # B.

Let J be a partition of0, 1, 2, ..., n+ 1} on intervals of lengthgy, ..., jr, and
let

C=(X1,X2,...,%Xn) € X3, C¢ U X;.
1<J, 1%

We claim that the stalk of the sheRfly/,.k atc equals
(R%yk)c = HI(D(R™, j1) x --- x DR™, jr); K).

Indeed, by definition, this stalk iBl9(U N G(X; A, B, n); k), whereU is a small
open ball around. If ¢ = (X1, X2, ..., Xn), then we may choose points

Y1=A7YZ,~--,Yr71,Yr=BEX,

one for each interval o, so thatx; = yj, if i belongs to theth interval. LetU; C X
be a small open neighborhood yf, so that eaclJ; is diffeomorphic toR™ and the
setsUj andUj are disjoint when the pointg andy; are distinct. Then we may take
U=U;""%x U2 x ... x U, and our claim follows.

We see thaR%y.k vanishes unlesg is a multiple ofm — 1 and

0 fors>n+2—1J|,

dim(R¥™=Dy k)e =
( Dl (M2-191) fors<n+2—1J|.

For an interval partition) of {0, 1, 2, ..., n + 1} with |J| > 1, denote by, the
constant sheaf with stalkand supporiX ;. We claim the following.
Foranyr = 2,3,...,n+ 2, the sheaf R+2-"(M-Dy, k is isomorphic to the
direct sum of sheaves
RMF2DM Dy ik ~ €D ey, (3.2)
[J|=r

the sum taken over all interval partitions J with| =r.
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To prove the claim, let be an interval partition of0, 1, . .., n+ 1} into intervals
of lengthiy, s, ..., is, wheres = |I| > 1. Then for any interval partitiod into
intervals of lengthj1, jo, ..., jr suchthal < J, we have the canonical inclusion

vy; : D(RM,ip) x --- x D(RM,is) —» D(R™, j1) x --- x D(R™, jp).

The target space of mag,| has a canonical nonzet+2—r)(m—1))-dimensional
cohomology class (cf. above). The induced mgp on ((n + 2 — r)(m — 1))-
dimensional cohomology witk coefficients is a monomorphism. Lef, denote the
image of the top-dimensional canonical class under the inducedijafghen (in a
manner similar to]8, Lemma 3]) for a fixed , the classe$z;,} form a linear basis
of the cohomologyH "+2-NM-D(DRM j1) x --- x D(RM, is); k), whereJ runs
over all partitions withl < J and|J| =r.

Indeed, using the map into the product of sphege§ (we see that a linear basis
of the cohomologyH "+2=DM=-D(DRM i) x ... x D(RM, is); k) is formed by
monomialssy Sa, - - Sap,p, With 0 < @1 < @ < -+ < any2r < N+ 1, such
that for anyp = 1,...,n + 2 —r the indicesap andap + 1 belong to the same
interval of partitionl. Let J be the partition determined by the equivalence relation
on{0,1,...,n+ 1}, whereap, ~ ap + 1. Thenl < J and the above monomial
coincides with the clasg; .

Given a partitiond of the set{0, 1, ..., n + 1} on intervals having lengthg +
12, ..., jr=1, jr +1, wherer > 1, consider the commutative diagram

G(X; A, B, n) i xXxn

Ji

G(X; A, 0, jl)X D(X, jZ)X"'XG(X;@, B, Jr)i> e

formed by the natural inclusions. Define shelaf= R™"+2-N(M=-Dq; (k) over X<,
We want to show that/J is isomorphic tee 3, that is, that it is the constant sheaf with
stalkk and supporiX ;. First, ¢/; vanishes outsidX; (since we are considering the
cohomology of the top dimension). Let be a small open neighborhood of a point
c e Xy c X*", such that) = [ U;, where allU; are small open disks ard| = Uj

if i andj lie in the same interval of. Then

y(U) = H¥ ™D (DUi,, j1+ 1) x DUy, j2) x -+ x DWUj,, jr + 1); k) >k

(wheres = n + 2 —r) has a canonical element (cf. above). This gives a continuou
section ofs’; over X;, and hence’; ~ ¢;.
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The commutative diagram gives a map of sheaes> RM™2-M-Dy, (k),
and, summing, we obtain a map of sheaves

P es > RIYu(k), whereq=(n+2-r)(m-1),
3=

which, as we have seen above, is an isomorphism on stalks; hence it is an ison
phism, and the claim3(2) follows.
We arrive at the following description of the terip of the Leray spectral se-

qguence:
BTV = P HP(Xaik),
|J|=n+2—r
whereJ runs over all partitions of0, 1, ..., n+ 1} with |J| > 1. In order to identify
this description with the one given in the statement of the theorem, assign to a mor
mials, ---s, with0 <i1 < iz < --- < iy < nthe equivalence relation on the set of
indices{0, 1, ..., n + 1} generated by

i1~i1+1 ip~io+1,...,if ~if+1

This equivalence relation defines a partitibof the set{0, 1, ...,n+1} onn+2—r
intervals. In view of the relations

pI(v)so =0,
pi(v)s = P (v)s, wherei=1,....,n-1,
Ph(v)sh =0, (3.3)

the termH P(X*"; k)s; - - - s, is isomorphic toH P(X; k).

The monomiakps; - - - §, corresponds to the partitigd| = 1, which we should
ignore sinceX j = @; this explains the relatiogys; - - - s, = 0.

Now we prove Theorem 6(B) concerning the differentials of the spectral se
guence. The first nontrivial differential &y,. To find dy, it is enough to find the
cohomology classedn(s) € HM(X*"; k), wherei =0,1,...,n.

We use functoriality of the Leray spectral sequence and the following well-know
property. LetY be a manifold, and leZ C Y be a submanifold of codimensiom > 1
with oriented normal bundle. Consider the Leray spectral sequence

ES = HP(Y; Rig.k) = HPHI(Y — Z; k)

of the inclusiong : (Y — Z) — Y. The sheaR™ 14,k is the constant sheaf with
supportZ and stalkk for g = m — 1, and it vanishes for all other valugs> 0.
The only nonzero differentiath, : ES™* — EI'?, acts as follows: the classd
HO(Z: k) = Eg’m’l is mapped intaly(1) = [Z] € H™(Y; k), the class dual t@,
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where the same orientation of the normal bundl&ts used to trivialize the sheaf
R™14. .k and to define the dual clagZ].
In order to show the first relatiot, (sp) = (—1)™ p; ([X]), consider the diagram

G(X: A, B, n) < XN

i 5

(X — A) x X*(=D S5 o

and apply the previous remark to the bottom row with= X*" andZ = A x
X*("=1D The sign(—1)™ appears as the degree of the antipodal ®&p' — S™1;
the framing of the normal bundle #& C X, which we use to define the fundamental
class[X] € HM(X; k), is antipodal to the framing determined [8/1), which we use
to trivialize the derived sheaf.

To obtain relationslm(s) = g*(A) withi =1,...,n— 1, we use the commuta-
tive diagram

G(X; A, B, n) Xxn

i J

XX=D (X x X — A) x XX(=i-D =5 xxn

and apply the remark above with= X*" andZ = X*0-D x A x X*™=1-D_ The
last relationdm(sh) = p;;([X]) follows similarly. Theorem 6 is proven. O

We apply Theoren® and [LO, Proposition 2.2] to compute the integral cohomology
of the configuration spad®(R™; A, B, n). Foranyi =0, 1, ..., n we have the map

Xi — X
6 :GRM A BN - S (xg, . x> ——F o gl
IXi — Xit1]

where we understand the = A andx,1 = B. Define the cohomology classes

s € H"Y(GR™ A, B,n); Z) ass = (S™ ), i=0,1,...,n

PROPOSITION7
For m > 1 the algebra H(G(R™; A, B, n); Z) (where A# B) is generated by
cohomology classes

0,81, .-, € H™HGR™; A, B, n); Z),
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and all relations between the classesage consequences of
Sg:sf::sﬁzo’ SSJZ(_l)m_lSJS, Soslsnzo

Proof
If we replaceZ by a fieldk, the result follows directly from Theoref In particular,
we see that the dimension of the cohomolog¥gR™; A, B, n) does not depend on
the field of coefficients. We conclude that the integral conomolody@&™; A, B, n)
has no torsion and is nonzero only in dimensions divisiblenby 1.

Consider the cyclic configuration spaG&R™, n + 2) (cf. [10]) and the fibration

G(Rmv n+2) - G(Rmv 2) = Srn_17 (X]J ceey Xn+2) = (Xn+2, Xl)v (34)

which hasG(R™; A, B, n) as the fiber. The nonzero rows of the Serre spectral se
guence have numbers divisible by— 1; also, the spectral sequence has only two
columns,p = 0 andp = m — 1. We obtain that all differentials of the spectral
sequence vanish and that the cohnomology of the #b&iG(R™; A, B, n); Z) is iso-
morphic to the factor of the ringi*(G(R™, n + 2); Z) with respect to the ideal gen-
erated by class,+2 (the pullback of the fundamental class of the base). Comparin
the above information with the structure of the ridg(G(R™, n + 2); Z), described

in [10, Proposition 2.2], proves Propositiagn O

4. Cohomology of open string configuration spaces of spheres
In this section we state a theorem describing the cohomology of the configuratit
spaceG(S™; A, B, n), assuming that the point& and B are distinct. We see that
the additive structure of the cohomology algebta(G(S™; A, B, n); k) is similar
for all m, but the multiplication depends on the parity of the dimensionAlso,
the casem = 1 is special since the spa@(Sl; A, B, n) consists ofn 4+ 1 path-
connected components and each is contractible (cf. Secjion this case only a
zero-dimensional cohomology exists.

Letk be afield.

THEOREMS8
The cohomology E(G(S™; A, B, n); k) of the open string configuration space
(where A# B) has additive generators

o e HM™MY(GS™ A B k), i=01,....n

the Poincaé polynomial of GS™; A, B, n) equalsl+t™-14t2M=1 ... 4 tnm=1)
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For m > 3 odd, the multiplication is given by

A+D' o ifiLi<n
s — | O e T en = 4.1)
0 ifi +j >n.
For m > 2 even, the multiplication is given by
o = %.mﬂ ifi +j <nandiorjiseven, 4.2)
0 if eitheri 4 j > n or both i and j are odd.

Recall thafx] denotes the integer part »f
The proof of Theorens is given in Sections 5 and 6.

Remark 9

Choosing an arbitrary poiff € S, whereC # A andC # B, we obtain an
inclusiong : G(S™—C; A, B,n) — G(S™; A, B, n); here we may identifyi§" — C
with R™. From the proof of Theorer@it is clear that the induced homomorphism

¢* : H*(G(S™; A, B,n); k) > H*(G(S" - C; A, B, n); k)
= H*(GR™; A, B, n); k)
is injective and that its image may easily be described. For example) fmid, ¢*
maps each generatoy to the degree symmetric function of classes.

¢*(or)= > s,8,s. r=1...n, (4.3)
O<ii<ip<--<ir<n

wheres, ..., s € H"L(G(S"—C; A, B, n); k) = H™L(G(R™; A, B, n); k) are
the generators given by Proposition

For evenm, the classe®™* (o) may also be described. Such a description may
easily be extracted from the proof of Theor@ntor instance,
$*oD=s—Sa+-+ (D' and  $e)=- Y (-D'flss,

O<i<j=<n

as follows from formulaef.3). More generally,

¢*(O,r) — (_1)[r/2]+nr . Z (_1)i1+i2+...+irslsz . Sr , (44)

O<ij<ip<--<ir<n

where the sum is taken over all increasing sequencgsif < io < --- < iy < n.
This follows using

j
BiBi+1=Bisiz1= Y (-D'tssiy
i=0
from our definition 6.4).
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5. Proof of Theorem8 for m odd

Theoremt gives a spectral sequence of bigraded algebras which converges to the
homology algebrdd *(G(S™; A, B, n); k); the initial termE, = En, has generators
ui, ..., Up, having bidegreém, 0), which satisfy

Ujuj = —uju;, u? =0,
and also generatosg, sy, . . . , Sy, having bidegre€0, m — 1), which satisfy

ssj=sjs, §=0,

Suj = ujs,
u1so =0,
(U —uji;1)s =0 fori=12,...,n—1,
UnSh =0,
S-S =0. (5.1)

Hereu; denotes k- - - xux1x---x1 e HM(SM*M; k), whereu is the fundamental
class of the spher8™ which appears on the place number
The differentiald = dy, : Em, — Em acts by

du; =0,

dsp = —uy,

dgs =uj —ujy1 fori=12,...,n—1,

ds, = up.

We introduce new variablag, vy, ..., vn:

vo = —Uui,
vi =Uj —Uj+1 fori=1...,n—1
Un = Up.

We have the following relations:
() vivj = —vjvi, v2 =0,
(i) vo+---+wn=0,
@iii) vis=0 fori=0,1,...,n,
(iv) ssj=sjs, Svj =vj§,
v) §=0,
(Vi) sps1---sn =0,
(vii) dg=v fori=01,...,n,
(viii) dvy; =0. (5.2)
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Denote byox € Ep, the kth symmetric function in variables), s1, ..., $y; that
is,

oo=1 and o= Z S,S,---S, fork=1,2...,n.

O<ip<--<ik=n

Itis clear (because of (V) irb(2)) that

(”irj)aiﬂ- fori +j <n,

0i0j = (5.3)
0 fori +j > n.
We have
dop=d(so+---+S) =vo+---+vm=0
and, similarly,
d(oi) = (vo+v1i+---+vn)oj_1=0
for anyi. Hence we have found nonzero cycles o1, . .., on Which (for obvious

geometric reasons) cannot belong to the imagk @ur purpose is to show that these
classes additively generate the whole cohomoldgyEr, d).
Denote by( Ay, d) the graded differential algebra with generatays. . . , v, and
%, - - ., Sn Which satisfy relations (i), (iii), (iv), (v), and (vi) of3(2). The differential
d: An — Ay is given by formulae (vii) and (viii) of§.2). We considerA, with the
total grading, where eadh has degreen — 1 (even) and eachy has degreen (odd).
We claim thatH ! (A,, d) = 0 for j > 0. The proof uses induction am For
n = 0, the claim is obvious. We have a natural inclusidn.1 — A, which identi-
fies An_1 with the subalgebra oA\, generated by, ..., sh—1 anduo, ..., vn_1. We
show that the factoA,/ An—_1 is acyclic which clearly implies an induction step. Any
elementa € A,/ An—1 can be uniquely represented in the foaimae= s,x + vy, where
X,y € Ap—1. If da= 0, then

d(@) = vnX + $d(X) — vpd(y) = $hd(X) + vp[x —d(y)] =0

and hence = d(y) anda = d(syy). The claim follows.
Introduce a new differentia, : A, — A, of degreem:

n

Sn(X) = (Z vi)x.

i=0

CIearIy,Sﬁ = 0 andé,d = —ddn; however,s, does not obey the Leibnitz rule. We
claim that

a5 [k TI=@FDm-D, 50
' 0 otherwise
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and that a nontrivial cohomology class is represented by the pregsis - - - .
Indeed, each element &%, can be written as a sum of monomialssn v;. For
I c {0,1,2,...,n}, denote bys, the product of alls fori < |. Similarly, we
label the monomials;, - - - vi, withiy < iz < --- < iy asvy, whereJ is a subset

r

J={i1,...,iy} € {0,1,2,...,n}. Note that the product vy € A, is nontrivial if
and only if| andJ are disjoint subsets 40, 1, ..., n}. Note also that
dn(Sivy) = Z €SIV Ui}
i¢lud

whereg; is £1 depending on whether contains an even or odd number of members
less thari. We see that application @¢f, does not change the multi-indéx Hence
the complex(An, 8n) splits into a direct sum over different multi-indicésFix a set
I, and denote bk the cardinality of the sef0, 1, ..., n} — |. Then the respective
part of the complex An, 8n) is isomorphic to the standard cochain complex of the
simplex withk vertices; the differential of an-dimensional face (i.e., s&X) is the
sum of (r + 1)-dimensional faces that contain the given one (dets{i}). Note that
empty set] is also allowed. This complex has zero cohomology uritessO (empty
simplex), in which case the cohomologykis This exceptional case corresponds to
| ={0,1,...,n}, and 6.4 follows.

Let 4, C An and.z, C A, denote the image and the kernelsgf: Ay — Ap.
Note that.#, C #; and that the factorz, /.7, is one-dimensional generated by the
productsps; - - - Sy. Hence we obtain

HI(Jh, d) ~ HI (U, d),  j # (+ D(m—1),
andHMD™=D (.7, d) = 0.
Since we know thaH ! (A,, d) = 0 for j > 0, the short exact sequence

0—>Jﬁfn—>Ani>,ﬂn—>O

gives isomorphisms ' _
HIFM (s, d) =~ HD (U, d)

forall j > 1. This leads to periodicity
HI (A, d) ~ HIT™ (7, d) forallj #1, j # (+1(m-—1).

On the other hand, it is obvious that ford j < 2m — 1 the cohomology ! (.7, d)
vanishes unles§ = m and that forj = m it is one-dimensional (generated by the
classvg + v1 + - - - + vp). This shows that

1 forj=im-1+1, 1<i=<n+1,

dimH! (4, d) = ,
0 otherwise.
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UsingH I (An, d) = 0, we get

. 6 T f D) G .
dimHI (An/ 7, d) = orj=im-1,0=i=n+l
0 otherwise.

The termE, is obtained fromA,, /%, by factoring with respect to the ideal gener-
ated by the producdys; - - - sn, which carries the top-dimensional cohomology space
HM+DM-D (A, /.7, d). Hence

- 1 forj=im—-1), 0<i <n,
dimH (Em, d) = ==, Ul =
0 otherwise.

This proves that the classes, o1, ...,0n € H*(En, d) (which were described at
the beginning of the proof) span the cohomology.

6. Proof of Theorem8 for m even

6.1
Theorem 6 gives a spectral sequence of bigraded algebras converging
H*(G(S™ A, B, n); k), with the initial termE, = E,, described below.

Em has generatonsy, . . ., up, having bidegreém, 0), which satisfy

ui2=0, uiuj = ujui,
and also generatoss, sy, . . . , Sh, having bidegre€0, m — 1), which satisfy

ssj = —sjs, §=0,

Suj = ujs,

uisp =0,

(U —Ui+1)s =0 fori=1,2,...,n—-1,

Unsh =0,

SS1-- S =0. (6.1)

Here, as in the previous sectian,denotes k - - - xux1x---x1 e HM(SM*"; k),
whereu is the fundamental class of the sph&®and appears in the position number
i
The differentiald = dy, : Em — Em is given by

duj =0,

dsp = ug,

ds =uj +uj41 fori=12,....,n-1,

ds, = up.
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Our purpose is to compute the cohomology Bf,, d); from the answer we ob-
tain, it is clear that all further differentiat , r > m, vanish and thusi*(E5™*, d) =

E*,*
oA
6.2
In this section we describe nontrivial classes
o e ENMDOj—12 .. n,

which are cocycledo; = 0. They appear in the first column of the spectral sequenct
and hence cannot belong to the imagedofLater we show that the cohomology
classes of cocycles span the whole cohomology 6En,, d).
Let us denote
Bi=s—S 14 -+ (D'sgec EN0 fori =0,1,...,n.
We may express aspf; + gi—1 fori > 1 andsy = Bo. We have
BiBj = —Bjbi, p? =0,
dgi =uj41 fori =0,1,...,n—1,

dﬁn == O
Relations 6.1) give
Bou1 = 0,
fi—1Ui — Biviy1 +d(Bi—1B) =0 fori=1,....,n—1,
Bn—1Un + d(Bn-1Bn) = 0. (6.2)
Now we set
n-1
o1=pn € ENYO o= Bifisae EXMDO (6.3)
i=0

Thendo1 = 0, and (using&.2)) we obtaindo2 = 0.
For anyk < n/2 we define

ox =Y BiBir11BiBior1- Bibicrr € ER™ DO, (6.4)

where
ir+1l<irs1, O<iy <nforr=1,...,k

For X + 1 < nwe define

2k+1)(M=1),0
Ook+1 = 01 - o2k € EFFFDM=D.0
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It is clear that the classes, o>, ..., o are nonzero and
0=kl o and of=0. (6.5)

Hence classes satisfy the following multiplication law:

0 if eitheri + j > nor bothi andj are odd,
GOT= ) 10+ o 4 i <nandiorii (6.6)
f/2rtyzn %+ IF 1+ ] <nandiorjiseven.
We have
d(o20) = Y BinBirs1- - BirBi1+1d(B) Bj41)
n-1
= 02(k-1) - Zd(ﬂjﬂjJrl) = 02(k-1) - d(o2) = 0.
j=0
In the first sum,j runs over the sef0, ..., n — 1} and indicesy, ..., ik_1 satisfy
0<iy <nandi; +1 < iry1. Thus we have
d(oj) =0 foralli=1,...,n.
6.3
Next we show thatH*(E, d) contains no nontrivial cohomology classes except
linear combinations ob, ..., on. More precisely, we show that the cohomology

HI(Em, d) (considered with respect to the total grading) vanish¢ssifn(m — 1) or
if j is not divisible bym — 1, and is one-dimensional otherwise.

We introduce new variables, wherej =0, 1, ..., n, given by
vo = Uy,
vi=Uy1—U fori=212...,n—1,
Un = _Un.

The new variables commuigv; = vjv; and satisfy the following:
0] vg =0,
(i) vi2+21)i(vo+v1+---+vi_1) =0 fori=12,...,n,
(i) vot+vi+---+vh=0,
(iv) vis=0 fori=012...,n,
(V) ssj=-5js,
(Vi) soS1---$n =0,
(vii) ds =2v9+2v1+---+2vi_1+v fori=0,1,...,n,
(viii) dvy; =0. (6.7)
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Let us denote by(A,,d) the graded differential algebra with generators
vo, ..., Un @andsy, ..., S satisfying relations (i), (ii), (iv), and (v). Thus we simply
ignore relations (iii) and (vi).

The differentiald : Ay, — Aj is given by formulae (vii) and (viii). Note that the
ideal generated by the relations (i), (i), (iv), and (v) is invariant under the differentic
d; for exampled(vis) = vj (2vg + - - - + 2vj_1 + vj) belongs to the ideal because of
relation (ii). Thusd : A, — A, is well defined.

LEMMA 10
HJ(An, d) =0forall j > 0.

Proof
Using relations (i), (i), (iv), and (v), we see that the additive basigpfs given by
monomials of the formy, s3, where

I,Jc{0,1,....,n}, 1NJI=4,

are disjoint multi-indices. Hence it is clear that for< n the differential algebra;
can be embedded int&,; in fact, Aj may be identified with the subalgebra generated
by so, ...,sj andvo, ..., vj.
The factorA;j /Aj 1 has a very simple structure. Each elemert Aj /Aj_1 has
a unique representation of the foem= sjx+v;y, wherex, y € Aj_;. From formula
(v) we obtain that the differential o&j /A;j_1 acts as followsda = vjx — sj d(x) +
vj d(y). Henceda = 0 is equivalent tox 4 dy = 0, which implies thag = d(s;jy).
Thus we obtain that each factéy; / Aj_; is acyclic.
The statement of the lemma now follows by induction. O

Consider now the homomorphiséy : An — Ap given by multiplication byvg +
v1 4+ -+ vp; thatis,

dn(X) = (vo+v1+---+wvn)X, XeAn

Using relations (i) and (i), one obtaisg = 0; that is,8, may be viewed as a new
differential onA,. Note thats, increases the total grading by.

LEMMA 11
One has
0 forj#m+1(m-1),

HI(An, 8n) =
) k forj=(m+21)(m-1),

and the product s --- Sy € An is a cocycle (with respect té,) representing a
nontrivial conomology class.
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Proof
We use induction om. The statement is trivial whem = 0. Let us assume that it is
true forn — 1. Consider the homomorphism

¢: A1 — An, d(X) =vn-X, Xe A1

It is clear thatyp is injective and increases the total degreenbyUsing relation (ii),
one finds
In(d (X)) = (vo + -+ + vn)unX
= —vn(vo+ -+ vp_1) - X
= —¢(8n-1(x)).

Hence we obtain a short exact sequence

0= Ant 2> An = An/d(An_1) — O

and a long homological sequence
2. Hi i £, HI
— H'(An,én) > H (An/¢(An—1), 5n) — H (An-1,8n-1) = -+~
We show that the connecting homomorphism
it HI(An/@(An—1), 8n) — HI(An_1, 8n-1)

is an isomorphism for al] # (n + 1)(m — 1) and that is an epimorphism with one-
dimensional kernel fof = (n + 1)(m — 1). This clearly implies the statement of the
lemma.

Any elemenia € An/¢ (An—1) has a unigue representation of the form

a=X+sYy, X, YyeAn1
Thendn_1(a) € An/¢(An—1) equalss(X) — sndn—1(Y), and hence we obtain
HI(An/¢(An—1). 8n) = HI(An_1, 8n-1) @ HIT™ (A1, 8n-1),

where the first summand corresponds to the classanfd the second summand cor-
responds to the class gf

Suppose that is a cycle of the relative compled,/¢(An_1). In order to
calculatex (a), the image under the connecting homomorphism, we have to vie\
a = X + syy as a chain irA, and computé,(a) € A,. We obtaind,(a) = ¢(a),
which shows thatc is always an epimorphism and that it is an isomorphism if
and only if HI-m+1(A_1, 8p_1) = O; by our induction hypothesis, this holds if
j—m+1#nm-—1).

This completes the proof of Lemnid. O
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Let 4, ¢ Ay and.#, C A, denote the image and the kerneldaf: Ay, — An.
Note that.#, C #; and that by Lemmad.1 the factor.#,/.#, is one-dimensional
(generated by the produsis; - - - ;). Hence we obtain

HI (A, d) ~ HI (g, d), | # (M +1(m-1),

andHM+D™M=D (.7, d) = 0.
From LemmalO and the short exact sequence

0—>Ji/n—>Ani>,ﬂn—>O,
we obtain isomorphisms
HITM 17, d) ~ HI (4, d)
forall j > 1. This gives periodicity
Hi( A, d) >~ HIT™ (7, d) forallj #£1, j #®M+1)(m-1).

On the other hand, it is obvious that forl j < 2m — 1 the cohomologyH ! (.7, d)
vanishes unlesg = m and, forj = m, it is one-dimensional (generated by the class
vo + v1 + - - - + vp). This shows that

1 forj=im-1+1, 1<i=<n+1,

dimHI (%, d) = .
0 otherwise.

Using Lemmal0, we get

D ) = {1 for j =-i(m—1), 0<i<n+1,
0 otherwise.

6.4. End of the proof of Theoregfor m even
The differential algebrgEn,, d) is obtained from(A,, d) by adding relations (iii)
and (vi) of 6.7); therefore(En, d) is obtained from(A,/.%,, d) by adding relation
(vi) of (6.7). We know that algebréd *(An/.#n, d) is generated by, . . ., on, where
degoi) = i(m — 1). It is clear that the produchs; - - - s, IS a nontrivial cycle of
An/%n having degreén + 1)(m — 1). Comparing all this information, we conclude
that the classesy, . . ., on form an additive basis dfi *(Em, d) = Emt1. All further
differentialsd; withr > m vanish.

This clearly concludes the proof of Theoreirfor m even, and Theorerf is
completely proven. O
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7. Proof of Theorem1
Form > 1, Theoreml follows from Corollary5 and Theoren®. If m > 1 is odd, we
obtain a nonzero power

ol' =n!-on #0e H"MD(G(S™ A, B, n); k),

wherek is a field of characteristic zero. Hence the cohomological cup length ¢
G(S", n) with k coefficients is at least, and hence the Lusternik-Schnirelman cate-
gory of G(S™, n) is at leash + 1.

Form even we use Theoref It gives a nontrivial cup product

U;/Z = () on if nis even
0102(n—1)/2 =[3]'-on if nisodd

Hence we obtain that the Lusternik-Schnirelman categor@&™; A, B, n) is at
least[(n + 1)/2] + 1.

In the casem = 1, we may use a direct argument. We may ident8Y
with the unit circle on the complex plar@. Then a configuratiorixy, ..., Xn) €
G(S!; A, B, n) (where we assume thdt # B) can be described by a point of the
openn-dimensional unit cubé&ps, ..., ¢n) € (0, 1", such that

X1 = Aexp2ri¢1) and  Xj =Xj_1exprigj) forj=2....n

If ¥ € (0,1) is such thatB = Aexp(2riv ), then a point(¢s, ..., ¢n) € (0, 1)"
corresponds to a configuration of the open string configuration SpéSE A, B, n)
if and only if Z?:l ¢j — ¥ is not an integer. The hyperplanes

n
Z¢j =y +k, wherek=0,1,...,n—1,
=1

divide the cube(0, 1)" into n + 1 connected components, each being convex an
hence contractible. We obtain that the configuration sg@@; A, B, n) hasn + 1
path-connected components and each is contractible. This gives

ca(G(sh A, B,n)) =n+1,

and our statement follows from Corollaby O

8. Cyclic configuration spaces of spheres and loop spaces

In this section we show that the open string configuration space of the spHase
homotopy equivalent to an appropriate skeleton of the space of based lo&Js on
Hence the configuration spaGt S™; A, B, n) serves as a finite-dimensional approx-
imation to2S™.
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Let Q(S™ A, B) denote the space of all 1-pathsy : [0, 1] — S™ starting at
a pointA € S" and ending at a poinB € S™. We refer to L2, Chapter 1] and to
[11, Chapter 5] for definitions. For a pathe Q(S™; A, B), we denote by (y) the
length ofy, that is,t(y) = [y 17 (£)] dé.

Given pointsA, B € S™ and an integen > 0, we denote b2, C Q(S™; A, B)
the subspace of all paths having length less tivan

Gy denotesG(S™; A, B, n — 1), whereB’ = (-1)"B.

We assume below th& # B and A £ —B.

THEOREM 12
There is a homotopy equivalencg & 2.

Proof
First we describe a continuous mép: Gp — Qn. Letc = (X1, ..., %n—1) € Gp
be a cyclic configuration. Define a sequengeyi, . .., yn of points of S™, where

Yo = A, ynh = B, andy; = (=1)ix fori = 1,...,n—1.Letl; < = denote the length
of the shortest arc betweegn andy; 1. Combining these arcs, we obtain a broken
geodesic curve of length =g+ 11 + - - - + |51 starting atA and ending aB. Note
thatL # O thanks to our assumptiofh # +B. The pathy/(c) € @, is obtained by
passing this curve with constant veloclty L. In particular,

Y ©(lo+11+--+li—pL™) = yi.

Now we describe a map : Qn — Gp. Lety € Qn, ¥ : [0,1] — S™. There
exist numbergp =1 < t; < --- < th_1 < tn = 1 such that the length of between
the pointsy (t)) andy (ti+1) equalst(y)/n. The number$ may be nonunique since
there could be intervals where the velogjtys identically zero. However, the points
y(ti) € S" of the sphere are uniquely determined by patmoreovery (t;) depends
continuously ory. We define

o(y) =(Xg, ..., Xn-1) € Gn,

where .
Xi=Dyt), i=1...,n—1

Conditionx; # X1 follows since we assume théty) < ns, and hence the length
of the partial curvey |y, ., IS less thamr.

Let us show that the compositigno ¢ : G, — Gy, is homotopic to the identity
map. Letc = (x1, ..., Xn—1) € G be a configuration. Thett(c) is a curve with a
constant velocity which combines the geodesic arcs between the peihis and
(—1)"*1x 1. A homotopyh, : G, — Gy, wherer € [0, 1], may be defined by

he (X1, ..., Xn-1) = (22(2). ..., Zn-1(7)),
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where(—1)! z is the point on the patt (c) which is
A=) (o+--+lic)+7-i-£(y(©)-n"

distance away fronA alongs(c). Herel; denotes the length of the shortest arc be-
tweenx; and —xj4+1, and£(y(c)) = lo + --- + Ih—1 is the length ofy-(c). It is
clear that the distance betweer(r) and —z 1(r) alongy (c) is less thant and
hence that these points are not antipodal. This showszlat # z1(r) for all
i=0,1,...,n—1. Clearly,hp = id andhy = ¢ o .

We are left to show existence of a homotopyo ¢ ~ 1 : Qn — Q,. We
construct it in three steps. Given a pathe Qn, denote bys, : [0, 1] — [0, 1] its
length function

t
s, (1) =6<y>—1-/0 [y (&) dt.

There is a unique path : [0, 1] — S™ such that,, (s, (t)) = y(t) forall t € [0, 1].
Formally, we may writer, = y o s;1: although the inverse functioa;;jl may be
multivalued, the pathn, is single-valued and satisfies the Lipschitz condition with
constant(y). Hencer,, belongs toH 1. Geometrically, the curve, is the same curve

y viewed with the natural parametrization. It has been proven by D. Anosovi(cf. [
Theorems 2 and 3]) that

(1) the mapn, — 2, sendingy tor,, is continuous

(2)  there exists a homotopy

Hf 5 Qn = Qn, T €E [O, 1],

wherelIlg is the identity andT1(y) =r, forall y € Qn.

Paper [] deals with closed curves, but all the arguments of the proof (see [
886 and 7]) apply without modifications to the case of curves with fixed endpoint
Observe also that the homotopy df [Theorem 3] (described irl] §7])) preserves
the lengths of the curves.

The pathyr o ¢ (y) is a broken-line geodesic with constant velocity connecting
the points .

|
yi =ry(ﬁ), i =0,....n,
and oot
ot---+li1
= o g (o,

Herel; denotes the length of the shortest arc betwgeandy; 1, andL denotes
lo+ -+ In—1. We use the following well-known claim.

CLAIM
Let p,g € S™ be two points of the sphere withst(p, q) < 7. Consider the space P
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of all H1-smooth paths : [a, b] — S starting at p, ending at gand having the
length less tharr. Then there exists a homotopy hP — P, wherer € [0, 1], such
that hy = id and, for anyy € P, the path h(y) is the geodesic arc of shortest length
from p to q.

Applying this homotopy to the restrictions of on intervaldi /n, (i 4+ 1)/n], where
i =0,...,n—1, we obtain a homotopy betwedm; and the mags : Q, — Qn,
where fory € Qn the pathG(y) : [0, 1] — S™is the broken geodesic with vertices
atthe points(y)(i/n) =r,(i/n).

In the third and final step we describe a homotdpy: Qn — Qn between the
mapsG and ¢ o ¢. It may be defined by settingl, (y)(t) = G(y)(o: (1)), where
or : [0, 1] — [0, 1] is the piecewise linear homeomorphism given by the formula

or®=QA-Dt+eflo+li+-+lig+litn—i)]- L™

fori/n <t < (i +1)/n,andr € [0, 1]. ThenHg = G andH; = v o ¢. Theorem 12
is proven. O

Remark 13

Theorem12 leads to a different proof of Theorefn Indeed, the spacg (S™; A, B)

is homotopy equivalent to the space of based I@g8', and the Morse theory (see,
e.g., b)) shows that2, is homotopy equivalent to thgn — 1)(m — 1))-dimensional
skeleton of2S™. Combining this with Serre’s famous calculation (s&€]) of the
cohomology of2S™ gives Theorens.

This approach does not, however, give the result of Rerfiagtating the gen-
erators of the cohomology of the cyclic configuration space of the sphere with tt
standard generators of the cohomology algebra of cyclic configuration spaces of
Euclidean space. This result will be used in the second part of this paper.
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