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TOPOLOGY OF BILLIARD PROBLEMS, I

MICHAEL FARBER

Abstract
Let T ⊂ Rm+1 be a strictly convex domain bounded by a smooth hypersurface
X = ∂T . In this paper we find lower bounds on the number of billiard trajectories in
T which have a prescribed initial point A∈ X, a prescribed final point B∈ X, and
make a prescribed number n of reflections at the boundary X. We apply a topologi-
cal approach based on the calculation of cohomology rings of certain configuration
spaces of Sm.

1. Introduction
In the early 1900s, G. Birkhoff initiated the mathematical theory of convex plane bil-
liards. His main interest was in estimating the number of periodic billiard trajectories.
He pioneered the use of topological methods based on variational reduction and using
the critical point theory.

Periodic trajectories in convex billiards in Euclidean spaces of dimension greater
than 2 were studied in [2] and [10]. The high-dimensional problem also allows an
approach based on the critical point theory, and the main difficulty lies in the more
complicated topology of the appropriate configuration space. Thus the major effort of
[10] was in computing the cohomology algebra of the cyclic configuration space of
the sphere.

The purpose of this paper is to strengthen the estimates obtained in [10]. In partic-
ular, we obtain estimates, linear inn, of the number ofn-periodic billiard trajectories,
improving the logarithmic estimates of [10]. On the other hand, in this work we study
a larger variety of billiard problems: besides the periodic trajectories, we are also in-
terested in the number of ways the billiard ball can be brought from a given initial
point to a given final point after making a prescribed numbern of reflections at the
boundary of the billiard domain.

Let X ⊂ Rm+1 be a closed smooth strictly convex hypersurface. The(m + 1)-
dimensional convex bodyT , bounded byX, serves as our billiard table. The billiard
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ball is a point that moves inT in a straight line, except when it hitsX = ∂T , where it
rebounds making the angle of incidence equal the angle of reflection. In other words,
if A, B,C ∈ X are three subsequent reflection points, then the normal toX at point
B bisects the angle between the vectorsB A andBC (see Figure 1).

We consider the following billiard problems.

PROBLEM A

Given two distinct points A, B ∈ X and a number n, estimate the number of billiard
trajectories inside X which start at point A, end at point B, and make n reflections at
the hypersurface X.

PROBLEM B

Estimate the number of billiard trajectories inside X which start and end at a given
point A∈ X and make a prescribed number n of reflections at the hypersurface X.

Problem B deals withclosedbilliard trajectories. It is clear that any closed billiard
trajectory starting and ending atA ∈ X determines another closed billiard trajectory
that is obtained by passing the same route in the reverse order. This explains that there
is a naturalZ2-action on the set of closed billiard trajectories, and in Problem B one
actually asks aboutthe number ofZ2-orbitsof closed billiard trajectories.

Using thisZ2-symmetry, we give a better estimate for Problem B than the esti-
mate for Problem A given by Theorem1.

PROBLEM C

Estimate the number of n-periodic billiard trajectories inside the billiard domain T .

In [10] we showed that the number ofn-periodic billiard trajectories is at least
[log2(n − 1)] + m and is at least(n − 1)m in the generic case. Here[x] denotes
the integer part ofx, that is, the largest integer not exceedingx.

A

B

C

α β α = β

Figure 1
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In Part I of this paper we give an answer to Problem A.

THEOREM 1
Let X ⊂ Rm+1 be a closed smooth strictly convex hypersurface, and let A, B ∈ X be
two distinct points. Then for any integer n, the number of billiard trajectories inside
X which start at A, end at B, and make n reflections is at least n+ 1 if m is odd and
[(n + 1)/2] + 1 if m is even. In a generic situation (cf. Definition3), for any m and
n the number of billiard trajectories inside X which start at A, end at B, and make n
reflections is at least n+ 1.

Consider the following simple example. LetX = Sm
⊂ Rm+1 be the unit sphere.

Any billiard trajectoryA = A0, A1, . . . , An, An+1 = B must lie in a 2-plane passing
through the center of the sphereO. If the endpointsA, B are distinct and not an-
tipodal, then there is a unique 2-plane passing throughA, B, andO; the circleL, the
intersection of this 2-plane withSm, must contain all the reflection pointsA1, . . . , An.
Fix an orientation onL, and letφ ∈ (0,2π) be the angle fromA to B. Then the angle
betweenAi andAi +1 must be independent ofi and may take the values

αk =
φ + 2πk

n + 1
, wherek = 0,1, . . . ,n.

Hence we see that in this example there exist preciselyn + 1 billiard trajectories
starting atA, ending atB, and makingn reflections.

This example shows that the statement of Theorem1 for the generic case and for
m odd cannot be improved. It looks reasonable to conjecture that for evenm the lower
bound on the number of billiard trajectories is alson + 1.

Problems B and C will be studied in Part II.

2. Billiard ball problem and Lusternik-Schnirelman category of configuration
spaces

In this section we use the variational method of Birkhoff to show that the problem of
estimating the number of billiard trajectories can be reduced to the topological prob-
lem of estimating the Lusternik-Schnirelman category of a space of configurations of
n points on the sphereSm.

Let X be a manifold. Suppose thatA, B ∈ X are two fixed points. The symbol
G(X; A, B,n) denotes the subspace of the Cartesian powerX×n

= X × X ×· · ·× X,
consisting of the configurations(x1, . . . , xn) ∈ X×n, such thatxi 6= xi +1 for all
i = 1, . . . ,n − 1, andA 6= x1 andxn 6= B. In the caseA 6= B we callG(X; A, B,n)
the open string configuration space. The spaceG(X; A, A,n) is the closed string
configuration space.
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The configuration spaceG(X; A, B,n) is closely related to thecyclic configura-
tion space G(X,n) introduced in [10], which consists of alln-tuples(x1, . . . , xn) of
points ofX satisfying

xi 6= xi +1 for i = 1,2, . . . ,n − 1 and xn 6= x1.

Let X ⊂ Rm+1 be a smooth closed strictly convex hypersurface, the boundary of
the billiard table. Denote by

L X : G(X; A, B,n) → R

the perimeter length function taken with the minus sign,

L X(x1, . . . , xn) = −

n∑
i =0

|xi − xi +1|, i = 0, . . . ,n,

where(x1, x2, . . . , xn) ∈ G(X; A, B,n) and the distance|xi − xi +1| is measured in
the ambient Euclidean spaceRm+1. Here we understand thatx0 = A andxn+1 = B.
The functionL X is smooth. The reason for the minus sign becomes clear later.

The following lemma is well known.

LEMMA 2
A point (x1, . . . , xn) ∈ G(X; A, B,n) is a critical point of LX if and only if the
sequence A, x1, . . . , xn, B determines a billiard trajectory inside X starting at point
A and ending at point B.

Proof
An easy calculation shows that a configuration(x1, . . . , xn) ∈ G(X; A, B,n) is a
critical point ofL X if and only if for anyi = 1,2, . . . ,n the vector

xi − xi −1

|xi − xi +1|
+

xi − xi +1

|xi − xi +1|

is orthogonal to the tangent spaceTxi (X). The last condition is clearly equivalent
to the requirement that the normal toX at xi bisects the angle betweenxi xi −1 and
xi xi +1.

Definition 3
The data(X, A, B,n) are calledgenericif the corresponding perimeter length func-
tion L X : G(X; A, B,n) → R has only Morse critical points.

Compare [10, §4].
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SinceX is homeomorphic toSm, the spaceG(X; A, B,n) is homeomorphic to
G(Sm

; A, B,n). The shape of the billiard domainX becomes encoded in the func-
tion L X : G(Sm

; A, B,n) → R, and the problem of estimating the number of
billiard trajectories insideX which start atA and end atB turns into a problem
of Morse-Lusternik-Schnirelman theory. The difficulty is that we cannot apply the
Morse-Lusternik-Schnirelman theory directly toG(X; A, B,n) since this manifold is
not compact.

To avoid this difficulty, we replaceG(X; A, B,n) by a compact manifold with
boundaryGε(X; A, B,n) ⊂ G(X; A, B,n), whereε > 0 is small enough and

Gε(X; A, B,n) =

{
(x1, . . . , xn) ∈ X×n

:

n∏
i =0

|xi − xi +1| ≥ ε
}
; (2.1)

herex0 = A andxn+1 = B. A similar approach can be found in [2] and in [9] and
[13] for the two-dimensional case (cf. also [10] for the periodic case).

PROPOSITION4
If ε > 0 is sufficiently small, then
(a) Gε(X; A, B,n) is a smooth manifold with boundary;
(b) the inclusion Gε(X; A, B,n) ⊂ G(X; A, B,n) is a homotopy equivalence;
(c) all critical points of LX : G(X; A, B,n) → R are contained in

Gε(X; A, B,n);
(d) at every point of∂Gε(X; A, B,n), the gradient of LX has the outward direc-

tion.

This statement is analogous to [10, Proposition 4.1]. The proof given in [10] also
applies in this case. The only modification is that in the caseA 6= B the arguments of
the proof of [10, Proposition 4.1], which explain that a critical configuration cannot
lie entirely in a small neighborhood ofX, become redundant.

Recall that the Lusternik-Schnirelman category cat(Y) of a topological spaceY is
defined as the least integerk > 0 such thatY admits an open coverY = F1∪· · ·∪ Fk,
such that each inclusionF j → Y is null-homotopic.

COROLLARY 5
Let X ⊂ Rm+1 be a smooth strictly convex hypersurface, and let A, B ∈ X be two
fixed points. For any n≥ 0, the number of billiard trajectories inside X which start
at A, end at B, and make n reflections is at leastcat(G(Sm

; A, B,n)), the Lusternik-
Schnirelman category of the open string configuration space of the sphere Sm.

Proof
Chooseε > 0 small enough so that the conclusions of Proposition4 hold. Since at the
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points of the boundary∂Gε(X; A, B,n) the gradient ofL X has the outward direction,
the critical point theory for manifolds with boundary (see [15]) applies; the conclu-
sion is that the critical points of the restrictionL X|∂Gε(X;A,B,n) should be ignored, and
the number of critical pints ofL X lying in the interior ofGε(X; A, B,n) is at least
the category ofGε(X; A, B,n). Since catGε(X; A, B,n) = catG(Sm

; A, B,n) (be-
cause of Proposition4(b)), the number of billiard trajectories insideX which start at
A, end atB, and maken reflections is at least cat(G(Sm

; A, B,n)).

In the closed case, that is, when the endpoints are equal (A = B), we may useZ2-
symmetry to give a better estimate. This result will appear in Part II.

3. Spectral sequence computing the cohomology of the open string configuration
space of a manifold

The following theorem yields a spectral sequence computing the cohomology algebra
of the open string configuration spaceG(X; A, B,n), whereX is an arbitrary mani-
fold. It is a Leray spectral sequence associated to the embeddingG(X; A, B,n) →

X×n
= X × X × · · · × X (thenth Cartesian power).

This method was first suggested by B. Totaro [18] for the usual configuration
space (i.e., for the space of all configurations(x1, . . . , xn) ∈ X×n with xi 6= x j for
all i, j ). In [10] we used a similar spectral sequence for the cyclic configuration space
G(Sm,n).

The symbolk denotes a field.

THEOREM 6
Let X be a connected oriented manifold of dimension m> 1, and let A, B ∈ X be
two distinct points.

(A) There exists a spectral sequence of bigraded differential algebras which con-
verges to H∗(G(X; A, B,n); k) whose E2-term is the quotient of the bigraded com-
mutative algebra

H∗(X×n
; k)[s0, s1, . . . , sn],

where Hp(X×n
; k) has bidegree(p,0) and each generator si has bidegree(0,m−1),

by the relations

s2
i = 0 for i = 0,1, . . . ,n,

s0s1 · · · sn = 0,

p∗

1(v)s0 = 0,

p∗

i (v)si = p∗

i +1(v)si for i = 1,2, . . . ,n − 1,

p∗
n(v)sn = 0,
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wherev ∈ H∗(X; k) denotes an arbitrary cohomology class of positive degree and
p j : X×n

→ X denotes the projection onto the j th factor, j= 1,2, . . . ,n.
(B) The first nontrivial differential is dm, where m= dim X. It acts by

dm(s0) = (−1)m p∗

1([X]),

dm(si ) = q∗

i (1), i = 1,2, . . . ,n − 1,

dm(sn) = p∗
n([X]),

dm
(
H∗(X×n

; k)
)

= 0,

where qj : X×n
→ X × X denotes the projection onto the factors j and j+ 1,

[X] ∈ Hm(X; k) is the fundamental class, and1 ∈ Hm(X × X; k) denotes the
cohomology class of the diagonal.

Proof
Consider the inclusionψ : G(X; A, B,n) → X×n and the Leray spectral sequence
(see [4]) of the continuous mapψ ,

Ep,q
2 = H p(X×n

; Rqψ∗k) ⇒ H p+q(
G(X; A, B,n); k

)
,

whereRqψ∗k is the sheaf onX×n associated with the presheaf

U 7→ Hq(
U ∩ G(X; A, B,n); k

)
.

To describe the sheavesRqψ∗k, consider partitions of the set{0,1, . . . ,n,n+1}

into intervals, that is, subsets of the form{i, i + 1, i + 2, . . . , i + j }. For any such
partition J, we denote byXJ the subset ofX×n, consisting of all configurationsc =

(x1, x2, . . . , xn) ∈ X×n, satisfying the following conditions:

xi = x j if i and j lie in the same interval of the partitionJ;

xi = A if index i lies in the same interval as 0;

xi = B if index i lies in the same interval asn + 1.

Given two interval partitionsI and J, we say thatJ refines I and write I ≺ J if
the intervals ofI are unions of the intervals ofJ. We denote by|J| the number of
intervals in the partitionJ. Note thatI ≺ J implies X I ⊂ XJ and|I | ≤ |J|. For the
partition J with |J| = 1, XJ = ∅ holds (since we assume thatA 6= B). If |J| = 2,
thenXJ is a single point. For|J| > 2 the spaceXJ is homeomorphic to the Cartesian
powerX×(|J|−2).

As in [10], we denote byD(X,n) the subset ofX×n satisfying the conditions
xi 6= xi +1 for i = 1, . . . ,n − 1. The configuration spaceD(Rm,n) is homo-
topy equivalent to the product of spheres(Sm−1)×(n−1). A homotopy equivalence



566 MICHAEL FARBER

D(Rm,n) → (Sm−1)×(n−1) is given by the map

(x1, . . . , xn) 7→

( x1 − x2

|x1 − x2|
, . . . ,

xn−1 − xn

|xn−1 − xn|

)
. (3.1)

Fixing an orientation of the sphere[Sm−1
] ∈ Hm−1(Sm−1

; k) determines acanoni-
cal top-dimensional classin H (n−1)(m−1)(D(Rm,n); k) which is the pullback of the
product[Sm−1

] × · · · × [Sm−1
] under (3.1).

If A, B ∈ X are two points, we denote byG(X; A,∅,n) the subspace ofD(X,n)
consisting of configurations(x1, . . . , xn) with x1 6= A; similarly, we denote by
G(X; ∅, B,n) ⊂ D(X,n) the subspace of configurations withxn 6= B.

Let J be a partition of{0,1,2, . . . ,n + 1} on intervals of lengthsj1, . . . , jr , and
let

c = (x1, x2, . . . , xn) ∈ XJ, c /∈
⋃

I ≺J, I 6=J

X I .

We claim that the stalk of the sheafRqψ∗k atc equals

(Rqψ∗k)c = Hq(
D(Rm, j1)× · · · × D(Rm, jr ); k

)
.

Indeed, by definition, this stalk isHq(U ∩ G(X; A, B,n); k), whereU is a small
open ball aroundc. If c = (x1, x2, . . . , xn), then we may choose points

y1 = A, y2, . . . , yr −1, yr = B ∈ X,

one for each interval ofJ, so thatxi = y js if i belongs to thesth interval. LetU j ⊂ X
be a small open neighborhood ofy j , so that eachU j is diffeomorphic toRm and the
setsU j andU j ′ are disjoint when the pointsy j andy j ′ are distinct. Then we may take

U = U× j1
1 × U× j2

2 × · · · × U× jr
r , and our claim follows.

We see thatRqψ∗k vanishes unlessq is a multiple ofm − 1 and

dim(Rs(m−1)ψ∗k)c =

{
0 for s> n + 2 − |J|,(

n+2−|J|
s

)
for s ≤ n + 2 − |J|.

For an interval partitionJ of {0,1,2, . . . ,n + 1} with |J| > 1, denote byεJ the
constant sheaf with stalkk and supportXJ . We claim the following.

For any r = 2,3, . . . ,n + 2, the sheaf R(n+2−r )(m−1)ψ∗k is isomorphic to the
direct sum of sheaves

R(n+2−r )(m−1)ψ∗k '

⊕
|J|=r

εJ, (3.2)

the sum taken over all interval partitions J with|J| = r .
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To prove the claim, letI be an interval partition of{0,1, . . . ,n+1} into intervals
of length i1, i2, . . . , is, wheres = |I | > 1. Then for any interval partitionJ into
intervals of lengthj1, j2, . . . , jr such thatI ≺ J, we have the canonical inclusion

νJ I : D(Rm, i1)× · · · × D(Rm, is) → D(Rm, j1)× · · · × D(Rm, jr ).

The target space of mapνJ I has a canonical nonzero((n+2−r )(m−1))-dimensional
cohomology class (cf. above). The induced mapν∗

J I on ((n + 2 − r )(m − 1))-
dimensional cohomology withk coefficients is a monomorphism. LetzJ I denote the
image of the top-dimensional canonical class under the induced mapν∗

J I . Then (in a
manner similar to [18, Lemma 3]) for a fixedI , the classes{zJ I } form a linear basis
of the cohomologyH (n+2−r )(m−1)(D(Rm, i1) × · · · × D(Rm, is); k), whereJ runs
over all partitions withI ≺ J and|J| = r .

Indeed, using the map into the product of spheres (3.1), we see that a linear basis
of the cohomologyH (n+2−r )(m−1)(D(Rm, i1) × · · · × D(Rm, is); k) is formed by
monomialssa1sa2 · · · san+2−r with 0 ≤ a1 < a2 < · · · < an+2−r ≤ n + 1, such
that for anyp = 1, . . . ,n + 2 − r the indicesap andap + 1 belong to the same
interval of partitionI . Let J be the partition determined by the equivalence relation
on {0,1, . . . ,n + 1}, whereap ∼ ap + 1. Then I ≺ J and the above monomial
coincides with the classzJ I .

Given a partitionJ of the set{0,1, . . . ,n + 1} on intervals having lengthsj1 +

1, j2, . . . , jr −1, jr + 1, wherer > 1, consider the commutative diagram

G(X; A, B,n)
ψ //

��

X×n

id
��

G(X; A,∅, j1)× D(X, j2)× · · · × G(X; ∅, B, jr )
gJ // X×n

formed by the natural inclusions. Define sheafε′J = R(n+2−r )(m−1)gJ∗(k) over X×n.
We want to show thatε′J is isomorphic toεJ , that is, that it is the constant sheaf with
stalkk and supportXJ . First,ε′J vanishes outsideXJ (since we are considering the
cohomology of the top dimension). LetU be a small open neighborhood of a point
c ∈ XJ ⊂ X×n, such thatU =

∏
Ui , where allUi are small open disks andUi = U j

if i and j lie in the same interval ofJ. Then

ε′J(U ) = Hs(m−1)(D(Ui1, j1 + 1)× D(Ui2, j2)× · · · × D(Uir , jr + 1); k
)

' k

(wheres = n + 2 − r ) has a canonical element (cf. above). This gives a continuous
section ofε′J over XJ , and henceε′J ' εJ .
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The commutative diagram gives a map of sheavesεJ → R(n+2−r )(m−1)ψ∗(k),
and, summing, we obtain a map of sheaves⊕

|J|=r

εJ → Rqψ∗(k), whereq = (n + 2 − r )(m − 1),

which, as we have seen above, is an isomorphism on stalks; hence it is an isomor-
phism, and the claim (3.2) follows.

We arrive at the following description of the termE2 of the Leray spectral se-
quence:

Ep,r (m−1)
2 =

⊕
|J|=n+2−r

H p(XJ; k),

whereJ runs over all partitions of{0,1, . . . ,n + 1} with |J| > 1. In order to identify
this description with the one given in the statement of the theorem, assign to a mono-
mial si1 · · · sir with 0 ≤ i1 < i2 < · · · < i r ≤ n the equivalence relation on the set of
indices{0,1, . . . ,n + 1} generated by

i1 ∼ i1 + 1, i2 ∼ i2 + 1, . . . , i r ∼ i r + 1.

This equivalence relation defines a partitionJ of the set{0,1, . . . ,n+1} onn+2− r
intervals. In view of the relations

p∗

1(v)s0 = 0,

p∗

i (v)si = p∗

i +1(v)si , wherei = 1, . . . ,n − 1,

p∗
n(v)sn = 0, (3.3)

the termH p(X×n
; k)si1 · · · sir is isomorphic toH p(XJ; k).

The monomials0s1 · · · sn corresponds to the partition|J| = 1, which we should
ignore sinceXJ = ∅; this explains the relations0s1 · · · sn = 0.

Now we prove Theorem 6(B) concerning the differentials of the spectral se-
quence. The first nontrivial differential isdm. To find dm it is enough to find the
cohomology classesdm(si ) ∈ Hm(X×n

; k), wherei = 0,1, . . . ,n.
We use functoriality of the Leray spectral sequence and the following well-known

property. LetY be a manifold, and letZ ⊂ Y be a submanifold of codimensionm> 1
with oriented normal bundle. Consider the Leray spectral sequence

Ep,q
2 = H p(Y; Rqφ∗k) ⇒ H p+q(Y − Z; k)

of the inclusionφ : (Y − Z) → Y. The sheafRm−1φ∗k is the constant sheaf with
supportZ and stalkk for q = m − 1, and it vanishes for all other valuesq > 0.
The only nonzero differential,dm : E0,m−1

2 → Em,0
2 , acts as follows: the class 1∈

H0(Z; k) = E0,m−1
2 is mapped intodm(1) = [Z] ∈ Hm(Y; k), the class dual toZ,
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where the same orientation of the normal bundle toZ is used to trivialize the sheaf
Rm−1φ∗k and to define the dual class[Z].

In order to show the first relationdm(s0) = (−1)m p∗

1([X]), consider the diagram

G(X; A, B,n)
⊂ //

��

X×n

id
��

(X − A)× X×(n−1) ⊂ // X×n

and apply the previous remark to the bottom row withY = X×n and Z = A ×

X×(n−1). The sign(−1)m appears as the degree of the antipodal mapSm−1
→ Sm−1;

the framing of the normal bundle toA ⊂ X, which we use to define the fundamental
class[X] ∈ Hm(X; k), is antipodal to the framing determined by (3.1), which we use
to trivialize the derived sheaf.

To obtain relationsdm(si ) = q∗

i (1) with i = 1, . . . ,n − 1, we use the commuta-
tive diagram

G(X; A, B,n)
⊂ //

��

X×n

id
��

X×(i −1)
× (X × X −1)× X×(n−i −1) ⊂ // X×n

and apply the remark above withY = X×n andZ = X×(i −1)
×1× X×(n−i −1). The

last relationdm(sn) = p∗
n([X]) follows similarly. Theorem 6 is proven.

We apply Theorem8 and [10, Proposition 2.2] to compute the integral cohomology
of the configuration spaceG(Rm

; A, B,n). For anyi = 0,1, . . . ,n we have the map

φi : G(Rm
; A, B,n) → Sm−1, (x1, . . . , xn) 7→

xi − xi +1

|xi − xi +1|
∈ Sm−1,

where we understand thatx0 = A andxn+1 = B. Define the cohomology classes

si ∈ Hm−1(G(Rm
; A, B,n); Z

)
assi = φ∗

i ([S
m−1

]), i = 0,1, . . . ,n.

PROPOSITION7
For m > 1 the algebra H∗(G(Rm

; A, B,n); Z) (where A 6= B) is generated by
cohomology classes

s0, s1, . . . , sn ∈ Hm−1(G(Rm
; A, B,n); Z

)
,



570 MICHAEL FARBER

and all relations between the classes si are consequences of

s2
0 = s2

1 = · · · = s2
n = 0, si sj = (−1)m−1sj si , s0s1 · · · sn = 0.

Proof
If we replaceZ by a fieldk, the result follows directly from Theorem8. In particular,
we see that the dimension of the cohomology ofG(Rm

; A, B,n) does not depend on
the field of coefficients. We conclude that the integral cohomology ofG(Rm

; A, B,n)
has no torsion and is nonzero only in dimensions divisible bym − 1.

Consider the cyclic configuration spaceG(Rm,n + 2) (cf. [10]) and the fibration

G(Rm,n+2) → G(Rm,2) ' Sm−1, (x1, . . . , xn+2) 7→ (xn+2, x1), (3.4)

which hasG(Rm
; A, B,n) as the fiber. The nonzero rows of the Serre spectral se-

quence have numbers divisible bym − 1; also, the spectral sequence has only two
columns,p = 0 and p = m − 1. We obtain that all differentials of the spectral
sequence vanish and that the cohomology of the fiberH∗(G(Rm

; A, B,n); Z) is iso-
morphic to the factor of the ringH∗(G(Rm,n + 2); Z) with respect to the ideal gen-
erated by classsn+2 (the pullback of the fundamental class of the base). Comparing
the above information with the structure of the ringH∗(G(Rm,n + 2); Z), described
in [10, Proposition 2.2], proves Proposition7.

4. Cohomology of open string configuration spaces of spheres
In this section we state a theorem describing the cohomology of the configuration
spaceG(Sm

; A, B,n), assuming that the pointsA and B are distinct. We see that
the additive structure of the cohomology algebraH∗(G(Sm

; A, B,n); k) is similar
for all m, but the multiplication depends on the parity of the dimensionm. Also,
the casem = 1 is special since the spaceG(S1

; A, B,n) consists ofn + 1 path-
connected components and each is contractible (cf. Section7); in this case only a
zero-dimensional cohomology exists.

Let k be a field.

THEOREM 8
The cohomology H∗(G(Sm

; A, B,n); k) of the open string configuration space
(where A6= B) has additive generators

σi ∈ H i (m−1)(G(Sm
; A, B,n); k

)
, i = 0,1, . . . ,n;

the Poincaŕe polynomial of G(Sm
; A, B,n) equals1+ tm−1

+ t2(m−1)
+· · ·+ tn(m−1).
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For m ≥ 3 odd, the multiplication is given by

σi σ j =

{
(i + j )!
i !· j ! · σi + j if i + j ≤ n,

0 if i + j > n.
(4.1)

For m ≥ 2 even, the multiplication is given by

σi σ j =

{
[(i + j )/2]!

[i /2]!·[ j/2]!
· σi + j if i + j ≤ n and i or j is even,

0 if either i + j > n or both i and j are odd.
(4.2)

Recall that[x] denotes the integer part ofx.
The proof of Theorem8 is given in Sections 5 and 6.

Remark 9
Choosing an arbitrary pointC ∈ Sm, whereC 6= A and C 6= B, we obtain an
inclusionφ : G(Sm

− C; A, B,n) → G(Sm
; A, B,n); here we may identifySm

− C
with Rm. From the proof of Theorem8 it is clear that the induced homomorphism

φ∗
: H∗

(
G(Sm

; A, B,n); k
)

→ H∗
(
G(Sm

− C; A, B,n); k
)

= H∗
(
G(Rm

; A, B,n); k
)

is injective and that its image may easily be described. For example, form odd,φ∗

maps each generatorσr to the degreer symmetric function of classessi :

φ∗(σr ) =

∑
0≤i1<i2<···<ir ≤n

si1si2 · · · sir , r = 1, . . . ,n, (4.3)

wheres0, . . . , sn ∈ Hm−1(G(Sm
−C; A, B,n); k) = Hm−1(G(Rm

; A, B,n); k) are
the generators given by Proposition7.

For evenm, the classesφ∗(σr ) may also be described. Such a description may
easily be extracted from the proof of Theorem8. For instance,

φ∗(σ1) = sn − sn−1 + · · · + (−1)ns0 and φ∗(σ2) = −

∑
0≤i< j ≤n

(−1)i + j si sj ,

as follows from formulae (6.3). More generally,

φ∗(σr ) = (−1)[r/2]+nr
·

∑
0≤i1<i2<···<ir ≤n

(−1)i1+i2+···+ir si1si2 · · · sir , (4.4)

where the sum is taken over all increasing sequences 0≤ i1 < i2 < · · · < i r ≤ n.
This follows using

β jβ j +1 = β j sj +1 =

j∑
i =0

(−1)i + j si sj +1

from our definition (6.4).
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5. Proof of Theorem8 for m odd
Theorem6 gives a spectral sequence of bigraded algebras which converges to the co-
homology algebraH∗(G(Sm

; A, B,n); k); the initial termE2 = Em has generators
u1, . . . ,un, having bidegree(m,0), which satisfy

ui u j = −u j ui , u2
i = 0,

and also generatorss0, s1, . . . , sn, having bidegree(0,m − 1), which satisfy

si sj = sj si , s2
i = 0,

si u j = u j si ,

u1s0 = 0,

(ui − ui +1)si = 0 for i = 1,2, . . . ,n − 1,

unsn = 0,

s0s1 · · · sn = 0. (5.1)

Hereui denotes 1×· · ·×u×1×· · ·×1 ∈ Hm((Sm)×n
; k), whereu is the fundamental

class of the sphereSm which appears on the place numberi .
The differentiald = dm : Em → Em acts by

du j = 0,

ds0 = −u1,

dsi = ui − ui +1 for i = 1,2, . . . ,n − 1,

dsn = un.

We introduce new variablesv0, v1, . . . , vn:

v0 = −u1,

vi = ui − ui +1 for i = 1, . . . ,n − 1,

vn = un.

We have the following relations:

(i) vi v j = −v j vi , v2
i = 0,

(ii) v0 + · · · + vn = 0,

(iii ) vi si = 0 for i = 0,1, . . . ,n,

(iv) si sj = sj si , si v j = v j si ,

(v) s2
i = 0,

(vi) s0s1 · · · sn = 0,

(vii) dsi = vi for i = 0,1, . . . ,n,

(viii ) dvi = 0. (5.2)
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Denote byσk ∈ Em thekth symmetric function in variabless0, s1, . . . , sn; that
is,

σ0 = 1 and σk =

∑
0≤i1<···<ik≤n

si1si2 · · · sik for k = 1,2, . . . ,n.

It is clear (because of (v) in (5.2)) that

σi σ j =


(

i + j
i

)
σi + j for i + j ≤ n,

0 for i + j > n.
(5.3)

We have
dσ1 = d(s0 + · · · + sn) = v0 + · · · + vn = 0

and, similarly,
d(σi ) = (v0 + v1 + · · · + vn)σi −1 = 0

for any i . Hence we have found nonzero cyclesσ0, σ1, . . . , σn which (for obvious
geometric reasons) cannot belong to the image ofd. Our purpose is to show that these
classes additively generate the whole cohomologyH∗(Em,d).

Denote by(An,d) the graded differential algebra with generatorsv0, . . . , vn and
s0, . . . , sn which satisfy relations (i), (iii), (iv), (v), and (vi) of (5.2). The differential
d : An → An is given by formulae (vii) and (viii) of (5.2). We considerAn with the
total grading, where eachsi has degreem− 1 (even) and eachvi has degreem (odd).

We claim thatH j (An,d) = 0 for j > 0. The proof uses induction onn. For
n = 0, the claim is obvious. We have a natural inclusionAn−1 → An which identi-
fies An−1 with the subalgebra ofAn generated bys0, . . . , sn−1 andv0, . . . , vn−1. We
show that the factorAn/An−1 is acyclic which clearly implies an induction step. Any
elementa ∈ An/An−1 can be uniquely represented in the forma = snx +vny, where
x, y ∈ An−1. If da = 0, then

d(a) = vnx + snd(x)− vnd(y) = snd(x)+ vn[x − d(y)] = 0

and hencex = d(y) anda = d(sny). The claim follows.
Introduce a new differentialδn : An → An of degreem:

δn(x) =

( n∑
i =0

vi

)
x.

Clearly,δ2
n = 0 andδnd = −dδn; however,δn does not obey the Leibnitz rule. We

claim that

H i (An, δn) =

{
k if i = (n + 1)(m − 1),

0 otherwise
(5.4)
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and that a nontrivial cohomology class is represented by the products0s1s2 · · · sn.
Indeed, each element ofAn can be written as a sum of monomials insi , vi . For
I ⊂ {0,1,2, . . . ,n}, denote bysI the product of allsi for i ∈ I . Similarly, we
label the monomialsvi1 · · · vir with i1 < i2 < · · · < i r asvJ , whereJ is a subset
J = {i1, . . . , i r } ⊂ {0,1,2, . . . ,n}. Note that the productsI vJ ∈ An is nontrivial if
and only if I andJ are disjoint subsets of{0,1, . . . ,n}. Note also that

δn(sI vJ) =

∑
i /∈I ∪J

εi sI vJ∪{i },

whereεi is ±1 depending on whetherJ contains an even or odd number of members
less thani . We see that application ofδn does not change the multi-indexI . Hence
the complex(An, δn) splits into a direct sum over different multi-indicesI . Fix a set
I , and denote byk the cardinality of the set{0,1, . . . ,n} − I . Then the respective
part of the complex(An, δn) is isomorphic to the standard cochain complex of the
simplex withk vertices; the differential of anr -dimensional face (i.e., setJ) is the
sum of(r + 1)-dimensional faces that contain the given one (setsJ ∪ {i }). Note that
empty setJ is also allowed. This complex has zero cohomology unlessk = 0 (empty
simplex), in which case the cohomology isk. This exceptional case corresponds to
I = {0,1, . . . ,n}, and (5.4) follows.

Let In ⊂ An andKn ⊂ An denote the image and the kernel ofδn : An → An.
Note thatIn ⊂ Kn and that the factorKn/In is one-dimensional generated by the
products0s1 · · · sn. Hence we obtain

H j (In,d) ' H j (Kn,d), j 6= (n + 1)(m − 1),

andH (n+1)(m−1)(In,d) = 0.
Since we know thatH j (An,d) = 0 for j > 0, the short exact sequence

0 → Kn → An
δn

−→ In → 0

gives isomorphisms
H j +m−1(In,d) ' H j (Kn,d)

for all j > 1. This leads to periodicity

H j (In,d) ' H j +m−1(In,d) for all j 6= 1, j 6= (n + 1)(m − 1).

On the other hand, it is obvious that for 1< j < 2m− 1 the cohomologyH j (In,d)
vanishes unlessj = m and that for j = m it is one-dimensional (generated by the
classv0 + v1 + · · · + vn). This shows that

dim H j (In,d) =

{
1 for j = i (m − 1)+ 1, 1 ≤ i ≤ n + 1,

0 otherwise.



TOPOLOGY OF BILLIARD PROBLEMS, I 575

Using H j (An,d) = 0, we get

dim H j (An/In,d) =

{
1 for j = i (m − 1), 0 ≤ i ≤ n + 1,

0 otherwise.

The termEm is obtained fromAn/In by factoring with respect to the ideal gener-
ated by the products0s1 · · · sn, which carries the top-dimensional cohomology space
H (n+1)(m−1)(An/In,d). Hence

dim H j (Em,d) =

{
1 for j = i (m − 1), 0 ≤ i ≤ n,

0 otherwise.

This proves that the classesσ0, σ1, . . . , σn ∈ H∗(Em,d) (which were described at
the beginning of the proof) span the cohomology.

6. Proof of Theorem8 for m even

6.1
Theorem 6 gives a spectral sequence of bigraded algebras converging to
H∗(G(Sm

; A, B,n); k), with the initial termE2 = Em described below.
Em has generatorsu1, . . . ,un, having bidegree(m,0), which satisfy

u2
i = 0, ui u j = u j ui ,

and also generatorss0, s1, . . . , sn, having bidegree(0,m − 1), which satisfy

si sj = −sj si , s2
i = 0,

si u j = u j si ,

u1s0 = 0,

(ui − ui +1)si = 0 for i = 1,2, . . . ,n − 1,

unsn = 0,

s0s1 · · · sn = 0. (6.1)

Here, as in the previous section,ui denotes 1×· · ·×u×1×· · ·×1 ∈ Hm((Sm)×n
; k),

whereu is the fundamental class of the sphereSm and appears in the position number
i .

The differentiald = dm : Em → Em is given by

du j = 0,

ds0 = u1,

dsi = ui + ui +1 for i = 1,2, . . . ,n − 1,

dsn = un.



576 MICHAEL FARBER

Our purpose is to compute the cohomology of(Em,d); from the answer we ob-
tain, it is clear that all further differentialsdr , r > m, vanish and thusH∗(E∗,∗

m ,d) =

E∗,∗
∞ .

6.2
In this section we describe nontrivial classes

σi ∈ Ei (m−1),0
m , i = 1,2, . . . ,n,

which are cocyclesdσi = 0. They appear in the first column of the spectral sequence
and hence cannot belong to the image ofd. Later we show that the cohomology
classes of cocyclesσi span the whole cohomology of(Em,d).

Let us denote

βi = si − si −1 + · · · + (−1)i s0 ∈ Em−1,0
m for i = 0,1, . . . ,n.

We may expresssi asβi + βi −1 for i ≥ 1 ands0 = β0. We have

βiβ j = −β jβi , β2
i = 0,

dβi = ui +1 for i = 0,1, . . . ,n − 1,

dβn = 0.

Relations (6.1) give

β0u1 = 0,

βi −1ui − βi ui +1 + d(βi −1βi ) = 0 for i = 1, . . . ,n − 1,

βn−1un + d(βn−1βn) = 0. (6.2)

Now we set

σ1 = βn ∈ Em−1,0
m , σ2 =

n−1∑
i =0

βiβi +1 ∈ E2(m−1),0
m . (6.3)

Thendσ1 = 0, and (using (6.2)) we obtaindσ2 = 0.
For anyk ≤ n/2 we define

σ2k =

∑
βi1βi1+1βi2βi2+1 · · ·βikβik+1 ∈ E2k(m−1),0

m , (6.4)

where
i r + 1< i r +1, 0 ≤ i r < n for r = 1, . . . , k.

For 2k + 1 ≤ n we define

σ2k+1 = σ1 · σ2k ∈ E(2k+1)(m−1),0
m .
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It is clear that the classesσ1, σ2, . . . , σn are nonzero and

(σ2)
k

= k! · σ2k and σ 2
1 = 0. (6.5)

Hence classesσi satisfy the following multiplication law:

σi σ j =

{
0 if either i + j > n or bothi and j are odd,
[(i + j )/2]!

[i /2]!·[ j/2]!
· σi + j if i + j ≤ n andi or j is even.

(6.6)

We have

d(σ2k) =

∑
βi1βi1+1 · · ·βik−1βik−1+1d(β jβ j +1)

= σ2(k−1) ·

n−1∑
j =0

d(β jβ j +1) = σ2(k−1) · d(σ2) = 0.

In the first sum,j runs over the set{0, . . . ,n − 1} and indicesi1, . . . , ik−1 satisfy
0 ≤ i r < n andi r + 1< i r +1. Thus we have

d(σi ) = 0 for all i = 1, . . . ,n.

6.3
Next we show thatH∗(Em,d) contains no nontrivial cohomology classes except
linear combinations ofσ1, . . . , σn. More precisely, we show that the cohomology
H j (Em,d) (considered with respect to the total grading) vanishes ifj > n(m− 1) or
if j is not divisible bym − 1, and is one-dimensional otherwise.

We introduce new variablesv j , where j = 0,1, . . . ,n, given by

v0 = u1,

vi = ui +1 − ui for i = 1,2, . . . ,n − 1,

vn = −un.

The new variables commutevi v j = v j vi and satisfy the following:

(i) v2
0 = 0,

(ii) v2
i + 2vi (v0 + v1 + · · · + vi −1) = 0 for i = 1,2, . . . ,n,

(iii ) v0 + v1 + · · · + vn = 0,

(iv) vi si = 0 for i = 0,1,2, . . . ,n,

(v) si sj = −sj si ,

(vi) s0s1 · · · sn = 0,

(vii) dsi = 2v0 + 2v1 + · · · + 2vi −1 + vi for i = 0,1, . . . ,n,

(viii ) dvi = 0. (6.7)
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Let us denote by(An,d) the graded differential algebra with generators
v0, . . . , vn ands0, . . . , sn satisfying relations (i), (ii), (iv), and (v). Thus we simply
ignore relations (iii) and (vi).

The differentiald : An → An is given by formulae (vii) and (viii). Note that the
ideal generated by the relations (i), (ii), (iv), and (v) is invariant under the differential
d; for example,d(vi si ) = vi (2v0 + · · · + 2vi −1 + vi ) belongs to the ideal because of
relation (ii). Thusd : An → An is well defined.

LEMMA 10
H j (An,d) = 0 for all j > 0.

Proof
Using relations (i), (ii), (iv), and (v), we see that the additive basis ofAn is given by
monomials of the formvI sJ , where

I , J ⊂ {0,1, . . . ,n}, I ∩ J = ∅,

are disjoint multi-indices. Hence it is clear that forj < n the differential algebraA j

can be embedded intoAn; in fact, A j may be identified with the subalgebra generated
by s0, . . . , sj andv0, . . . , v j .

The factorA j /A j −1 has a very simple structure. Each elementa ∈ A j /A j −1 has
a unique representation of the forma = sj x+v j y, wherex, y ∈ A j −1. From formula
(v) we obtain that the differential ofA j /A j −1 acts as follows:da = v j x − sj d(x)+
v j d(y). Henceda = 0 is equivalent tox + dy = 0, which implies thata = d(sj y).
Thus we obtain that each factorA j /A j −1 is acyclic.

The statement of the lemma now follows by induction.

Consider now the homomorphismδn : An → An given by multiplication byv0 +

v1 + · · · + vn; that is,

δn(x) = (v0 + v1 + · · · + vn)x, x ∈ An.

Using relations (i) and (ii), one obtainsδ2
n = 0; that is,δn may be viewed as a new

differential onAn. Note thatδn increases the total grading bym.

LEMMA 11
One has

H j (An, δn) =

{
0 for j 6= (n + 1)(m − 1),

k for j = (n + 1)(m − 1),

and the product s0s1 · · · sn ∈ An is a cocycle (with respect toδn) representing a
nontrivial cohomology class.
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Proof
We use induction onn. The statement is trivial whenn = 0. Let us assume that it is
true forn − 1. Consider the homomorphism

φ : An−1 → An, φ(x) = vn · x, x ∈ An−1.

It is clear thatφ is injective and increases the total degree bym. Using relation (ii),
one finds

δn(φ(x)) = (v0 + · · · + vn)vnx

= −vn(v0 + · · · + vn−1) · x

= −φ
(
δn−1(x)

)
.

Hence we obtain a short exact sequence

0 → An−1
φ

−→ An → An/φ(An−1) → 0

and a long homological sequence

φ
−→ H j (An, δn) → H j (An/φ(An−1), δn

) κ
−→ H j (An−1, δn−1) → · · · .

We show that the connecting homomorphism

κ : H j (An/φ(An−1), δn
)

→ H j (An−1, δn−1)

is an isomorphism for allj 6= (n + 1)(m − 1) and that is an epimorphism with one-
dimensional kernel forj = (n + 1)(m − 1). This clearly implies the statement of the
lemma.

Any elementa ∈ An/φ(An−1) has a unique representation of the form

a = x + sny, x, y ∈ An−1.

Thenδn−1(a) ∈ An/φ(An−1) equalsδn(x)− snδn−1(y), and hence we obtain

H j (An/φ(An−1), δn
)

' H j (An−1, δn−1)⊕ H j −m+1(An−1, δn−1),

where the first summand corresponds to the class ofx and the second summand cor-
responds to the class ofy.

Suppose thata is a cycle of the relative complexAn/φ(An−1). In order to
calculateκ(a), the image under the connecting homomorphism, we have to view
a = x + sny as a chain inAn and computeδn(a) ∈ An. We obtainδn(a) = φ(a),
which shows thatκ is always an epimorphism and that it is an isomorphism if
and only if H j −m+1(An−1, δn−1) = 0; by our induction hypothesis, this holds if
j − m + 1 6= n(m − 1).

This completes the proof of Lemma11.
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Let In ⊂ An andKn ⊂ An denote the image and the kernel ofδn : An → An.
Note thatIn ⊂ Kn and that by Lemma11 the factorKn/In is one-dimensional
(generated by the products0s1 · · · sn). Hence we obtain

H j (In,d) ' H j (Kn,d), j 6= (n + 1)(m − 1),

andH (n+1)(m−1)(In,d) = 0.
From Lemma10and the short exact sequence

0 → Kn → An
δn

−→ In → 0,

we obtain isomorphisms

H j +m−1(In,d) ' H j (Kn,d)

for all j > 1. This gives periodicity

H j (In,d) ' H j +m−1(In,d) for all j 6= 1, j 6= (n + 1)(m − 1).

On the other hand, it is obvious that for 1< j < 2m− 1 the cohomologyH j (In,d)
vanishes unlessj = m and, for j = m, it is one-dimensional (generated by the class
v0 + v1 + · · · + vn). This shows that

dim H j (In,d) =

{
1 for j = i (m − 1)+ 1, 1 ≤ i ≤ n + 1,

0 otherwise.

Using Lemma10, we get

dim H j (An/In,d) =

{
1 for j = i (m − 1), 0 ≤ i ≤ n + 1,

0 otherwise.

6.4. End of the proof of Theorem8 for m even
The differential algebra(Em,d) is obtained from(An,d) by adding relations (iii)
and (vi) of (6.7); therefore(Em,d) is obtained from(An/In,d) by adding relation
(vi) of (6.7). We know that algebraH∗(An/In,d) is generated byσ1, . . . , σn, where
deg(σi ) = i (m − 1). It is clear that the products0s1 · · · sn is a nontrivial cycle of
An/In having degree(n + 1)(m − 1). Comparing all this information, we conclude
that the classesσ1, . . . , σn form an additive basis ofH∗(Em,d) = Em+1. All further
differentialsdr with r > m vanish.

This clearly concludes the proof of Theorem8 for m even, and Theorem8 is
completely proven.
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7. Proof of Theorem1
Form> 1, Theorem1 follows from Corollary5 and Theorem8. If m> 1 is odd, we
obtain a nonzero power

σ n
1 = n! · σn 6= 0 ∈ Hn(m−1)(G(Sm

; A, B,n); k
)
,

wherek is a field of characteristic zero. Hence the cohomological cup length of
G(Sm,n) with k coefficients is at leastn, and hence the Lusternik-Schnirelman cate-
gory of G(Sm,n) is at leastn + 1.

For m even we use Theorem8. It gives a nontrivial cup product{
σ

n/2
2 =

(n
2

)
! · σn if n is even,

σ1σ
(n−1)/2
2 =

[n
2

]
! · σn if n is odd.

Hence we obtain that the Lusternik-Schnirelman category ofG(Sm
; A, B,n) is at

least[(n + 1)/2] + 1.
In the casem = 1, we may use a direct argument. We may identifyS1

with the unit circle on the complex planeC. Then a configuration(x1, . . . , xn) ∈

G(S1
; A, B,n) (where we assume thatA 6= B) can be described by a point of the

openn-dimensional unit cube(φ1, . . . , φn) ∈ (0,1)n, such that

x1 = Aexp(2π iφ1) and x j = x j −1 exp(2π iφ j ) for j = 2, . . . ,n.

If ψ ∈ (0,1) is such thatB = Aexp(2π iψ), then a point(φ1, . . . , φn) ∈ (0,1)n

corresponds to a configuration of the open string configuration spaceG(S1
; A, B,n)

if and only if
∑n

j =1φ j − ψ is not an integer. The hyperplanes

n∑
j =1

φ j = ψ + k, wherek = 0,1, . . . ,n − 1,

divide the cube(0,1)n into n + 1 connected components, each being convex and
hence contractible. We obtain that the configuration spaceG(S1

; A, B,n) hasn + 1
path-connected components and each is contractible. This gives

cat
(
G(S1

; A, B,n)
)

= n + 1,

and our statement follows from Corollary5.

8. Cyclic configuration spaces of spheres and loop spaces
In this section we show that the open string configuration space of the sphereSm is
homotopy equivalent to an appropriate skeleton of the space of based loops onSm.
Hence the configuration spaceG(Sm

; A, B,n) serves as a finite-dimensional approx-
imation to�Sm.
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Let �(Sm
; A, B) denote the space of allH1-pathsγ : [0,1] → Sm starting at

a point A ∈ Sm and ending at a pointB ∈ Sm. We refer to [12, Chapter 1] and to
[11, Chapter 5] for definitions. For a pathγ ∈ �(Sm

; A, B), we denote bỳ (γ ) the
length ofγ , that is,`(γ ) =

∫ 1
0 |γ̇ (ξ)| dξ .

Given pointsA, B ∈ Sm and an integern > 0, we denote by�n ⊂ �(Sm
; A, B)

the subspace of all paths having length less thannπ .
Gn denotesG(Sm

; A, B′,n − 1), whereB′
= (−1)nB.

We assume below thatA 6= B andA 6= −B.

THEOREM 12
There is a homotopy equivalence Gn ' �n.

Proof
First we describe a continuous mapψ : Gn → �n. Let c = (x1, . . . , xn−1) ∈ Gn

be a cyclic configuration. Define a sequencey0, y1, . . . , yn of points of Sm, where
y0 = A, yn = B, andyi = (−1)i xi for i = 1, . . . ,n−1. Letl i < π denote the length
of the shortest arc betweenyi and yi +1. Combining these arcs, we obtain a broken
geodesic curve of lengthL = l0 + l1 + · · · + ln−1 starting atA and ending atB. Note
that L 6= 0 thanks to our assumptionA 6= ±B. The pathψ(c) ∈ �n is obtained by
passing this curve with constant velocityL−1. In particular,

ψ(c)
(
(l0 + l1 + · · · + l i −1)L

−1)
= yi .

Now we describe a mapφ : �n → Gn. Let γ ∈ �n, γ : [0,1] → Sm. There
exist numberst0 = 1 < t1 < · · · < tn−1 < tn = 1 such that the length ofγ between
the pointsγ (ti ) andγ (ti +1) equals̀ (γ )/n. The numbersti may be nonunique since
there could be intervals where the velocityγ̇ is identically zero. However, the points
γ (ti ) ∈ Sm of the sphere are uniquely determined by pathγ ; moreover,γ (ti ) depends
continuously onγ . We define

φ(γ ) = (x1, . . . , xn−1) ∈ Gn,

where
xi = (−1)i γ (ti ), i = 1, . . . ,n − 1.

Conditionxi 6= xi +1 follows since we assume that`(γ ) < nπ, and hence the length
of the partial curveγ |[ti ,ti +1] is less thanπ .

Let us show that the compositionφ ◦ ψ : Gn → Gn is homotopic to the identity
map. Letc = (x1, . . . , xn−1) ∈ Gn be a configuration. Thenψ(c) is a curve with a
constant velocity which combines the geodesic arcs between the points(−1)i xi and
(−1)i +1xi +1. A homotopyhτ : Gn → Gn, whereτ ∈ [0,1], may be defined by

hτ (x1, . . . , xn−1) =
(
z1(τ ), . . . , zn−1(τ )

)
,
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where(−1)i zi is the point on the pathψ(c) which is

(1 − τ) · (l0 + · · · + l i −1)+ τ · i · `
(
ψ(c)

)
· n−1

distance away fromA alongψ(c). Herel i denotes the length of the shortest arc be-
tweenxi and −xi +1, and `(ψ(c)) = l0 + · · · + ln−1 is the length ofψ(c). It is
clear that the distance betweenzi (τ ) and−zi +1(τ ) alongψ(c) is less thanπ and
hence that these points are not antipodal. This shows thatzi (τ ) 6= zi +1(τ ) for all
i = 0,1, . . . ,n − 1. Clearly,h0 = id andh1 = φ ◦ ψ .

We are left to show existence of a homotopyψ ◦ φ ' 1 : �n → �n. We
construct it in three steps. Given a pathγ ∈ �n, denote bysγ : [0,1] → [0,1] its
length function

sγ (t) = `(γ )−1
·

∫ t

0
|γ̇ (ξ)| dξ.

There is a unique pathrγ : [0,1] → Sm such thatrγ (sγ (t)) = γ (t) for all t ∈ [0,1].
Formally, we may writerγ = γ ◦ s−1

γ ; although the inverse functions−1
γ may be

multivalued, the pathrγ is single-valued and satisfies the Lipschitz condition with
constant̀ (γ ). Hencerγ belongs toH1. Geometrically, the curverγ is the same curve
γ viewed with the natural parametrization. It has been proven by D. Anosov (cf. [1,
Theorems 2 and 3]) that
(1) the map�n → �n, sendingγ to rγ , is continuous;
(2) there exists a homotopy

5τ : �n → �n, τ ∈ [0,1],

where50 is the identity and51(γ ) = rγ for all γ ∈ �n.
Paper [1] deals with closed curves, but all the arguments of the proof (see [1,

§§6 and 7]) apply without modifications to the case of curves with fixed endpoints.
Observe also that the homotopy of [1, Theorem 3] (described in [1, §7])) preserves
the lengths of the curves.

The pathψ ◦ φ(γ ) is a broken-line geodesic with constant velocity connecting
the points

yi = rγ
( i

n

)
, i = 0, . . . ,n,

and

yi = ψ ◦ φ(γ )
( l0 + · · · + l i −1

L

)
.

Here l j denotes the length of the shortest arc betweeny j and y j +1, andL denotes
l0 + · · · + ln−1. We use the following well-known claim.

CLAIM

Let p,q ∈ Sm be two points of the sphere withdist(p,q) < π . Consider the space P
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of all H1-smooth pathsγ : [a,b] → Sm starting at p, ending at q, and having the
length less thanπ . Then there exists a homotopy hτ : P → P, whereτ ∈ [0,1], such
that h0 = id and, for anyγ ∈ P, the path h1(γ ) is the geodesic arc of shortest length
from p to q.

Applying this homotopy to the restrictions ofrγ on intervals[i /n, (i + 1)/n], where
i = 0, . . . ,n − 1, we obtain a homotopy between51 and the mapG : �n → �n,
where forγ ∈ �n the pathG(γ ) : [0,1] → Sm is the broken geodesic with vertices
at the pointsG(γ )(i /n) = rγ (i /n).

In the third and final step we describe a homotopyHτ : �n → �n between the
mapsG andψ ◦ φ. It may be defined by settingHτ (γ )(t) = G(γ )(στ (t)), where
στ : [0,1] → [0,1] is the piecewise linear homeomorphism given by the formula

στ (t) = (1 − τ)t + τ
[
l0 + l1 + · · · + l i −1 + l i (tn − i )

]
· L−1

for i /n ≤ t ≤ (i + 1)/n, andτ ∈ [0,1]. ThenH0 = G andH1 = ψ ◦ φ. Theorem 12
is proven.

Remark 13
Theorem12 leads to a different proof of Theorem8. Indeed, the space�(Sm

; A, B)
is homotopy equivalent to the space of based loops�Sm, and the Morse theory (see,
e.g., [5]) shows that�n is homotopy equivalent to the((n − 1)(m − 1))-dimensional
skeleton of�Sm. Combining this with Serre’s famous calculation (see [16]) of the
cohomology of�Sm gives Theorem8.

This approach does not, however, give the result of Remark9 relating the gen-
erators of the cohomology of the cyclic configuration space of the sphere with the
standard generators of the cohomology algebra of cyclic configuration spaces of the
Euclidean space. This result will be used in the second part of this paper.
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