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Introduction 
The soil is a chemically, biologically and physically complex medium.  There are an 

enormous number of variables that can influence the preserving/degrading nature of 

any soil and the burial environment it creates.  Archaeological remains are recovered 

from all soil types.  Most come from the moist aerobic soils that support plant life, 

however, particularly rich and informative assemblages come from dry arid soils and 

waterlogged deposits.  The soil matrix is composed of; crushed rock and mineral 

particles, clay particles, organic material, water containing dissolved salts, gas and 

micro-organisms.  It is a porous medium that rarely achieves equilibrium.  Processes 

such as micro-organism activity, the weather, evaporation and ground water 

movements ensure that it is a state of constant change.  In particular the cycles of 

wetting and drying, either through rising ground water or through surface water 

percolating down through the soil ensure that most soils containing archaeological 

remains have variable levels of water content, dissolved salts and oxygen.   

 

The chemistry of soils is summarised in articles [1] and described in detail in 

frequently updated textbooks [2].  The principal parameters of soil chemistry of 

interest to archaeologists and conservators, such as pH, speciation and redox potential 

(Eh) have been clearly described by Pollard [3].  The interaction of soil and soil 

solutions with archaeological materials such as metals has been described by Edwards 

[4] and McNeil & Selwyn [5].  For the purposes of this article I will focus on the 

extent of variability of some of the key factors in the soil environment, their influence 

on buried archaeological materials and how this may lead to recommendations for 

reburial materials and environments.  

 

For the purposes of exploring its chemistry, soil can be considered to be composed of 

3 components: 
 

Soil solution ↔ Labile soil ↔Non-labile soil 
 

The soil solution contains ions and organic molecules in solution, readily available for 

chemical activity.  Soil gasses are also readily available for interaction.  The labile 

soil represents the clay and organic particles that exchange ions with the soil solution 

and form a reservoir buffering the chemical changes (Eh, pH, conductivity).  The non-

labile components are the minerals and organic material that are still being broken 

down.  These component’s chemical influence is slow and occurs over a long period 

of time.  The short term effects of soil solution and the labile component can be 

relatively fast and they frequently interact with the biological components of the soil.  

 

 



Water 
The water content of soil depends on rainfall, drainage capacity of the soil, 

groundwater level and soil composition. The upper levels of soil in arid regions may 

have very low moisture levels, only saturating during very occasional periods of high 

rainfall.  The lack of water, which is so essential for the corrosion of metals, the 

mobility of salts and the activity of biological life, can lead to minimal levels of decay 

in the upper reaches of arid soils.  This is exemplified by the survival of textiles at 

Pacatnamu in Peru [6] and the wooden beams in the pueblos of Chaco Canyon.  For 

dry sites periodic inundation may lead to physical damage of artefacts due to the 

stress of repeated swelling and contraction of organic matter and degraded glass. The 

outer layers of cellular structures such as wood can suffer evaporation and capillary 

stresses leading to weakening and cell collapse. These occasional episodes may be the 

primary decay periods in environments that otherwise have low levels of decay.  In 

arid sites the moisture levels in the soil are the key parameter for determining the rate 

of decay. 

 

‘Our world is carved from wind and summer thunderstorms’  

Vera Teller, Pueblo Indian, New Mexico 

 

 

 

Many soils in temperate regions contain high levels of moisture throughout much of 

the year, and are frequently waterlogged (water filling all the pore spaces) at depth.  

Excess water can lead to the exclusion of oxygen and the anoxic conditions in which 

anaerobic microbes flourish.  Permanently waterlogged sites preserve organic material 

such as the prehistoric wooden trackways recovered from the Somerset Levels in 

England and the ritual deposition site of Nydam in Denmark.  For wet sites periods of 

drought lead to falling water levels and the ingress of oxygen giving rise to increased 

acidity and flash corrosion of metals.   These occasional episodes may be the primary 

decay periods in environments that otherwise have low levels of decay.  

 

 

Oxygen 
The soil normally contains gasses similar to those in the atmosphere, though CO2 

levels are often raised and O2 levels lowered due to respiration of soil aerobes.  

Oxygen levels are maintained in the soil through the ingress of oxygenated water and 

the diffusion of oxygen through air.  The reduced level of diffusion of oxygen through 

water; 2 x 10-9 m2s-1 c.f. 2 x 10-5 m2s-1 through air, will lead to reduced oxygen 

conditions in any period where water saturates the soil, though days (or weeks) of 

saturation are required before anoxic conditions are created [7].  The relative depth of 

the soil as well as the volume and rate of water ingress, the volume and rate of 

drainage (soil porosity) and level of aerobic activity will affect such conditions.  

Whilst the rising levels of anoxia that occur in the base of many freshwater lakes in 

the summer is primarily due to rise in the growth and oxygen consumption of aquatic 

plant life (aerobic activity), it is often the periods of heavy rainfall in the winter which 

primarily give rise to anoxia below the soil surface (rate of water ingress & rate of 

drainage).  ‘Anaerobic processes can occur in most free draining soils’ [8] usually 

through periods of inundation or high biological activity.  In frequently saturated 

soils, the constantly changing conditions often favour the development of facultative 

anaerobes; organisms which can thrive in both aerobic and anaerobic conditions. 



 

The amount of oxygen present in soils normally determines the nature and activity of 

the microbes present.  In moist, well oxygenated, soils bascidiomycetes fungi such as 

brown and white rots are present.  The low levels of oxygen encountered in partially 

or occasionally waterlogged soils support ascomycetes fungi such as soft rots, whilst 

in fully waterlogged conditions anaerobic bacteria are the primary active microbes.  

Brown and white rots rapidly consume wood and other organic materials very 

quickly; anaerobic bacteria consume wood and other organic material slowly [9].   

 

Oxygen levels are usually high in arid soils but the lack of moisture keeps the 

population of aerobic microbes and their activity low.  During the occasional periods 

of rainfall the microbes become highly active and the decay rates of organic materials 

and the corrosion rates of metals will be high.  

 

The amount of oxygen present within the moist soils fundamentally affects the nature 

and rate of metal corrosion.  Work by Galliano [10] has shown high levels of iron 

corrosion are correlated with well drained soils, whilst poorly drained soils, e.g. at the 

site of Pommern, showed oxidation (redox) levels reducing as the ground saturated 

following rain leading to reduced levels of metal corrosion.  

 

Specific events such as burning can draw oxygen from the soil and enrich it with 

charcoal deposits that adsorb the dissolved salts required to support microbial life.  

This leads to unusual conditions that preserve organic and metallic artefacts e.g. a 

quill pen preserved below 15th century burning deposits at Dryslwyn Castle, Wales.  

 

 

Cations & Anions 
Dissolved in the soil solution are numerous different anions (CO3

2-, NO3
-, SO4

2-, S2-, 

OH-) and cations (Na+, K+, H+, Fe2+, Ca2+, Al3+, Cu2+).  The original sources for these 

ions are minerals that dissolve at different rates in the surrounding water.  The 

dissolution of minerals depends on the solubility product of the mineral i.e. the extent 

to which it will split into ions and enter solution e.g. CaCO3 → Ca2+ + CO3
2-.  This 

will be affected by the concentrations of ions already in solution; pure water with few 

dissolved ions such as rainwater will dissolve minerals more readily than soil 

solutions already laden with dissolved salts.  Other crucial factors in affecting the 

solubility of minerals include pH, redox potential (Eh), the presence of organic 

molecules which can act as chelating or sequestering agents and even the temperature 

of the solution.  This ability to dissolve is crucial for some archaeological materials 

such as glass, plaster and mortar.  High levels of water flow and/or water with a pH, 

in which the mineral is highly soluble, can lead to high levels of loss of the mineral 

e.g. loss of calcium carbonate and thus loss of strength from mortar, plaster, chalk and 

limestone.   

 

The chemical balance for soils are primarily related to their ion exchange capacity, in 

particular their cation exchange capacity (CEC).  At low concentrations the movement 

of soluble salts and pH (H+), depends on the capacity of the soil to hold and exchange 

cations.  This is invariably determined by the organic materials and clay particles 

present within the soil.  Large amounts of organic matter and clay can act as a buffer 

to protect the soil from extreme level of pH or high levels of mineral salts such as iron 

oxides, gypsum or soluble sodium salts. 



 

The movement of cations through the soil, via the soil solution, can sometimes be 

considered slow in modern agricultural terms.  Evidence of liming the surface of soil 

suggest that Ca2+, despite being one of the more mobile ions, hadn’t moved further 

than 100mm in 5 years [8].  However, over archaeological time, periods of hundreds 

or thousands of years, cations can readily travel many metres.  The fact that they 

don’t, as shown by the lack of dissolution of corroded metal on many sites, 

demonstrates the limited solubility of many of the common metal corrosion minerals 

and that the rate of cation exchange in many soils can be relatively slow.  

 

At higher concentrations the soluble salt concentration within groundwater is 

normally described through conductivity, defined in mS.  For normal soil/agricultural 

use; 0-2mS is considered salt free, 2-8 slightly saline, 8-15 moderately saline, and 

>15mS strongly saline.  High levels are only normally seen due to evaporation 

activity in hot climates, excessive fertiliser use or pollution.  Values from Caple & 

Dungworth [11] suggested that conductivity values around 0.8mS (800µS) were 

normal for water run off from soil.  Raised values of 1 – 1.7mS were derived from 

fertiliser enhanced agriculture in Cambridgeshire and Yorkshire.  However, higher 

values can be encountered in the urban environments e.g. values of 2.4-17.8 mS for 

the groundwater of the Parliament St site in York [12] where dissolved salts, 

principally gypsum, had been formed from previously waterlogged deposits which 

had oxidised and probably reacted with flooring mortar.   

 

In arid regions higher levels of soluble salts lead to specific problems with physical 

degradation of porous archaeological materials from stone and plaster to bone, and 

ceramics, through the crystallisation and growth of soluble salts [13]. Exposed 

evaporative surfaces are particularly vulnerable, though depending on the moisture 

level within the soil and the relative humidity in the soil pores, this can result in salt 

deposition within voids and soil pores.  This problem of salt efflorescence and 

cryptoflorescence from soil solutions is difficult to model since the presence of one 

salt influences the crystallisation of the other [14].  In complex solutions such as soil 

waters which may contain several salts it appears likely that crystallisation can occur 

over a wide range of relative humidities. 

 

The relative pore sizes of the soil or reburial media surrounding a porous 

archaeological material will determine which media retains water.  Crystallisation of 

soluble salts and salts with limited solubility such as calcium carbonate or iron oxides 

often occurs at surfaces where pore sizes change e.g. at the interface between soil or 

burial media such as bone, mosaics, masonry, plastered walls etc. 

 

Lower level of dissolved salts, raise the conductivity levels of the solution and lead to 

an increase in the corrosion of metals and the activity of micro-organisms.  The 

lowest levels of dissolved salts/ions are seen in rain water falling on upland and raised 

bogs.  The waterlogged and mineral poor conditions, especially in sphagnum peat 

bogs lead to a lack of biological activity and the remarkable survival of bog bodies 

[15]. 

 

 

pH 



The pH of soil, the concentration of hydrogen ions (H+) in the soil solution, normally 

occurs in the region pH 2-10, most usually in the range 6-8.5, and is controlled by 

cation exchange and a series of chemical equilibria such as: 
 

Ca2+  + CO2 + H2O → CaCO3 + 2H+ 

 

[this equilibria operates below pH 8 where Ca2+ is available through ion exchange] 

 

Other chemical equilibria NH4
+/NH3, FeOOH/Fe2+, sulphide/sulphate, and ion 

exchange media such as clay particles, organic material, etc all determine the pH of 

the soil, and the ability which any soil has to buffer its pH.  

 

The degree of spatial variation within soil chemistry is rarely appreciated with single 

pH measurements often used to describe large areas of soil.  However, work on the 

relatively homogeneous agricultural top-soils, has shown pH values ranging from 4.5 

to 7 in a single field (0.45ha), leading Cresser, Killham & Edwards [8] to state that 

‘soil pH can vary by 2 units over very small distances’.  pH also changes with soil 

depth, usually becoming acidic as depth increases.  The stratified deposits of an 

archaeological site will almost certainly have greater compositional variation than 

agricultural top-soil. 

 

The measurement of pH of soils, especially aerobic soils which normally have 

samples removed for analysis, presents problems of accuracy.  Such soils are 

frequently not saturated; so they cannot be reproducibly analysed in situ with pH 

probes [16] consequently soil samples are normally taken and saturated in the 

laboratory.  The amount of water added, whether distilled water or calcium chloride 

solution (to avoid the dilution of dissolved salts) can affect the pH reading by half a 

unit or more.  The depth from which the soil sample was taken, the season, time since 

last rainfall, level of fertiliser present, also all influence pH readings.  The charged 

surface of clay particles and their associated cation and anion sheaths leads to 

variations in pH associated with the presence of clay particles around any monitoring 

probe.   Whilst standardised laboratory procedures allow comparative pH results to be 

established, these are not necessarily the conditions experienced in the soil by the 

artefacts.  For archaeological work a number of accurate, in situ, pH readings are 

ideally required. 

 

Changes in the pH of the soil result in the stability (solubility) of different minerals 

and concentrations of different cations being present.  Thus acid soils are usually rich 

in iron and manganese, potentially leading to iron and manganese minerals forming in 

or on archaeological materials leading to staining.  Alkaline soils, which are 

frequently encountered in hot climates with high evaporation levels, can be rich in 

base metal ions such as sodium potentially giving rise to soluble salt formation within 

porous archaeological materials.  

 

The stability of various archaeological materials with regard to pH was tabulated by 

Darvill [17].  Perhaps the most serious problem is the loss of bone, shell, ivory, tooth 

etc. where acidic soilwater demineralises the bone and leads to increased rates of 

collagen hydrolysis [18].  The loss of bone fundamentally affects the interpretation of 

archaeological sites and their associated cultures.  

 



The pH of the soil will affect the lime constituent of any mortar; acid soil waters 

partially dissolving the lime and weakening any plaster, wallpainting, mortared 

masonry or mosaic.  The loss of calcining elements may also occur through ion 

exchange with the soil water low in dissolved calcium minerals.  

 

The nature of the soil, can make a considerable difference to the effect of pH, 

calcareous and loam soils in Sweden showed considerable buffering capacity to the 

effects of acid rain and prevented enhanced levels of corrosion.  Thin acid soils, 

which had little buffering capacity, reflected a more corrosive environment [19-21]. 

 

 

Organic Matter 
The organic matter of the soil is primarily present as the polyphenolic humus largely 

derived from the breakdown of lignin, but with a substantial polysaccharide 

component derived from the breakdown of cellulosic material as well as living plant 

and animal tissue.  The role of organic matter in soils is crucial to provide the 

adhesion of the soil particles and maintain its structure.  Adhesion occurs both as a 

physical (filamentous) form and chemical binder (degraded polysaccharide and humic 

acids ‘sticking’ particles together).  It also acts as a cation exchange reservoir, 

maintaining pH and cationic equilibria.   Soils need a minimum of 4-5% organic 

matter to be structurally stable.  As organic matter is constantly lost through 

biological activity so structural integrity degrades with time unless renewed through 

addition; by the decay of surface vegetation and their attendant root systems.  In 

temperate Europe grasslands approximately 3 tonnes per hectare of organic matter are 

naturally added to the soil every year, so maintaining its structure integrity [2, 7, 8].  

This would indicate that without vegetational cover any soil is doomed to dry and 

form dust as experienced by agriculturally exhausted soils and deserts.  Consequently 

vegetational cover, though with minimal deep root activity to disturb sub soil 

archaeological remains is important.  The rich turf lawns, or sheep clipped pasture, 

which overly large areas of Britain’s ancient monuments, effectively maintain a 

cohesive soil structure, a buffered in situ burial environment and a high degree of 

protection against denudation, exposure and damage. 

  

The survival of archaeological organic objects and structures in the soil depends of 

the nature and level of microbes present within the soil.  This is a function of the 

water and oxygen contents of the soil, as described in the Oxygen section.  It is also 

dependent on the physical form and chemical nature of the archaeological organic 

material.  Thus organic materials composed of relatively pure forms of cellulose in 

thin sheet form e.g. cotton and paper are consumed by microbes very quickly.  When 

combined with lignin and in massive form, such as large pieces of wood, the organic 

material will survive for much longer.  A similar differential survival is seen between 

pure collagen materials such as skin and mixed materials of collagen and 

hydroxyapatite in bone.   

 

 

Clay 
Clays are particles of alumino-silicate complex, <0.002mm in diameter, they retain 

water and have a significant role in cation and anion exchange.  The nature of clays as 

well as amount of clay in soil determines texture, water retention capacity and ion 

exchange capacity. Clays form from the breakdown of feldspar minerals, thus the 



geological history of the rocks which have been broken down to form the soil 

determine the nature and volume of clays present.  Clays (2:1 clays) such as micas, 

vermiculites and smectites have the greatest capacity for water retention and cation 

exchange capacity.  Kaolin (1:1 clays) have lower water retention and cation 

exchange capacities, whilst the most degraded are iron and aluminium oxides that 

have even lower water retention and cation exchange capacities, though increasing 

anion exchange capacity [2, 7, 8]. 

 

Clay particles in arid soils can hold water tightly minimising its availability for use by 

plants.  Dry clay rich soils contract and crack increasing dehydration rates deep into 

the soil.  They expand upon hydration, adsorbing water from occasional rains, sealing 

cracks and retaining the water in the soil surface layers.  Waterlogged clay soils are 

fully hydrated, extremely dense and compressed and undisturbed they are virtually 

impervious to water or gasses.  Thus they maintain their water and associated 

chemistry.      

 

 

Redox Potential 
This defines the type of chemistry seen in the burial environment and is measured in 

terms of the ease with which chemical reactions involving the transfer of electrons in 

an aqueous environment takes place e.g. Cu → Cu2+ + 2e-.  In oxidising conditions 

such as those seen in contact with the atmosphere this corrosion reaction proceeds 

generating 0.34V in standard conditions.  However, in reducing conditions, such as 

those seen in waterlogged deposits where there is no oxygen, there is a surfeit of 

electrons and this reaction may not proceed at all.  Redox potentials are normally 

measured in aqueous conditions and are useful for describing the chemical condition 

of wet and waterlogged soils. Redox potential is rarely measured for aerobic soils 

since it is difficult to determine it in anything but saturated conditions.  As with other 

parameters, Eh is highly variable depending on the location sampled, season, rainfall 

etc.  Measuring the redox potential of soil or groundwater samples is fraught with the 

same problems as accurate determination of pH.  Redox reactions (Eh) invariably 

involve both proton (H+) as well as electron transfer, consequently redox reactions 

affect and are effected by pH and are consequently usually defined on Eh, pH 

diagrams.   

 

FeOOH + 3H+ + e- → Fe2+ + 2H2O 

 

SO4
2- + 10H+ +8e- → H2S + 4H2O 

 

For any specific pH, the Eh values of specific reactions, important to the chemistry of 

soil activity, can be derived.  Those for pH around 7.0 are listed Table 1.1.  Work by 

Bass Becking, Kaplan and Moore [22] in defining the Eh and pH of all soil 

environments led them to propose a definition of waterlogged, wet i.e. partially or 

occasionally waterlogged and normal i.e. ‘aerobic’ soil environments.    The Eh 

values for a number of archaeological sites mentioned in the PARIS 2 Conference in 

2001 and values derived by Caple, Dungworth and Clogg [23], Peacock [24], 

Soerensen and Gregory [25] and Davies et al [12] are listed in Table 1.2.    

 

The redox levels reported by Hogan at Kilsmeldon Meadow showed that above 

500mm, well drained sites enjoy Eh >300mV for > 90% of the time.  However, at 



depths of below 500mm, Eh levels are primarily in the –200 to 200mV zone [26].   

Consequently a substantial number of sites in the UK and Western Europe have 

archaeological deposits which would fall in the wet and waterlogged defined zone of 

Bass Becking, Kaplan & Moore [22]. 

 

The onset of anoxia leads to a rise in the pH, whilst the oxidation of anoxic deposits 

results in the acidification of the soil.  This can lead to the increased decay of bone, 

something that has been noted in the, now oxidised, organic rich soils of the 

Netherlands [27].  Cycling through periods of aerobic and anoxic conditions as may 

occur through annual flooding.  Seasonal inundation of any soil such as monsoon 

flooding in tropical climates or the base of a graves, pits or moats in temperate Europe 

can lead to periods of acidity and high levels of decay for materials such as bone, 

mortar, plaster or limestone.  Acidified soil water derived from previously 

waterlogged deposits reacting with lime rich soils or fertilisers can create soluble 

salts, and partially waterlogged sites such as Haddenham in Cambridgeshire produced 

charcoal beams from a Neolithic barrow impregnated with calcium sulphate as well as 

iron salts [28]. 

 

A problem specifically associated with anoxic (low Eh) solutions is the solubility and 

mobility of Fe2+.  This is frequently precipitated as iron sulphides in porous 

waterlogged materials such as leather or wood, leading to long term problems of 

acidity following the oxidation consequent upon excavation [29].  Similarly 

deposition on and in porous materials such as glass, ceramic and stone can lead, upon 

oxidation, to unsightly orange iron oxide staining.   

 

 

Monitoring    
The problems of accurately characterising highly variable aerobic soil deposits have 

long been appreciated.  To interpret single sample measurements, models of the 

aerobic soil need to be used.  The most accurate picture of the oscillating conditions 

of aerobic soils are provided by long term monitors such as the tissues of long lived 

plants such as trees.  Chemists have used the chemical composition of leaves and the 

width of tree rings to describe the chemistry of groundwater and the level of soil 

moisture.   Similarly archaeologists have used the condition of objects buried in the 

soil to derive a picture of the extent of decay on the site.  In Sweden, Germany and 

Denmark attempts have been made to survey corroded copper alloy artefacts 

excavated by earlier generations and compare the levels of corrosion to those of 

artefacts excavated in recent years [19-21, 30, 31].  The occurrence of increased 

numbers of more heavily corroded artefacts from more recent excavations, which was 

observed in all 3 countries, was interpreted as the effects of increased acidity in the 

soil due to acid rain pollution.  Other significant factors associated with decay 

included: 

 

 The type of soil.  Thin acid soils above bedrock providing little buffering and thus 

giving higher corrosion levels than loam or calcareous soil [21]. 

 

 Additions of soluble salts such as the salting of roads [21] or the application of 

fertiliser [10, 30].  

 



 The high level of soil disturbance resulting from agricultural activity and thus high 

levels of drainage may also be a factor [31, 10, 30]. 

 

 Proximity to the coast, with higher corrosion levels noted in coastal soils [31]. 

 

 The level of human activity in the soil.  Relatively undisturbed soils around votive 

offerings providing a less corrosive environment than those of burials which were 

in turn less corrosive than those associated with human settlement [21, 31]. 

 

Recently some larger pan European projects have been funded to look at decay of 

artefacts on a larger scale.  Work on the use of bone as an indicator of decay using 

samples from 50 sites across Europe and correlating the level of bone decay with 

factors derived from standard soil classification e.g. pH, has revealed increased decay 

rates associated with road salting and in recently drained wetlands.  A similar study 

on wood is reported to be underway [27].   These surveys are hampered by not 

knowing the original extent and nature of the materials or the detailed history of the 

burial conditions. 

  

Large surveys have focussed primarily on features such as soil type and climate.  

Smaller scale studies such as those at Nydam Mose [24] or Firestone Creek [32] are 

staring to provide more detailed examples of the relationship between water flow, 

biological organisms, soil depth, soil chemistry and the decay of archaeological 

artefacts or monitoring materials such as cotton strips. 

 

 

Modelling/Experiments 
Almost all the published information related to aerobic soils pertains to their ability to 

support vegetation [2].  As a result of this work there are models of how specific 

variables within a soil affect plant growth, which take into account the range of 

variable conditions.  The seasonal nature of vegetation means that models can be 

quickly established over 1 or 2 growing seasons.  At present few if any studies have 

correlated individual factors within the soil environment to the decay of 

archaeological materials.  The time taken for decay pattern to clearly emerge is 

considerable.  The only burial/decay experiment to have been running for some time, 

since the late 1950’s, are the experimental earthworks at Overton Down and Morden 

Bog, Wareham [33].  The lack of chemical and biological definition of the conditions 

prior to the start of the experiment has limited the use of the experiments for 

answering present day questions. 

 

The decay of organic material in the soil which describes a first order kinetic reaction 

[8] with 2/3 of the organic matter breaking down in one year, but some small fraction 

remaining for many years.  Similarly the rate of decay of archaeological artefacts in 

the ground is initially fast but slows as equilibrium with the surrounding environment 

is established.  The rate of reaction is increasingly determined by the rate of the 

diffusion of reactants through the developing decay layer.  Consequently the initial 

years for any burial/reburial project are the crucial ones where decay rates will be at 

their highest.  If we wish to wish to develop more accurate information about 

conditions experienced by objects in burial environments and consequently develop 

more detailed models about how materials decay under a range of specific conditions, 

it is appropriate to create, bury and retrieve long-term decay monitors in 



monitored/defined burial environments.  Such decay monitors would be composed of 

materials that were designed to corrode quickly, using known decay pathways. 

Monitors might include: 

 

 chemically unstable glass 

 

 porous wood with low lignin and high cellulose content, or cotton strips 

 

 porous lime rich stone susceptible to salt damage 

 

 readily corrodible mono-metallic and bimetallic tokens 

 

These would be buried and retrieved after specific periods in environments which 

were typical of archaeological burial conditions, and whose cyclic variables (pH, Eh, 

CEC, oxygen level etc) were monitored.  Similar monitors composed of unstable glass 

have been developed by researchers for monitoring gaseous pollution in museum 

environments [34].  Samples of wood were also buried for a number of a number of 

years at the Rose Theatre site and subsequently retrieved and checked to see if aerobic 

fungi were active (Corfield pers. comm.).   

 

Despite the large number of archaeological excavation in which there is subsequent 

reburial of extant remains with the soil from which they were excavated.  Few are 

recorded or reported and virtually none are scientifically monitored.  In the case of 

waterlogged sites e.g. Glastonbury Lake Village and The Sweet Track were, when re-

excavated from re-established waterlogged conditions, reported as being in ‘good 

condition’ (B. Coles pers comm., R. Brunning pers comm.).  Other waterlogged sites 

e.g. Sutton Common and Eaton where waterlogged conditions were not re-established 

were shown to be highly degraded (Corfield pers comm., M.Taylor pers comm.).   

 

The pressure from farming, redevelopment and from chance archaeological finds such 

as the Rose Theatre [35], the Kollerup Cog [36], the San Diego Royal Presidio [37] 

has led to a small number of sites and objects having to be reburied with 

new/additional material.  These sites in particular should be regarded as experiments 

and they need to be accurately recorded, monitored and re-examined at regular 

intervals to assess the effectiveness of the added burial materials in 

establishing/retaining a preserving environment.    

 

 

 

 

Additional Material 
Where we seek to preserve existing archaeological sites, whether arid e.g. Chaco 

Canyon pueblos or waterlogged such Vindolanda it is clearly essential to maintain the 

conditions which have preserved the remains thus far.  Any material added to give 

further physical protection should not change the existing chemistry of the preserving 

environment.  Without monitoring and data on the original burial condition, this is an 

empirical estimation process.  

 

From the information in the preceding sections on soil variables a number of 

guidelines may be suggested: 



 

 The reburial medium, in addition to providing physical protection, will potentially 

raise the water table.  This should be planned so that it reproduces the previously 

seen conditions, to which buried materials had equilibrated and establish a 

relatively permanent oxic or anoxic condition.  Uncontrolled variation of 

oxic/anoxic conditions can lead to changes in pH and Eh which could lead to 

dissolution of materials and the deposition of minerals, both of which could be 

highly damaging. 

 

 The additional material should have a physically robust form to withstand 

weathering, the outer layer should normally have a reasonable organic component 

to the soil and support surface vegetation to ensure a well structured soil which 

will resist weathering.  Surface vegetation should be minimal maintenance and 

without substantial invasive tap root growth.  Protection against erosion from 

severe weather events such as flash flooding in arid regions is important.   

 

 The reburial material should have a similar pH, Eh and CEC to the original burial 

material. 

  

 No soluble salts, or potentially soluble salts such as concentrations of iron oxides 

or calcareous material should be introduced since it could lead to the deposition of 

minerals within the archaeological remains. 

[Tests to monitor the pH and conductivity of samples of soil water introduced 

from the site to the proposed reburial medium should indicate precipitation or 

dissolution and thus the stability of the medium] 

 

 Avoid extremes of pH, since rates of decay and mineral deposition are greatly 

enhanced.  If the added reburial material has an organic and clay component it can 

act as a buffer establishing, preserving and protecting the pH, Eh and cation level 

of the substrate. 

 

 The porosity of the reburial medium and the archaeological material should be 

similar in order to reduce the risk of mineral precipitation at interfaces where pore 

size changes and maintain the level of drainage.   

 

 It may be appropriate to have a specified level of clay in the soil.  On arid sites a 

low percentage of clay in the added soil could maintain drainage, alternatively 

higher percentages of clay could improve soil cohesion and thus physical 

protection and it could trap water in the upper levels from where it could 

evaporate.  On wet sites clay rich added soils could impede drainage and preserve 

waterlogged conditions without the need for constant re-wetting.   

 

The deliberate selection of sands with similar composition to the substrate material at 

Laetoli [38, 39] and the widespread practice of reusing the most recently excavated 

material to rebury features would appear sound and correspond with the guidelines 

described above.  They have similar chemical and physical properties to the substrate.  

Seeking to actively control vegetation and yet avoid soil erosion e.g. through re-

turfing excavated and reburied sites, would appear to be a sensible measure.  Though 

washed sands, which have been used for some re-burial work are fairly inert and 

introduce little direct contamination, they do not provide a chemical buffering effect.  



Consequently though they provide physical cushioning, they may have limited 

protective benefit in chemical terms to archaeological materials within the soil.  In 

such cases, e.g. the Rose theatre [35], active control measures are required to control 

water level since the surrounding sand will not retain water next to the wooden 

foundations.  Similarly the sand will not develop reduced form minerals such as iron 

sulphides to maintain the anoxic environment. 
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Table 1.1 Eh values for soil oxidation reduction reactions at pH 7 (from Russel 1970 

& Cresser, Kilham & Edwards 1993) 
 

          (mV) -400 -300 -200 -100    0 100 200 300 400 500 600 700 800  900 
½O2 → O- (H2O)                820   

NO3
- → NO2

-/N2O/N2                           420                         

Mn4+ → Mn2+            410 

Organic matter → acids         400 

Fe3+ → Fe2+         -180 

NO3
- → NH4

+     -200 

SO4
2- → S2- (H2S)           -220  

CO2 → CH4          -240 

2H+ → H2 ↑        -413  

Bass Becking et al 1960       -380    Waterlogged          120 Wet 300   Normal        640 

  

 

 

 

 

Table 1.2  The Eh recorded at archaeological sites (from Caple 1998, & various 

authors at the PARIS II conference London 2001)  

 
     (mV) -400 -300 -200 -100    0 100 200 300 400 500 600 700 800  900 

Over (Cambs)               190   

Sweet Track 1               540 

Vale of Pickering 1            260 

Nydam            0….150 

Tondheim         -250……………..100 

York (Parliament St)         -150……………200 

Picts Knowe        -90 

Tonsberg      -200………-6 

Tower of London     -100 

Woodhall 1       -270 

Woodhall 2     -200 

Vale of Pickering 2 

Sweet Track 2       -8  

 

 

 

 

 

 

 

 

 

 

 

                   

                   

 

 


