
The Introduction of a Design Heuristics

Extraction Method

P C Matthews a,∗ L T M Blessing b K M Wallace a

aEngineering Design Centre, Cambridge University Engineering Department,

Trumpington Street, Cambridge CB2 1PZ, United Kingdom

bKonstruktiontechnik und Entwicklungsmethodik, TU-Berlin, Straße des 17 juni

135, Berlin D-10623, Germany

Abstract

This paper introduces a novel method for analyzing conceptual design data. Given
a database of previous designs, this method identifies relationships between design
components within this database. Further, the method transforms these relation-
ships into explicit design knowledge that can be used to generate a ‘heuristic-based’
model of the design domain for use at the conceptual stage. This can be viewed
as a knowledge extracting method for the conceptual design stage. Such a method
is particularly interesting, as the conceptual stage typically lacks explicit models
to describe the trade-offs that must be made when designing. The method uses
either Principal Components Analysis or Self Organizing Maps to identify the re-
lationships, and this paper describes all the elements required by the method to
successfully extract and verify design knowledge from design databases.

Key words: Conceptual Design, Self Organizing Maps, Knowledge Extraction,
Data Mining, Design Heuristics.

1 Introduction

In early stages of engineering design, designers have the greatest freedom to
explore the solution space for a given problem. At the same time, designers
wish to know if the lines of thought they are pursuing are worthwhile, or

∗ Corresponding author.
Email addresses: pm131@eng.cam.ac.uk (PC Matthews),

blessing@kt10.kf.tu-berlin.de (L T M Blessing), kmw@eng.cam.ac.uk (K M
Wallace).

Preprint submitted to Elsevier Science 7th December 2001

if their efforts would be better spent following a different set of solutions.
This requires an understanding of the complex relationships within the given
design domain. At the conceptual design stage, this understanding can be
in the form of underlying trends, existing solutions, trade-offs, or awareness
of possible technological alternatives. These are used to explore the solution
space for potentially feasible designs. Only the best solutions from this search
should be taken forward for more detailed consideration.

The problem is that this understanding of the design domain is frequently the
result of many years of experience within the domain. As a result, this knowl-
edge tends not to be explicitly expressed, but rather resides tacitly in the form
of a designer’s experience. By assuming this knowledge is implicitly manifest
within existing designs, this paper presents a novel method for extracting this
knowledge and thereby making it explicit. However, this knowledge is likely to
be quite coarse and hence the method is referred to as the Heuristics Extrac-
tion Method (HEM), thereby implying that this knowledge does not guarantee

good results, but improves the chances of doing so.

The HEM is based on recognizing patterns in existing solutions. This pattern
recognition triggers a first coarse model of the design space, providing a link
from the design parameter space, the space describing the design concepts for
a particular family of designs, and the evaluation space, the space describing
possible evaluations for the design family. A neural network could be trained
to learn these relationships and thus provide such a mapping. The initial aim
was to use this mapping to support evaluation of new concepts. A new concept,
defined in parameter space, could then be mapped into the evaluation space,
thus providing a possible evaluation. However, designers in industry expressed
that they could not trust such as system as they did not know the rules that
had been applied and hence that would justify the evaluation results.

The aim then became to extract relationships that are implicit within trained
neural networks (i.e. in the design concepts) to explicitly provide designers
with domain knowledge that is useful for evaluation and generation of con-
cepts. These relationships are expressed either in prose, e.g. ‘As efficiency
tends to 100%, there is a sudden large rise in EINOx, hence, low efficiency
implies low EINOx’, or as an algebraic expression, relating a number of design
components. A component is defined in this paper as an element of the design
description, e.g. the diameter of a hole, number of wheels, or the measurement
of an evaluation criterion. 1 For example, a hollow cylinder design space can
be described using the length (ℓ) and radius (r) and these can be combined
to represent the mass, m = C1ℓr +C2r

2. Such an algebraic relationship is also
frequently referred to as a feature.

1 the use of the term component follows the terminology used in the neural network
community, as opposed to the mechanical engineering community

2

The remainder of the paper is structured as follows: Section 2 reviews related
work that is used by the analysis method; Section 4 describes the properties
of design domains that are particularly suited to this method; Sections 5–
9 describe the various elements of the heuristics extraction element of the
method. Section 10 provides some empirical evidence on the success of the
HEM. Finally, Sections 11 and 12 provide a discussion of the potential of the
HEM and conclusions to the paper. The future work that is being undertaken
is given in Section 13.

2 Data Analysis Methods

The nature of the design tasks carried out during the early design stages are
unstructured; varied in type of solution; and with few, coarse details. During
this part of the design process the designer should not be constrained in any
manner that unduly reduces the solution space, e.g. by limiting creativity.
This creates a challenge for producing a computational tool for this activity.
A computational tool can be considered as the encoding of a method. For
this tool to be useful, it must also have some rules or algorithms to help the
users with their tasks. However, using such rules is in contradiction with the
requirement that there be few constraints on designers. As a result, the aim is
to explore the possibilities of automatically generating a non-restrictive model
for the early design stages. As the relationships between elements of different
design domains differ, these models will be different for each domain, so the
method of generating them needs to be portable across domains. Finally, as
the model needs to be non-restrictive, it should be viewed more as a method
of guiding designers in the direction of better solutions when help is needed.

The approach taken in this research for extracting such a coarse model of the
design domain has its origins in rule extraction and rule induction methods.
These methods frequently are based on identifying class boundaries within a
sample distribution and then expressing this boundary explicitly. There are a
number of algorithms designed to partition a domain based on decision trees.
These decision trees form (symbolic) rules about how to classify elements in a
domain. An example of such a rule based induction method is ID3 (Rich and
Knight, 1991; Luger, 1994). This aims to minimize the complexity of the tree
it generates, thereby maximizing the information contained in each decision
node. However, when the case space is large, the decision trees tend to get
quite complicated and difficult for human interpretation.

A further example of using symbolic machine learning techniques for extract-
ing rules is given by Reich and Travitzky (1995). This example generated a
set of rules describing the corrosion properties for a set of materials. However,
these were typically if. . . then type rules, which can only separate the domain

3

parallel to the component axes, that is, the domain is separated according to a
single component at a time. More complex rules could produce general linear
separations of the domain. These can only be successful in the event that the
domain is known, or is likely to be, separable in such a manner. This approach
will be of be little use where the separation rules are non-linear.

Another approach attempts to generate rules describing the distribution based
on a neural network that has been trained on (and verified on) the distribu-
tion. Tickle et al. (1998) have devised a taxonomy for classifying rule extrac-
tion methods from artificial neural networks. This taxonomy has been applied
to a cross section of neural network architectures. The aim of their work was
not only rule extraction, but also rule initialization (where specific rules are
inserted into a neural network) and rule refinement (where rule networks are
‘tweaked’ so that particular rules are slightly modified). The complexity of
rules extracted from neural networks tends to provide a challenge when they
are to be used by a human. Efforts have been made to optimize the extracted
rules for parsimony so that they constitute a ‘better’ explanation of the dis-
tribution learnt by the neural network for a human reader (Corbett-Clark
and Tarassenko, 1997; Corbett-Clark, 1998). Ultsch (1993) makes an initial
attempt at extracting rules from Self Organizing Maps (SOM), by examining
where the feature map needs to ‘stretch’ to cover the distribution. This suffers
from only examining the overall structure of the SOM, rather than looking at
individual components. This prevents the identification of relationships that
occur between specific pairs of components that are too small to affect the
overall SOM structure.

The above methods typically require large sample distributions to provide
good results. For this research, two computational methods have been used
to analyze design databases: Principal Components Analysis (PCA), a ‘tradi-
tional’ statistical procedure (Diamantaras and Kung, 1996); and Self Organiz-
ing Maps (SOM), a ‘neural’ computational method inspired by the structure
of the biological brain (Kohonen, 1997). Both of these methods provide sta-
ble results with considerably smaller databases than required for traditional
data-mining techniques. On overview of these will be given in Section 7.

3 Representation Issues

The aim of this research is to learn about relationships in a given design do-
main. The assumption is that designs and their evaluations can be parametri-
cally represented, that is, as a set of attribute-value pairs. Due to the nature
of conceptual design, these attributes are unlikely to be determined with great
accuracy and might have to represent broad decisions which will require fur-
ther detailing later in the design process. This also implies that the design and

4

evaluation parameters/attributes are not necessarily of a quantitative nature.

3.1 Design space representation

Based on the above assumption, in the proposed HEM designs are represented
in a vector format. This vector contains both the physical description and the
evaluation parameters for a concept. The evaluations are either result from
building the object and taking measurements, or they are estimations based
on a model developed previously. There are 5 types of vector components:

(1) continuous valued (e.g. length measurement);
(2) ordinal (e.g. number of wheels);
(3) boolean (i.e. True/False);
(4) fuzzy valued; and
(5) 1-of-k (e.g. encoding a vehicle’s driving wheels as one of ‘front-wheel

drive’, ‘rear-wheel drive’, or ‘all-wheel drive’)

This representation permits ‘coarser’ data to be captured, which is useful as
the design is only at the concept stage. Capturing designs using this format
has the advantage of being readily usable by various computational methods.

The vector components must be determined prior to using the HEM. In first
instance, a ‘superset’ of components should be captured. These are then pro-
cessed to determine if any of the vector components are redundant. In this
way, the set of most relevant components can be obtained (Matthews et al.,
2000). For example, in some specific design domain, the color of an object
may have no effect on its cost (and the remainder of the design). Initially
color would be included in the component super-set, but would then be found
to be redundant and therefore removed from further processing.

The following section describes an alternative means of describing the design
space. This description is based on algebraic relationships between design and
evaluation components, and hence these relationships are continuous. The
purpose of such a representation is that these relationships explicitly express
properties of the design space.

3.2 Feature Space

As seen in the previous sections, a simple way of describing multivariate ob-
jects parametrically is to express each measurable component by its value.
However, for each distribution of objects (e.g. a particular design domain),
there will be combinations of these components that represent relationships

5

within the design. This representation has two advantages: firstly it reveals
structure within the design space, and secondly it can provide a means for
reducing the dimensionality of the design space which in turn will result in
a faster and more accurate processing later. For example, consider the do-
main of similarly proportioned boxes: these can be described parametrically
by (w, d, h, m, ρ); where w is width, d is depth, h is height, m is mass, and ρ

is the planar density of the material used to construct the box. As all boxes in
this domain are similarly proportioned, the three dimension components are
linearly related:

w

α
=

d

β
=

h

γ
(1)

These three components are combined linearly to form a feature, which in this
case will represent the ‘size’ of the box:

f1 = a1w + a2d + a3h (2)

where (a1, a2, a3) are chosen to ‘maximize’ the variation of f1 with the varia-
tion of the box dimension components (which in this case will be the direction
cosines of the line described by the box dimensions, given by (α, β, γ) in Equa-
tion 1). Similarly, the mass, m, of such a box is proportional to the surface
area of the box:

m = 2(wd + dh + hw)ρ (3)

Combining Equations 1, 2, and 3 a second (non-linear) feature (‘weight’) is
produced, expressed in terms of ρ and the first feature:

f2 = a4ρf 2
1 (4)

where a4 is some constant of proportionality. These two features (f1, f2) form a
two-dimensional description of the boxes that is equivalent to the 5-dimensional
parametric description. In addition, the feature description represents the ob-
jects in what could be considered a more natural manner: namely a size com-
ponent and weight component. This illustration has demonstrated both linear
(Equation 2) and non-linear (Equation 4) features.

4 Relevant Design Domains

This research has developed methods for extracting knowledge to provide sup-
port within the early stages of the design process.

6

The HEM identifies relationships between design components. Therefore, this
method is particularly useful for design domains where there are few explicitly

known relationships. These domains will not have explicit models that can
be used during the conceptual design stage or that are difficult to analyze
analytically (e.g. designs requiring extensive computational fluid dynamics for
evaluations). However, there must be a number of prior designs, complete
with evaluation data, available to train the system with. It is assumed that
this data is costly, either in terms of material or computational resources,
and therefore will not necessarily be abundant. Also, the method can handle
missing observations from within the data, which is advantageous as occasional
measurement can be missing from designs.

For the purpose of validating the method, relatively mature domains were cho-
sen and hence domain experts had a degree of understanding of these domains.
These domains relied on empirical studies to build up their explicit knowledge
bases. The aim was to determine if the HEM could automatically extract
relevant relationships from a database of previous designs. It was therefore
necessary for the domain to be known.

Three design domains were identified as case studies: one department based
student design project and two aerospace projects. The department based case
study was used to develop the representation used to encode the design space.
The first aerospace project was the analysis of the preliminary design of gas
turbine combustors. This case study aimed to examine the use of the HEM
in a domain where measurements were missing from some of the examples
used to train the system and where the relationships were unclear. The second
aerospace case study examined preliminary wing design. This case study aimed
to extract more complex relationships within the domain by incorporating
novel data preprocessing techniques into the HEM.

The case studies provide illustrations for properties of design domains that
determine how successful this HEM will be. The next sections describe the
heuristics extraction method, and also provide further details as to what design
domains are appropriate and inappropriate for the application of this method.

5 HEM Overview

The Heuristics Extraction Method consists of the full process from the repre-
sentation of the conceptual design space through to the generation and verifi-
cation of the relationships extracted from the sample design distribution. This
represents not only the required computational elements, but also interfacing
with domain experts.

Insert

Fig-

ure 1

here

7

The overall structure of this method consists of five steps:

(1) Design concept space parameterization;
(2) Data collection, and if necessary preprocessing;
(3) Training;
(4) Post-processing (heuristic generation); and
(5) Verification of heuristics by domain experts.

The interaction with domain experts is an important part of this process.
Without this, the extraction method might identify relationships that are of
little or no use to designers. Domain experts are very important during the
initial design space parameterization stage, as they are likely to be aware of
which design parameters do play important roles in the design process. They
can also help direct the method’s searching by highlighting parameters they
feel are particularly important.

The individual steps taken by the HEM are expanded below.

6 Data Preparation

The HEM is a data driven method, and therefore relies on the data collection
stage prior to processing. This requires an initial design space analysis stage,
where the conceptual design space is described parametrically. Once the design
space has been parameterized, it must then be populated with examples. These
are typically taken from collections of previous designs. Once such a database
is available, a preprocessing algorithm is used to help the HEM identify more
complex relationships, and a pruning algorithm to reduce the computational
complexity incurred due to including irrelevant components. An overview of
the computation element of the HEM is given in Figure 2.

Insert

Fig-

ure 2

here

6.1 Design concept parameterization

Parameterizing design concepts appears initially to be contrary to the aims of
conceptual design where the designer should not be restricted in any manner.
However, when designing within a family of designs, there are a series of
decisions that are prescribed (Matthews, 1998; Matthews et al., 2000). The
outcome of these decisions can be parameterized, even if the outcomes are
not numerical values (Ball et al., 1998). The aim of the parameterization is to
capture a ‘super-set’ of design decisions, which will be pruned down at a later
stage.

The parameterization is determined by examining all previous designs. These

8

designs are stripped of details that can or need only be determined at a much
more mature state of the design (e.g. wiring or pipe routing details, stress or
other finite element details) and parameters that are known to have little or no
effect on the evaluation (e.g. the color of the body work). From the remaining
design details, parameters are grouped into classes: those that are constant
throughout the family (e.g. external dimensions of a series of gas turbine com-
bustors designed for a particular aero engine), and those that change within
the family (and hence distinguish different designs). The class of constant pa-
rameters is then also discarded, as these parameters offer no information for
distinguishing designs. The remaining parameters form the ‘conceptual de-
scription’ for the designs within this given family. This conceptual description
is then augmented with the technical and any other relevant, e.g. aesthetic,
evaluations for that design family.

6.2 Data collection

Once a conceptual description, including evaluation criteria, has been gener-
ated, all previous examples need to be encoded according to it. This forms a
set of vectors that will be used to train the system (the ‘training distribution’).
In the event of a design lacking the measurement of a particular parameter,
this parameter is left marked as unknown. It will then be up to the particular
training algorithm to deal with this situation.

This is a relatively straightforward step. Provided that designs do not undergo
large changes between final design concepts and final product, any changes
that do occur can be considered as a small noise component. Such noise typi-
cally does not have a large overall effect on the final outcome.

6.3 Data preprocessing

The data collection stage covered the steps required to transform a set of pre-
vious designs into a numerical representation that can be processed by either
the PCA algorithm or the SOM algorithm. To make this a useful represen-
tation, there must be intrinsic relationships that can be identified by either
PCA or SOM. There are design representations where this is not the case.
For example, consider the design of a rod: a possible parameterization for this
would be the start and end points in space (a, b), and the mass of the rod
(m = ρ|a − b|, where ρ is the linear density). The set of previous designs
consists of a collection of random (a, b) values and appropriate m values. The
difficulty here lies in that the methods investigated (PCA and SOM) can only
learn relationships between pairs of components. In this case, there are no

9

relationships between any pair of components and the training will not stabi-
lize. However, if the training set used the parameterization (|a−b|, m), a clear
correlation emerges.

This example highlights the importance of generating a useful description of
the design family. However, there are cases when it might not be possible to
form a useful description in the first instance. In some data representations
the relationships between components do not occur in pairs but rather in
larger groupings, e.g. triples. The need for preprocessing is identified after an
initial (exploratory) training iteration. Three ways of identifying the need for
preprocessing are:

(1) components that are expected to play an important role (e.g. by a domain
expert) are not being included in the final set of heuristics;

(2) there are far fewer heuristics than expected;
(3) training on different subsets of the original data yields little or no stability

in the heuristics generated, or in intermediate steps.

Of these criteria, the first two require a domain expert to review the initial set
of heuristics generated. The third criterion tests how stable the algorithm’s
results are, if different portions of the training data are used (e.g. ‘k-fold
cross verification’). This can be seen by examining the difference in the linear
features generated by PCA or the component maps generated by the SOM. It
effectively identifies ‘noisy’ components within the data. Assuming that if a
set of components is believed to be useful, but appears only as random noise
to either PCA or SOM, then these components might need to be combined in
some manner to generate useful information about the design (although this
information might not be directly useful to a designer) such that the PCA and
SOM can stabilize.

In the first instance, components should be combined algebraically using what-
ever prior domain knowledge there is (for example, a set of related measure-
ments might be able to be combined usefully by adding or subtracting them,
as illustrated earlier). If this does not produce satisfactory results, compo-
nents can be combined with a ‘brute-force’ method, that is testing all possible
combinations. The basic algebraic operations (addition, subtraction, multipli-
cation, and division) are applied to each pair of components resulting in 4
more components for each original component-pair (Matthews, 2001). Finally,
in the event that this option is exhausted, it is possible that the design space is
too chaotic within its defined boundary, and the initial assumption about the
continuity of the mapping between design components is insufficiently true
for this method to generate heuristics successfully. In this event, either im-
portant design components are being omitted in the representation or there
are no continuous relationships between the components. In both cases, this
heuristics extraction method cannot be applied.

10

7 Core Technology

The basic analysis algorithm, or ‘core technology’, is some form of numerical
correlation. This core technology takes as input the (possibly) preprocessed
design data, and performs some analysis or re-representation of this data.
For comparison purposes, two data analysis algorithms were used: Principal
Components Analysis (PCA) and Self Organizing Maps (SOM).

This section will first state the necessary properties a design domain must
have for this to be successfully analyzed by this method. Following this, a brief
overview will given to the backgrounds of the two algorithms used. Subsequent
sections will then describe how the HEM implements these technologies as part
of the overall analysis method.

7.1 Space assumptions

There are some basic assumptions that need to be made about the properties
of the design space. As described in Section 6.3, designs are represented as a
real-valued vector. If there are a total of N components to this design vector,
the design space, X, can be embedded into R

N . Not all elements of R
N will be

legal designs (for example, a negative length component could be represented
in R

N , but would not be a member of X). This can be algebraically represented
as X ⊂ R

N . It shall be assumed that X forms a piecewise connected set, that
is for any design x ∈ X, there exists a small region centered around x that
lies fully within X. This assumption means that any design can be perturbed
(modified) by a small amount, and still be a legal design (see Figure 3). Note
that if the design space is the union of disjointed sets, i.e. X = ∪Xi, each Xi

represents a cluster of similar designs.
Insert

Fig-

ure 3

here

For practical matters, it will be necessary that any design sample distribution,
generated from the database of previous designs, has sufficiently large ‘chunks’
in each cluster. This is because a region needs to be sufficiently large to be
identified, and ideally, there needs to be several examples or elements (designs)
from this region to be able to learn about designs in this area of the domain.

A key assumption needed is that the mapping between design parameter sub-
space and evaluation sub-space is at least piecewise continuous. That is, for any
point within the design parameter sub-space, the mapping to the evaluation
sub-space will be continuous for at least a small region around the point in
parameter space (so a small change in the design parameters will result in no
more than a small change in the evaluation sub-space).

11

7.2 PCA overview

Principal Components Analysis (PCA) is a factor analysis type of statistical
method for analysing multivariate data (Diamantaras and Kung, 1996). PCA
identifies linear correlations within the data, and the variation of these cor-
relations. The first component is the linear correlation that can describe the
greatest variance within the dataset. These components are then ordered in
descending magnitude of variation in a manner such that the new co-ordinate
system remains orthogonal (see Figure 4). The new coordinate system, (f1, f2)
in the figure, represents a set of features in decreasing order of importance (as
determined by the component’s variance within the dataset) as each new co-
ordinate is a linear combination of the original variables, (x1, x2) in the figure.
Hence the PCA based algorithm is a feature extraction method, albeit a sim-
ple one. This is usually used to re-structure the data representation in such a
manner that the ‘less’ significant components can be identified and discarded,
thereby representing the data in a more compact form. For example, the data
in Figure 4 could be represented in one dimension by approximating it to a
line (discarding the deviation component from this line, which could possibly
be due to noise). With design data, this also provides a method of identifying
which of the design parameters have a lesser effect on the design during the
conceptual stage, and hence need not be precisely determined early on in the
design process.

Insert

Fig-

ure 4

here

For higher dimension spaces, let X represent the matrix of observations 2 (i.e.
each column xi represents observations for a particular parameter and the rows
represent individual observations). First, the covariance matrix, R = (rij), is
constructed:

rij = E[(xi − x̄i)(xj − x̄j)] (5)

where E[·] is the expectation operator and x̄i is the mean of the ith parameter.
Note that by the construction of R, it is a real symmetric matrix. A property
of real symmetric matrices is that they have real eigenvalues λi with associated
eigenvectors ei where eT

i ej = δij , i.e. the eigenvectors for distinct eigenvalues
are orthogonal. These eigenvectors represent the principal components of the
data. Further, the size of eigenvalues gives an indication of how important the
component is. It is therefore sensible to order the eigenvalues in descending
order (λ1 ≥ λ2 ≥ . . . ≥ λN).

The variable space can then be orthogonally transformed into feature space
using the matrix spanned by the (normalized) eigenvectors:

2 an observation is the numerical value for a parameter for a given design instance

12

Q =(e1 e2 · · · eN)T (6)

f =Qx (7)

where x represents a vector in variable space, f represents a vector in feature
space, and Q is the transformation matrix. This transformation matrix is a
linear re-representation of the design domain. Section 8.1 describes how this
matrix is analyzed to extract the design heuristics.

7.3 SOM overview

In its most simple interpretation, the Self Organizing Maps are an ‘elastic
network’ of points fitted to some given distribution (Kohonen, 1997). This
network has the interesting property that the network nodes (index vectors)
maintain the global ordering with respect to the original distribution space,
that is, there is no ‘knotting’ of the network. A knotted network would be
troublesome as traveling in one direction along the network would not guar-
antee that the same point in design space would not be revisited. The topology
preserving nature of this network results in the map produced forming a non-
parametric model for the design space.

The SOM is an unsupervised learning algorithm: that is, it must learn the
structure of the space without any prompts. The SOM is ‘trained’ by present-
ing it the sample data several times, with the SOM re-adjusting itself with
each iteration. The SOM is made up of a set of M nodes each containing a
codebook vector wi that represents a point in the design space. Initially, these
are set randomly. The data is then presented to the network in a random or-
der. For each data sample (x), a winning node c is the node whose codebook
vector has the greatest similarity to the data vector, in this case determined
by the Euclidean distance:

d(wc,x) ≤ d(wi,x) ∀i ∈ {1, . . . , M} (8)

The codebook vector of this winning node is then adjusted so that its distance
with this data vector would be decreased (where α is the ‘learning rate’ with
0 ≤ α ≤ 1):

w′
c = wc − α(wc − x) (9)

The neighboring nodes of c are also updated in a similar manner, but with
a smaller value of α. This ensures that the neighborhood remains topologi-
cally equivalent to the neighborhood of x in variable space. This procedure
is repeated for all data points, with α decreasing, until the codebook vectors
stabilize. Once this is achieved, the SOM is said to be ordered (or trained).

13

Once the network has been ordered, the nodes can be considered to be ‘clas-
sifiers’ of their regions within the design space. When the network is given a
design, the node that represents the area of domain that is most similar to
this given design is activated. Due to the topological ordering of the network,
moving to neighboring nodes represents moving to nearby regions within the
design space. The network can be considered to represent features locally, that
is, the network can be used to approximate the relationship between param-
eters for small regions represented by neighboring lattice points. In a similar
manner to identifying and interpreting the linear features discovered by PCA,
the SOM features will also need to be identified and interpreted by a domain
expert.

8 Post-processing

The post-processing algorithms that identify potential relationships from the
training data represent a novel method for knowledge elicitation and are a
significant contribution arising from this research. Two significantly differ-
ent post-processing algorithms are used to generate heuristics. This is due to
the difference in the output of the PCA and SOM algorithms. The overall
post-processing method involves the following steps: (1) analyze the output
for relationships between components; (2) simplify these relationships by de-
scribing them in a concise manner; (3) check these relationships with the full
sample distribution. The third step is required in the event the second step
oversimplified a relationship to the extent that it is incorrect.

The next sections describe the methods for extracting heuristics from the PCA
and SOM algorithms, and how these heuristics are checked against the sample
distribution.

8.1 Principal Components Analysis

As described in Section 7.2, PCA is a statistical technique that identifies the
linear dependence structure of a multivariate stochastic observation (Diaman-
taras and Kung, 1996). This dependence structure can be analyzed to extract
a set of implicit linear equations that describe the relationships between design
and evaluation parameters. These linear features are described as follows:

fi =
N∑

j=1

eijxj (10)

14

These features represent an orthogonal transformation of the axis (as described
by Equation 7), and are too complex for extracting useful heuristics: so any
terms with |eij| < Θ, are removed for some threshold Θ. Hence, the simplified
features are given by:

f ′
i =

∑

|eij |≥Θ

eijxj (11)

where Θ is chosen such that most features can be described using about 10 de-
sign parameters. Most of these simplified features can be given some physical
interpretation. For example, consider the design of a small autonomous vehi-
cle (see Section 10.1). Vehicles are characterized by five components: distance
between sensor array and drive axle (d); drive wheel diameter (w); number
of microswitches (n); construction quality, or ‘duty’ (D); and line following
ability (L). Of these five components, the first three are design parameters
(components that the designer can set) and the last two are evaluations (de-
termined as a result of the design parameters). Using data from the case study,
the first linear feature is given by:

f1 = 0.9996d + 0.0016w − 0.0018n + 0.0139D + 0.0225L

Simplifying this by setting Θ = 0.01 results in:

f ′
1 = 0.9996d + 0.0139D + 0.0225L

This feature indicates that the largest variation occurs with d, the distance
between the IR sensor array and the drive axle; and that increasing d increases
the duty score (D) and improves line following (L). The remaining two compo-
nents (wheel size and number of microswitches) appear to have little variation
with respect to variation in d, and hence are removed.

These features need to be examined individually to extract heuristics. Recall
that the factors, eij , are the eigenvector components of the covariance matrix
generated from the training distribution. Hence, in the simplified features, f ′

i ,
these will represent components that are either strongly correlated or anti-
correlated (depending on the sign). This linear scaling permits us to predict
how changing one component in the feature is likely to change the others and
by what amount.

The features can be grouped into three categories: features containing only de-
sign parameters; features containing only evaluation parameters; and features
containing both design and evaluation parameters. The features containing
only design parameters indicate how various design parameters are related,
and potentially provide an indication of how novel combinations could be made

15

by breaking such relationships. The features containing only evaluations indi-
cates how various evaluations are related (and therefore suggest trade-offs that
might need to be made). Finally, the features containing both design compo-
nents and evaluation components indicate how those designs and evaluations
are directly related.

The limitation of this method is that PCA generates a set of orthogonal linear
features. However, the actual design features are not necessarily either orthog-
onal or linear. Therefore it is desirable to use a non-linear method to produce
further results.

8.2 Self Organizing Maps

SOMs provide a simpler (low dimension) representation of a distribution in
a high dimensional space in a manner that ensures that the topology of the
distribution is maintained. From this simplified representation, the aim is to
extract knowledge about the distribution (i.e. heuristics about the particu-
lar design domain). The local non-linear correlation algorithm described in
Section 7.3 provides the basis for the knowledge extraction method.

The SOM generates a two dimensional map of the distribution using a regular
lattice of nodes. These nodes are representative points within the distribution.
The advantage of using a two dimensional map is that the distribution can be
easily visualized. This is accomplished by plotting the values of each compo-
nent of the distribution on its own 2D map (the value being represented by
shading). Components are correlated when their respective maps visually have
‘similar appearances’ (Figure 5(a)). Further, components can be locally cor-
related if they both have an area in which they appear similar, when globally
they are dissimilar (Figure 5(b)).

Anti-correlations (Figure 5(c)) are identified using an edge detection tech-
nique, based on the gradients of the component maps. Due to the small size
of the component maps, this is a coarse approximation to the true gradient
(or the edges are difficult to identify, see Figure 5(d)), and so results from
this method tend to be weaker. Both correlations and anti-correlations are
identified here.

Insert

Fig-

ure 5

here

Because of the large number of pairwise comparisons that have to be made,
clustering methods are used to identify smaller groups of component maps
that are worth more detailed comparison. Clustering is performed based on
the ‘visual’ similarity between maps, measured using a Tanimoto metric and
stored in a matrix (Matthews, 2001). The (i, j)th element of this matrix repre-
sents the similarity between component maps i and j. Originally, this matrix
was rearranged so that similar components were placed together in blocks,

16

which is a similar clustering procedure to that of Ling (1973). Figure 6 is a
graphical representation of the re-arranged similarity matrix. The two axes
represent the component indices, with the shading of each cell representing
the value of the corresponding matrix entry where black is no similarity rang-
ing through to white which represents complete similarity. Elements that are
below a given threshold are reset to zero. The blocks are similar to the features
generated by the PCA method, except that the similarity measure is quali-
tative rather than quantitative as is the case with the factors generated with
PCA. However, the main purpose is to generate small groups of components
that demonstrate similar characteristics. It is worth noting that this method
only discovers positive correlations, as it identifies similarity in matching val-
ues. As mentioned earlier, anti-correlations can be detected using the same
method on the second order method (edge detection) matrices.

Insert

Fig-

ure 6

here

A shortcoming of using the re-arranged similarity matrix is that it is difficult
to generate accurate groups of similar components. This is due to not being
able to generate mutually exclusive sets of components. From Figure 6, it
can be seen that the group structure is more complex than a set of mutually
exclusive sets, namely that there are overlapping regions.

There are various clustering techniques available, most of these generating hi-
erarchical partitions (Kaufman and Rousseeuw, 1990; Matthews et al., 2001).
One non-hierarchical method was mentioned (Jardine and Sibson, 1968), and
this was implemented to generate ‘clumps’ of components. These clumps rep-
resent a more natural grouping of components as each component can be in a
number of clumps, which can represent the (partial) similarity a component
has to each of these clumps. This is illustrated in Figure 7. On the left of this
figure, is an example of the shape a typical re-ordered similarity matrix will
have. Next to this, is a possible hierarchical representation of how the com-
ponents could be structured. It should be noted that for the elements from
the overlapping region (A ∩ B), a decision must be made as to which group
they shall belong to. A non-hierarchical clustering method does not have this
problem, as it is possible for groups to overlap when necessary (as shown with
the rightmost tree structure). However, it should be noted that the algorithm
implemented is computationally inefficient (memory-wise), and there will be
difficulties with analyzing high-dimensional distributions.

Insert

Fig-

ure 7

here

8.3 Component pruning

As discussed in Section 6.1, when initially parameterizing the design space,
the experimenter is encouraged to include more parameters than are believed
to be necessary. This is good practice, as it is more difficult to identify miss-
ing parameters than to identify redundant ones. Also, the preprocessing al-

17

gorithm introduces a large number of new combined components. However,
over-parameterization of the design space can present a problem when train-
ing neural networks if coupled with relatively sparsely populated data training
points, e.g. when there are only a couple of data points per dimension. It is
therefore desirable to reduce the dimensionality of the input data. The re-
dundancy identification (pruning) method can be summarized as identifying
components with little effect on the remainder of the design space.

A simple method to determine the number of components to be pruned is
by using the eigenvalues from PCA. As the eigenvalues decrease, the impor-
tance of the associated feature (and hence dimension in the feature space)
decreases. Therefore, a threshold is set and the linear features with associated
eigenvalues below this threshold are discarded. This determines the intrinsic

dimensionality of the design space, ni, and this number of original components
is selected.

The SOM is used to identify component pairs that behave similarly, based on
the component maps. Component maps that have little similarity to any other
can be assumed to represent redundant components, as these are not involved
in any relationships and therefore do not reveal any structure of the domain
(Matthews, 2001). This redundancy becomes clearer when the components are
grouped using a non-hierarchical clustering method, described in Section 8.2.
These redundant components will only occur in singleton groups.

It must be noted when pruning components that these components might
not be totally redundant: they might be components that need to be com-
bined with others in a preprocessing phase to identify meaningful relationships
within the design space. Therefore, it is recommended that before any compo-
nents are discarded, a domain expert should confirm that these components
are not likely to play an important role.

9 Generating and Evaluating Heuristics

The previous two sections involved the numerical processing of design data and
identifying sets of components that have some form of relationship between
them. This section describes how this information is interpreted to generate
linguistic (or algebraic, where appropriate) heuristics that can be readily used
by designers.

18

9.1 Principal Components Analysis

The final result of the PCA algorithm was a set of simplified linear rela-
tionships between components (recall Equation 11). It was argued that these
features represent design characteristics. Hence, these features can be trans-
formed into linguistic heuristics by describing the trends or correlations en-
coded by the linear relationship. Attention must be paid to the orthogonality
of the linear features, namely, if two features appear to contradict each other
the more important (according to the associated eigenvalue) should be used.

9.2 Self Organizing Maps

Analyzing the component similarity matrix results in a set of clumps of com-
ponents that share similar behaviors. Each of these clumps is taken in turn.
For each clump, all the member component maps are plotted side-by-side (see
Figure 5). These plots are visually inspected to determine the nature of the
similar behavior, namely, is the behavior shared globally or does it only occur
locally? If it occurs locally, what are the conditions for the shared behavior?
These relationships are expressed in a simple manner that reflects the com-
ponent maps (e.g. Figure 5(b) would be High EICO implies High EINOx).
Under certain conditions, the Tanimoto metric can falsely identify two maps
as similar. This occurs when one map is mainly covered by average values and
the other map has a significant number of its nodes at extreme values, thereby
causing the averages to be similar. An example of such a pair of maps is given
in Figure 8. This highlights the need to visually compare the component maps
to filter out such examples.

Insert

Fig-

ure 8

here

9.3 Checking against training data

The interpretation of the PCA and SOM outputs involves a ‘smoothing’ or
simplification process. This process can result in the over-simplification of
some relationships to the degree that they are no longer correct. Hence, it
is necessary to check the relationships generated against the original training
data.

The checking of the heuristics is achieved by plotting the components of the
relationship against each other. These plots fall into three categories:

(1) Continuous valued against continuous valued: this can be verified by a
scatter-plot (see Figures 9(a) and 9(b));

19

(2) Boolean against continuous valued: this can be verified using two fre-
quency plots (see Figures 9(c) and 9(d));

(3) Boolean against boolean: this can be verified using two frequency plots
(see Figures 9(e) and 9(f)).

Insert

Fig-

ure 9

here

The first of these verification methods is a traditional scatter-plot. In the
event that the points appear to lie on a curve, an exact relationship can
often be found by investigating the curve that best fits through the points
(see Figure 9(a)). If the scattering does not converge to any form of curve,
it can be inferred that there is no direct relationship between the two given
components (see Figure 9(b)).

Boolean components can arise from two types of component: either an origi-
nally boolean component (e.g. a member of a 1-of-k choice) or from a continu-
ous component that is split into cases, e.g. component values below and above
a certain threshold. A Boolean-continuous relationship will take the form of:
if component x lies in a given range, component y is more likely to take the
value y0 otherwise y is more likely to take the value y1. Note that this is a
probabilistic relationship rather than a definite one. This is a characteristic of
design heuristics: they do not hold in all cases, just a significant majority. The
inferred relationship can be verified by plotting (1) the frequency of elements
being classified as True according to the continuous component, and (2) the
frequency of elements being classified as False according to the continuous
component. If these two plots have most of their ‘mass’ at opposite ends of
the continuous component’s range, it can be inferred that this heuristic is cor-
rect (see Figure 9(c)); if the mass of both plots lie in the same place, it can
be inferred that the heuristic is incorrect (see Figure 9(d)).

The Boolean-Boolean relationship can be considered as a restricted version
of the Boolean-continuous relationship, namely the range has now been re-
placed with a True/False outcome space. In a similar manner to the Boolean-
continuous, such relationships can be verified by being able to infer (with rel-
atively high confidence) class membership (i.e. the one component) based on
the condition of the second component (see Figures 9(e) and 9(f), for positive
and negative examples respectively).

Heuristics that fail this self-verification stage are removed. The remaining
heuristics are now known to be accurate as far as the supplied training distri-
bution is concerned. The process of checking pairs of components might appear
to make the use of PCA and SOM redundant, however, this checking process
is considerably more expensive than generating the groups. The clustering
greatly reduces the number of component pairs that will need checking.

It is not known how useful or novel these heuristics are, and therefore it is
necessary to have a second verification round with a group of domain experts.

20

9.4 Expert verification of the HEM results

The final verification is done by a group of domain experts. This verification
of the heuristics serves three purposes: (1) how accurate are the heuristics
according to an expert’s opinion; (2) how novel are the heuristics; and (3) how
important are the heuristics. The first purpose aims to widen the context
beyond the training distribution by using the expert’s tacit domain knowledge.
This is also important to prove the heuristic generating method is capable of
identifying relationships accurately, and serves to validate the method. The
second purpose aims to measure how ‘interesting’ the heuristics are. This is
useful for targeting the heuristics to a particular expertise level, and ultimately
can be used to identify novel relationships that have been discovered from the
distribution. The third purpose is to gauge how important the heuristics are
for the domain.

The heuristics are evaluated using a paper method: each heuristic is reported
with an evaluation scoring table that is to be completed by the expert. The
experts are also encouraged to comment on the heuristics. Once this has been
completed, the heuristics that have scored well are kept. The heuristics that
have scored poorly according to the domain experts require further investi-
gation, as these relationships were verified as accurate with respect to the
training distribution. After further consideration, they can either be rejected
or included, in a modified form, in the final set.

Finally, this verification process provides an accuracy measure subjective to
the experts’ opinions. Therefore, it is possible that even where an expert be-
lieves there is no relationship, such a relationship does indeed exist.

Other methods exist for the purpose of evaluating machine learning, for exam-
ple Arciszewski (1997) and Reich and Barai (1999). However, for the purposes
of this research, such methods are not necessary as it is sufficient to demon-
strate that valid heuristics have been identified and extracted from the training
distribution.

10 Application of HEM to Case Studies

The scope of this research was to generate accurate relationships from a given
design domain. Hence, the method was able to be validated through the verifi-
cation of the accuracy of the outputs of the method applied to three case stud-
ies. The novelty and importance of the heuristics were also measured to gain
an indication of how applicable the HEM would be for industrial uses. These
case studies are reviewed, highlighting the conclusions that can be drawn from

21

each.

10.1 Integrated Design Project

The Integrated Design Project (IDP) involves teams of six students (2 will
become mechanical specialists, 2 electronic, and 2 software). These teams are
required to design, build and test a semi-autonomous vehicle that is able to
navigate a course (marked out by a white line) and perform various pallet
handling tasks, usually of the format fetch-classify-place. Each vehicle is con-
structed from a fixed kit of parts (with no restrictions on bulk materials such
as steel or wood) and must be completed in four weeks.

The IDP case study was based within the Department which permitted easy
access to prior design examples, their evaluations, and domain experts. This
case study represented a product that involved the interaction of different
modules (electrical, software, and mechanical). Only the mechanical module
was represented, as it was not possible to acquire previous design data, and
hence model, the electrical and software elements. While these are important
factors, the benefits of having both data and domain experts locally available
made this a valuable case study.

The PCA method produced a set of orthogonal linear features which proved to
be difficult to interpret into useful heuristics. The results generated from the
SOM method were considerably simpler to transform into heuristics. Further,
it was shown that 17 out of the 22 heuristics identified using the PCA method
were also identified using the SOM.

A total of 42 heuristics was generated. The heuristic accuracy verification re-
sulted in a total of 12 (28.6%) scoring as highly accurate, 13 (31.0%) scoring
as moderately accurate, and 15 (35.7%) scoring as not very accurate (leav-
ing 2 (4.8%) undecided). The novelty scores for these heuristics were roughly
opposite to the accuracy scores and the importance scores roughly followed
the accuracy scores. One of the shortcomings of this case study was the lack
of inclusion of the electrical and software modules. These interact with the
mechanical module, and can have either a positive or negative influence on
the design’s final performance.

10.2 Combustor

The combustor provides a core function of an aircraft gas turbine engine. Each
combustor design represents a very costly development, and hence there is the
desire to maximize the amount of information extracted from combustor rig

22

tests. Due to this expense, there were only a few examples to analyze. Further,
some of the examples had measurements missing. It is also known that the
combustor domain is non-linear, and hence that linear methods will not be
very successful. These properties hindered the use of the PCA method, as it
requires all measurements to be present. The SOM on the other hand, can be
trained with incomplete datasets.

Nevertheless, both PCA and SOM were used to process the data. To use the
PCA, the data elements with missing measurements were removed leaving 79
data points for 37 dimensions: i.e. about 2 data points per dimension. The lin-
ear features were compared to the heuristics generated from the SOM. A total
of 24 (51.1%) of the heuristics generated using the SOM could not have be
identified in the PCA results. The remaining heuristics that were potentially
identifiable from the PCA processing would require greater effort to be identi-
fied. This is because the SOM post-processing reports potential relationships
in a manner that is considerably easier to check. A rapid initial checking is
possible by comparing the relevant SOM component maps side-by-side prior
to further testing. There is no parallel method for rapidly checking small sets
of components for potential relationships with the PCA. No heuristics were
identified from the PCA processing that had not been identified using the
SOM.

A total of 47 heuristics was generated. The heuristic verification resulted in 27
(57.4%) scoring as highly accurate, 6 (12.8%) scoring as moderately accurate,
and 11 (23.4%) scoring as not very accurate (leaving 3 (6.4%) undecided).
Although a large portion of these heuristics did not score highly on novelty,
this case study demonstrated the potential of using the heuristics extraction
method as a means of generating a coarse design model for a given domain.

10.3 Wing

The wing case study represented the second industrial design project. This
differed from the combustor design domain in two ways. Firstly, the wing
designs used were a result of a genetic algorithm search of the design space
rather than actual wing designs. Secondly, the design space was represented
by a small number (13) of components in comparison to both the IDP (84)
and the combustor (37). A direct application of both PCA and SOM on this
dataset revealed no potential relationships. Hence, it was necessary to perform
the additional preprocessing step in the method.

A total of 25 heuristics was generated. These were represented as trade-offs
that would be expected in the design space and were phrased as algebraic
proportionalities, i.e. omitting all constants and coefficients, for example one

23

of the heuristics takes the form of A−B ∝ C ×D where A, B, C, D represent
wing design components. However, the domain experts were unable to verify
the heuristics for a two reasons. Firstly, the representation of the relationships
was difficult to follow and most of the relationships were not considered to be
relevant. This can be addressed by improving the formatting of the heuristics
to be less algebraic and to flag design components that the heuristics extraction
method should focus on. The second difficulty was that the wing design space
was not fully encoded. This resulted in the identification of overly general
relationships that were thought to be of little use to designers. More specific
relationships that take design context into account are needed.

A self verification method was developed to provide some measure of the
accuracy of the heuristics by measuring the ‘goodness’ of each heuristic. This
was achieved by measuring the variance of the data about the relation and the
overlap of these variances at the extreme ranges of the relationship. The aim
was to provide some means of scoring the heuristics that would be comparable
to the other two case studies. This scoring was possible as all the heuristics
were algebraic type relationships. However, no comment or measurement could
be provided on either the novelty or importance of these heuristics as these can
only be supplied by domain experts. This self-verification resulted in 8 (32%)
heuristics being scored as highly accurate, 7 (28%) scoring as moderately
accurate, and 8 (32%) scoring as not very accurate (leaving 2 (8%) undecided).

11 Discussion

This paper has described the research and development of a novel design data
analysis method aimed at the generation of heuristics. This heuristics extrac-
tion method used PCA and SOM at its core to analyze design data. These
techniques required the assumption that there was some form of piecewise con-
tinuous mapping between the design components (as discussed in Section 7.1).
This was wrapped by a methodology for collecting and preparing the design
data for the two numerical techniques. A method was developed to interpret
the results of these numerical techniques into relevant design relationships.
These relationships were then re-represented in the form of ‘design heuristics’,
with the aim of verifying the relationships using domain experts. There were
also developments for interfacing between the major elements of the HEM.
These were the preprocessing and filtering (‘component pruning’) algorithms
prior to the core processing, and the clustering method used to rapidly identify
groups of components sharing similar behavior (recall the overall structure as
shown in Figure 2).

In a more abstract sense, the HEM generates a set of ‘interesting questions’
to ask a domain expert. The full process of analyzing the design data, gener-

24

ating the relationships that form the basis of the questions, and using the ex-
perts’ answers forms the heuristic extraction method. The main challenge this
method faces is ensuring that the design space is sufficiently well described. It
was demonstrated that over-described design spaces could be reduced to the
relevant set of design components, but design spaces where important com-
ponents were missing were unlikely to provide useful results. The case studies
investigated in this paper illustrated these issues.

11.1 Exploitation

Once the heuristics have been extracted, there are several uses for them. The
most immediate is to inform designers of implicit relationships that exist be-
tween components in the design domain. Although there has been expert in-
tervention, this method is useful for four reasons: (1) the expert is given a set
of relationships (without explanation) rather than having to generate these;
(2) the expert might not be consciously aware of some of the relationships
and would not expressly write these down if asked; (3) some of the relation-
ships might be totally novel, and therefore unknown; and (4) these explicit
relationships can be used by novices to learn about the design domain. This
represents a relatively efficient use of an expert’s time for documenting and
acquiring knowledge about a design domain, as it only requires a single ‘inter-
view’ with the expert. Other methods typically require several interviews (for
example, the Spede method described in Ahmed (2001) requires between 5
and 12).

The heuristics can also be used to identify regions in the design space that have
not been explored. Such regions can be identified where there appear to be
relationships between components with no good reason, resulting in an extra
(implicit) constraint on the design space. Once these have been identified,
designers can either experiment in this region or rationalize the constraints,
which again leads to greater understanding of the design domain.

One final use of the heuristics is trend identification. This is where the relation-
ships are extended beyond the training distribution to generate estimates of
how a design family would behave if their design parameters were set beyond
the range of what has currently been tried. It should be noted that this can be
risky, as the relationships identified have only been verified within the training
distribution, and there might be some physical phenomena or constraints that
prevent the design distribution extending in this manner.

The development of the Heuristics Extraction Method has provided a novel
methodology for extracting design knowledge from databases of previous de-
signs. This methodology includes a method for presenting the computational

25

results to design experts, and using this process to focus their attention on
potentially unknown relationships that occur within the given design domain.
This analysis method potentially impacts the manner which empirical knowl-
edge is gathered, by automatically generating hypotheses (i.e. the relationships
identified). Researchers will then be able to focus on the interesting relation-
ships and further test them, either empirically or analytically.

11.2 HEM Requirements and Limitations

The HEM has a number of requirements which in turn imposes certain lim-
itations. These were given in Section 3.1 as a set of abstract mathematical
properties that a design space must have for the HEM to successfully identify
relationships. In design terms, these requirements state that:

(1) the designs used to train the HEM must all come from the same family,
i.e. a single representation can be used to describe all designs of this
family;

(2) there must be some continuity in this space, i.e. designs can be modified
by a small amount with no more than a small effect on the overall design;
and

(3) the design space must have been partially explored in some manner to
provide the training data for the HEM.

The three case studies satisfied these requirements. Each case study had a
representation that covered all design examples. From these representations,
continuous relationships existed between various components, even though
these were contained in more complex relationships in the wing case study.
Finally, each case study was based on a database of previous examples.

Of the above requirements, the continuity requirement provides the greatest
limitation. The HEM is not able to generate heuristics relating to components
that do not have continuous relationships with other design components. For
example, designs where the placement of some resonating element is used
would not have the continuity property: e.g. the element needs to be located
exactly for resonance to occur. This breaks the continuity requirement as a
small change in the position results in a large change in the overall design.
This is, for example, a property of designs where the reduction of audible noise
is an issue. Hence, it is not expected to be possible to analyze such domains
with the HEM.

26

12 Conclusions

The primary aim was to develop a method for extracting design heuristics
from a given set of previous design examples. This was achieved by identifying
relationships between various design components, which could be either design
parameters or evaluations. The overall heuristics extraction method used two
different data analysis algorithms at its core: Principal Components Analysis
and Self Organizing Maps. The post-processing of the results of these two
methods provided a novel means for identifying these heuristics. Two methods
were used to provide a comparison between the mature PCA method and the
more recent SOM. This demonstrated how the SOM’s flexibility could identify
more general relationships than PCA linear analysis.

This research aimed to extract accurate relationships from a given design do-
main by analyzing prior design examples. The three case studies demonstrated
this accuracy, and through this it can be inferred that the method developed
has reasonable validity for this purpose.

Two main contributions were provided for the mechanical design domain. The
first was a novel means of analyzing design domains using databases of previ-
ous examples from the domain. This analysis method provides designers with a
set of explicit heuristic-based relationships that provide greater understanding
of the domain. The second contribution arises from the first: the relationships
generated reflect any implicit rules or patterns designers follow, even if they
are not aware of doing so. In following such patterns, designers restrict their
search space. By highlighting such behavior, designers can ensure they escape
from such patterns and perform a more complete search of the design space.
Overall, the extracted heuristics provide an explicit description of the behavior
of the design space. This can be used by industry to help better understand
the design relationships of a current product line.

13 Future Work

As a result of this work, various aspects of the algorithm and technique have
been identified as requiring greater attention. These aspects can be divided
into the three main computational elements of the HEM: the preprocessing,
the numerical processing method, and the post-processing.

The preprocessing method could benefit from investigation into more sophisti-
cated methods to explore the relationship space, as opposed to a ‘brute-force’
recombination. A potential method being investigated is the use of genetic
programming techniques for searching the relationship space.

27

This paper describes two specific numerical processing methods (PCA and
SOM). It would be beneficial to investigate other such methods. Work is
planned on experimenting with using larger lattice dimensions for the SOM.
While this has the advantage of being able to more closely represent the de-
sign space, it will no longer be possible to generate two dimensional projection
maps, and therefore visualize the design space. This will require a more accu-
rate similarity metric to replace the Tanimoto metric currently being used.

Finally, the post-processing methods need to be improved. The non-hierarchical
clustering method implemented is too inefficient for very high dimensional
spaces. This clustering method is being reviewed to reduce the overheads it
incurs. Further, the method with which the final heuristics are generated and
presented to domain experts is also being reviewed, based on the results of
the wing case study.

Acknowledgments

This work was fully funded by the University Technology Partnership, a collab-
orative research project between the universities of Cambridge, Sheffield and
Southampton; and with industrial partners bae systems and Rolls-Royce.

References

Ahmed, S. (2001). Understanding the Use and Reuse of Experience in Engi-

neering Design, PhD thesis, Cambridge University Engineering Department.
Arciszewski, T. (1997). Engineering semantic evaluation of decision rules,

Journal of Intelligent and Fuzzy Systems 5: 285–295.
Ball, N. R., Matthews, P. C. and Wallace, K. M. (1998). Managing conceptual

design objects: An alternative to geometry, in J. S. Gero and F. Sudweeks
(eds), Artificial Intelligence in Design ’98, Kluwer, Dordrecht, Lisbon, Por-
tugal, pp. 67–86.

Corbett-Clark, T. A. (1998). Explanation from Neural Networks, DPhil thesis,
Department of Engineering Science, Oxford University.

Corbett-Clark, T. A. and Tarassenko, L. (1997). A principled framework and
technique for rule extraction from multi-layer perceptrons, Proceedings of

the 5th International Conference on Artificial Neural Networks, IEE Con-
ference Publication No 440, pp. 233–238.

Diamantaras, K. I. and Kung, S. Y. (1996). Principal Component Neural

Networks: Theory and Applications, Adaptive and Learning Systems for
Signal Processing, Communication, and Control, John Wiley, New York,
NY.

28

Jardine, N. and Sibson, R. (1968). The construction of hierarchic and non-
hierarchic classifications, The Computer Journal 11(2): 177–184.

Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups in Data: An Intro-

duction to Cluster Analysis, Probability and Mathematical Statistics, John
Wiley, New York, NY.

Kohonen, T. (1997). Self-Organizing Maps, number 30 in Springer Series in

Information Sciences, second edn, Springer-Verlag, Berlin.
Ling, R. F. (1973). A computer generated aid for cluster analysis, Communi-

cations of the ACM 16(6): 355–361.
Luger, G. F. (1994). Cognitive Science: The Science of Intelligent Systems,

Acadmic Press, San Diego, CA.
Matthews, P. C. (1998). Preliminary evaluation of conceptual mechanical de-

signs, First year report, Cambridge University Engineering Department.
Matthews, P. C. (2001). The Application of Self Organizing Maps in Concep-

tual Design, PhD thesis, Cambridge University Engineering Department.
Matthews, P. C., Langdon, P. M. and Wallace, K. M. (2001). New techniques

for design knowledge exploration: A comparison of three data grouping ap-
proaches, in S. J. Culley, A. H. B. Duffy, C. McMahon and K. M. Wallace
(eds), Proceedings of the 13th International Conference on Engineering De-

sign, Vol. 2, IMechE, Professional Engineering Publishing, London, Glas-
gow, pp. 107–113.

Matthews, P. C., Wallace, K. M. and Blessing, L. T. M. (2000). Design heuris-
tics extraction: Acquiring engineering knowledge from previous designs, in

J. S. Gero (ed.), Artificial Intelligence in Design 2000, Kluwer, Dordrecht,
pp. 435–453.

Reich, Y. and Barai, S. V. (1999). Evaluating machine learning models for
engineering problems, Artificial Intelligence in Engineering 13(2): 257–272.

Reich, Y. and Travitzky, N. (1995). Machine learning of material behaviour
knowledge from empirical data, Materials & Design 16(5): 251–259.

Rich, E. A. and Knight, K. (1991). Artificial Intelligence, second edn, McGraw-
Hill, Inc, New York.

Tickle, A. B., Andrews, R., Golea, M. and Diedrich, J. (1998). The truth
will come to light: Direction and challenges in extracting the knowledge
embedded within trained artificial neural networks, IEEE Transactions on

Neural Networks 9(6): 1057–1068.
Ultsch, A. (1993). Self organized feature maps for monitoring and knowl-

edge aquisition of a chemical process, in S. Gielen and B. Kappen (eds),
Proceedings of the International Conference of Artificial Neural Networks,
Springer-Verlag, London, pp. 864–867.

29

Report to Experts
(Verification)

Disseminate Knowledge
(Heuristics Output)

(Computational Element)
Process with PCA/SOM

Analyse and Parametrically
Represent Design Domain

if results
unsatisfactory

Data Collection & Preprocessing

Figure 1. Overview of the HEM process

Training
Algorithm

Report
Similarity

Training
Algorithm

(PCA/SOM)

Ver
ify

Tra
ini

ng

Data
Training

Data
Verification

Data
Design Data

Preprocessing
(optional)

Heuristics
Design

Component Similarity Metrics

Discussions with Domain Experts

if not satisfactory, preprocess

Figure 2. Overview of the heuristic extraction algorithm

30

x

X1

X2

X3

R
N

X = X1 ∪X2 ∪X3

Figure 3. Illustration of a piecewise connected set

x2

f1

f2

x1

Figure 4. The Principal Components of some two-dimensional data

31

550

600

650

700

750

800

850

Actual T30 (K)

10

15

20

25

30

Map: SOM 04−Jun−2000, Data: sCOMB, Size: 8 6

Actual W31 (lb/s) Mcc R1

(a) Basic (global) correlation

5

10

15

20

25

30

EICO

1

2

3

4

5

6

7

Map: SOM 04−Jun−2000, Data: sCOMB, Size: 8 6

EIHC

(b) Local correlation

10

20

30

40

50

60

70

EINOxC

65

70

75

80

85

90

95

Map: SOM 04−Jun−2000, Data: sCOMB, Size: 8 6

Effcy

(c) Anti correlated maps

10

20

30

40

50

60

EINOxC

5

10

15

20

25

30

35

40

45

Map: Edges of: SOM 04−Jun−2000, Data: sCOMB, Size: 8 6

Effcy

(d) Edge detection on anti-correlated
maps

Figure 5. Interpreting the Self Organizing Maps for a variety of cases

32

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Component Index

C
om

po
ne

nt
 In

de
x

Figure 6. The sorted Tanimoto similarity matrix: black = no similarity, white =
similarity (taken from the Combustor dataset)

Hierarchical Non-hierarchical

AA
A

BB

B

A ∩B

Figure 7. Illustration of hierarchical versus non-hierarchical clustering

−1.65

−1.6

−1.55

−1.5

−1.45

−1.4

−1.35

−1.3

Var28

1

2

3

4

5

6

7

8

9

Map: SOM 30−May−2001, Data: GA Wing data (extended), Size: 20 15

Var29

Figure 8. Example of where the Tanimoto metric has incorrectly identified two maps
as similar

33

(a) Continuous–continuous
data: example of positive ev-
idence for a relationship

(b) Continuous–continuous
data: example of negative
evidence for a relationship

Class A

Class B

(c) Boolean–continuous
data: example of positive
evidence for a relationship

(d) Boolean–continuous
data: example of negative
evidence for a relationship

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�A

B
A

B

False True

(e) Boolean–Boolean: exam-
ple of positive evidence for a
relationship

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

B

B

False True

A

A

(f) Boolean–Boolean: exam-
ple of negative evidence for a
relationship

Figure 9. Plots used to check heuristics against data: contrasting when a relationship
is present between components (left hand side) and when there is no relationship
(right hand side)

34

