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Stabilizing textures with magnetic fields
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The best-known way of stabilizing textures is by Skyrme-like terms, but another possibility is to use gauge
fields. The semilocal vortex may be viewed as an example of this, in two spatial dimensions. In three dimen-
sions, however, the ideg@n its simplest form does not work—the link between the gauge field and the scalar
field is not strong enough to prevent the texture from collapsing. ModifyingDide|? term in the Lagrangian
(essentially by changing the metric on tibespacé can strengthen this link, and lead to stability. Furthermore,
there is a limit in which the gauge field is entirely determined in terms of the scalar field, and the system
reduces to a pure Skyrme-like one. This is described for the gauge grdupitudimensions two and three.

The non-Abelian version is discussed briefly, but as yet no examples of texture stabilization are known in this
case.
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[. INTRODUCTION ity was indeed preserialthough, as reported below, we have
not been able to confirm this resultn a different Abelian
Textures are classical solutions which are characterized bgystem(involving a triplet of real scalar fields and a massive
a nonzero homotopy group4(T), d being the number of Abelian gauge fieldno stable textures could be fouh@].
space dimensions. The relevant systems typically involve &or the non-Abelian case, scaling arguments again suggest
scalar field® taking values in the target spade With a  stability (cf. [7]); but detailed investigation such B8] have
Lagrangian such dg#q)|2, and ford=2, configurations are produced negative results. The conclusion seems to be that
prone to imploddby the usual Derrick scaling argumenin  the scalar field and the gauge field have to be linked to each
an expanding universe, textures might be stabilized by thether sufficiently strongly in order to prevent each from col-
cosmological expansion; but we are interested here in caségpsing independently; and in “standard” systems, this link
where gravitational effects are negligible, and we take spacds not strong enough.
time to be flat. In flat space, the best-known way of stabiliz- The general framework is as follows. Suppose we have a
ing textures is to add a Skyrme term involving higher powerssystem involving a gauge fielgvith gauge grougs), and a
of 4,P. multiplet ® of scalar fields coupled to it. The “basic” La-
By contrast, vortices or monopoles correspond to a nongrangian of the system has the form
trivial 4_1(T), and(in their “local” versions) are stabilized
by gauge fields. Many similarities between textures and vor- L£=3|D,®|?=F(F,,)*~ V(D). (1)
tices or monopoles have been noted. For example, multi-
Skyrmions and Bogomol'nyi-Prasad-Sommerfie[@PS  For space dimensiod=2, the system defined by E¢l)
multimonopoles(located at a single point in spaceach ~may admit stable static solution$or example, semilocal
have a polyhedral structure corresponding to an appropriatéortices; but ford= 3 it seems not to—some modification is
subgroup of Od), and this has been partly understood inneeded. The idea pursued here is that the t&pw|? in the
terms of rational maps from the Riemann sphere to ifgglf ~ Lagrangian involves a choice of metric on the spacen
The purpose of this paper is to investigate the stabilization ofvhich ® takes its values, and we can change this metric. For
textures by gauge fields, and so in particular it explores &xample, if® is a complex vector, then the standard Euclid-
different sort of relation between the two classes of topologi€an metric igD®|>=(D®")(D®), whereDd" denotes the
cal solitons, generalizing the example provided by thecomplex-conjugate transpose Dfb. A natural modification
semilocal vortex2,3]. of this (see the following sectignis to add a term
The idea of stabilizing textures with gauge fields has beemZIQDTD#@IZ, where « is a constant. So we now have a
investigated before. One motivation has been the fact th&damily of systems, parametrized lay Taking the limitk—o
Skyrme terms are non-renormalizable, whereas gauge theenforces the constraint
ries may have better quantum behavior; but in this paper the
considerations are entirely classical. For the extended d)TD#CI)=O, 2
Abelian-Higgs modelwith the Higgs field being a complex
double}, it was pointed out if4] that an expansion in field which (under favorable circumstangegetermines the gauge
gradients produced a Skyrme-like term, which suggested stgotential in terms of®. So we have a family of systems
bility; at the time, this was not investigated in detail. More where, in an appropriate limit, the gauge degrees of freedom
recent numerical simulatior}s] seemed to show that stabil- disappear, and the Maxwell or Yang-Mills terrﬁ;(y)2 be-
comes a Skyrme term. This enables us to track a soliton
solution as it changes from a gauge-stabilized texture into a
*Email address: richard.ward@durham.ac.uk Skyrme-stabilized texture. In an appropriate limit of param-
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etersk, ... —o, one gets a Skyrme system which certainly scalingg to unity and writingg=«2. Using this modified
admits stable solitons; one question is for whiictite values  metric instead of the standard Euclidean one amounts to re-

of these parameters there are stable solitons. placing Eq.(3) by
Non-trivial examples of this idea have only been found in
the Abelian cas&=U(1), andthese are described in Secs. L£=3(D,®)"(D*®)+ 3,3 P'D,P|2—F(F,,)?
[l 'and Il (for d=2 andd= 3, respectively. A discussion of L £
the non-Abelian caseG=SU(2) ind=3] is given in the —FM1-0 D)% ®)

Sec. IV. The conclusion, therefore, is that textures can be
stabilized by(Abelian) magnetic fields, but no non-Abelian
version of this appears to be known.

It might be noted that the idea of adding a term
x*|®'D,®|?, and investigating how solitons depend on the
parameterk, has been investigated before; the simplest ex
ample(in a somewhat different contexis that of theCP*
model with no gauge fiel@].

The second modification is as follows. In order to have
stability for A>1, we need an extra potential term, which
necessarily breaks the $8) global symmetry(see for ex-
ample[14,15). We shall add to Eq(5) the terma|®?|?,
where « is a positive constant. In the Bogomolny case (
=0 and\A=1), there is now a unique minimium: it has
®2=0, and is the Nielsen-Olesen vortex with energy
=1Tr.

With these two modifications, the static energy density
IIl. SEMILOCAL VORTICES AND PLANAR SKYRMIONS of the system is given by

In this section we takel=2 (so space is the plare?),
and gauge group (). Let the Higgs fieldd be a complex
doublet ®=[®! ®2]'. The resulting extended Abelian- where V(®)=2\(1— )2+ 224|022, and where B;
Higgs system admits semilocal vortex soluti¢@s3]; and in e A IS thé magnetic field strengtﬁ !
g}etl’l]r:nCK; O:nlct)gglco'lr'?lzs,gaesn\évritﬁzh:tlilosnee\!/(/i?ki? kg;?:%v:;smn The boundary conditions are chosen to ensure finite en-

) i i ini L= -1 .
M-tuplet, leading in the limit to a Skyrme version of the Svrﬁg}equa_‘tlgjl) IBflg,ltX’Og]qe)_n}LisltKh?’://ﬁae)reﬁz isfa gjofr,l

M-1 ; ; . . =1; b= = , -

CP model, is straightforward; but for simplicity we shall stant 2-vector; andc) V(d)=0=K=[k 0] with |[k|=1.

H 1
res1t_rr|]c2 gtl;rﬁgxzﬂegrfoig?iz case. Because ofb) and(c), ® cannot be zero at spatial infinity;
grang and in order for®d to be single valuedf has to be single
valued. Hencd is a map from the circle at spatial infinity to
the gauge group @), and the degree of is the soliton
. . numberN. The total magnetic flux is proportional i) in the
whereD ,®=4,®—iA,®. For the semilocal vortex solu- g prop -

) h field © ' “hard > which usual way. The fact that there is nontrivial topology does not
tion, the gauge field provides a “hard core” which prevents o o ssarily mean that there are stable solitons; but the nu-

the soliton from shrinking. If @A <1, the single soliton is  erical work described below indicates that there are, at
stable; but forA>1 it is unstablg(it expands without limix least for certain ranges of the parameters\ and .

[10,11]. For A=1 there is a one-parameter family of static Taking the limit\ —o enforces the constraimb® =1
solutions saturating a Bogomolny bound, but these :soliton§SO ® takes values ir§%). If in addition k—, then the
are marginally unstablf12]. One member of this family is  inimum-energy configuration approaches one for which

26=(D;®)"(D;®)+ «*|®'D;®[2+(B))?+V(P), (6)

L=3(D,®)"(D*®)—3(F,,)*— i\ (1-0Td)?%, (3

(an embedding 9ofthe standard Nielsen-Olesen vortex. ®'D.d=0. and hence
Various relations between this system and @ model ) ’
have been noted befofef. [4,13]). For example, imposing Aj=—i®1gd. )

the constraintd'®=1 (this corresponds to letting the pa-

rameter\ tend to infinity), and scaling away theF(,,w)2 term  With A; given in terms of & by this expression,
leaves theCP! model [13]. But in order to have stable (chp)T(qu)) becomes the standa@P' energy, and $j)2
semilocal vortices which become Skyrmions as a limitingbecomes a Skyrme term. We can reexpress this as(an O
case, one needs to make some modifications. sigma model in the usual way: define a unit 3-vector figld

Recall, first, the symmetry of this systef]. The un- S g . . .
; by ¢=d"cd, whereo? are the Pauli matrices. This corre-
gauged system has an @Dglobal symmetry. On gauging a sponds to the standard Hopf map fr@h (the spaced’®

U(1) subgroup, this S@) is reduced to the product of the > > . . o .
local U(1) and a global S2); the field ® belongs to the =1) to S?. Strictly speaking, theb field is a vortex(wind-

fundamental representation of this @) The most general ing at spatial infinity; but the ¢ field, obtained from it by

SU(2)-invariant metric ol = C2 is hpoD®PD®?, where projection, is a texturéconstant at spatial infinijy Then in
PQ ’ the \, k—co limit, the energy densit¥ is given by

hpo(®.9)=0(£) Spq+ 9(£)Ppdq @ 8e = (0,3)(3,3)+(F 13X 0:)2+ 4a(1—F- §),

D ; = ; 8
and é=®POP=d®. The two functionsg andg are arbi- ®)
trary. But in the limitA —c, which is of particular interest wheren is a constant unit vector. This is a planar Skyrme
here, we hav&=1; so let us takey andg to be constants, system[16,17]. The energy of the Skyrmion solutions de-
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FIG. 1. The energ§ of the 1-soliton orR?, as a function of, FIG. 2. The energf of the 1-soliton orR?, as a function ok,
with =1 and\=1+«2. The dashed line is the energy of the With N=1+k2
planar Skyrmion obtained in the limi— oo.

® (provided it is nowhere zejalefines a map frorR® to S?

pends ona, and can be found by numerical minimization; which is constant at infinity, and hence is classified topologi-
for the 1-soliton witha=1 it is E=3.155%r. cally by the Hopf numbeN e m53(S?). For N=1, the field

The energyand the stability of the solitons in the system resembles a single vortex ring. The stability of sud¢k 1
(6) may be investigated numerically, as a function of theconfigurations has been investigated numerically, again by
three parametera, A and «, and of the soliton numbeX. minimization of the energy functional. The solitons cannot
This has been done for thd=1 case, witha=1 and\ be spherically symmetric, but one expects that for small
=1+ k2. The result is summarized in Fig. 1, which showsvalues of N they will be axially symmetric[21,22. So
the energyE as a function ofk=0. It was obtained by as- one can reduce the problem to a two-dimensional one
suming the standard form for(@-symmetric fields, namely which is not too difficult computationally. More precisely,
®I=1f(r)exp(iNg), ®>=g(r), A,=0 andA,=a(r), where one can use cylindrical coordinates, and impose an SO(2)
f, g, anda are real valued. The discrete version of the energyx SO(2)-invariant ansatz, as for example[&.
functional E[ f,g,a] was then minimized numerically, using Minima were sought for the one-parameter family of sys-
a conjugate-gradient method. For each valuecpfa stable tems obtained by setting= «?+1, and stable solitons were
solution was found. Note that, as expectedgoes fromE found for k=7.1. Their energy is plotted in Fig. 2. Far
=1 (the Nielsen-Olesen vortgxat k=0 and\=1, to E <7, however, the radius of the vortex ring shrinks to zero,

=3.155%r (the planar Skyrmionas k— and\ —o. and the field unwinds: there is no stable minimum. When
x (and therefore\) tend to infinity, the normalized energy
Ill. VORTEX RINGS AND HOPF TEXTURES E'=E/4w approaches the valug),=1.73 (obtained by ex-

) ) ) ) trapolation of the data in Fig.)2This is exactly the energy of

In this section we investigate the same systénas be-  the single Hopf soliton: froni26], and allowing for different
fore, but in spatial dimensiod= 3. The extra potential term coupling constants, we get the valfé=1.22y2=1.73.
is omitted(in other words»=0), so the global S(2) sym- The analogous computation previously reportefBifor
metry is unbroken. One may form a texture configuration byine =0 case suggested that one might have stability for
taking a finite length of semilocal vortex with its ends joined fairly small values ofn (of order unity. The results de-
together to form a loop in 3-space, and it has previously beegcrihed above do not confirm this, and in fact no stable so-
speculated that such a texture might be st@/g. lution could be found foik=0, even with\ quite large. But

The energy density is given by E(), with a=0; sothe (55 emphasized if5]), there might be local minima in the
system depends on the two parameternd . In the limit  configuration space which are difficult to detect, and which
A, k—o, we again get ais’-valued scalar fieldb, with the  yequire an initial condition which is very close to the actual
gauge potential being given by E@?); it has previously  gojytion. So it remains an open question as to whether stable
been pointed outcf. [18,19) that this limit is equivalent to  grtex rings exist for small values af and\. It is, however,
the Faddeev-Hopf systefi20—-26. So there are stable ring the case that the configuration which is stable £or 7.1,

like solitons in the limit; the question here is whether they, —_51 4 collapses ifc and\ are reduced tac=7, A =50.
are stable for finite values of and\. ’

The boundary conditions imply, as before, thdt
=[®! d?]'=f 1K atr=, whereK is a constant 2-vector;
soW=®1/d? is constant at spatial infinity. Thinking of/ As mentioned in the Introduction, the question of whether
as a stereographic coordinate P! therefore shows that textures can be stabilized by a non-Abelian gauge field has

IV. NON-ABELIAN GAUGE FIELD
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previously been investigated; there are suggestions based @8m « and 8). Let « and B8 be the values of such that
simple scaling argumentsf. [7]), but more detailed studies {(gy=1/4 andg(«)= /4. In other wordsw and 3 are the
have yielded negative resultsf. [8]). Let us look at the -« aqii" of the scalar field and the gauge field, respectively.

three-dimensional cased€3), with gauge group S@). More explicitly, takef andg to have the form
The field ® belongs to some representatibnof SQ(3); so

we have to choosé’, as well as an appropriate potential .
function V(®). For example, for the 't Hooft—Polyakov e for 0=r<gp
monopole one uses the fundamental representdfierB. 432
The simplest extension of this is the four-dimensional repre- f(r)= :
sentation I'=1®3. The corresponding system admits E_E for r=p
monopole-like soliton solutions which have been referred to (2 4r
as semilocal monopold8]. (Another simple extension iE
=3®3, the corresponding solitons being referred to as col- . 2
ored monopole$ll].) 1+ - for O<r=<a
Let us look at thel®3 case: soED:(d)O,J)) is a four- B a?
vector. Take the potential function to b¢1—|®|?)?; so for cosg(r)=
large A, we get the constraiftb|?>~1. One may then im- 1-— for r=a
pose texture boundary conditionsather than monopole L r
boundary conditions namely, ® tends to a constant as
r—o in R%. So® is effectively a map frong® to S°, and it One can compute the enerd§(a,B) of this configura-
has a winding numbeN. The stability of spherically sym- tion exactly: it is a rational function of and 3. In partic-
metric N=1 configurations has been studied numerically—ylar, for g=1/a the energy has the fornE(a,1la)
the details are as follows. = a X (polynomial in@). The salient point about this form is
For simplicity, we shall take th&— limit, so |®|*>  that its minimum occurs whea=0; this corresponds to the
=1; and the metric orb space to be flatno extra term  scalar field shrinking to zero width, while the gauge field
analogous to<’|®'D;®[?). The energy density is spreads out. As one sees from the usual Derrick scaling ar-
s . gument used if7], the contribution to the energy from the
£=3ID;®|?+ 2 (Fj)?, ©) |D;®|? term can be reduced by scaling one way, while the
where D;®=(d;o,, ¢a_26abcAJb¢C)_ To implement contribution from ij)2 can be reduced by scaling the other .
way. But the system as a whole can never reach a balance:
the gauge field and the scalar field are just not sufficiently
strongly coupled to each other to prevent each one from col-
Al= e X ()12, po=co(r), ¢*=x3sing(r)/r, lapsing separately. As was remarked before, these results do
e not actually prove the absence of a stable solution: there
(10 might still be a local minimum somewhere in the configura-
with the boundary condition§(0)=0, f(«<)=3, g(0)=, tion space. But it seems rather unlikely that this system does

spherical symmetry, we také and the gauge potentiél to
have the standard “hedgehog” form

g(e°)=0. The energy density then becomes admit a stable texture.
As in the preceding sections, one can modify the metric
ff 2f%(f-1)% g7 sirfg on ® space, and this may improve the stability properties.
&= r—2+ 4 ot r2 [1+4f(f=1)]. That possibility has not yet been fully investigated; but cer-

(11) tainly there is no gauge-invariant extra term, the vanishing of

which determines the gauge potential as in the Abelian case

One can then minimize the energy numerically; this wag7). So the idea of obtaining the usual Skyrme model as a
done using a conjugate-gradient method, with various initialimit does not quite work in this non-Abelian case. Using
conditions. But no smooth minimum could be found—in ev-other representationk, and for that matter other gauge
ery case, botlf and g collapse towards being zero almost groups, opens up many more possibilities, which are still to
everywhere. be explored. But for the time being, it remains the case that

One can see this collapse analytically, in the followingthere are no known examples of three-dimensional systems
highly simplified versior(involving just two degrees of free- in which a texture is stabilized by a non-Abelian gauge field.
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