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Stabilizing textures with magnetic fields

R. S. Ward*
Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, United Kingdom

~Received 27 May 2002; published 9 August 2002!

The best-known way of stabilizing textures is by Skyrme-like terms, but another possibility is to use gauge
fields. The semilocal vortex may be viewed as an example of this, in two spatial dimensions. In three dimen-
sions, however, the idea~in its simplest form! does not work—the link between the gauge field and the scalar
field is not strong enough to prevent the texture from collapsing. Modifying theuDFu2 term in the Lagrangian
~essentially by changing the metric on theF space! can strengthen this link, and lead to stability. Furthermore,
there is a limit in which the gauge field is entirely determined in terms of the scalar field, and the system
reduces to a pure Skyrme-like one. This is described for the gauge group U~1!, in dimensions two and three.
The non-Abelian version is discussed briefly, but as yet no examples of texture stabilization are known in this
case.
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I. INTRODUCTION

Textures are classical solutions which are characterize
a nonzero homotopy grouppd(T), d being the number of
space dimensions. The relevant systems typically involv
scalar fieldF taking values in the target spaceT. With a
Lagrangian such asu]mFu2, and ford>2, configurations are
prone to implode~by the usual Derrick scaling argument!. In
an expanding universe, textures might be stabilized by
cosmological expansion; but we are interested here in c
where gravitational effects are negligible, and we take spa
time to be flat. In flat space, the best-known way of stabi
ing textures is to add a Skyrme term involving higher pow
of ]mF.

By contrast, vortices or monopoles correspond to a n
trivial pd21(T), and~in their ‘‘local’’ versions! are stabilized
by gauge fields. Many similarities between textures and v
tices or monopoles have been noted. For example, m
Skyrmions and Bogomol’nyi-Prasad-Sommerfield~BPS!
multimonopoles~located at a single point in space! each
have a polyhedral structure corresponding to an approp
subgroup of O(d), and this has been partly understood
terms of rational maps from the Riemann sphere to itself@1#.
The purpose of this paper is to investigate the stabilization
textures by gauge fields, and so in particular it explore
different sort of relation between the two classes of topolo
cal solitons, generalizing the example provided by
semilocal vortex@2,3#.

The idea of stabilizing textures with gauge fields has b
investigated before. One motivation has been the fact
Skyrme terms are non-renormalizable, whereas gauge t
ries may have better quantum behavior; but in this paper
considerations are entirely classical. For the exten
Abelian-Higgs model~with the Higgs field being a comple
doublet!, it was pointed out in@4# that an expansion in field
gradients produced a Skyrme-like term, which suggested
bility; at the time, this was not investigated in detail. Mo
recent numerical simulations@5# seemed to show that stabi
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ity was indeed present~although, as reported below, we hav
not been able to confirm this result!. In a different Abelian
system~involving a triplet of real scalar fields and a massi
Abelian gauge field! no stable textures could be found@6#.
For the non-Abelian case, scaling arguments again sug
stability ~cf. @7#!; but detailed investigation such as@8# have
produced negative results. The conclusion seems to be
the scalar field and the gauge field have to be linked to e
other sufficiently strongly in order to prevent each from c
lapsing independently; and in ‘‘standard’’ systems, this li
is not strong enough.

The general framework is as follows. Suppose we hav
system involving a gauge field~with gauge groupG), and a
multiplet F of scalar fields coupled to it. The ‘‘basic’’ La
grangian of the system has the form

L5 1
2 uDmFu22 1

4 ~Fmn!22V~F!. ~1!

For space dimensiond52, the system defined by Eq.~1!
may admit stable static solutions~for example, semilocal
vortices!; but for d53 it seems not to—some modification
needed. The idea pursued here is that the termuDmFu2 in the
Lagrangian involves a choice of metric on the spaceT in
which F takes its values, and we can change this metric.
example, ifF is a complex vector, then the standard Eucl
ean metric isuDFu25(DF†)(DF), whereDF† denotes the
complex-conjugate transpose ofDF. A natural modification
of this ~see the following section! is to add a term
k2uF†DmFu2, where k is a constant. So we now have
family of systems, parametrized byk. Taking the limitk→`
enforces the constraint

F†DmF50, ~2!

which ~under favorable circumstances! determines the gaug
potential in terms ofF. So we have a family of system
where, in an appropriate limit, the gauge degrees of freed
disappear, and the Maxwell or Yang-Mills term (Fmn)2 be-
comes a Skyrme term. This enables us to track a sol
solution as it changes from a gauge-stabilized texture in
Skyrme-stabilized texture. In an appropriate limit of para
©2002 The American Physical Society01-1
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etersk, . . .→`, one gets a Skyrme system which certain
admits stable solitons; one question is for whichfinite values
of these parameters there are stable solitons.

Non-trivial examples of this idea have only been found
the Abelian caseG5U(1), andthese are described in Sec
II and III ~for d52 andd53, respectively!. A discussion of
the non-Abelian case@G5SU(2) in d53# is given in the
Sec. IV. The conclusion, therefore, is that textures can
stabilized by~Abelian! magnetic fields, but no non-Abelia
version of this appears to be known.

It might be noted that the idea of adding a ter
k2uF†DmFu2, and investigating how solitons depend on t
parameterk, has been investigated before; the simplest
ample~in a somewhat different context! is that of theCP1

model with no gauge field@9#.

II. SEMILOCAL VORTICES AND PLANAR SKYRMIONS

In this section we taked52 ~so space is the planeR2),
and gauge group U~1!. Let the Higgs fieldF be a complex
doublet F5@F1 F2# t. The resulting extended Abelian
Higgs system admits semilocal vortex solutions@2,3#; and in
the limit k→` it becomes, as we shall see, a Skyrme vers
of the CP1 model. The generalization withF being an
M-tuplet, leading in the limit to a Skyrme version of th
CPM21 model, is straightforward; but for simplicity we sha
restrict ourselves here to theCP1 case.

The standard Lagrangian is

L5 1
2 ~DmF!†~DmF!2 1

4 ~Fmn!22 1
8 l~12F†F!2, ~3!

where DmF5]mF2 iAmF. For the semilocal vortex solu
tion, the gauge field provides a ‘‘hard core’’ which preven
the soliton from shrinking. If 0,l,1, the single soliton is
stable; but forl.1 it is unstable~it expands without limit!
@10,11#. For l51 there is a one-parameter family of sta
solutions saturating a Bogomolny bound, but these solit
are marginally unstable@12#. One member of this family is
~an embedding of! the standard Nielsen-Olesen vortex.

Various relations between this system and theCP1 model
have been noted before~cf. @4,13#!. For example, imposing
the constraintF†F51 ~this corresponds to letting the pa
rameterl tend to infinity!, and scaling away the (Fmn)2 term
leaves theCP1 model @13#. But in order to have stable
semilocal vortices which become Skyrmions as a limiti
case, one needs to make some modifications.

Recall, first, the symmetry of this system@3#. The un-
gauged system has an SO~4! global symmetry. On gauging
U~1! subgroup, this SO~4! is reduced to the product of th
local U~1! and a global SU~2!; the field F belongs to the
fundamental representation of this SU~2!. The most genera
SU~2!-invariant metric onT5C2 is hPQDFPDF̄Q, where

hPQ~F,F̄!5g~j!dPQ1g̃~j!F̄PFQ ~4!

and j5F̄PFP5F†F. The two functionsg and g̃ are arbi-
trary. But in the limitl→`, which is of particular interes
here, we havej[1; so let us takeg and g̃ to be constants
04170
e
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scaling g to unity and writing g̃5k2. Using this modified
metric instead of the standard Euclidean one amounts to
placing Eq.~3! by

L5 1
2 ~DmF!†~DmF!1 1

2 k2uF†DmFu22 1
4 ~Fmn!2

2 1
8 l~12F†F!2. ~5!

The second modification is as follows. In order to ha
stability for l.1, we need an extra potential term, whic
necessarily breaks the SU~2! global symmetry~see for ex-
ample @14,15#!. We shall add to Eq.~5! the termauF2u2,
wherea is a positive constant. In the Bogomolny casek
50 and l51), there is now a unique minimium: it ha
F250, and is the Nielsen-Olesen vortex with energyE
5p.

With these two modifications, the static energy densityE
of the system is given by

2E5~D jF!†~D jF!1k2uF†D jFu21~Bj !
21V~F!, ~6!

where V(F)5 1
4 l(12F†F)212auF2u2, and where Bj

5e jkl]kAl is the magnetic field strength.
The boundary conditions are chosen to ensure finite

ergy. At spatial infinity, one must have~a! Aj5 f 21] j f ,
where u f u51; ~b! D jF50⇒F5 f 21K, whereK is a con-
stant 2-vector; and~c! V(F)50⇒K5@k 0# t with uku51.
Because of~b! and ~c!, F cannot be zero at spatial infinity
and in order forF to be single valued,f has to be single
valued. Hencef is a map from the circle at spatial infinity t
the gauge group U~1!, and the degree off is the soliton
numberN. The total magnetic flux is proportional toN, in the
usual way. The fact that there is nontrivial topology does
necessarily mean that there are stable solitons; but the
merical work described below indicates that there are,
least for certain ranges of the parametersa, l andk.

Taking the limit l→` enforces the constraintF†F51
~so F takes values inS3). If in addition k→`, then the
minimum-energy configuration approaches one for wh
F†D jF50, and hence

Aj52 iF†] jF. ~7!

With Aj given in terms of F by this expression,
(D jF)†(D jF) becomes the standardCP1 energy, and (Bj )

2

becomes a Skyrme term. We can reexpress this as an~3!

sigma model in the usual way: define a unit 3-vector fieldfW

by fW 5F†sW F, wheresa are the Pauli matrices. This corre
sponds to the standard Hopf map fromS3 ~the spaceF†F
51) to S2. Strictly speaking, theF field is a vortex~wind-
ing at spatial infinity!; but thefW field, obtained from it by
projection, is a texture~constant at spatial infinity!. Then in
the l,k→` limit, the energy densityE is given by

8El,k→`5~] jfW !•~] jfW !1~fW •]1fW 3]2fW !214a~12nW •fW !,

~8!

wherenW is a constant unit vector. This is a planar Skyrm
system@16,17#. The energy of the Skyrmion solutions de
1-2
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pends ona, and can be found by numerical minimizatio
for the 1-soliton witha51 it is E53.1557p.

The energy~and the stability! of the solitons in the system
~6! may be investigated numerically, as a function of t
three parametersa, l andk, and of the soliton numberN.
This has been done for theN51 case, witha51 and l
511k2. The result is summarized in Fig. 1, which show
the energyE as a function ofk>0. It was obtained by as
suming the standard form for O~2!-symmetric fields, namely
F15 f (r )exp(iNu), F25g(r ), Ar50 andAu5a(r ), where
f, g, anda are real valued. The discrete version of the ene
functionalE@ f ,g,a# was then minimized numerically, usin
a conjugate-gradient method. For each value ofk, a stable
solution was found. Note that, as expected,E goes fromE
5p ~the Nielsen-Olesen vortex! at k50 and l51, to E
53.1557p ~the planar Skyrmion! ask→` andl→`.

III. VORTEX RINGS AND HOPF TEXTURES

In this section we investigate the same system~5! as be-
fore, but in spatial dimensiond53. The extra potential term
is omitted~in other words,a50), so the global SU~2! sym-
metry is unbroken. One may form a texture configuration
taking a finite length of semilocal vortex with its ends join
together to form a loop in 3-space, and it has previously b
speculated that such a texture might be stable@4,5#.

The energy density is given by Eq.~6!, with a50; so the
system depends on the two parametersl andk. In the limit
l,k→`, we again get anS3-valued scalar fieldF, with the
gauge potential being given by Eq.~7!; it has previously
been pointed out~cf. @18,19#! that this limit is equivalent to
the Faddeev-Hopf system@20–26#. So there are stable rin
like solitons in the limit; the question here is whether th
are stable for finite values ofk andl.

The boundary conditions imply, as before, thatF
5@F1 F2# t5 f 21K at r 5`, whereK is a constant 2-vector
so W5F1/F2 is constant at spatial infinity. Thinking ofW
as a stereographic coordinate forCP1 therefore shows tha

FIG. 1. The energyE of the 1-soliton onR2, as a function ofk,
with a51 and l511k2. The dashed line is the energy of th
planar Skyrmion obtained in the limitk→`.
04170
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F ~provided it is nowhere zero! defines a map fromR3 to S2

which is constant at infinity, and hence is classified topolo
cally by the Hopf numberNPp3(S2). For N51, the field
resembles a single vortex ring. The stability of suchN51
configurations has been investigated numerically, again
minimization of the energy functional. The solitons cann
be spherically symmetric, but one expects that for sm
values of N they will be axially symmetric@21,22#. So
one can reduce the problem to a two-dimensional o
which is not too difficult computationally. More precisel
one can use cylindrical coordinates, and impose an SO
3SO(2)-invariant ansatz, as for example in@5#.

Minima were sought for the one-parameter family of sy
tems obtained by settingl5k211, and stable solitons wer
found for k>7.1. Their energy is plotted in Fig. 2. Fork
<7, however, the radius of the vortex ring shrinks to ze
and the field unwinds: there is no stable minimum. Wh
k ~and thereforel) tend to infinity, the normalized energ
E85E/4p approaches the valueE8̀ 51.73 ~obtained by ex-
trapolation of the data in Fig. 2!. This is exactly the energy o
the single Hopf soliton: from@26#, and allowing for different
coupling constants, we get the valueE851.22A251.73.

The analogous computation previously reported in@5# for
the k50 case suggested that one might have stability
fairly small values ofl ~of order unity!. The results de-
scribed above do not confirm this, and in fact no stable
lution could be found fork50, even withl quite large. But
~as emphasized in@5#!, there might be local minima in the
configuration space which are difficult to detect, and wh
require an initial condition which is very close to the actu
solution. So it remains an open question as to whether st
vortex rings exist for small values ofk andl. It is, however,
the case that the configuration which is stable fork57.1,
l551.4 collapses ifk andl are reduced tok57, l550.

IV. NON-ABELIAN GAUGE FIELD

As mentioned in the Introduction, the question of wheth
textures can be stabilized by a non-Abelian gauge field

FIG. 2. The energyE of the 1-soliton onR3, as a function ofk,
with l511k2.
1-3
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previously been investigated; there are suggestions base
simple scaling arguments~cf. @7#!, but more detailed studie
have yielded negative results~cf. @8#!. Let us look at the
three-dimensional case (d53), with gauge group SO~3!.
The fieldF belongs to some representationG of SO~3!; so
we have to chooseG, as well as an appropriate potenti
function V(F). For example, for the ’t Hooft–Polyako
monopole one uses the fundamental representationG53.
The simplest extension of this is the four-dimensional rep
sentation G51% 3. The corresponding system admi
monopole-like soliton solutions which have been referred
as semilocal monopoles@3#. ~Another simple extension isG
53% 3, the corresponding solitons being referred to as c
ored monopoles@11#.!

Let us look at the1% 3 case: soF5(f0 ,fW ) is a four-
vector. Take the potential function to bel(12uFu2)2; so for
large l, we get the constraintuFu2'1. One may then im-
pose texture boundary conditions~rather than monopole
boundary conditions!: namely, F tends to a constant a
r→` in R3. SoF is effectively a map fromS3 to S3, and it
has a winding numberN. The stability of spherically sym-
metric N51 configurations has been studied numerically
the details are as follows.

For simplicity, we shall take thel→` limit, so uFu2
[1; and the metric onF space to be flat~no extra term
analogous tok2uF†D jFu2). The energy density is

E5 1
2 uD jFu21 1

4 ~F jk!2, ~9!

where D jF5(] jf0 ,] jf
a22eabcAj

bfc). To implement
spherical symmetry, we takeF and the gauge potentialA to
have the standard ‘‘hedgehog’’ form

Aj
a5e jakx

kf ~r !/r 2, f05cosg~r !, fa5xasing~r !/r ,

~10!

with the boundary conditionsf (0)50, f (`)5 1
2 , g(0)5p,

g(`)50. The energy density then becomes

E5
f r

2

r 2
1

2 f 2~ f 21!2

r 4
1

gr
2

2
1

sin2g

r 2
@114 f ~ f 21!#.

~11!

One can then minimize the energy numerically; this w
done using a conjugate-gradient method, with various ini
conditions. But no smooth minimum could be found—in e
ery case, bothf and g collapse towards being zero almo
everywhere.

One can see this collapse analytically, in the followi
highly simplified version~involving just two degrees of free
ys

04170
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dom a and b). Let a and b be the values ofr such that
f (b)51/4 andg(a)5p/4. In other words,a andb are the
‘‘radii’’ of the scalar field and the gauge field, respective
More explicitly, takef andg to have the form

f ~r !55
r 2

4b2
for 0<r<b

1

2
2

b

4r
for r>b 6 ,

cosg~r !55 211
r 2

a2
for 0<r<a

12
a2

r 2
for r>a 6 .

One can compute the energyE(a,b) of this configura-
tion exactly: it is a rational function ofa and b. In partic-
ular, for b51/a the energy has the formE(a,1/a)
5a3~polynomial ina!. The salient point about this form i
that its minimum occurs whena50; this corresponds to the
scalar field shrinking to zero width, while the gauge fie
spreads out. As one sees from the usual Derrick scaling
gument used in@7#, the contribution to the energy from th
uD jFu2 term can be reduced by scaling one way, while t
contribution from (F jk)2 can be reduced by scaling the oth
way. But the system as a whole can never reach a bala
the gauge field and the scalar field are just not sufficien
strongly coupled to each other to prevent each one from
lapsing separately. As was remarked before, these result
not actually prove the absence of a stable solution: th
might still be a local minimum somewhere in the configur
tion space. But it seems rather unlikely that this system d
admit a stable texture.

As in the preceding sections, one can modify the me
on F space, and this may improve the stability properti
That possibility has not yet been fully investigated; but c
tainly there is no gauge-invariant extra term, the vanishing
which determines the gauge potential as in the Abelian c
~7!. So the idea of obtaining the usual Skyrme model a
limit does not quite work in this non-Abelian case. Usin
other representationsG, and for that matter other gaug
groups, opens up many more possibilities, which are stil
be explored. But for the time being, it remains the case t
there are no known examples of three-dimensional syst
in which a texture is stabilized by a non-Abelian gauge fie
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