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Abstract

Calorons (periodic instantons) interpolate between monopoles and instantons, and their holonomy gives app
Skyrmion configurations. We show that, for each caloron chargeN � 4, there exists a one-parameter family of caloro
which are symmetric under subgroups of the three-dimensional rotation group. In each family, the corresponding sy
monopoles and symmetric instantons occur as limiting cases. Symmetric calorons therefore provide a connection
symmetric monopoles, symmetric instantons and Skyrmions.
 2004 Published by Elsevier B.V.

PACS: 11.27.+d; 11.10.Lm; 11.15.-q

1. Introduction

Calorons are finite-action self-dual gauge fields in four dimensions, which are periodic in one of th
coordinates. Call the periodic coordinatet , with periodβ . Special cases include instantons onR4 (whereβ→ ∞)
and BPS monopoles (where the gauge field is independent oft). The holonomyΩ of the gauge field in the
t-direction is a map fromR3 to the gauge group, and as such can serve as an approximation to Skyrmio
Calorons therefore provide a link between monopoles, instantons and Skyrmions.

Skyrmions resemble polyhedral shells, invariant under appropriate subgroups of the three-dime
rotation groupO(3) [2,3]. The idea of producing approximate Skyrmion configurations as instanton holo
has motivated several studies of instantons invariant under such groups [4–7]. Finally, there are sy
monopoles [8] which have the same polyhedral shape as the Skyrmions of corresponding charge, sug
kinship between Skyrmions and monopoles [9]. So symmetric calorons, namely calorons invariant under su
G of O(3) (rotations about thet-axis), are relevant in this context. This Letter demonstrates the existen
symmetric calorons of chargeN , for N � 4; they include, as limiting cases, symmetric monopoles and symm
instantons.

Large classes of calorons were described some years ago [10–13]; of these, only theN = 1 case admits th
relevant symmetry. So one needs more general solutions. There is a construction (the ADHMN constructio

E-mail address: richard.ward@durham.ac.uk (R.S. Ward).

Open access under CC BY license.
0370-2693 2004 Published by Elsevier B.V.
doi:10.1016/j.physletb.2003.12.051

Open access under CC BY license.

http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


204 R.S. Ward / Physics Letters B 582 (2004) 203–210

ars, this
olonomy
ns as

al

the

ckiw–
)

generates caloron solutions [14], possibly all of them (see [15] for a recent analysis). In the last few ye
construction has been used to investigate and interpret caloron solutions, especially those for which the h
Ω is non-trivial at spatial infinity [16–18]; but this recent work was not concerned with symmetric solutio
such. In this Letter, we shall see how symmetric calorons arise from the ADHMN construction.

2. Calorons, monopoles and Skyrmions

We take the gauge group to beSU(2) throughout. The standard coordinates onR4 are denotedxµ =
(x1, x2, x3, x4) = (xj , t); let r be the quantity defined byr2 = xjxj . The gauge potentialAµ is anti-Hermitian,
and the corresponding gauge field isFµν = ∂µAν − ∂νAµ + [Aµ,Aν]. A gauge transformation acts asAµ �→
Λ−1AµΛ+Λ−1∂µΛ. A caloron [10–12] is a gauge field with the following properties:

• Aµ(xα) is periodic inx4 = t , with periodβ (in some gauge);
• Aµ(xα) is smooth everywhere (in some gauge);
• Fµν is self-dual:Fµν = 1

2εµναβFαβ ;
• tr(FµνFµν)=O(1/r4) asr → ∞.

A special case of this is whereAµ is independent ofx4 = t ; this is a monopole, where we make the usu
interpretation ofAt as a Higgs fieldΦ. The holonomy (or Wilson loop)

(1)Ω
(
xj

) =P exp

[
−

β∫
0

At
(
xj , t

)
dt

]

in the t-direction takes values in the gauge group; under a periodic gauge transformation, it transforms as

(2)Ω
(
xj

) �→Λ
(
xj ,0

)−1
Ω

(
xj

)
Λ

(
xj ,0

)
.

The quantityΩ(xj) is, in general, non-trivial at spatial infinity [11]; but for the examples below,Ω(xj) tends to a
constant group element (in fact the identity) asr → ∞. Such a field may be viewed as an approximateSkyrmion
configuration; the Skyrmion number is the degree ofΩ , and the normalized Skyrme energy is

(3)E = 1

12π2

∫ {
−1

2
tr(LjLj )− 1

16
tr
([Li,Lj ][Li,Lj ])}d3x,

whereLj =Ω−1∂jΩ . ProvidedΩ is asymptotically trivial, the topological charge (caloron number)

(4)N = − 1

32π2

β∫
0

dt

∫
d3x tr(εµναβFµνFαβ)

is an integer, and is equal to the Skyrmion number ofΩ [11]. In thet-independent (monopole) case, it is also
monopole number, provided we takeβ to be related to the asymptotic norm of the Higgs field by

(5)−1

2
tr(Φ∞)2 =

(
π

β

)2

.

A large number of caloron solutions can be generated [10] by the Corrigan–Fairlie–’t Hooft [19] or Ja
Nohl–Rebbi [20] ansatz. These express the gauge potential in terms of a solutionφ (periodic, in the caloron case
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of the four-dimensional Laplace equation. For example, the componentAt is given by

(6)At = i

2
(∂j logφ)σj ,

whereσj are the Pauli matrices. For the JNR solutions one hasφ→ 0 asr → ∞, whereas for the CF’tH solution
one hasφ→ 1 asr → ∞. In the case of instantons onR4, one regards the CF’tH solutions as being limiting ca
of the JNR solutions, but for calorons it is the other way round: to produce anN -caloron in JNR form, one uses
φ with N poles (notN + 1 as for instantons), and this is a limiting case of the CF’tH form withN poles.

To illustrate this, let us review theN = 1 case. The 1-caloron (with trivial holonomy at infinity) is genera
[10] by the 1-pole function

(7)φ = 1+ W2 sinh(µr)

2r[cosh(µr)− cos(µt)] ,

whereµ= 2π/β , andW > 0 is a constant. This caloron is spherically-symmetric; it depends on the periodβ and
on the parameterW . The gauge field is not affected by an overall scale factor inφ, so theW → ∞ limit of (7)
gives, in effect, the JNR-type solution with

(8)φ = sinh(µr)

2r[cosh(µr)− cos(µt)] ;

this corresponds to a 1-caloron which is in fact gauge-equivalent to the 1-monopole [21]. Another way of v
things is to use the dimensionless combinationθ = β/W2: for θ = 0 (orW → ∞) we get the 1-monopole, while fo
θ → ∞ (or β → ∞) we get the 1-instanton onR4. In other words, we have a one-parameter family of spherica
symmetric calorons, with the 1-monopole at one end and the 1-instanton at the other end. The holonomΩ(xj)

can be computed exactly in this case [22,23]; if one restricts to spherically-symmetric gauges, thenΩ is actually
gauge-invariant. The Skyrme energy (3) of this configurationΩ attains a minimum forθ ≈ 7; this minimum is
only slightly less [22] than the value obtained from 1-instanton holonomy.

It is straightforward to produce spherically-symmetric calorons of higher charge in this way: for examp
function

(9)φ = 1+ W2 sinh(µr)

2r[cosh(µr)− cos(µt)] + Ŵ2 sinh(µr)

2r[cosh(µr)− cos(µ(t − t0))]
generates a spherically-symmetric 2-caloron, for anyt0 ∈ (0, β) andW,Ŵ > 0. The holonomy of this is a
spherically-symmetric (hedgehog) 2-Skyrmion configuration (cf. [1,4]). The limitsβ → ∞ andW,Ŵ → ∞ are
both regular; the former is a 2-instanton, but the latter is not a 2-monopole (since, unlike in theN = 1 case, the
t-dependence cannot be gauged away). It seems very unlikely that the CF’tH ansatz can yield any examp
than forN = 1) of symmetric calorons having symmetric monopoles as a limiting case—for that, one need
general solutions. A way of generating such solutions is described in the next section.

3. The ADHMN construction for calorons

There is a construction which produces caloron solutions [14]; for gauge groupSU(2), and for calorons which
have trivial holonomy at infinity, it is as follows. As before,N is a positive integer which will turn out to b
the caloron charge, andβ is a positive number which will turn out to be the caloron period. It is convenie
use quaternion notation, with a quaternionq being represented by the 2× 2 matrixq4 + iqjσ j ; in particular,xµ

corresponds to the quaternionx = t + ixjσ j . The unit quaternion (q4 = 1, qj = 0) is denoted1.
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The Nahm data consists of four HermitianN × N matrix functionsTµ(s), and anN -row-vectorW of
quaternions, such thatTµ(s) is periodic in the real variables with period 2π/β , and the Nahm equation

(10)
d

ds
Tj − i[T4, Tj ] − i

2
εjkl[Tk,Tl] = 1

2
tr2

(
σjW

†W
)
δ(s − π/β)

is satisfied. The trace is over quaternions, so the right-hand side is anN ×N Hermitian matrix (as is the left-han
side). Given such data, we construct a caloron as follows. LetU(s, x) be anN -column-vector of quaternions, an
V (x) a single quaternion, such that

1. U(s, x) is periodic ins with period 2π/β ;
2. U(s, x + β)= U(s, x)exp(iβs);
3. V (x + β)= V (x);
4.

∫ π/β
−π/β U(s, x)

†U(s, x) ds + V (x)†V (x)= 1;
5. U andV satisfy the linear equation

(11)
d

ds
U − [

i(T4 + tIn)⊗ 1 + In ⊗ xjσ j + Tj ⊗ σj ]U = iW†V δ(s − π/β).

Note that bothTj andU are periodic ins, and have jump discontinuities at one value ofs, which we have taken
to bes = π/β . The discontinuities could equally well be located anywhere else; the choice in (10) and (11
later convenience. Note also that the overall quaternionic phase of theN -vectorW = [W1 . . .WN ] is irrelevant; so
we may, without loss of generality, takeW1 to be real.

The pair(U,V ) determines the caloron gauge potential according to

(12)Aµ = V (x)†∂µV (x)+
π/β∫

−π/β
U(s, x)†∂µU(s, x) ds.

The freedom in(U,V ) is U �→ UΛ, V �→ VΛ, whereΛ is a quaternion satisfyingΛ†Λ = 1; this correspond
exactly to the gauge freedom inAµ.

By contrast, the usual formulation of the ADHMN construction for monopoles involves three matricesTj (s),
satisfying

(13)
d

ds
Tj − i

2
εjkl[Tk,Tl] = 0.

In this case, theTj (s) are not periodic ins, but rather are smooth on the open interval|s|< 1, with poles at the
endpointss = ±1. (The length of this interval sets the scale of the monopole.) In addition, theTj satisfy

(14)Tj (−s)= Tj (s)t .
The idea here is that given a solution of the monopole Nahm equation (13), one may re-interpret it as a so
the caloron Nahm equation (10), withT4 = 0 and with a suitable choice ofW , namely such that

(15)Tj (−π/β)− Tj (π/β)= 1

2
tr2

(
σjW

†W
)
.

We need to takeβ > π , so that theTj are bounded for|s| � π/β . The symmetric part ofTj can, because of (14
be regarded as a continuous periodic function on[−π/β,π/β]; while the antisymmetric part ofTj has a jump
discontinuity as in (15).

The limit β → π is the original monopole, while the limitβ → ∞ gives an instanton onR4. This instanton
limit works as follows. Forβ � π , we are solving (11) on the small interval|s| � π/β , so we may approximat
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the solution asU(s)=U0 +U1s. Eq. (15) then gives

(16)U1 = (
it + xjσ j + Tj ⊗ σj )U0 = − iβ

2π
W†V,

whereTj = Tj (0), and whereU0 andV satisfy the constraint

(17)U
†
0U0 + V (x)†V (x)= 1.

If we write Λ = √
β/2π W , then this is exactly the ADHM construction [24] for instantons, with the ADH

matrix∆ being given by

(18)∆=
[

Λ

x + iTj ⊗ σj
]
.

This∆ is an(n+ 1)× n matrix of quaternions, satisfying the condition that∆†∆ is ann× n real matrix.
Let us now consider calorons which are symmetric under subgroups of the three-dimensional rotatio

acting onxj . For any rotationR, let R2 ∈ SU(2) denote the image ofR in the 2-dimensional irreducibl
representation ofSO(3); in other words,R acts on the quaternionx according tox �→ R−1

2 xR2. Similarly, let
RN denote the image ofR in theN -dimensional irreducible representation ofSO(3), and writeΘR = RN ⊗ R2.
A monopole is invariant [8] under the groupG⊆ SO(3) iff

(19)Θ−1
R

(
Tj ⊗ σj )ΘR = Tj ⊗ σj

for all R ∈G. For the corresponding caloron to beG-invariant, we need an additional condition onW , and this is
easily seen (from (10) and (11)) to be

(20)ΘRW
† =W†τR,

whereτR , for eachR ∈G, is some quaternionic phase (namely a quaternion withτ
†
RτR = 1). So given a symmetri

monopole, there is a family of symmetric calorons parametrized by the solutionsW (if there are any) of (15
and (20). In theN = 1 case, for example, we haveG = SO(3) (spherical symmetry) andTj = 0; andW is an
arbitrary positive constant, which is precisely the parameter appearing in the expression (7). In the next se
shall see that analogous one-parameter families of symmetric calorons exist forN = 2, 3 and 4.

4. Symmetric examples for N = 2, 3, 4

We begin with theN = 2 case, takingG= SO(2) (corresponding to rotations about thex2-axis). The solution
of (13) which generates the axially-symmetricN = 2 monopole isTj (s)= fj (s)σj (not summed overj ), where

(21)f1 = f3 = π

4
sec(πs/2), f2 = −π

4
tan(πs/2).

Then (15) and (20) have a solutionW which is unique (given thatW1 is real), namely

(22)W = λ[1 − iσ2], whereλ=
√
π

2
tan

(
π2

2β

)
.

So we get a family ofN = 2 axially-symmetric caloron solutions, depending on the parameterβ > π . It is possible
to solve (11) analytically, and hence obtain exact expressions for the caloron (cf. [25] for the monopole
although the expressions are rather complicated. The limitβ → π is the 2-monopole, andβ → ∞ is a 2-instanton
on R4, generated by the ADHM matrix

(23)∆= π

4

[√
2 −i

√
2σ2

iσ3 iσ1

]
+

[ 0 0
x 0

]
.

iσ1 −iσ3 0 x
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This axially-symmetric 2-instanton can be obtained in the JNR form, and its holonomy was used to appr
the minimum-energy 2-Skyrmion [4,26]. The holonomyΩ of the caloron gives a one-parameter family of axia
symmetric 2-Skyrmion configurations; as in theN = 1 case, this gives an approximation to the true Skyrm
which is better than the instanton one, but only marginally so.

Let us now consider theN = 3 case. There is a 3-monopole with tetrahedral symmetry [8,27], correspo
to the following Nahm data. (Note that theTj in [8,27] have to be multiplied by a factor of−i to agree with the
conventions used here.) Define

(24)Σ1 = 2i

[0 0 0
0 0 −1
0 1 0

]
, Σ2 = 2i

[ 0 0 1
0 0 0

−1 0 0

]
, Σ3 = 2i

[0 −1 0
1 0 0
0 0 0

]
,

and

(25)S1 =
[0 0 0

0 0 1
0 1 0

]
, S2 =

[0 0 1
0 0 0
1 0 0

]
, S3 =

[0 1 0
1 0 0
0 0 0

]
.

ThenTj (s)= x(s)Σj + y(s)Sj , where

(26)x(s)= −ω℘
′(u)

12℘(u)
, y(s)= − ω√

3℘(u)
,

with u= ω(s + 3)/3 andω = Γ (1/6)Γ (1/3)/(4√
π ). Here℘ is the Weierstrass p-function satisfying℘ ′(u)2 =

4℘(u)3 − 4. The unique solution of (15), withW1> 0, is

(27)W = λ[1 iσ3 − iσ2], whereλ= 2
√
x(π/β).

Explicit calculation then verifies that (20) is satisfied for each of the elements of the tetrahedral group. So
a one-parameter family of tetrahedrally-symmetric 3-calorons, interpolating between the tetrahedral 3-m
and a tetrahedrally-symmetric 3-instanton. The latter is generated by the ADHM matrix

(28)∆= ω√
3


1 iσ3 −iσ2
0 iσ3 iσ2

iσ3 0 iσ1
iσ2 iσ1 0

 +


0 0 0
x 0 0
0 x 0
0 0 x

 .
A tetrahedrally-symmetric 3-instanton can also be obtained in JNR form, and its holonomy was u
approximate the minimum-energy 3-Skyrmion [5].

For the final example, we consider 4-calorons with cubic symmetry (soG is the 24-element octahedral grou
The Nahm data in [8,27] do not satisfy (14), and so we have to change to a basis in which (14) holds. Defi

Σ1 =


−√
3 0 −i −1

0
√

3 −1 i
i −1 −√

3 0
−1 −i 0

√
3

 , Σ2 =


0
√

3 1 −i√
3 0 −i −1

1 i 0
√

3
i −1

√
3 0

 ,

Σ3 =


2 −i 0 0
i 2 0 0
0 0 −2 −i
0 0 i −2

 , S1 = 2


√

3 0 −4i 1
0 −√

3 1 4i
4i 1

√
3 0

1 −4i 0 −√
3

 ,

S2 = 2


0 −√

3 −1 −4i
−√

3 0 −4i 1
−1 4i 0 −√

3
4i 1 −√

3 0

 , S3 = 4


−1 −2i 0 0
2i −1 0 0
0 0 1 −2i
0 0 2i 1

 .
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ThenTj (s)= x(s)Σj + y(s)Sj , where

(29)y = ω2

10℘ ′(u)
, x = [

5℘(u)2 − 3
]
y,

with ω2 = (1 + i)Γ (1/4)2/(4
√

2π ) and u = ω2(s + 1)/2. Here℘ is the Weierstrass p-function satisfyin
℘ ′(u)2 = 4℘(u)3 − 4℘(u). The condition (14) follows from the relations

(30)

[
x(−s)
y(−s)

]
= 1

5

[
3 −16

−1 −3

][
x(s)

y(s)

]
.

Then, as before, (15) has a unique solution

(31)W = λ[1 iσ3 iσ1 iσ2], whereλ= √
2x(π/β)+ 16y(π/β);

and one may check explicitly that (20) is satisfied for each element of the octahedral group. So here we ha
parameter family of octahedrally-symmetric 4-calorons, interpolating between the cubic (octahedrally-sym
4-monopole and an octahedrally-symmetric 4-instanton. This instanton is generated by the ADHM matrix

(32)∆= |ω2|√
2



1 iσ3 iσ1 iσ2√
3

2 iσ1 − iσ3 −
√

3
2 iσ2 −1

2iσ2
1
2iσ1

−
√

3
2 iσ2 −

√
3

2 iσ1 − iσ3
1
2iσ1

1
2iσ2

−1
2iσ2

1
2iσ1

√
3

2 iσ1 + iσ3 −
√

3
2 iσ2

1
2iσ1

1
2iσ2 −

√
3

2 iσ2 −
√

3
2 iσ1 + iσ3


+


0 0 0 0
x 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x

 ,

which may be compared with the symmetric 4-instanton example described in [5].
In conclusion, we have seen that, at least for chargeN � 4, there is an intimate connection between symme

monopoles, symmetric calorons, symmetric instantons, and (via holonomy) Skyrmions. Many open qu
remain, of which the following are a few.

• Several more symmetric monopoles (of higher charge) are known—do all of these arise as limiting c
calorons with the same symmetry? More generally, is it true that any symmetric monopole has to be a
case of a symmetric caloron?

• Similarly, does every symmetric instanton [6] extend to a family of symmetric calorons? Note that such f
are much more general, in that there may not be a symmetric monopole at the ‘other end’;

• What is the role of harmonic maps, which are known to be related to symmetric monopoles and Skyrmio
Does this involve the interpretation of calorons as monopoles with a loop group as their gauge group [
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