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Abstract

Calorons (periodic instantons) interpolate between monopoles and instantons, and their holonomy gives approximate
Skyrmion configurations. We show that, for each caloron cha¥ge 4, there exists a one-parameter family of calorons
which are symmetric under subgroups of the three-dimensional rotation group. In each family, the corresponding symmetric
monopoles and symmetric instantons occur as limiting cases. Symmetric calorons therefore provide a connection between
symmetric monopoles, symmetric instantons and Skyrmions.

0 2004 Published by Elsevier B.Upen access under CC BY license.
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1. Introduction

Calorons are finite-action self-dual gauge fields in four dimensions, which are periodic in one of the four
coordinates. Call the periodic coordinatevith periodg. Special cases include instantonsRfh(where — 00)
and BPS monopoles (where the gauge field is independent dhe holonomys2 of the gauge field in the
t-direction is a map fronR3 to the gauge group, and as such can serve as an approximation to Skyrmions [1].
Calorons therefore provide a link between monopoles, instantons and Skyrmions.

Skyrmions resemble polyhedral shells, invariant under appropriate subgroups of the three-dimensional
rotation groupO (3) [2,3]. The idea of producing approximate Skyrmion configurations as instanton holonomy
has motivated several studies of instantons invariant under such groups [4-7]. Finally, there are symmetric
monopoles [8] which have the same polyhedral shape as the Skyrmions of corresponding charge, suggesting a
kinship between Skyrmions and monopoles[9]. So symmetric calorons, namely calorons invariant under subgroups
G of O(3) (rotations about the-axis), are relevant in this context. This Letter demonstrates the existence of
symmetric calorons of chargé, for N < 4; they include, as limiting cases, symmetric monopoles and symmetric
instantons.

Large classes of calorons were described some years ago [10-13]; of these, a¥ly=thecase admits the
relevant symmetry. So one needs more general solutions. There is a construction (the ADHMN construction) which
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generates caloron solutions [14], possibly all of them (see [15] for a recent analysis). In the last few years, this
construction has been used to investigate and interpret caloron solutions, especially those for which the holonomy
£2 is non-trivial at spatial infinity [16—18]; but this recent work was not concerned with symmetric solutions as
such. In this Letter, we shall see how symmetric calorons arise from the ADHMN construction.

2. Calorons, monopolesand Skyrmions

We take the gauge group to I®J(2) throughout. The standard coordinates Bfi are denotedc” =
(1, x2,x3,x% = (x/,1); let r be the quantity defined by’ = x/x/. The gauge potential,, is anti-Hermitian,
and the corresponding gauge fieldAs, = 9, A, — 3, A, + [A,, Ay]. A gauge transformation acts as, —
A7YA, A+ A7, AL A caloron [10-12] is a gauge field with the following properties:

A, (x%) is periodic inx* = ¢, with periodg (in some gauge);
A, (x%) is smooth everywhere (in some gauge);

Fy, is self-dual:F,, = 3epvap Fug;

tr(Fyu Fuv) = O(1/r%) asr — oo.

A special case of this is wherg,, is independent ofk# = ¢; this is amonopole, where we make the usual
interpretation ofA; as a Higgs fieldp. The holonomy (or Wilson loop)

B
2(x7) =Pexp|:—fA,(x-/,t) dtj| (1)

in thez-direction takes values in the gauge group; under a periodic gauge transformation, it transforms as

1

Q(xj)HA(xj,OY .Q(xj)A(xj,O). (2)

The quantitys2 (x/) is, in general, non-trivial at spatial infinity [11]; but for the examples beldwy /) tends to a
constant group element (in fact the identity)ras- co. Such a field may be viewed as an approxingigmion
configuration; the Skyrmion number is the degreg2fand the normalized Skyrme energy is

1 1 1 3
E= @f —Etr(Lij) - 1—6tr([L,~,L.,~][L,~,L.,~]) d>x, 3)

whereL ; = -1 9;£2. Provideds2 is asymptotically trivial, the topological charge (caloron number)

B
1
N=—@fdt/d3xtr(sﬂvaﬁFquaﬂ) (4)
0

is an integer, and is equal to the Skyrmion numbef20fL1]. In thez-independent (monopole) case, it is also the
monopole number, provided we tagdo be related to the asymptotic norm of the Higgs field by

1 2 (T 2
—5 (@) _(5> . ®)

A large number of caloron solutions can be generated [10] by the Corrigan—Fairlie—'t Hooft [19] or Jackiw—
Nohl-Rebbi [20] ansatz. These express the gauge potential in terms of a selfieriodic, in the caloron case)
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of the four-dimensional Laplace equation. For example, the compenéasgiven by

A= '§<a,- log)a,. )

whereo; are the Pauli matrices. For the JNR solutions oneghas 0 asr — oo, whereas for the CF'tH solutions
one hag) — 1 asr — oo. In the case of instantons &f, one regards the CF’tH solutions as being limiting cases
of the JNR solutions, but for calorons it is the other way round: to produ@é-aaloron in JNR form, one uses a
¢ with N poles (notV + 1 as for instantons), and this is a limiting case of the CF'tH form witpoles.

To illustrate this, let us review th& = 1 case. The 1-caloron (with trivial holonomy at infinity) is generated
[10] by the 1-pole function

W2 sinh(ur)
=1 , 7
¢ + 2r[cosi(ur) — coqut)] (")
wheren =27 /8, andW > 0 is a constant. This caloron is spherically-symmetric; it depends on the gend
on the parameteW. The gauge field is not affected by an overall scale facta¥,iso theW — oo limit of (7)
gives, in effect, the INR-type solution with

_ sinh(uur) .
~ 2r[coshur) — cogun)]’

this corresponds to a 1-caloron which is in fact gauge-equivalent to the 1-monopole [21]. Another way of viewing
things is to use the dimensionless combinatiea 8/ W2: for & = 0 (or W — oo) we get the 1-monopole, while for
6 — oo (or B — oo) we get the 1-instanton dR?. In other words, we have a one-parameter family of spherically-
symmetric calorons, with the 1-monopole at one end and the 1-instanton at the other end. The hekirémy
can be computed exactly in this case [22,23]; if one restricts to spherically-symmetric gauges, ithaatually
gauge-invariant. The Skyrme energy (3) of this configurat@ttains a minimum fop ~ 7; this minimum is
only slightly less [22] than the value obtained from 1-instanton holonomy.

It is straightforward to produce spherically-symmetric calorons of higher charge in this way: for example, the
function

¢

©)

. W2sinh(ur) w2 sinh(uur)
e=1+ 2r[coshur) — cogut)] * 2r[coshur) — cogu(t — to))] ©)

generates a spherically-symmetric 2-caloron, for ang (0, 8) and W, W > 0. The holonomy of this is a
spherically-symmetric (hedgehog) 2-Skyrmion configuration (cf. [1,4]). The lifhits co and W, W — oo are

both regular; the former is a 2-instanton, but the latter is not a 2-monopole (since, unlikeNh=thk case, the
t-dependence cannot be gauged away). It seems very unlikely that the CF'tH ansatz can yield any examples (other
than for N = 1) of symmetric calorons having symmetric monopoles as a limiting case—for that, one needs more
general solutions. A way of generating such solutions is described in the next section.

3. The ADHMN construction for calorons

There is a construction which produces caloron solutions [14]; for gauge @&, and for calorons which
have trivial holonomy at infinity, it is as follows. As befor# is a positive integer which will turn out to be
the caloron charge, angl is a positive number which will turn out to be the caloron period. It is convenient to
use quaternion notation, with a quaternipbeing represented by thex22 matrixg* + ig/o/; in particular,x*
corresponds to the quaternion= ¢ + ix/o/. The unit quaterniong* = 1, ¢/ = 0) is denoted..
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The Nahm data consists of four Hermitiai x N matrix functions7,(s), and anN-row-vector W of
quaternions, such thdj, (s) is periodic in the real variablewith period 2r/g, and the Nahm equation

1
—i[Ty, Tj]1 - e,kz[Tk,Tz]——trz(o,W* )8(s —1/B) (10)

is satisfied. The trace is over quaternions, so the right-hand sideNsxatv Hermitian matrix (as is the left-hand
side). Given such data, we construct a caloron as followsUl(etx) be anN-column-vector of quaternions, and
V (x) a single quaternion, such that

U (s, x) is periodic ins with period 2t/ g;
U(s,x + B)=U(s, x)expiBs);
Vix+p)=Vx);

ST UG, 00U, x)ds + V)TV =1;
U andV satisfy the linear equation

ok wnE

;—SU —[((Ta+11) @1+ L, @x/o! +T; @7 |U =iWTVS(s — 7/B). (11)
Note that botHl’; andU are periodic ins, and have jump discontinuities at one values pivhich we have taken
to bes = r/B. The discontinuities could equally well be located anywhere else; the choice in (10) and (11) is for
later convenience. Note also that the overall quaternionic phase df-trectorW = [Wy ... Wy] is irrelevant; so
we may, without loss of generality, talk®; to be real.
The pair(U, V) determines the caloron gauge potential according to

7/
Ap=V®)'9,V(x)+ / U(s, x)10,U (s, x) ds. (12)
—n/p

The freedom iU, V) is U — U A, V — V A, whereA is a quaternion satisfyingTA = 1; this corresponds
exactly to the gauge freedom iy,.
By contrast, the usual formulation of the ADHMN construction for monopoles involves three mafyices
satisfying
d

i
- Tj = 5eulTi, T =0. (13)

In this case, thd’;(s) are not periodic irs, but rather are smooth on the open intersal< 1, with poles at the
endpoints = £1. (The length of this interval sets the scale of the monopole.) In additiorT;thatisfy

Tj(—s)=T;(s)". (14)

The idea here is that given a solution of the monopole Nahm equation (13), one may re-interpret it as a solution of
the caloron Nahm equation (10), wifla = 0 and with a suitable choice ¥, namely such that

Ti(—7/B) — Tj(x/B) = —trz(a,WTw) (15)

We need to takg8 > m, so that thel’; are bounded fofs| < 7/8. The symmetric part of; can, because of (14),
be regarded as a continuous per|0d|c functionem /8, = /B1; while the antlsymmetnc part df; has a jump
discontinuity as in (15).

The limit 8 — = is the original monopole, while the limg — oo gives an instanton oR*. This instanton
limit works as follows. ForB > 7, we are solving (11) on the small intera| < /8, SO we may approximate
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the solution ad/ (s) = Ug + Uss. Eq. (15) then gives

. . i
Ur=(it+x/o/ +T; ®U-’)Uo=—2£WTV, (16)
JT

where7; = T;(0), and wherd/p andV satisfy the constraint

Uluo+ v vy =1 (17)

If we write A = /B/2r W, then this is exactly the ADHM construction [24] for instantons, with the ADHM
matrix A being given by

A
:|:X+i7—j®0'ji|. (18)

This A is an(n + 1) x n matrix of quaternions, satisfying the condition thit A is ann x n real matrix.

Let us now consider calorons which are symmetric under subgroups of the three-dimensional rotation group
acting onx/. For any rotationR, let Ry € SU(2) denote the image oR in the 2-dimensional irreducible
representation o80(3); in other words,R acts on the quaternion according tox — Rz‘lsz. Similarly, let
Ry denote the image aR in the N-dimensional irreducible representation®(3), and write®r = Ry ® R>.

A monopole is invariant [8] under the group < SO(3) iff

ORNTj®0T)Or=T; ® 0’ (19)

for all R € G. For the corresponding caloron to Beinvariant, we need an additional condition 8y and this is
easily seen (from (10) and (11)) to be

OrWT = Wi, (20)

whereztg, for eachr € G, is some quaternionic phase (hamely a quaternion*aﬁjtlk =1). So given a symmetric
monopole, there is a family of symmetric calorons parametrized by the solufiofi§ there are any) of (15)

and (20). In theN = 1 case, for example, we have = SO(3) (spherical symmetry) and; = 0; andW is an
arbitrary positive constant, which is precisely the parameter appearing in the expression (7). In the next section, we
shall see that analogous one-parameter families of symmetric calorons exs&f@r, 3 and 4.

4. Symmetric examplesfor N =2, 3,4

We begin with theV = 2 case, takings = SO(2) (corresponding to rotations about th&axis). The solution
of (13) which generates the axially-symmethic= 2 monopole isT; (s) = f;(s)o; (not summed ovey), where

fi=fa=Fsedns/2,  fa=—tancs/2). (21)
Then (15) and (20) have a solutid¥ which is unique (given thalt/; is real), namely
72
W =1 -—io2], wherer= 2 tan( 2/3) (22)

So we get a family oV = 2 axially-symmetric caloron solutions, depending on the parargeter: . It is possible

to solve (11) analytically, and hence obtain exact expressions for the caloron (cf. [25] for the monopole case),
although the expressions are rather complicated. The imit  is the 2-monopole, and — oo is a 2-instanton

onR?, generated by the ADHM matrix

. V2 —iv202 0 0
A=—|:ic73 io1 j|+|:x Oi|. (23)

4 o1 —io3 0 «x
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This axially-symmetric 2-instanton can be obtained in the JNR form, and its holonomy was used to approximate
the minimum-energy 2-Skyrmion [4,26]. The holonofyof the caloron gives a one-parameter family of axially-
symmetric 2-Skyrmion configurations; as in thle= 1 case, this gives an approximation to the true Skyrmion
which is better than the instanton one, but only marginally so.

Let us now consider th&y = 3 case. There is a 3-monopole with tetrahedral symmetry [8,27], corresponding
to the following Nahm data. (Note that tH1g in [8,27] have to be multiplied by a factor efi to agree with the
conventions used here.) Define

0 0 O 0O 0 1 0 -1 0
21=2i[0 0 —1}, 22=2i|: 0O O O}, 23=2i|:1 0 0i|, (24)
01 O -1 0O 0O 0 O
and
0 0O 0 0 1 0 1 0
51=|:0 0 1i|, szz[o 0 O}, 53=|:l 0 0i|. (25)
010 1 00 0 0 O
ThenT;(s) =x(s)X; 4+ y(s)S;, where
wp' (1) w
x(s) =— , S)=————, 26
(s) 20 (1) y(s) o) (26)

with u = w(s + 3)/3 andw = I'(1/6)I"(1/3) /(47 ). Hereg is the Weierstrass p-function satisfyigg(u)2 =
40 (1)2 — 4. The unique solution of (15), witWy > 0, is

W =A[1 o3 —io2], wherer=2/x(7/B). 27)

Explicit calculation then verifies that (20) is satisfied for each of the elements of the tetrahedral group. So we have
a one-parameter family of tetrahedrally-symmetric 3-calorons, interpolating between the tetrahedral 3-monopole
and a tetrahedrally-symmetric 3-instanton. The latter is generated by the ADHM matrix

1 o3 —io» 0 0 O

_i 0 io3 o2 x 0 O
A= Alios 0 iop |T|0 x 0] (28)

oo o1 0 0 0 x

A tetrahedrally-symmetric 3-instanton can also be obtained in JNR form, and its holonomy was used to
approximate the minimum-energy 3-Skyrmion [5].

For the final example, we consider 4-calorons with cubic symmetrg(&the 24-element octahedral group).
The Nahm data in [8,27] do not satisfy (14), and so we have to change to a basis in which (14) holds. Define

——/3 0 —i -1 0 /3 1 i
s_| O V3 -1 i s J3 0 —i -1
! i -1 -3 0|’ 2 1 i 0 V3
. -1 —i 0 /3 i -1 V3 0
2 —i 0 0 /3 0 —4i 1
i 2 0 O 0 —v3 1 4
23=19 o —2 —il’ S1=2/ 4 1 3 o |’
L0 0 i =2 L1 —4i 0 -3
0 -3 -1 —4i ——1 -2 0 O
-3 0 —4j 1 2i =1 0 O
52‘2[1 4 o0 —v3i|m B=% o0 o0 1 -2
4i 1 -3 0 L0 0 2 1
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ThenT;(s) =x(s)X; 4+ y(s)S;, where
p— a)z

T 100/ ()’
with wp = (1 4 i) I'(1/4)?/(4v/21) and u = wa(s + 1)/2. Here p is the Weierstrass p-function satisfying
o' ()2 = 4p (u)3 — 4p (u). The condition (14) follows from the relations

y x = [5p )% - 3]y, (29)

x(=s)|_1] 3 -16][x(s)
|:Y(—S):|_5|:—1 —3i| |:y(s):|' (30)
Then, as before, (15) has a unique solution
W=A[1 io3 io1 loy], Wherekz\/ZX(n/ﬂ)+l6y(n/ﬂ); (31)

and one may check explicitly that (20) is satisfied for each element of the octahedral group. So here we have a one-
parameter family of octahedrally-symmetric 4-calorons, interpolating between the cubic (octahedrally-symmetric)
4-monopole and an octahedrally-symmetric 4-instanton. This instanton is generated by the ADHM matrix

B 1 io3 io1 ioo
Bioy—io3  —Lioy _lig, lioy 0 8 8 8
X
A:% —liee —Pi—ios i Zloa |+|0 x 0 0, (32)
1; 1; V/3; : V/3; 0 0 x O
—3lo2 5lo1 5-lo1+ 103 —5loz 00 0 x
L %i(fl %iag —?ioz —%éiol—i—iog_

which may be compared with the symmetric 4-instanton example described in [5].
In conclusion, we have seen that, at least for chafge 4, there is an intimate connection between symmetric
monopoles, symmetric calorons, symmetric instantons, and (via holonomy) Skyrmions. Many open questions

remain, of which the following are a few.

e Several more symmetric monopoles (of higher charge) are known—do all of these arise as limiting cases of
calorons with the same symmetry? More generally, is it true that any symmetric monopole has to be a special

case of a symmetric caloron?
e Similarly, does every symmetric instanton [6] extend to a family of symmetric calorons? Note that such families

are much more general, in that there may not be a symmetric monopole at the ‘other end’;
e Whatis the role of harmonic maps, which are known to be related to symmetric monopoles and Skyrmions [9]?
Does this involve the interpretation of calorons as monopoles with a loop group as their gauge group [28,29]?
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