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Abstract

Let H be a fixed undirected graph. An H-colouring of an undirected graph G is a homo-
morphism from G to H. If the vertices of G are partially ordered then there is a generic
non-deterministic greedy algorithm which computes all lexicographically first maximal H-
colourable subgraphs of G. We show that the complexity of deciding whether a given vertex
of GG is in a lexicographically first maximal H-colourable subgraph of G is NP-complete, if
H is bipartite, and X5-complete, if H is non-bipartite. This result complements Hell and
Nesetiil’s seminal dichotomy result that the standard H-colouring problem is in P, if H
is bipartite, and NP-complete, if H is non-bipartite. Our proofs use the basic techniques
established by Hell and Nesetiil, combinatorially adapted to our scenario.

1 Introduction

In what is now a seminal result, Hell and Nesetfil [6] established a dichotomy for
the H-colouring problem when H is an undirected graph: the H-colouring problem
is in P, if H is bipartite, and is NP-complete otherwise. Such a (dichotomy) re-
sult can also be thought of as a generic result in that it provides a complete, exact
classification of the computational complexities of an infinite class of problems (in
this case, the class of H-colouring problems). Other such generic results exist. For
example, Miyano [8] proved a very general result relating to hereditary properties of
graphs: he showed that the problem of deciding whether a given vertex of a given
undirected graph G, whose vertices are linearly ordered, lies in the lexicographi-
cally first maximal subgraph of G satistying some fixed polynomial-time testable,
non-trivial, hereditary property 7 is P-complete. (Notice that the existence of an
H-colouring of an undirected graph G, i.e., a homomorphism from G to H, is a
particular hereditary property of G.)

A number of other dichotomy results (involving unequivocal complexity-theoretic
classifications) and generic results (applicable to an infinite class of problems) have



since been obtained. Examples of other dichotomy results include: Feder and Hell’s
result [4] that the list homomorphism problem for reflexive graphs is solvable in
polynomial-time if the target graph is an interval graph, and NP-complete other-
wise; Feder, Hell and Huang’s [5] result that the list homomorphism problem for
irreflexive graphs is solvable in polynomial-time if the complement of the target
graph is a circular arc graph of clique covering number two, and NP-complete oth-
erwise; Diaz, Serna and Thilikos’s result [2] that the complexity of the list (H, C, K)-
colouring problem mirrors that of the list homomorphism problem; and Dyer and
Greenhill’s result [3] that the problem of counting the H-colourings of a graph is
solvable in polynomial-time if every connected component of H is a complete re-
flexive graph with all loops present or a complete bipartite irreflexive graph (with
no loops present), and fP-complete otherwise. Examples of other generic results
include: Miyano’s result [9] that the problem of deciding whether a given vertex of a
given undirected graph GG, whose vertices are linearly ordered, lies in the lexicograph-
ically first maximal connected subgraph of G satistying some fixed polynomial-time
testable, hereditary property 7 that is determined by the blocks and non-trivial on
connected graphs is Ab-complete; and Puricella and Stewart’s result [11] that the
problem of deciding whether a given vertex of a given undirected graph G, whose
vertices are partially ordered, lies in a lexicographically first maximal subgraph of
G satisfying some fixed polynomial-time testable, non-trivial, hereditary property 7
is NP-complete.

Dichotomy and generic results such as those highlighted above are particularly
attractive as they give a concise and simplified view of a parameterized world of
natural problems. In this paper, we consider the problem of deciding whether a
given vertex of a given undirected graph G, whose vertices are partially ordered,
lies in a lexicographically first maximal H-colourable subgraph of G (where the
undirected graph H is fixed). In particular, we prove that this problem is NP-
complete, if H is bipartite, and X5-complete, if H is non-bipartite; thus establishing
yet another complexity-theoretic dichotomy result. Our proofs use the techniques
established by Hell and Nesetfil in [6] although they are combinatorially adapted
according to our circumstances. However, part of Hell and NeSettil’s constructions
can be applied verbatim and this substantially shortens our exposition.

2 Basic definitions

For standard graph-theoretic definitions the reader is referred to [1], and for standard
complexity-theoretic definitions to [10].

Let G = (V, FE) be an undirected graph and suppose that the vertices of V' are
linearly ordered. Given a subset S = {sq, s1, S2,...,5c} of V, where the induced
ordering is sy < s; < ... < sg, we can define a lexicographic order on the set of all
subsets of S as follows (we call it lexicographic because we consider sg, s1, ..., s to
be our alphabet):



e for subsets U = {uy,ug,...,u,} and W = {wy, wy, ..., wg} of S, where u; <
up < ... < wuy, and wy < wy < ... < wy, we say that U is lexicographically
smaller than W if:

— there is a number ¢, where 1 <t < p, such that u; < w; and u; = w;, for
all 7 such that 1 <17 < ¢; or

— k > p and u; = w;, for all ¢ such that 1 <7 < p.

Let 7 be some property of graphs (our graphs are all undirected). If we take S =V
then we can talk about the lexicographically first mazximal subgraph of G that satisfies
7 (as Miyano does in [8]).

Now let G = (V, E) be an undirected graph, let P be a partial order on V' and
let s € V. We assume that the partial order P is given in the form of an acyclic
digraph detailing the immediate predecessors, i.e., the parents, and the immediate
successors, i.e., the children, of each vertex. We think of a partial order P as
encoding a collection of linear orders of the form s = sy < 51 < 59 < ... < sg, where
sj4+11s a child of s;, for 0 < j < k, and s, has no children. Note that a partial order
can encode an exponential number of linear orders.

Let m be some property of graphs. Now we can talk of the lezicographically first
maximal subgraphs of G satisfying m; where we get one such subgraph for every
linear order encoded within P. A property 7 on graphs is hereditary if whenever we
have a graph with the property 7 then the deletion of any vertex and its incident
edges does not produce a graph violating 7, i.e., 7 is preserved by vertex-induced
subgraphs. It is straightforward to see that the sets of vertices that induce these
lexicographically first maximal subgraphs of G satisfying some hereditary property
7 can be obtained using the following non-deterministic algorithm GREEDY (7) (if
P is a linear order then this algorithm computes the lexicographically first maximal
subgraph of G satisfying 7). The algorithm GREEDY (7) takes as input 3 arguments:
an undirected graph G = (V, E), a directed acyclic graph P = (V, D) and a specified
vertex s € V; and is as follows:

input (G, P, s)
S =10
current—vertexr := s
if 7(SU{current-vertez},G) then (%)
S := SU{current-vertez}
fi
while current-vertexr has at least one child in P do
current—-vertex := a child of current-vertexr in P
if 7(SU{current-vertez},G) then (xx)
S := SU{current-vertez}
fi
od
output (S)



where 7(S U { current-vertex }, G) is a predicate evaluating to ‘true’ if, and only if,
the subgraph of G induced by the vertices of S U { current-vertez} satisfies 7. We
say that a vertex v is the current-vertexr if we have ‘frozen’ an execution of the
algorithm GREEDY () immediately prior to executing either line (x) or line (xx)
and the value of the variable current-vertex at this point is v.

A property 7 is called non-trivial on a class of graphs if there are infinitely many
graphs from this class satisfying = but 7 is not satisfied by all graphs of the class.

Let C be a class of graphs and let © be some property of graphs. The problem
GREEDY (partial order, C, 7) has: as its instances tuples (G, P, s, x), where G is
a graph from C, P is a partial order of the vertices of G and s and x are vertices
of G; and as its yes-instances those instances for which there exists an execution
of the algorithm GREEDY () on input (G, P, s) resulting in the output of a set of
vertices containing the vertex x. The problem GREEDY (linear order, C, ) is defined
similarly except that P is a linear order. As mentioned earlier, when 7 is polynomial-
time testable, non-trivial and hereditary, Miyano [8] proved that GREEDY (linear
order, undirected graphs, 7) is P-complete, and Puricella and Stewart [11] proved
that GREEDY (partial order, undirected graphs, 7) is NP-complete.

Let G and H be graphs. A homomorphism from G to H is a map f from the
vertices of G to the vertices of H such that if (u,v) is an edge of G then (f(u), f(v))
is an edge of H. The H -colouring problem is the problem whose instances are graphs
G and whose yes-instances are those graphs G for which there is a homomorphism
from G to H.

If U is a subset of vertices of the graph G then (U) is the subgraph of G induced
by the set of vertices U. A graph is 3-colourable if the vertices can be coloured with
a unique colour from red, white and blue so that two adjacent vertices are coloured
differently; and the 3-colouring problem has as an instance a graph G and as a
yes-instance a graph G that is 3-colourable.

3 A complete problem

Our proof of our main result in the next section follows the strategy adopted by
Hell and Nesetiil. Essentially, we assume that H is a non-bipartite graph for which
the problem GREEDY (partial order, undirected graphs, H-colouring) is not X%-
complete and apply a sequence of constructions to yield that a known X%-complete
problem is not complete, thereby obtaining a contradiction. Our ‘known’ problem
> 8-complete is GREEDY (partial order, undirected graphs, 3-colourable).

Theorem 1 The problem GREEDY (partial order, undirected graphs, 3-colourable)
is Xb-complete.

Proof Throughout this proof, the problem GREEDY (partial order, undirected
graphs, 3-colourable) shall be denoted G. We shall prove completeness by reduc-
ing from the problem NOT CERTAIN 3-COLOURING OF BOOLEAN EDGE-
LABELLED GRAPHS, henceforth to be abbreviated as problem N. An instance
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of N of size n consists of an undirected graph H on n vertices, some of whose
edges are labelled with the disjunction of two (possibly identical) literals over the
set of Boolean variables {X;; : 4,7 = 1,2,...,n} (the same literal may appear
in more than one disjunction). A truth assignment ¢ on the Boolean variables of
{Xi;:4,5=1,2,...,n} makes some of the labels on the edges of H true and some
false. Form the graph t(H) by retaining the edges labelled true, as well as any
unlabelled edges, and dispensing with the edges labelled false. A yes-instance is an
instance H for which there exists a truth assignment ¢ resulting in a graph ¢(H)
that cannot be 3-coloured. This problem was proven to be X4-complete in [12].

Given an instance H of the problem A, we shall construct an instance (G, P, s, )
of the problem G where G is an undirected graph, P is a partial order on these same
vertices and s and x are two distinguished vertices. Moreover, H will be a yes-
instance of A if, and only if, (G, P, s, x) is a yes-instance of G; and the construction
will be such that it can be completed using logspace.

Let H = (U, F) and suppose that U = {1,2,...,n}. We build the undirected
graph G from H as follows.

(a) For each vertex i € U, ‘attach’ a copy of K, by identifying vertex i with
one of the vertices of the clique. Denote the other three vertices by a;, b}
and b?. We refer to the original vertices of U as H-vertices, the vertices of
{a; : 1 =1,2,...,n} as a-vertices and the vertices of {b},0? : i =1,2,...,n}
as b-vertices.

(b) Retain any unlabelled edge (7, j) of F' (between H-vertices ¢ and j).

(¢) For any labelled edge (i, j) of F' (between H-vertices i and j), where i < j and
where the label is L},j\/L?,j, replace the edge with a copy of the graph GG; shown
in Fig. 1. We use, for example, L; ; to refer to the first literal labelling edge (4, )
and also a vertex within a graph G;: this causes no confusion. The vertices
of {L}; L?, L}; L2, : (i,j) € F, where i < j} are called L-vertices. Every L-
vertex of any (G; has an associated literal, e.g., if the literal L}L,s = X3 then
the associated literal of vertex L}L,s is =X 9 and the associated literal of vertex
Ljgis X3. So, an L-vertex of some G; might have the same associated literal
as an L-vertex of some other Gi;. Finally, the vertices of {¢; ; : 4,7 =1,2,...,n}
are called c-vertices, the vertices of {d; ; : 1,7 = 1,2,...,n} are called d-vertices
and the vertices of {ej ;, e, :4,j =1,2,...,n} are called e-vertices.

(d) Include a disjoint copy of Ky, whose vertices are {y, z, w,z} and join vertices
y, z and w to every a-vertex. Include the vertex s as an independent vertex.

Our partial ordering P is defined as follows. First, order the Boolean variables
{X;;:4,7=1,2,...,n} lexicographically as

Xl,l) X1,27 X1,37 e JXl,nJ X2,17 X2,27 e JXn n
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and denote this ordering by <y; so X;; <x X;2 <x Xi3 <x .... Next, consider
the L-vertices. We obtain the notions of a positive L-vertex, where the vertex has
an associated positive literal, and a negative L-vertex, where the vertex has an
associated negative literal. Order the positive L-vertices so that if vertex JA; is less
than vertex \; in this ordering then the associated literal of A; is less than or equal
to the associated literal of \; with respect to the ordering <y (note that there may
be a number of such orderings on the positive L-vertices: it does not matter which
of them we use). We obtain an analogous ordering of the negative L-vertices by
taking complements (note that for every positive L-vertex L or Lm- with label [,
the vertex L;”] or L, respectively, is a negative L-vertex Wlth label =l; and vice
versa). As we walk down these two orderings in a synchronous fashion, the pairs
of L-vertices are always complementary as is the pair of associated literals. Denote

these orderings as
M <X <...<Xand pp < pg <...< g,

respectively, where {\;, p; 1 0 =1,2,... k} = {L};, L};, L} ;, L}; : (i,j) € F, where
i<j}.

the graph G,

Figure 1. Phases (a), (¢) and (d) of constructing G from H.

Our partial ordering P begins as follows. The vertex s is less than both A\; and
p1; and then we have the orderings \y < Ao < ... < A and py < po < ... < g
Also, for any index i € {1,2,...,k — 1}, if the associated literal of \; is different
from the associated literal of A\;;; then additionally \; < ;1 and p; < Ajyq. In
order to complete P, choose any linear ordering of the c-vertices, followed by any
linear ordering of the d-vertices, followed by any linear ordering of the e-vertices,
followed by the ordering 1,2, ..., n of the H-vertices, followed by any linear ordering
of the b-vertices, followed by any linear ordering of the a-vertices, followed by the
ordering w, y, z, x; and additionally define that both Ay and p; are less than the
least c-vertex (if there are no L-vertices then just concatenate the linear ordering of
the c-vertices after the vertex s).



The construction of (G, P, s, ) from H is illustrated in Fig. 2 (note that to avoid
cluttering the figure, not all vertices are named; and the bold edges correspond to
the structure of H). Clearly, this construction can be completed using logspace.

associated
the graph G literal y
2,1
associated
the labelled literal

graph H X,

the partial
order P vy

associated

‘XYI,S ‘X;.l XvZ,l ‘X;.l )(2‘2 )(3‘1
L, L,

Lz Ll Ll Zl
23 23 Sel2 s literals

>0 > )
\cl ¢ ¢ ¢ 4
S
L

> —> / associated
Ly, Ly, Ly, L), L, literals
- X1,3 —Xy, _‘AXz,l _‘AXz,lﬁXVz.z_‘X;.l
Figure 2. The construction of (G, P, s, x) from H.

Suppose that H is a yes-instance of problem N. Hence, there exists a truth
assignment ¢ such that ¢(H) is not 3-colourable. Consider the execution of the
algorithm GREEDY (3-colourable) on (G, P, s,x) where the chosen linear order in
P is that induced by the truth assignment ¢; that is, an L-vertex is chosen if, and
only if, its associated Boolean literal is set at true by t. The first point to note is
that s and every L-vertex chosen is output by GREEDY (3-colourable), as is every
c-vertex. Let us freeze the execution at this point. Note that if the truth assignment
t makes the label of some edge (i,j) of F true then at our freeze-point, the vertex
d;; is adjacent to at most 2 vertices of S, and so this vertex d;; is subsequently
output by GREEDY (3-colourable).

Conversely, if the truth assignment ¢ makes the label of some edge (i, j) of F' false
then at our freeze-point, the vertex d;; is adjacent to 3 mutually adjacent vertices
of S and so this vertex d; ; is not subsequently output by GREEDY (3-colourable).
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Unroll the execution of GREEDY (3-colourable) until every d-vertex and e-vertex
has been considered. Note that every e-vertex is output regardless. Let us freeze
the execution for a second time at this point.

Our next task in the execution is to consider the H-vertices as to whether they
are output or not. Let (i,7) be some edge of F' which is either unlabelled or whose
label has been made true by ¢. It may or may not be the case that the vertices ¢z and
j are output; but if they are both output then at the point after the second of these
vertices is output, the subgraph induced by the vertices of S can be 3-coloured but
not so that 7 and j have the same colour. This is so because each of the vertices d, ;,
e; jand €7 ; isin S. Hence, as we know that ¢(H) cannot be 3-coloured, there must be
some H-vertex that is not output; and, consequently, there is at least one a-vertex
output. Having an a-vertex output means that not all of {y, z, w} are output which
in turn means that x is output. Hence, (G, P, s, x) is a yes-instance of problem G.

Conversely, suppose that (G, P,s,z) is a yes-instance of problem G. Fix an
accepting execution of the algorithm GREEDY(3-colourable) on input (G, P, s, )
and denote the linear order chosen within P by n. This execution gives rise to a
truth assignment ¢ on the literals labelling the edges of the graph H: if 7 is such
that a positive L-vertex, with associated literal X, ;, say, is chosen then set ¢(X; ;)
to be true; and if 7 is such that a negative L-vertex, with associated literal =.X; ;,
say, is chosen then set ¢(X; ;) to be false (note that this truth assignment is well-
defined). As before, every L-vertex on 7 is output by GREEDY(3-colourable); and,
by arguing as we did earlier, for any i,j € {1,2,...,n} with i < j and where (i, j)
is a labelled edge of H, the truth assignment ¢ makes L1 \% L2 true if, and only if,
the vertices d, ;, e} ;.; and e? ; are output.

At various points in the execution of GREEDY (3-colourable), a check is made
to see whether the vertices of S induce a 3-colourable graph. Consider such a check
and suppose that the vertices of {d; ;, ¢; ;, €7 ;} have been placed in S. Consider the
subgraph K of G induced by those vertices that are both in S and in the copy of G,
pertaining to the labelled edge (i, j) of H. In particular, consider the role of K when
it comes to attempting to colour the subgraph of G induced by the vertices of S. A
simple combinatorial verification yields that the role of the vertices of K is to allow ¢
and 7 to be coloured with any pair of distinct colours but not with identical colours.
Hence, any check to see whether the subgraph of G induced by the vertices of S can
be 3-coloured is equivalent to a check of whether the subgraph of ¢(H) induced by
(vertices corresponding to) the H-vertices of S can be 3-coloured. We know that
our accepting computation on (G, P, s, z) outputs x. This can only happen if not
all of {y, z, w} are output, i.e., if at least one a-vertex, a,,, say, is output, i.e., if the
H-vertex m is not output, i.e., if the graph ¢(H) can not be 3-coloured. The result
follows. 0



4 The construction

We now prove our main result using the techniques originating with Hell and
Nesettil. Of course, these techniques have to be adapted to our scenario.

Theorem 2 The problem GREEDY (partial order, undirected graph, H-colourable)
is NP-complete, if H is bipartite, and 35-complete, if H is non-bipartite.

Proof Throughout the proof we shall denote the problem GREEDY (partial order,
undirected graphs, H-colourable) by Gy. Clearly, Gy can be solved in 3%, if H is
non-bipartite, and in NP, if H is bipartite (the latter because the H-colourability
problem, for H-bipartite, can be solved in polynomial-time [6]). Moreover, because
the property of being H-colourable, for H bipartite, is non-trivial on graphs, hered-
itary, satisfied by all sets of independent edges and polynomial-time testable, by
[11] we have that Gy is NP-complete if H is bipartite'. Actually, note that if H
is bipartite then Gy and the problem GREEDY (partial order, undirected graphs,
bipartite) are one and the same.

To prove that for any non-bipartite graph H, the problem Gy is ¥5-complete, we
will modify the proof of Theorem 1 of [6] which states that: ‘If H is bipartite then
the H-colouring problem is in P. If H is non-bipartite then the H-colouring problem
1s NP-complete.” The proof begins by detailing three ways of constructing a graph
H' from a graph H such that if the H'-colouring problem is NP-complete then the
H-colouring problem is NP-complete as well. We will show that such constructions
can be used to prove that the problem Gy is X5-complete.

Construction A: The indicator construction.

Let I be a fixed graph and let ¢ and j be distinct vertices of I such that some
automorphism of  maps i to j and j to i. The indicator construction (with respect
to (1,4,7)) transforms a given graph H into a graph H* defined to be the subgraph
of H induced by all edges (h,h') for which there is a homomorphism of I to H
mapping i to h and j to h'. Because of our assumptions on I, the edges of H* will
be undirected. The construction is illustrated in Fig. 3.

Figure 3. The indicator construction.

! Actually, the result proven in [11] insists that the property should be non-trivial on planar
bipartite graphs, but it is straight-forward to weaken this assumption and still obtain our applica-
tion.



Lemma 3 If the problem G- is X5-complete then so is Gy.

Proof Assume that Gg- is 35-complete; and so, in particular, H* has at least one
edge (otherwise H* would be the empty graph and Gg- would not be X5-complete).
We will reduce Gy~ to Gy (via a logspace reduction). Let (G*, P*,s*, 2*) be an
instance of Gy«. From it, we shall construct an instance (G, P, s, x) of Gy.

Graph G is obtained from G* as follows. For any vertex i of G*, there is a
corresponding vertex i of G: we will refer to such vertices of G as G*-vertices (note
how we consider the G*-vertices of G and the vertices of G* as being identically
named). For any edge (u,v) of G*, we add a copy of graph I to G by identifying
the G*-vertex u with vertex 7 in I and the G*-vertex v with vertex j in I (all added
copies of I are disjoint).

The partial order P consists of a linear order L (any one will do) on the vertices
of G' which are not G*-vertices, and we concatenate on to this linear order the
partial order P* (of the G*-vertices). Vertex s is the first vertex of the linear order
L and vertex x is the G*-vertex z*. An illustration of this construction is depicted
in Fig. 4 (where the graphs I, H and H* are as in Fig. 3).

the partial order P the graph G*

L....QHH,/&/EZ
N

the partial order P the graph G

Figure 4. Building (G, P, s, z) from (G*, P*, s*, z*).

Consider the algorithm GREEDY (H-colourable) on the input (G, P,s). As H*
contains at least one edge, there is a homomorphism from [ to H. Hence, as the
linear order L consists of disjoint copies of I\ {3, j}, GREEDY (H-colourable) outputs
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every vertex of L. After consideration of the vertices of L, GREEDY (H-colourable)
is working with essentially the same partial order as is the algorithm GREEDY (H*-
colourable) initially on input (G*, P*, s*); so consider executions of these algorithms
with respect to the same subsequent linear order.

Our induction hypothesis is as follows: ‘The current-vertex in both executions
is so; GREEDY (H-colourable) has so far output the vertices of LU {sy, s2,...,Sm},
where vertex s; is a G*-vertex, for i = 1,2,...,m; and GREEDY (H*-colourable)
has so far output the vertices of {sy, s2,...,8n}.

Suppose that the induction hypothesis holds at some point (it certainly holds
when sy = s*).

Suppose that GREEDY (H*-colouring) outputs the vertex so. This means that
there exists an homomorphism f* : ({so,s1,...,5m})e- — H*. By construction
of H*, there must exist a homomorphism f : (L U {sg, s1,...,Sm})¢ — H, where
f(si) = f*(s;), for i =0,1,...,m, and f(v) is the ‘natural’ map for v € L (derived
from the definition of H* from H). Hence, GREEDY (H-colourable) outputs the
vertex Sg.

Conversely, suppose that GREEDY (H-colourable) outputs the vertex so. This

means that there exists a homomorphism f : (LU{sq, s1,...,Sm})¢ — H. Again by
construction of H*, there must exist a homomorphism f* : ({so, $1,...,5m})e —
H., where f*(s;) = f(s;), for i = 0,1,...,m. Hence, GREEDY(H*-colouring)
outputs the vertex sy. The result follows by induction. 0

Construction B: The sub-indicator construction.

Let J be a fixed graph with specified (distinct) vertices j and ki, ko, ..., k;, for
some t > 1. The sub-indicator construction (with respect to .J, j,ky, ko, ..., ki)
transforms a given graph H with ¢ (distinct) specified vertices hy, ho, ..., hy to its
subgraph H induced by the vertex set V' defined as follows. A vertex v of H belongs
toV just if there exists a homomorphism of J to H taking k; to h;, fort=1,2,...,t,
and taking j to v. An illustration of this construction is depicted in Fig. 5 (where,
for clarity, we have shown the vertices of H excluded from H).

Lemma 4 If the problem G is X5-complete then so is Gy.

Proof Assume that G; is X-complete; and so, in particular, H has at least one
vertex. We will reduce G5 to Gy (via a logspace reduction). Let (G, P, 5,%) be an
instance of G5. From it, we shall construct an instance (G, P, s, z) of Gg.

The graph G is built from: a copy of G, of size n; a copy of H; and n copies of
J (with J and H prior to the statement of the lemma), by identifying the vertex
k; in any copy of J with the vertex h; of H, for i = 1,2,...,t, and identifying
the vertex j in the i™™ copy of J with the i vertex of G, for i = 1,2,...,n. The
vertices of G corresponding to the vertices of G (and the vertices j of the copies of
J) are called G-vertices, the vertices of G corresponding to the vertices of the copies
of J but different from j, ki, ks, ...,k are called J-vertices, and the vertices of G
corresponding to the vertices of H are called H-vertices.
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L 9/
Figure 5. Building H from H and J.

The partial order P consists of any linear ordering of the H-vertices, concate-
nated onto any linear ordering of the J-vertices concatenated onto the ordering P of
the G-vertices. The vertex s is the first H-vertex in the ordering P and the vertex
 is the vertex # of P. The whole construction can be pictured in Fig. 6. Clearly,
this construction can be undertaken using logspace.

We begin by showing that any execution of GREEDY (H-colourable) on input
(G, P, s) outputs every H-vertex and J-vertex of G. Clearly every H-vertex is
output. Consider some copy of J (used in the formation of G). As H has at least
one vertex, there is a homomorphism from J to H taking k; to h;, fori=1,2,... 1.
Hence, every J-vertex is output. Denote the set of H-vertices and J-vertices of G
by L.

Consider the algorithm GREEDY (H-colourable) on the input (G, P, s), where
the current-vertex is 5 (with the vertices of L having been output so far), and
the algorithm GREEDY (H-colourable) on the input (G, P, 3) where the current-
vertex is § (note how we consider the G-vertices of G and the vertices of G as
being identically named). Essentially, these two algorithms work with the same
partial order; so consider executions of these algorithms with respect to the same
subsequent linear order.

Our induction hypothesis is as follows: ‘The current-vertex in both executions
is s0; GREEDY (H-colourable) has so far output the vertices of LU {s1, sy, ..., 5m},
where each s; is a G-vertex, for i = 1,2,...,m; and GREEDY (H-colourable) has SO
far output the vertices of {sl, S9y ., sm}.

Suppose that the induction hypothesis holds at some point (it certainly holds
when sy = §).

Suppose that sy is output by GREEDY (H-colourable). That is, there is a ho-

momorphism f : (LU {s¢, 51, -.,8n})c — H. In particular: f(s;) is a vertex of I?,
fori=0,1,...,m; and if (s;,s;) is an edge of G then (f(s;), f(s;)) is an edge of H,
fori,5 =0,1,..., m. Hence, we have a homomorphism f : ({sg, s1,...,5m})a = H

and so sg is output by GREEDY (H-colourable).

12
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Figure 6. Building G from H, copies of J and G.

Conversely, suppose that sy is output by GREEDY(ﬁ—colourable). That is,
there is a homomorphism f : ({50,515, sm}bye — H. Consider the copy of J
corresponding to the G-vertex s; of G. As f(s;) is a vertex of H, f can be extended
to a homomorphism f : (L U {so,s1,...,Sm})¢ — H. Hence, sy is output by
GREEDY (H-colourable). The result follows by induction. 0

Construction C: The edge-sub-indicator construction.

Let J be a fixed graph with a specified edge (j,j') and t specified vertices
ki, ko, ..., ki, such that all vertices j,j’, ki, ko, ..., k; are distinct and some auto-
morphism of J keeps ki, ko, ..., k; fixed while exchanging the vertices j and j'. The
edge-sub-indicator construction transforms a given graph H with ¢ (distinct) spec-
ified vertices hy, ho, ..., h into its subgraph H induced by those edges (h,h') of H
for which there is a homomorphism of J to H taking k; to h;, fori=1,2,...,¢, and
j to h and j' to h'. The construction can be visualised as in Fig. 7.

Lemma 5 If the problem Gy is X5-complete then so is Gg.

Proof Assume that G is ¥5-complete; and so, in particular, H has at least one
edge. We will reduce G;; to Gy (via a logspace reduction). Let (G, P, s, &) be an
instance of G;. From it, we shall construct an instance (G, P, s, x) of Gp.

13
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Figure 7. Building # from H and J.

The graph G is constructed from: a copy of G, with e edges; a copy of H; and e
copies of J (with H and .J as prior to the statement of this lemma), by identifying
every vertex k; in any copy of J with the vertex h; of H, for + = 1,2,...,t, and
each edge e of G with the edge (j,7') of a unique copy of J. The vertices of G
corresponding to the vertices of G (and the vertices j and j' of the copies of .J)
are called @—vertices, the vertices of G corresponding to the vertices of the copies
of J but different from j, ki, ks, ..., k; are called J-vertices, and the vertices of G
corresponding to the vertices of H are called H-vertices.

The partial order P consists of any linear ordering of the H-vertices, concate-
nated onto any linear ordering of the .J-vertices concatenated onto the ordering P of
the G-vertices. The vertex s is the first H-vertex in the ordering P and the vertex
 is the vertex & of P. The whole construction can be pictured in Fig. 8. Clearly,
this construction can be undertaken using logspace.

We begin by showing that any execution of GREEDY (H-colourable) on input
(G, P, s) outputs every H-vertex and J-vertex of G. Clearly every H-vertex is
output. Consider some copy of J (used in the formation of G). As H has at least
one edge, there is a homomorphism from J to H taking k; to h;, fort =1,2,... .
Hence, every J-vertex is output. Denote the set of H-vertices and .J-vertices of G
by L.

Consider the algorithm GREEDY (H-colourable) on the input (G, P, s), where
the current-vertex is § (with the vertices of L having been output so far), and
the algorithm GREEDY (H-colourable) on the input (G, P, 5) where the current-
vertex is § (note how we consider the G-vertices of G and the vertices of G as
being identically named). Essentially, these two algorithms work with the same
partial order; so consider executions of these algorithms with respect to the same
subsequent linear order.

Our induction hypothesis is as follows: ‘The current-vertex in both executions
is sp; GREEDY (H-colourable) has so far output the vertices of LU {sy, s2,...,Sm},
where each s; is a G-vertex, for i = 1,2,...,m; and GREEDY(fI—colourable) has so
far output the vertices of {s1, $2,...,sn}.’

14
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Figure 8. Building G from H, copies of J and G.

Suppose that the induction hypothesis holds at some point (it certainly holds
when sy = §).

Suppose that sy is output by GREEDY (H-colourable). That is, there is a ho-
momorphism f : (L U {so, s1,...,5m})¢ — H. In particular, if (s;,s;) is an edge
of G then (f(si), f(s5)) is an edge of H, fori,j = 0,1,...,m. Hence, we have a
homomorphism f : ({50,815 -+, Sm})e — H, and so s is output by GREEDY(I:I—
colourable).

Conversely, suppose that sy is output by GREEDY(fAI—colourable). That is,
there is a homomorphism f : ({50,581, ., Sm})e — H. Consider the copy of J
corresponding to the G-vertex s; of G. As f(s;) is a vertex of H, there must be a
G-vertex s; of G such that (f(s;), f(s;)) is an edge of H, and so f can be extended
to a homomorphism f : (L U {sy,s1,...,Sm})¢ — H. Hence, sy is output by
GREEDY (H-colourable). The result follows by induction. O

Now we can proceed as Hell and Nesetril did in [6]. Assume that there exists a
non-bipartite graph H for which the problem Gy is not Xf-complete. Choose H so
that it is non-bipartite and the problem Gz is X5-complete for any non-bipartite
graph H':

(7) with fewer vertices than H; or
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(74) with the same number of vertices as H but with more edges.

It is straightforward to see that, under the assumption above, such an H must exist.

In [6], working from a similar hypothesis and graph H, the proof proceeds by
using the indicator, sub-indicator and edge-sub-indicator constructions, in tandem
with lemmas analogous to Lemmas 3, 4 and 5, to show that A must be a 3-clique;
and hence that the 3-colouring problem is not NP-complete, thus yielding a contra-
diction. The sections of the proof of the main theorem of [6] entitled ‘The structure of
triangles’ and ‘The structure of squares’ can be applied verbatim to our graph H (as
the constructions we use are identical and we have our analogous Lemmas 3, 4 and 5).
Hence, we may assume that H is 3-colourable, i.e., that H is a 3-clique. However,
Theorem 1 yields a contradiction as the problem GREEDY (partial order, undirected
graphs, H-colourable) is none other than Gy when H is a 3-clique, and the result
follows. 0

5 Conclusion

In this paper, we have exhibited a complexity-theoretic dichotomy result concerning
the non-deterministic computation of lexicographically first maximal H-colourable
subgraphs of graphs. Our dichotomy result is different from other dichotomy results
in that it is concerned with NP-completeness and X5-completeness, as opposed to
computability in polynomial-time and NP-completeness as is more often the case.
There are natural directions in which to extend this research.

Can we obtain a constructive proof of our main result?

Can we obtain a similar result in the case of directed graphs or other struc-
tures?

Of course, it is open as to whether there is a constructive proof of Hell and Nesetiil's
result and also whether it can be extended to directed graphs; but it may be the
case that these questions might be easier in our scenario.

What is the complexity of counting the number of distinct sets of vertices output
by GREEDY () (on a given instance and for some appropriate property )
that contain a given vertex v?

This question is motivated by the results of Dyer and Greenhill [3].

What is the complexity of the analogously defined lexicographically last maximal
subgraph problem (again, with respect to an appropriate property m), in the
cases when a graph is linearly ordered and partially ordered?

The only result we know of as regards computing lexicographically last subgraphs is
that of [7] where it is proven that deciding whether a given set of vertices of a given
linearly ordered graph is the lexicographically last such maximal independent set is
co-NNP-complete.
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