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tLet H be a �xed undire
ted graph. An H-
olouring of an undire
ted graph G is a homo-morphism from G to H. If the verti
es of G are partially ordered then there is a generi
non-deterministi
 greedy algorithm whi
h 
omputes all lexi
ographi
ally �rst maximal H-
olourable subgraphs ofG. We show that the 
omplexity of de
iding whether a given vertexof G is in a lexi
ographi
ally �rst maximal H-
olourable subgraph of G is NP-
omplete, ifH is bipartite, and �p2-
omplete, if H is non-bipartite. This result 
omplements Hell andNe�set�ril's seminal di
hotomy result that the standard H-
olouring problem is in P, if His bipartite, and NP-
omplete, if H is non-bipartite. Our proofs use the basi
 te
hniquesestablished by Hell and Ne�set�ril, 
ombinatorially adapted to our s
enario.1 Introdu
tionIn what is now a seminal result, Hell and Ne�set�ril [6℄ established a di
hotomy forthe H-
olouring problem when H is an undire
ted graph: the H-
olouring problemis in P, if H is bipartite, and is NP-
omplete otherwise. Su
h a (di
hotomy) re-sult 
an also be thought of as a generi
 result in that it provides a 
omplete, exa
t
lassi�
ation of the 
omputational 
omplexities of an in�nite 
lass of problems (inthis 
ase, the 
lass of H-
olouring problems). Other su
h generi
 results exist. Forexample, Miyano [8℄ proved a very general result relating to hereditary properties ofgraphs: he showed that the problem of de
iding whether a given vertex of a givenundire
ted graph G, whose verti
es are linearly ordered, lies in the lexi
ographi-
ally �rst maximal subgraph of G satisfying some �xed polynomial-time testable,non-trivial, hereditary property � is P-
omplete. (Noti
e that the existen
e of anH-
olouring of an undire
ted graph G, i.e., a homomorphism from G to H, is aparti
ular hereditary property of G.)A number of other di
hotomy results (involving unequivo
al 
omplexity-theoreti

lassi�
ations) and generi
 results (appli
able to an in�nite 
lass of problems) have1



sin
e been obtained. Examples of other di
hotomy results in
lude: Feder and Hell'sresult [4℄ that the list homomorphism problem for re
exive graphs is solvable inpolynomial-time if the target graph is an interval graph, and NP-
omplete other-wise; Feder, Hell and Huang's [5℄ result that the list homomorphism problem forirre
exive graphs is solvable in polynomial-time if the 
omplement of the targetgraph is a 
ir
ular ar
 graph of 
lique 
overing number two, and NP-
omplete oth-erwise; D��az, Serna and Thilikos's result [2℄ that the 
omplexity of the list (H;C;K)-
olouring problem mirrors that of the list homomorphism problem; and Dyer andGreenhill's result [3℄ that the problem of 
ounting the H-
olourings of a graph issolvable in polynomial-time if every 
onne
ted 
omponent of H is a 
omplete re-
exive graph with all loops present or a 
omplete bipartite irre
exive graph (withno loops present), and ℄P-
omplete otherwise. Examples of other generi
 resultsin
lude: Miyano's result [9℄ that the problem of de
iding whether a given vertex of agiven undire
ted graph G, whose verti
es are linearly ordered, lies in the lexi
ograph-i
ally �rst maximal 
onne
ted subgraph of G satisfying some �xed polynomial-timetestable, hereditary property � that is determined by the blo
ks and non-trivial on
onne
ted graphs is �p2-
omplete; and Puri
ella and Stewart's result [11℄ that theproblem of de
iding whether a given vertex of a given undire
ted graph G, whoseverti
es are partially ordered, lies in a lexi
ographi
ally �rst maximal subgraph ofG satisfying some �xed polynomial-time testable, non-trivial, hereditary property �is NP-
omplete.Di
hotomy and generi
 results su
h as those highlighted above are parti
ularlyattra
tive as they give a 
on
ise and simpli�ed view of a parameterized world ofnatural problems. In this paper, we 
onsider the problem of de
iding whether agiven vertex of a given undire
ted graph G, whose verti
es are partially ordered,lies in a lexi
ographi
ally �rst maximal H-
olourable subgraph of G (where theundire
ted graph H is �xed). In parti
ular, we prove that this problem is NP-
omplete, if H is bipartite, and �p2-
omplete, if H is non-bipartite; thus establishingyet another 
omplexity-theoreti
 di
hotomy result. Our proofs use the te
hniquesestablished by Hell and Ne�set�ril in [6℄ although they are 
ombinatorially adapteda

ording to our 
ir
umstan
es. However, part of Hell and Ne�set�ril's 
onstru
tions
an be applied verbatim and this substantially shortens our exposition.2 Basi
 de�nitionsFor standard graph-theoreti
 de�nitions the reader is referred to [1℄, and for standard
omplexity-theoreti
 de�nitions to [10℄.Let G = (V;E) be an undire
ted graph and suppose that the verti
es of V arelinearly ordered. Given a subset S = fs0; s1; s2; : : : ; skg of V , where the indu
edordering is s0 < s1 < : : : < sk, we 
an de�ne a lexi
ographi
 order on the set of allsubsets of S as follows (we 
all it lexi
ographi
 be
ause we 
onsider s0; s1; : : : ; sk tobe our alphabet): 2



� for subsets U = fu1; u2; : : : ; upg and W = fw1; w2; : : : ; wkg of S, where u1 <u2 < : : : < up and w1 < w2 < : : : < wk, we say that U is lexi
ographi
allysmaller than W if:{ there is a number t, where 1 � t � p, su
h that ut < wt and ui = wi, forall i su
h that 1 � i < t; or{ k > p and ui = wi, for all i su
h that 1 � i � p.Let � be some property of graphs (our graphs are all undire
ted). If we take S = Vthen we 
an talk about the lexi
ographi
ally �rst maximal subgraph ofG that satis�es� (as Miyano does in [8℄).Now let G = (V;E) be an undire
ted graph, let P be a partial order on V andlet s 2 V . We assume that the partial order P is given in the form of an a
y
li
digraph detailing the immediate prede
essors, i.e., the parents, and the immediatesu

essors, i.e., the 
hildren, of ea
h vertex. We think of a partial order P asen
oding a 
olle
tion of linear orders of the form s = s0 < s1 < s2 < : : : < sk, wheresj+1 is a 
hild of sj, for 0 � j < k, and sk has no 
hildren. Note that a partial order
an en
ode an exponential number of linear orders.Let � be some property of graphs. Now we 
an talk of the lexi
ographi
ally �rstmaximal subgraphs of G satisfying �; where we get one su
h subgraph for everylinear order en
oded within P . A property � on graphs is hereditary if whenever wehave a graph with the property � then the deletion of any vertex and its in
identedges does not produ
e a graph violating �, i.e., � is preserved by vertex-indu
edsubgraphs. It is straightforward to see that the sets of verti
es that indu
e theselexi
ographi
ally �rst maximal subgraphs of G satisfying some hereditary property� 
an be obtained using the following non-deterministi
 algorithm GREEDY(�) (ifP is a linear order then this algorithm 
omputes the lexi
ographi
ally �rst maximalsubgraph ofG satisfying �). The algorithmGREEDY(�) takes as input 3 arguments:an undire
ted graph G = (V;E), a dire
ted a
y
li
 graph P = (V;D) and a spe
i�edvertex s 2 V ; and is as follows:input(G,P,s)S := ;
urrent-vertex := sif �(S[f
urrent-vertex g,G ) then (�)S := S[f
urrent-vertex gfiwhile 
urrent-vertex has at least one 
hild in P do
urrent-vertex := a 
hild of 
urrent-vertex in Pif �(S[f
urrent-vertex g,G ) then (��)S := S[f
urrent-vertex gfiodoutput(S ) 3



where �(S [ f
urrent-vertexg; G) is a predi
ate evaluating to `true' if, and only if,the subgraph of G indu
ed by the verti
es of S [ f
urrent-vertexg satis�es �. Wesay that a vertex v is the 
urrent-vertex if we have `frozen' an exe
ution of thealgorithm GREEDY(�) immediately prior to exe
uting either line (�) or line (��)and the value of the variable 
urrent-vertex at this point is v.A property � is 
alled non-trivial on a 
lass of graphs if there are in�nitely manygraphs from this 
lass satisfying � but � is not satis�ed by all graphs of the 
lass.Let C be a 
lass of graphs and let � be some property of graphs. The problemGREEDY(partial order, C, �) has: as its instan
es tuples (G;P; s; x), where G isa graph from C, P is a partial order of the verti
es of G and s and x are verti
esof G; and as its yes-instan
es those instan
es for whi
h there exists an exe
utionof the algorithm GREEDY(�) on input (G;P; s) resulting in the output of a set ofverti
es 
ontaining the vertex x. The problemGREEDY(linear order, C, �) is de�nedsimilarly ex
ept that P is a linear order. As mentioned earlier, when � is polynomial-time testable, non-trivial and hereditary, Miyano [8℄ proved that GREEDY(linearorder, undire
ted graphs, �) is P-
omplete, and Puri
ella and Stewart [11℄ provedthat GREEDY(partial order, undire
ted graphs, �) is NP-
omplete.Let G and H be graphs. A homomorphism from G to H is a map f from theverti
es of G to the verti
es of H su
h that if (u; v) is an edge of G then (f(u); f(v))is an edge of H. The H-
olouring problem is the problem whose instan
es are graphsG and whose yes-instan
es are those graphs G for whi
h there is a homomorphismfrom G to H.If U is a subset of verti
es of the graph G then hUiG is the subgraph of G indu
edby the set of verti
es U . A graph is 3-
olourable if the verti
es 
an be 
oloured witha unique 
olour from red, white and blue so that two adja
ent verti
es are 
oloureddi�erently; and the 3-
olouring problem has as an instan
e a graph G and as ayes-instan
e a graph G that is 3-
olourable.3 A 
omplete problemOur proof of our main result in the next se
tion follows the strategy adopted byHell and Ne�set�ril. Essentially, we assume that H is a non-bipartite graph for whi
hthe problem GREEDY(partial order, undire
ted graphs, H-
olouring) is not �p2-
omplete and apply a sequen
e of 
onstru
tions to yield that a known �p2-
ompleteproblem is not 
omplete, thereby obtaining a 
ontradi
tion. Our `known' problem�p2-
omplete is GREEDY(partial order, undire
ted graphs, 3-
olourable).Theorem 1 The problem GREEDY (partial order, undire
ted graphs, 3-
olourable)is �p2-
omplete.Proof Throughout this proof, the problem GREEDY(partial order, undire
tedgraphs, 3-
olourable) shall be denoted G. We shall prove 
ompleteness by redu
-ing from the problem NOT CERTAIN 3-COLOURING OF BOOLEAN EDGE-LABELLED GRAPHS, hen
eforth to be abbreviated as problem N . An instan
e4



of N of size n 
onsists of an undire
ted graph H on n verti
es, some of whoseedges are labelled with the disjun
tion of two (possibly identi
al) literals over theset of Boolean variables fXi;j : i; j = 1; 2; : : : ; ng (the same literal may appearin more than one disjun
tion). A truth assignment t on the Boolean variables offXi;j : i; j = 1; 2; : : : ; ng makes some of the labels on the edges of H true and somefalse. Form the graph t(H) by retaining the edges labelled true, as well as anyunlabelled edges, and dispensing with the edges labelled false. A yes-instan
e is aninstan
e H for whi
h there exists a truth assignment t resulting in a graph t(H)that 
annot be 3-
oloured. This problem was proven to be �p2-
omplete in [12℄.Given an instan
e H of the problemN , we shall 
onstru
t an instan
e (G;P; s; x)of the problem G where G is an undire
ted graph, P is a partial order on these sameverti
es and s and x are two distinguished verti
es. Moreover, H will be a yes-instan
e of N if, and only if, (G;P; s; x) is a yes-instan
e of G; and the 
onstru
tionwill be su
h that it 
an be 
ompleted using logspa
e.Let H = (U; F ) and suppose that U = f1; 2; : : : ; ng. We build the undire
tedgraph G from H as follows.(a) For ea
h vertex i 2 U , `atta
h' a 
opy of K4 by identifying vertex i withone of the verti
es of the 
lique. Denote the other three verti
es by ai, b1iand b2i . We refer to the original verti
es of U as H-verti
es, the verti
es offai : i = 1; 2; : : : ; ng as a-verti
es and the verti
es of fb1i ; b2i : i = 1; 2; : : : ; ngas b-verti
es.(b) Retain any unlabelled edge (i; j) of F (between H-verti
es i and j).(
) For any labelled edge (i; j) of F (between H-verti
es i and j), where i < j andwhere the label is L1i;j_L2i;j, repla
e the edge with a 
opy of the graph G1 shownin Fig. 1. We use, for example, L1i;j to refer to the �rst literal labelling edge (i; j)and also a vertex within a graph G1: this 
auses no 
onfusion. The verti
esof fL1i;j; L2i;j; �L1i;j; �L2i;j : (i; j) 2 F; where i < jg are 
alled L-verti
es. Every L-vertex of any G1 has an asso
iated literal, e.g., if the literal L14;6 = :X3;2 thenthe asso
iated literal of vertex L14;6 is :X3;2 and the asso
iated literal of vertex�L14;6 is X3;2. So, an L-vertex of some G1 might have the same asso
iated literalas an L-vertex of some otherG1. Finally, the verti
es of f
i;j : i; j = 1; 2; : : : ; ngare 
alled 
-verti
es, the verti
es of fdi;j : i; j = 1; 2; : : : ; ng are 
alled d-verti
esand the verti
es of fe1i;j; e2i;j : i; j = 1; 2; : : : ; ng are 
alled e-verti
es.(d) In
lude a disjoint 
opy of K4, whose verti
es are fy; z; w; xg and join verti
esy, z and w to every a-vertex. In
lude the vertex s as an independent vertex.Our partial ordering P is de�ned as follows. First, order the Boolean variablesfXi;j : i; j = 1; 2; : : : ; ng lexi
ographi
ally asX1;1; X1;2; X1;3; : : : ; X1;n; X2;1; X2;2; : : : ; Xn;n5



and denote this ordering by <X ; so X1;1 <X X1;2 <X X1;3 <X : : :. Next, 
onsiderthe L-verti
es. We obtain the notions of a positive L-vertex, where the vertex hasan asso
iated positive literal, and a negative L-vertex, where the vertex has anasso
iated negative literal. Order the positive L-verti
es so that if vertex �i is lessthan vertex �j in this ordering then the asso
iated literal of �i is less than or equalto the asso
iated literal of �j with respe
t to the ordering <X (note that there maybe a number of su
h orderings on the positive L-verti
es: it does not matter whi
hof them we use). We obtain an analogous ordering of the negative L-verti
es bytaking 
omplements (note that for every positive L-vertex Lmi;j or �Lmi;j with label l,the vertex �Lmi;j or Lmi;j, respe
tively, is a negative L-vertex with label :l; and vi
eversa). As we walk down these two orderings in a syn
hronous fashion, the pairsof L-verti
es are always 
omplementary as is the pair of asso
iated literals. Denotethese orderings as �1 < �2 < : : : < �k and �1 < �2 < : : : < �k;respe
tively, where f�i; �i : i = 1; 2; : : : ; kg = fL1i;j; L2i;j; �L1i;j; �L2i;j : (i; j) 2 F; wherei < jg.
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onstru
ting G from H.Our partial ordering P begins as follows. The vertex s is less than both �1 and�1; and then we have the orderings �1 < �2 < : : : < �k and �1 < �2 < : : : < �k.Also, for any index i 2 f1; 2; : : : ; k � 1g, if the asso
iated literal of �i is di�erentfrom the asso
iated literal of �i+1 then additionally �i < �i+1 and �i < �i+1. Inorder to 
omplete P , 
hoose any linear ordering of the 
-verti
es, followed by anylinear ordering of the d-verti
es, followed by any linear ordering of the e-verti
es,followed by the ordering 1; 2; : : : ; n of the H-verti
es, followed by any linear orderingof the b-verti
es, followed by any linear ordering of the a-verti
es, followed by theordering w, y, z, x; and additionally de�ne that both �k and �k are less than theleast 
-vertex (if there are no L-verti
es then just 
on
atenate the linear ordering ofthe 
-verti
es after the vertex s). 6



The 
onstru
tion of (G;P; s; x) from H is illustrated in Fig. 2 (note that to avoid
luttering the �gure, not all verti
es are named; and the bold edges 
orrespond tothe stru
ture of H). Clearly, this 
onstru
tion 
an be 
ompleted using logspa
e.
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literalsFigure 2. The 
onstru
tion of (G;P; s; x) from H.Suppose that H is a yes-instan
e of problem N . Hen
e, there exists a truthassignment t su
h that t(H) is not 3-
olourable. Consider the exe
ution of thealgorithm GREEDY(3-
olourable) on (G;P; s; x) where the 
hosen linear order inP is that indu
ed by the truth assignment t; that is, an L-vertex is 
hosen if, andonly if, its asso
iated Boolean literal is set at true by t. The �rst point to note isthat s and every L-vertex 
hosen is output by GREEDY(3-
olourable), as is every
-vertex. Let us freeze the exe
ution at this point. Note that if the truth assignmentt makes the label of some edge (i; j) of F true then at our freeze-point, the vertexdi;j is adja
ent to at most 2 verti
es of S, and so this vertex di;j is subsequentlyoutput by GREEDY(3-
olourable).Conversely, if the truth assignment t makes the label of some edge (i; j) of F falsethen at our freeze-point, the vertex di;j is adja
ent to 3 mutually adja
ent verti
esof S and so this vertex di;j is not subsequently output by GREEDY(3-
olourable).7



Unroll the exe
ution of GREEDY(3-
olourable) until every d-vertex and e-vertexhas been 
onsidered. Note that every e-vertex is output regardless. Let us freezethe exe
ution for a se
ond time at this point.Our next task in the exe
ution is to 
onsider the H-verti
es as to whether theyare output or not. Let (i; j) be some edge of F whi
h is either unlabelled or whoselabel has been made true by t. It may or may not be the 
ase that the verti
es i andj are output; but if they are both output then at the point after the se
ond of theseverti
es is output, the subgraph indu
ed by the verti
es of S 
an be 3-
oloured butnot so that i and j have the same 
olour. This is so be
ause ea
h of the verti
es di;j,e1i;j and e2i;j is in S. Hen
e, as we know that t(H) 
annot be 3-
oloured, there must besome H-vertex that is not output; and, 
onsequently, there is at least one a-vertexoutput. Having an a-vertex output means that not all of fy; z; wg are output whi
hin turn means that x is output. Hen
e, (G;P; s; x) is a yes-instan
e of problem G.Conversely, suppose that (G;P; s; x) is a yes-instan
e of problem G. Fix ana

epting exe
ution of the algorithm GREEDY(3-
olourable) on input (G;P; s; x)and denote the linear order 
hosen within P by �. This exe
ution gives rise to atruth assignment t on the literals labelling the edges of the graph H: if � is su
hthat a positive L-vertex, with asso
iated literal Xi;j, say, is 
hosen then set t(Xi;j)to be true; and if � is su
h that a negative L-vertex, with asso
iated literal :Xi;j,say, is 
hosen then set t(Xi;j) to be false (note that this truth assignment is well-de�ned). As before, every L-vertex on � is output by GREEDY(3-
olourable); and,by arguing as we did earlier, for any i; j 2 f1; 2; : : : ; ng with i < j and where (i; j)is a labelled edge of H, the truth assignment t makes L1i;j _ L2i;j true if, and only if,the verti
es di;j, e1i;j and e2i;j are output.At various points in the exe
ution of GREEDY(3-
olourable), a 
he
k is madeto see whether the verti
es of S indu
e a 3-
olourable graph. Consider su
h a 
he
kand suppose that the verti
es of fdi;j; e1i;j; e2i;jg have been pla
ed in S. Consider thesubgraph K of G indu
ed by those verti
es that are both in S and in the 
opy of G1pertaining to the labelled edge (i; j) of H. In parti
ular, 
onsider the role of K whenit 
omes to attempting to 
olour the subgraph of G indu
ed by the verti
es of S. Asimple 
ombinatorial veri�
ation yields that the role of the verti
es of K is to allow iand j to be 
oloured with any pair of distin
t 
olours but not with identi
al 
olours.Hen
e, any 
he
k to see whether the subgraph of G indu
ed by the verti
es of S 
anbe 3-
oloured is equivalent to a 
he
k of whether the subgraph of t(H) indu
ed by(verti
es 
orresponding to) the H-verti
es of S 
an be 3-
oloured. We know thatour a

epting 
omputation on (G;P; s; x) outputs x. This 
an only happen if notall of fy; z; wg are output, i.e., if at least one a-vertex, am, say, is output, i.e., if theH-vertex m is not output, i.e., if the graph t(H) 
an not be 3-
oloured. The resultfollows.
8



4 The 
onstru
tionWe now prove our main result using the te
hniques originating with Hell andNe�set�ril. Of 
ourse, these te
hniques have to be adapted to our s
enario.Theorem 2 The problem GREEDY (partial order, undire
ted graph, H-
olourable)is NP-
omplete, if H is bipartite, and �p2-
omplete, if H is non-bipartite.Proof Throughout the proof we shall denote the problem GREEDY(partial order,undire
ted graphs, H-
olourable) by GH . Clearly, GH 
an be solved in �p2, if H isnon-bipartite, and in NP, if H is bipartite (the latter be
ause the H-
olourabilityproblem, for H-bipartite, 
an be solved in polynomial-time [6℄). Moreover, be
ausethe property of being H-
olourable, for H bipartite, is non-trivial on graphs, hered-itary, satis�ed by all sets of independent edges and polynomial-time testable, by[11℄ we have that GH is NP-
omplete if H is bipartite1. A
tually, note that if His bipartite then GH and the problem GREEDY(partial order, undire
ted graphs,bipartite) are one and the same.To prove that for any non-bipartite graph H, the problem GH is �p2-
omplete, wewill modify the proof of Theorem 1 of [6℄ whi
h states that: `If H is bipartite thenthe H-
olouring problem is in P. If H is non-bipartite then the H-
olouring problemis NP-
omplete.' The proof begins by detailing three ways of 
onstru
ting a graphH 0 from a graph H su
h that if the H 0-
olouring problem is NP-
omplete then theH-
olouring problem is NP-
omplete as well. We will show that su
h 
onstru
tions
an be used to prove that the problem GH is �p2-
omplete.Constru
tion A: The indi
ator 
onstru
tion.Let I be a �xed graph and let i and j be distin
t verti
es of I su
h that someautomorphism of I maps i to j and j to i. The indi
ator 
onstru
tion (with respe
tto (I; i; j)) transforms a given graph H into a graph H� de�ned to be the subgraphof H indu
ed by all edges (h; h0) for whi
h there is a homomorphism of I to Hmapping i to h and j to h0. Be
ause of our assumptions on I, the edges of H� willbe undire
ted. The 
onstru
tion is illustrated in Fig. 3.
H

H
*

I

i j

Figure 3. The indi
ator 
onstru
tion.1A
tually, the result proven in [11℄ insists that the property should be non-trivial on planarbipartite graphs, but it is straight-forward to weaken this assumption and still obtain our appli
a-tion. 9



Lemma 3 If the problem GH� is �p2-
omplete then so is GH .Proof Assume that GH� is �p2-
omplete; and so, in parti
ular, H� has at least oneedge (otherwise H� would be the empty graph and GH� would not be �p2-
omplete).We will redu
e GH� to GH (via a logspa
e redu
tion). Let (G�; P �; s�; x�) be aninstan
e of GH�. From it, we shall 
onstru
t an instan
e (G;P; s; x) of GH .Graph G is obtained from G� as follows. For any vertex i of G�, there is a
orresponding vertex i of G: we will refer to su
h verti
es of G as G�-verti
es (notehow we 
onsider the G�-verti
es of G and the verti
es of G� as being identi
allynamed). For any edge (u; v) of G�, we add a 
opy of graph I to G by identifyingthe G�-vertex u with vertex i in I and the G�-vertex v with vertex j in I (all added
opies of I are disjoint).The partial order P 
onsists of a linear order L (any one will do) on the verti
esof G whi
h are not G�-verti
es, and we 
on
atenate on to this linear order thepartial order P � (of the G�-verti
es). Vertex s is the �rst vertex of the linear orderL and vertex x is the G�-vertex x�. An illustration of this 
onstru
tion is depi
tedin Fig. 4 (where the graphs I, H and H� are as in Fig. 3).

the partial order P the graph G

s

x

s

x

the partial order P

…
s

x

s s

x

the graph G

* *

*

*

*

*

* *

Figure 4. Building (G;P; s; x) from (G�; P �; s�; x�).Consider the algorithm GREEDY(H-
olourable) on the input (G;P; s). As H�
ontains at least one edge, there is a homomorphism from I to H. Hen
e, as thelinear order L 
onsists of disjoint 
opies of Infi; jg, GREEDY(H-
olourable) outputs10



every vertex of L. After 
onsideration of the verti
es of L, GREEDY(H-
olourable)is working with essentially the same partial order as is the algorithm GREEDY(H�-
olourable) initially on input (G�; P �; s�); so 
onsider exe
utions of these algorithmswith respe
t to the same subsequent linear order.Our indu
tion hypothesis is as follows: `The 
urrent-vertex in both exe
utionsis s0; GREEDY(H-
olourable) has so far output the verti
es of L[ fs1; s2; : : : ; smg,where vertex si is a G�-vertex, for i = 1; 2; : : : ; m; and GREEDY(H�-
olourable)has so far output the verti
es of fs1; s2; : : : ; smg.'Suppose that the indu
tion hypothesis holds at some point (it 
ertainly holdswhen s0 = s�).Suppose that GREEDY(H�-
olouring) outputs the vertex s0. This means thatthere exists an homomorphism f � : hfs0; s1; : : : ; smgiG� ! H�. By 
onstru
tionof H�, there must exist a homomorphism f : hL [ fs0; s1; : : : ; smgiG ! H, wheref(si) = f �(si), for i = 0; 1; : : : ; m, and f(v) is the `natural' map for v 2 L (derivedfrom the de�nition of H� from H). Hen
e, GREEDY(H-
olourable) outputs thevertex s0.Conversely, suppose that GREEDY(H-
olourable) outputs the vertex s0. Thismeans that there exists a homomorphism f : hL[fs0; s1; : : : ; smgiG ! H. Again by
onstru
tion of H�, there must exist a homomorphism f � : hfs0; s1; : : : ; smgiG� !H�, where f �(si) = f(si), for i = 0; 1; : : : ; m. Hen
e, GREEDY(H�-
olouring)outputs the vertex s0. The result follows by indu
tion.Constru
tion B : The sub-indi
ator 
onstru
tion.Let J be a �xed graph with spe
i�ed (distin
t) verti
es j and k1; k2; : : : ; kt, forsome t � 1. The sub-indi
ator 
onstru
tion (with respe
t to J; j; k1; k2; : : : ; kt)transforms a given graph H with t (distin
t) spe
i�ed verti
es h1; h2; : : : ; ht to itssubgraph ~H indu
ed by the vertex set ~V de�ned as follows. A vertex v of H belongsto ~V just if there exists a homomorphism of J to H taking ki to hi, for i = 1; 2; : : : ; t,and taking j to v. An illustration of this 
onstru
tion is depi
ted in Fig. 5 (where,for 
larity, we have shown the verti
es of H ex
luded from ~H).Lemma 4 If the problem G ~H is �p2-
omplete then so is GH .Proof Assume that G ~H is �p2-
omplete; and so, in parti
ular, ~H has at least onevertex. We will redu
e G ~H to GH (via a logspa
e redu
tion). Let ( ~G; ~P; ~s; ~x) be aninstan
e of G ~H . From it, we shall 
onstru
t an instan
e (G;P; s; x) of GH .The graph G is built from: a 
opy of ~G, of size n; a 
opy of H; and n 
opies ofJ (with J and H prior to the statement of the lemma), by identifying the vertexki in any 
opy of J with the vertex hi of H, for i = 1; 2; : : : ; t, and identifyingthe vertex j in the ith 
opy of J with the ith vertex of ~G, for i = 1; 2; : : : ; n. Theverti
es of G 
orresponding to the verti
es of ~G (and the verti
es j of the 
opies ofJ) are 
alled ~G-verti
es, the verti
es of G 
orresponding to the verti
es of the 
opiesof J but di�erent from j; k1; k2; : : : ; kt are 
alled J-verti
es, and the verti
es of G
orresponding to the verti
es of H are 
alled H-verti
es.11



J

j

k1

H

H
~

k2

h1

h2

h1

h2Figure 5. Building ~H from H and J .The partial order P 
onsists of any linear ordering of the H-verti
es, 
on
ate-nated onto any linear ordering of the J-verti
es 
on
atenated onto the ordering ~P ofthe ~G-verti
es. The vertex s is the �rst H-vertex in the ordering P and the vertexx is the vertex ~x of ~P . The whole 
onstru
tion 
an be pi
tured in Fig. 6. Clearly,this 
onstru
tion 
an be undertaken using logspa
e.We begin by showing that any exe
ution of GREEDY(H-
olourable) on input(G;P; s) outputs every H-vertex and J-vertex of G. Clearly every H-vertex isoutput. Consider some 
opy of J (used in the formation of G). As ~H has at leastone vertex, there is a homomorphism from J to H taking ki to hi, for i = 1; 2; : : : ; t.Hen
e, every J-vertex is output. Denote the set of H-verti
es and J-verti
es of Gby L.Consider the algorithm GREEDY(H-
olourable) on the input (G;P; s), wherethe 
urrent-vertex is ~s (with the verti
es of L having been output so far), andthe algorithm GREEDY( ~H-
olourable) on the input ( ~G; ~P; ~s) where the 
urrent-vertex is ~s (note how we 
onsider the ~G-verti
es of G and the verti
es of ~G asbeing identi
ally named). Essentially, these two algorithms work with the samepartial order; so 
onsider exe
utions of these algorithms with respe
t to the samesubsequent linear order.Our indu
tion hypothesis is as follows: `The 
urrent-vertex in both exe
utionsis s0; GREEDY(H-
olourable) has so far output the verti
es of L[ fs1; s2; : : : ; smg,where ea
h si is a ~G-vertex, for i = 1; 2; : : : ; m; and GREEDY( ~H-
olourable) has sofar output the verti
es of fs1; s2; : : : ; smg.'Suppose that the indu
tion hypothesis holds at some point (it 
ertainly holdswhen s0 = ~s).Suppose that s0 is output by GREEDY(H-
olourable). That is, there is a ho-momorphism f : hL [ fs0; s1; : : : ; smgiG ! H. In parti
ular: f(si) is a vertex of ~H,for i = 0; 1; : : : ; m; and if (si; sj) is an edge of ~G then (f(si); f(sj)) is an edge of ~H,for i; j = 0; 1; : : : ; m. Hen
e, we have a homomorphism ~f : hfs0; s1; : : : ; smgi ~G ! ~H,and so s0 is output by GREEDY( ~H-
olourable).12
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Figure 6. Building G from H, 
opies of J and ~G.Conversely, suppose that s0 is output by GREEDY( ~H-
olourable). That is,there is a homomorphism ~f : hfs0; s1; : : : ; smgi ~G ! ~H. Consider the 
opy of J
orresponding to the ~G-vertex si of G. As ~f(si) is a vertex of ~H, ~f 
an be extendedto a homomorphism f : hL [ fs0; s1; : : : ; smgiG ! H. Hen
e, s0 is output byGREEDY(H-
olourable). The result follows by indu
tion.Constru
tion C : The edge-sub-indi
ator 
onstru
tion.Let J be a �xed graph with a spe
i�ed edge (j; j 0) and t spe
i�ed verti
esk1; k2; : : : ; kt, su
h that all verti
es j; j 0; k1; k2; : : : ; kt are distin
t and some auto-morphism of J keeps k1; k2; : : : ; kt �xed while ex
hanging the verti
es j and j 0. Theedge-sub-indi
ator 
onstru
tion transforms a given graph H with t (distin
t) spe
-i�ed verti
es h1; h2; : : : ; ht into its subgraph Ĥ indu
ed by those edges (h; h0) of Hfor whi
h there is a homomorphism of J to H taking ki to hi, for i = 1; 2; : : : ; t, andj to h and j 0 to h0. The 
onstru
tion 
an be visualised as in Fig. 7.Lemma 5 If the problem GĤ is �p2-
omplete then so is GH .Proof Assume that GĤ is �p2-
omplete; and so, in parti
ular, Ĥ has at least oneedge. We will redu
e GĤ to GH (via a logspa
e redu
tion). Let (Ĝ; P̂ ; ŝ; x̂) be aninstan
e of GĤ . From it, we shall 
onstru
t an instan
e (G;P; s; x) of GH .13
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Figure 7. Building Ĥ from H and J .The graph G is 
onstru
ted from: a 
opy of Ĝ, with e edges; a 
opy of H; and e
opies of J (with H and J as prior to the statement of this lemma), by identifyingevery vertex ki in any 
opy of J with the vertex hi of H, for i = 1; 2; : : : ; t, andea
h edge e of Ĝ with the edge (j; j 0) of a unique 
opy of J . The verti
es of G
orresponding to the verti
es of Ĝ (and the verti
es j and j 0 of the 
opies of J)are 
alled Ĝ-verti
es, the verti
es of G 
orresponding to the verti
es of the 
opiesof J but di�erent from j; k1; k2; : : : ; kt are 
alled J-verti
es, and the verti
es of G
orresponding to the verti
es of H are 
alled H-verti
es.The partial order P 
onsists of any linear ordering of the H-verti
es, 
on
ate-nated onto any linear ordering of the J-verti
es 
on
atenated onto the ordering P̂ ofthe Ĝ-verti
es. The vertex s is the �rst H-vertex in the ordering P and the vertexx is the vertex x̂ of P̂ . The whole 
onstru
tion 
an be pi
tured in Fig. 8. Clearly,this 
onstru
tion 
an be undertaken using logspa
e.We begin by showing that any exe
ution of GREEDY(H-
olourable) on input(G;P; s) outputs every H-vertex and J-vertex of G. Clearly every H-vertex isoutput. Consider some 
opy of J (used in the formation of G). As Ĥ has at leastone edge, there is a homomorphism from J to H taking ki to hi, for i = 1; 2; : : : ; t.Hen
e, every J-vertex is output. Denote the set of H-verti
es and J-verti
es of Gby L.Consider the algorithm GREEDY(H-
olourable) on the input (G;P; s), wherethe 
urrent-vertex is ŝ (with the verti
es of L having been output so far), andthe algorithm GREEDY(Ĥ-
olourable) on the input (Ĝ; P̂ ; ŝ) where the 
urrent-vertex is ŝ (note how we 
onsider the Ĝ-verti
es of G and the verti
es of ~G asbeing identi
ally named). Essentially, these two algorithms work with the samepartial order; so 
onsider exe
utions of these algorithms with respe
t to the samesubsequent linear order.Our indu
tion hypothesis is as follows: `The 
urrent-vertex in both exe
utionsis s0; GREEDY(H-
olourable) has so far output the verti
es of L[ fs1; s2; : : : ; smg,where ea
h si is a Ĝ-vertex, for i = 1; 2; : : : ; m; and GREEDY(Ĥ-
olourable) has sofar output the verti
es of fs1; s2; : : : ; smg.'14
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Figure 8. Building G from H, 
opies of J and Ĝ.Suppose that the indu
tion hypothesis holds at some point (it 
ertainly holdswhen s0 = ŝ).Suppose that s0 is output by GREEDY(H-
olourable). That is, there is a ho-momorphism f : hL [ fs0; s1; : : : ; smgiG ! H. In parti
ular, if (si; sj) is an edgeof Ĝ then (f(si); f(sj)) is an edge of Ĥ, for i; j = 0; 1; : : : ; m. Hen
e, we have ahomomorphism f̂ : hfs0; s1; : : : ; smgiĜ ! Ĥ, and so s0 is output by GREEDY(Ĥ-
olourable).Conversely, suppose that s0 is output by GREEDY(Ĥ-
olourable). That is,there is a homomorphism f̂ : hfs0; s1; : : : ; smgiĜ ! Ĥ. Consider the 
opy of J
orresponding to the Ĝ-vertex si of G. As f̂(si) is a vertex of Ĥ, there must be aĜ-vertex sj of G su
h that (f̂(si); f̂(sj)) is an edge of Ĥ, and so f̂ 
an be extendedto a homomorphism f : hL [ fs0; s1; : : : ; smgiG ! H. Hen
e, s0 is output byGREEDY(H-
olourable). The result follows by indu
tion.Now we 
an pro
eed as Hell and Ne�set�ril did in [6℄. Assume that there exists anon-bipartite graph H for whi
h the problem GH is not �p2-
omplete. Choose H sothat it is non-bipartite and the problem GH0 is �p2-
omplete for any non-bipartitegraph H 0:(i) with fewer verti
es than H; or 15



(ii) with the same number of verti
es as H but with more edges.It is straightforward to see that, under the assumption above, su
h an H must exist.In [6℄, working from a similar hypothesis and graph H, the proof pro
eeds byusing the indi
ator, sub-indi
ator and edge-sub-indi
ator 
onstru
tions, in tandemwith lemmas analogous to Lemmas 3, 4 and 5, to show that H must be a 3-
lique;and hen
e that the 3-
olouring problem is not NP-
omplete, thus yielding a 
ontra-di
tion. The se
tions of the proof of the main theorem of [6℄ entitled `The stru
ture oftriangles' and `The stru
ture of squares' 
an be applied verbatim to our graph H (asthe 
onstru
tions we use are identi
al and we have our analogous Lemmas 3, 4 and 5).Hen
e, we may assume that H is 3-
olourable, i.e., that H is a 3-
lique. However,Theorem 1 yields a 
ontradi
tion as the problem GREEDY(partial order, undire
tedgraphs, H-
olourable) is none other than GH when H is a 3-
lique, and the resultfollows.5 Con
lusionIn this paper, we have exhibited a 
omplexity-theoreti
 di
hotomy result 
on
erningthe non-deterministi
 
omputation of lexi
ographi
ally �rst maximal H-
olourablesubgraphs of graphs. Our di
hotomy result is di�erent from other di
hotomy resultsin that it is 
on
erned with NP-
ompleteness and �p2-
ompleteness, as opposed to
omputability in polynomial-time and NP-
ompleteness as is more often the 
ase.There are natural dire
tions in whi
h to extend this resear
h.Can we obtain a 
onstru
tive proof of our main result?Can we obtain a similar result in the 
ase of dire
ted graphs or other stru
-tures?Of 
ourse, it is open as to whether there is a 
onstru
tive proof of Hell and Ne�set�ril'sresult and also whether it 
an be extended to dire
ted graphs; but it may be the
ase that these questions might be easier in our s
enario.What is the 
omplexity of 
ounting the number of distin
t sets of verti
es outputby GREEDY (�) (on a given instan
e and for some appropriate property �)that 
ontain a given vertex v?This question is motivated by the results of Dyer and Greenhill [3℄.What is the 
omplexity of the analogously de�ned lexi
ographi
ally last maximalsubgraph problem (again, with respe
t to an appropriate property �), in the
ases when a graph is linearly ordered and partially ordered?The only result we know of as regards 
omputing lexi
ographi
ally last subgraphs isthat of [7℄ where it is proven that de
iding whether a given set of verti
es of a givenlinearly ordered graph is the lexi
ographi
ally last su
h maximal independent set is
o-NP-
omplete. 16
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