
The complexity of achievement and maintenance

problems in agent-based systems

Iain A. Stewart∗,
Department of Computer Science,

University of Durham, Durham DH1 3LE, U.K.

Abstract

We completely classify the computational complexity of the basic achievement and main-

tenance agent design problems in bounded environments when these problems are parame-

terized by the number of environment states and the number of agent actions. The differ-

ent problems are P-complete, NP-complete, co-NP-complete or PSPACE-complete (when

they are not trivial). We also consider alternative achievement and maintenance agent design

problems by allowing longer runs in environments (that is, our environments are bounded

but the bounds are more liberal than was the case previously). Again, we obtain a complete

classification but so that the different problems are DEXPTIME-complete, NEXPTIME-

complete, co-NEXPTIME-complete or NEXPSPACE-complete (when they are not triv-

ial).

1 Introduction

Agent-based systems have been the subject of much research in artificial intelligence
and computer science (see, for example, [21]). However, the computational complexity
of basic agent-environment problems has not been seriously considered; although, it
has to be said, a number of similar and related problems in areas such as planning,
model checking and Petri nets have been extensively studied. Examples from planning
include: the basic planning problem, that is, the problem of deciding whether a
given instance of the propositional STRIPS planning problem has a solution, i.e.,
a plan, which was proven to be PSPACE-complete [4]; a whole range of planning
problems in probabilistic planning domains [15]; planning problems in the presence
of incompleteness [2]; and planning problems with temporal goals [3] (the reader
is also referred to the survey paper [5]). Examples from model checking and Petri
nets include: the problem of model checking with respect to Kripke structures and
linear temporal logic, LTL, which was proven to be PSPACE-complete [17]; and
the problems of model checking with respect to 1-safe Petri nets and both LTL and
computation tree logic, CTL, which was proven to be PSPACE-complete [13] (the
reader is referred to the survey papers [9] and [10]).

∗Most of this work was completed whilst the author was at the University of Leicester.

1



The only complexity-theoretic considerations of agent-environment problems so far
are those due to Dunne and Wooldridge who study: the basic achievement and main-
tenance agent design problems [18]; more sophisticated achievement and maintenance
agent design problems [20, 8]; and the basic agent verification problem [7]. As might
be expected (given complexity results from planning, model checking and Petri nets),
these basic agent-environment problems turn out to be PSPACE-complete. The es-
sential differences between agent-environment problems and many similar problems
in, for example, planning, model checking and Petri nets are that the evolution of an
agent-environment interaction is history-dependent (and not just state-dependent)
and the environment can behave non-deterministically. Agent-environment interac-
tions can be interpreted as games between two players where one player, the agent, is
usually attempting to achieve or maintain some property whilst the other player, the
environment, is attempting to make life as difficult as possible for the agent. Basic
agent-environment problems amount to asking the question of whether the agent has
a winning strategy for the particular game.

In this paper, we refine the analysis in [18] so as to completely classify the achieve-
ment and maintenance agent design problems when these problems are parameterized
by the number of environment states and the number of agent actions (the con-
structions in [18] are not sophisticated enough for us to be able to ascertain these
results). In order to exhibit our classification, we work with alternating Turing ma-
chines (ATMs) and derive complexity-theoretic completeness results from first princi-
ples (that is, instead of working with known complete problems for some complexity
class, we encode ‘raw’ machine computations as instances of our problems). Focussing
on ATMs allows us to apply control to our parameters and is entirely natural. By this
latter remark, we mean that the fact that states of an ATM can alternate between
‘existential’ states and ‘universal’ states enables us to encode ATM computations as
agent-environment interactions (or games). It is generally the case that ‘first princi-
ples’ proofs are rare in the related literature in planning, model checking and Petri
nets but given our wish to focus on additional parameters, they appear to be necessary
in our circumstances.

Our basic achievement agent design problem is formulated using the notion of a
bounded environment. Intuitively, such bounded environments correspond to an agent
having to achieve some state of affairs ‘quickly’. One can also consider maintenance
agent design in such bounded environments but a more relevant formulation of the
maintenance agent design problem is in a bounded environment where the bound
is interpreted more liberally, so that agents must sustain some state of affairs for
a ‘longer’ period (having an agent sustain some state of affairs indefinitely leads to
undecidable problems). Our reasoning here is that maintenance problems tend to be
concerned with ensuring ‘something doesn’t happen’ over a significantly long period.
We prove that restricting the number of states and actions in agent-based systems
leads: to achievement agent design problems that are P-complete, NP-complete, co-
NP-complete and PSPACE-complete; and to maintenance agent design problems
(where the bound on the length of runs within an environment is exponentially longer
than in the achievement agent design problem) that are DEXPTIME-complete,
NEXPTIME-complete, co-NEXPTIME-complete and NEXPSPACE-complete.

Our results should be of some interest to practitioners as they show that even if
we drastically reduce the numbers of states and actions in agent-based systems, most

2



of the basic achievement and maintenance design problems remain (very) intractable.
As regards complexity-theoretic bounds such as those mentioned above, it should be
noted that the fact that a problem is NP-complete essentially means that general
instances of the problem cannot be solved in practice, even when the size of the
instance is not particularly large. Nevertheless, there do exist heuristic methods for
certain NP-complete problems (such as SAT solvers) which cope pretty well with
quite sizeable instances arising in practice. However, a problem that is PSPACE-
complete, NEXPTIME-complete or NEXPSPACE-complete can be interpreted
as being ‘exponentially harder’ than NP-complete problems and, as such, out of the
reach of such heuristic methods.

2 Agents and Environments

In this section, we detail a formal model for the analysis of environments and agents
(the reader is referred to [19] for additional details). Essentially, we deal with finite-
state systems consisting of an environment and an agent, whereby the agent interacts
with the environment by performing actions, and the resulting actions change the
state of the environment.

An environment ENV is given by:

• a finite set E of states and an initial state e0 ∈ E;

• a finite set A of actions ; and

• a state transformer function τ presented in the form of a polynomial-time de-
terministic Turing machine.

(In practice, we might think of both E and A as finite initial segments of natural
numbers, with e0 as 0.) The size of an environment ENV = (e0, E,A, τ) is |E| +
|A|+ |τ |, where |τ | is the length of a reasonable encoding of the given Turing machine
τ (we often use τ to denote the state transformer function and a polynomial-time
deterministic Turing machine computing this function). It will always be the case
that any environment is in a specific state (from E), and depending upon which action
is chosen by an agent and also the history of the interaction between the environment
and the agent, the Turing machine τ will compute the set of possible next states of
the environment. Hence, τ can be viewed as (the description of) a polynomial-time
computable function which takes an interaction history (that is, a sequence of states
and actions, starting with the state e0, alternating between a state and an action,
and ending with a state) and an action as input and yields a set of states as output.
Associated with an environment is the set of potential runs P defined as (the regular
set) {e0}(AE)∗ (where A and E are the sets of actions and states), i.e., the set of
finite tuples whose first component is e0 and thereafter components alternate between
actions and states so that the final component is a state. The length of any potential
run is the number of actions therein, i.e., if the tuple has 2n + 1 components then
the length of the tuple is n. However, not every potential run will be a legitimate
run: the legitimate runs will only be those permitted according to the interaction of
an agent with the environment.

3



An agent AG acts within an environment according to a given agent strategy
function σ : P → A ∪ {ε}, where ε is a new symbol hitherto unused. The set R of
legitimate runs of the agent-based system 〈ENV ,AG〉 is defined inductively as follows:

• (e0) is a legitimate run; and

• if ρ is a legitimate run, σ(ρ) = a ∈ A and e ∈ τ(ρ, a) then (ρ, a, e) is a legitimate
run

(where (ρ, a, e) denotes the concatenation of a and e onto the tuple ρ). Note how
τ is used as a function which, given a legitimate run and an action, computes the
set of possible next states into which the environment can evolve (and so the state-
transformer function is history-dependent). Note also that whilst the agent behaves
deterministically, the environment can behave non-deterministically. We call a le-
gitimate run r for which either σ(ρ) = ε or (σ(ρ) = a and τ(ρ, a) = ∅) a complete
legitimate run (that is, a legitimate run which can not be further extended in the
given system). We shall only ever be interested in the legitimate runs within any
system 〈ENV,AG〉.

Agent-based systems are intended to model real systems. Hence, it is often the
case that we are not just looking for some particular circumstance in our system
but whether this circumstance has come about within some given time. For exam-
ple, amongst the sort of problems that have hitherto been considered of agent-based
systems are ‘achievement’ problems, where it is required that an agent achieves some
specific state of affairs, and ‘maintenance’ problems, where it is required that an agent
maintains a specific state of affairs. With achievement problems it is usually the case
that the state of affairs in hand should be achieved within some reasonable time, e.g.,
a search for data over the Internet should quickly register whether the data has been
found or not. However, with maintenance problems it is usually the case that the
state of affairs should be maintained in perpetuity, e.g., a web-crawler should never
be given access to data to which it does not have security clearance. Consequently,
we also consider bounded environments which are environments where, as well as the
set of states E (and the initial state e0 ∈ E), the set of actions A and the state
transformer function τ , a natural number b, the bound , is also supplied; with the
result that the size of a bounded environment is |E|+ |A|+ |τ |+ b. In an agent-based
system where the environment is bounded, the set of legitimate runs is defined as
above except that now no legitimate run is allowed to contain more than b actions;
that is, the new set of legitimate runs is obtained from the old set by retaining all
legitimate runs of length at most b and truncating every run of length greater than b
so that only the first b actions occur.

An example of an achievement problem, as was studied in [18], is the problem
ACHIEVEMENT AGENT DESIGN for which: an instance is a pair (ENV, G), where
ENV = (e0, E,A, τ, b) is a bounded environment and G ⊆ E is a set of goal states;
and a yes-instance is an instance for which there exists an agent AG such that ev-
ery legitimate run contains a goal state. An example of a maintenance problem,
again as studied in [18], is the problem MAINTENANCE AGENT DESIGN for which:
an instance is a pair (ENV, B), where ENV = (e0, E,A, τ, b) is a bounded environ-
ment and B ⊆ E is a set of bad states ; and a yes-instance is an instance for which
there exists an agent AG such that no legitimate run contains a bad state. Both

4



problems, ACHIEVEMENT AGENT DESIGN and MAINTENANCE AGENT DESIGN,
were proven in [18] to be PSPACE-complete1.

Note that even though the problem MAINTENANCE AGENT DESIGN is a main-
tenance problem, and so it makes sense to consider environments rather than bounded
environments, the particular formulation in [18] was essentially for bounded environ-
ments. Indeed, if we were to relax the stipulation that an environment should be
bounded then we would be faced with undecidable problems. Later on in this pa-
per, we shall define an amended, more practically relevant version of the problem
MAINTENANCE AGENT DESIGN where environments are still bounded but where
runs in the environment can be exponentially longer.

Before we proceed, we have one remark to make. Consider the decision problem
ACHIEVEMENT AGENT DESIGN. When instances are encoded for input to, say,
a (deterministic) Turing machine, we should be able to easily ascertain whether an
input string is the encoding of an instance. In particular, we should be able to
check whether the Turing machine (within the encoding) is a polynomial-time Turing
machine. Unfortunately, by Rice’s Theorem (see, for example, [16]), it is undecidable
to check whether a given Turing machine is a polynomial-time Turing machine. Hence,
we encode our polynomial time Turing machine as a pair, the first component of which
is the encoding of a Turing machine M , and the second component of which is an
integer k; and we insist that any computation of M of length greater than nk + k (on
an input of length n) halts as a rejecting computation. That is, (M,k) is essentially
a ‘clocked’ Turing machine. Any polynomial-time Turing machine can be realised as
a clocked Turing machine, and vice versa.

3 Alternating Turing machines

Alternating Turing machines were introduced in [6] and [14] as a model of parallel
machines. However, they have proven to be very useful with regard to sequential
complexity too. The reader is referred to [1] and [12] for an extensive discussion of
alternating Turing machines and for any details omitted below.

An alternating Turing machine (ATM ) M = 〈Q,R, F,Γ, δ〉 is a non-deterministic
Turing machine with a read-only input-tape, a read-write index-tape and one read-
write work-tape (though there can be more work-tapes if needs be). All tapes are
two-way infinite and on each tape, cells are indexed by the integers. The index-tape
and the work-tape have associated tape-heads. The input string ω, over {0, 1} and
of length n, is presented on the input-tape in cells 1, 2, . . ., n, with all other cells of
the input-tape and every cell of the index- and work-tapes initially holding a special
blank symbol �. The finite work-tape alphabet Γ contains 0, 1 and � and may also
contain other symbols. The symbols from {0, 1, �} will be the only symbols appearing
on the index-tape, and whenever a bit of the input string ω is to be read, the longest
contiguous string of 0s and 1s on the index-tape (starting at cell 1), known as the
index , is taken as the binary representation of the name of the cell on the input-tape
to be read (if cell 1 holds the blank symbol then the index is 0).

1In [18], an attempt was made to only consider environments within which all (legitimate) runs
are complete and have length ‘polynomial in the size of |A|×|E|’. This notion does not actually make
sense and our definition, of a bounded environment, is the appropriate formalism. Nevertheless, the
proofs in [18] of PSPACE-completeness essentially still hold for our formalism of the problems.

5



The set Q is the finite set of states of M and contains the initial state q0 and the
accept state qa (to obviate the need to consider trivial cases, we insist that q0 	= qa).
The set of states R ⊆ Q is the set of read states of M ; and the set of states F is the set
of universal states of M , with the states of Q\F being the existential states (whether
a state is universal or existential impacts on whether an input string is accepted by
an ATM, as we shall see below). The relation

δ ⊆ (Q \ {qa} × {0, 1, �}2 × Γ) × (Q × {0, 1, �} × Γ × {−1, 0, 1}2)

describes the transitions of M as follows.

• If ((q, s1, s2, s3), (q′, s′2, s
′
3, h2, h3)) ∈ δ and q ∈ R then:

– if M is in state q and the index has the value i with the ith cell of the
input-tape holding the symbol s1

– then M can move into state q′ and no other tape and head alterations are
made.

So, s2, s3, s′2, s′3, h2 and h3 are redundant in such tuples of δ.

• If ((q, s1, s2, s3), (q′, s′2, s
′
3, h2, h3)) ∈ δ and q 	∈ R then:

– if M is in state q; the index-head is scanning the symbol s2; and the work-
head is scanning the symbol s3

– then M can move into state q′; write the symbol s′2 on the index-tape and
move the index-head h2 cells to the right; and write the symbol s′3 on the
work-tape and move the work-head h3 cells to the right (with ‘-1’ meaning
a move of one cell to the left).

So, s1 is redundant in such tuples of δ.

An ATM M computes in the usual way, to accept a set of strings over {0, 1}, except
that its notion of acceptance differs considerably from that of a non-deterministic
Turing machine.

Suppose that M halts on every input (this will always be the case for us). An
input string ω gives rise (in the usual way) to a finite computation tree T where the
nodes are instantaneous descriptions (IDs) of M and where the edges (all directed
away from the root) describe single transitions of M on input ω. Every node is
either existential or universal , depending upon the state in the ID. For any node u
of T , denote by childT (u) the number of children of u. By imposing an order on the
transitions described by δ, we can clearly talk about the first child of a node u, the
second child of u, and so on. A valuation μ on T is a function taking an existential
node u of T as an input and yielding an integer in {0, 1, 2, . . . , childT (u)} as output.
We apply a valuation μ to T at every existential node, working away from the root
in a breadth-first fashion, until there are no more existential nodes to consider, as
follows.

• If p is a path in T from the root to an existential node u then:

– if μ(u) = i

6



– then erase all sub-trees of T , pendant from u with roots the jth child of u,
for every j ∈ {1, 2, . . . , childT (u)} \ {i}.

Applying a valuation μ to T yields a sub-tree μ(T ) of T . If the sub-tree μ(T ) is such
that every leaf is an accepting ID, i.e., the state of the ID is qa, then the valuation μ
is a true valuation. The input string ω is accepted by M if, and only if, there is a true
valuation on the corresponding computation tree T . The time taken by M to accept
ω is the minimal height of any sub-tree μ(T ), where μ ranges over all true valuations.
The space used by M to accept ω is the minimum over any sub-tree μ(T ), where μ
ranges over all true valuations, of the maximal size of an ID in μ(T ).

Crucial to our analysis is the relationship between time-bounded ATMs and time-
and space-bounded (deterministic and non-deterministic) Turing machines (note that
a non-deterministic Turing machine is just an ATM where all states are existential).
We denote the classes of languages accepted by deterministic and non-deterministic
Turing machines in O(s(n)) space (resp. O(t(n)) time) by DSPACE(s(n)) and
NSPACE(s(n)) (resp. DTIME(t(n)) and NTIME(t(n))). We denote the class of
languages accepted by ATMs in simultaneous O(t(n)) time and O(s(n)) space by
ATISP(t(n), s(n)).

Theorem 1 (see [12]) For every space constructible functions s(n) and t(n), for
which s(n) = Ω(log(n)), we have that :

• NSPACE (s(n)) ⊆ ATISP(s(n)2, s(n));

• ATISP(t(n), s(n)) ⊆ NSPACE (t(n)2).

We remind the reader also of Savitch’s Theorem.

Theorem 2 (see [1]) For every space constructible function s(n) for which s(n) =
Ω(log(n)), we have that NSPACE (s(n)) ⊆ DSPACE(s(n)2).

Finally, we mention that all of the completeness results in this paper are with
respect to logspace reductions; that is, when we prove that every problem in some
complexity class can be reduced to our complete problem, the actual reduction can
not only be computed using polynomial-time but also using logspace.

4 Achievement problems

We beginning by reconsidering the problem ACHIEVEMENT AGENT DESIGN, first
investigated in [18]. Whilst we re-prove the fact that this problem is PSPACE-
complete, our proof is such that we obtain much more information about this problem
and some of its close relations; in that our proof enables us to focus directly upon, and
so restrict, the number of states and actions in our constructed bounded environments.

Theorem 3 The problem ACHIEVEMENT AGENT DESIGN is PSPACE-complete.

Proof We begin by proving the PSPACE-hardness of our problem in hand. By
Theorem 1, any problem in PSPACE can be accepted by a polynomial-time ATM.
Let M be an ATM which runs in time t(n), for some polynomial t(n). By introducing
extra ‘dummy’ states if necessary, we can assume that:

7



• every node in any computation tree of M has at most 2 children;

• in traversing any path in any computation tree of M , starting from the root,
we alternate between existential and universal nodes, with the root being an
existential node;

• all leaves in any computation tree of M are existential nodes.

The amended ATM (if indeed we need to amend our original Turing machine), which
we also denote by M , runs in time ct(n), for some constant c.

Consider some computation tree T of M , resulting from the input string ω of
length n. We define a bounded environment ENV = (e0, E,A, τ, b) and a set of
goal states G ⊆ E corresponding to T . The state set E is the set {ql, qr, qa}, with
the initial state, e0, being ql. The set of actions A is {l, r}. Given some path p
in T , starting from the root and leading to an existential node, we obtain a tuple
(e0, a1, e1, a2, . . . , am, em), where each ei ∈ E and each ai ∈ A, as follows. Starting
from the root, traverse p and at the ith existential node on p, where 1 ≤ i ≤ m, the
node ui say (the root is the 0th), define: ei to be the state qa, if ui is an accepting
node, otherwise the state ql (resp. qr) if ui is the left-child (resp. right-child) of its
parent; and, if i 	= m, ai+1 to be l (resp. r) if the next node on p is the left-child (resp.
right-child) of ui. We say that the tuple (e0, a1, e1, a2, . . . , am, em) is the existential
trace of p.

On input a potential run ρ = (e0, a1, e1, a2, . . . , am, em) and an action a, the
output from the function τ is defined as follows. We begin by checking that ρ is an
existential trace in T . If it isn’t then τ yields no output: otherwise, ρ is the existential
trace of some path p in T (note that ρ can be the existential trace of at most one
path in T ) and we ascertain whether there is an edge in T from the final node, u
say, of p to a left-most child, if a = l, and to a right-most child, if a = r. If no such
child exists then τ yields no output: otherwise, such a child, v say, exists and the
output from τ is defined to be the set of states associated with the children of the
node v (there are at most 2 and there may be none). The function τ can clearly be
computed in polynomial time (polynomial in m, to be precise): in fact, in O(m) time,
i.e., linear-time. Our set of goal states G ⊆ E is the set {qa}; and our bound b is set
at ct(n).

Having constructed an instance (ENV = (e0, E,A, τ, b), G) of ACHIEVEMENT

AGENT DESIGN, we need to ensure that the process of construction can be under-
taken using logspace. That this is the case is trivial except for the description of the
function τ (remember, τ is not given explicitly but is presented as a polynomial-time
deterministic Turing machine which computes the function in hand2). Let M0 be
a deterministic Turing machine which takes as input the description of an ATM M
(as described in the opening paragraph of this proof), an input string ω to M and a
sequence (e0, a1, e1, a2, . . . , am, em) ∈ E(AE)∗. The Turing machine M0 simulates a
computation of M on ω, where M is treated as a non-deterministic Turing machine
and the sequence (e0, a1, e1, a2, . . . , am, em) dictates the choices made at any point
of the computation. If such a simulation does not exist then M0 rejects the input,
otherwise M0 computes the function τ . Note that M0 is a fixed Turing machine.
It is straightforward to devise a logspace algorithm which takes M and ω as input

2This point was completely overlooked in [18].

8



and outputs (using M0) a polynomial-time (in fact, linear-time) deterministic Turing
machine which computes τ .

Let AG be any agent, with agent strategy function σ, acting within the bounded
environment ENV. This agent yields a valuation on the tree T in the natural way.

• If p is a path in T from the root to an existential node u for which the existential
trace is ρ, then:

– if σ(ρ) = l (resp. r) and u has a left-child (resp. right-child)
– then erase the right (resp. left) branch of T descending from u (if there is

one).

Alternatively, any valuation on T clearly yields an agent acting within the bounded
environment ENV. Moreover, there is an agent such that every legitimate run con-
tains a goal state if, and only if, there is a true valuation on the tree T . Hence, the
problem ACHIEVEMENT AGENT DESIGN is PSPACE-hard.

Now we show that our problem is in PSPACE. Let (ENV = (e0, E,A, τ, b), G)
be an instance of our problem of size n. Consider the tree T , of depth at most 2b,
constructed as follows. Nodes are categorized as to their distance from the root, with
the distance equating to the level of the node. The level of the root is 0. Every node
on an even level is labelled as a universal node; and every node on an odd level as an
existential node. Also, every node on an even level will be labelled with a state of E;
and every node on an odd level with a symbol from A. The root is labelled e0. Let
u be a node on the (even) level 2m, for some m ∈ {0, 1, . . . , b − 1}, where u’s label is
e ∈ E. Suppose that the path p from the root to the node u induces a (2k + 1)-tuple
(e0, a0, e1, a1, . . . , am, em) of labels (alternating between states of E and symbols of A
and starting with e0). The node u has |A| children (on level 2k+1) with these children
labelled with the symbols from A. The child on level 2k + 1 labelled with a ∈ A has
|τ((e0, a0, e1, a1, . . . , am, em), a)| children (on level 2k+2) with these children labelled
with the elements of τ((e0, a0, e1, a1, . . . , am, em), a). Finally, the tree is pruned by:
first, removing any sub-trees pendant from a node (on an even level) whose associated
label is in G; and, second, removing any leaves on an odd level (and so all leaves are
existential nodes and labelled with states of E).

Just as we have a valuation on the computation tree of an ATM, so we have the
notion of a valuation on our tree T as constructed above. Essentially, a valuation μ
is such that we retain exactly one pendant sub-tree (if there is one) from every exis-
tential node. Clearly, (ENV = (e0, E,A, τ, b), G) is a yes-instance of ACHIEVEMENT

AGENT DESIGN if, and only if, there is a true valuation μ on T , i.e., one such that
every leaf of μ(T ) is labelled with a state of G.

In order to ascertain whether there is a true valuation on T , we perform a ‘non-
deterministic’ depth-first search on T . Our depth-first search is such that whenever
an existential node is encountered, we non-deterministically guess a child to move to
next; and when we back-track in our depth-first search, having guessed a child of an
existential node, we never guess another child but keep on moving back up the tree to
the (universal) parent node (from which we continue the depth-first search as normal).
If our search returns to the root having ascertained that every leaf encountered was
labelled with a state from G then we accept otherwise we reject. This clearly results in
a polynomial-space non-deterministic algorithm, and so, by Theorem 2, a PSPACE
algorithm, for the problem ACHIEVEMENT AGENT DESIGN. The result follows.

9



The proof of Theorem 3 actually yields a much stronger result than that stated.

Corollary 4 The problem ACHIEVEMENT AGENT DESIGN restricted to bounded
environments with 3 states and 2 actions is PSPACE-complete.

Our proof of Theorem 3 is superior to that in [18] because: first, as we have just
seen in Corollary 4, it yields additional information (note that Corollary 4 is not deriv-
able from the proof in [18]); second, as we shall see later, it enables us to prove com-
plexity results about problems related to ACHIEVEMENT AGENT DESIGN; third,
it exhibits a strong relationship between agent-based systems and alternation in the
theory of computation; and, fourth, it clarifies key issues which were ignored in [18].

Corollary 4 gives us a significant insight into how we might impose restrictive con-
ditions so as to make the problem ACHIEVEMENT AGENT DESIGN feasibly solvable.
For brevity, we denote the problem ACHIEVEMENT AGENT DESIGN restricted to
bounded environments where the set of states has size at most j and the set of actions
has size at most k by AAD(j, k).

Theorem 5 The problem AAD(2, 2) is NP-complete.

Proof We begin by proving that AAD(2, 2) is in NP. Let (ENV = (e0, E,A, τ, b), G)
be an instance of size n. W.l.o.g., we may assume that E = {q, qa}, A = {l, r},
G = {qa} and e0 = q. Consider the following polynomial-time non-deterministic
algorithm.

Guess a1 ∈ A.
If τ((q), a1) = ∅ then reject.
If τ((q), a1) = {qa} then accept.
If τ((q), a1) = {q, qa} or {q} then

guess a2 ∈ A.
If τ((q, a1, q), a2) = ∅ then reject.
If τ((q, a1, q), a2) = {qa} then accept.
If τ((q, a1, q), a2) = {q, qa} or {q} then

guess a3 ∈ A.
If τ((q, a1, q, a2, q), a3) = ∅ then reject.
If τ((q, a1, q, a2, q), a3) = {qa} then accept.
If τ((q, a1, q, a2, q), a3) = {q, qa} or {q} then

. . .
guess ab ∈ A.
If τ((q, a1, q, . . . , ab−1, q), ab) = ∅ then reject.
If τ((q, a1, q, . . . , ab−1, q), ab) = {qa} then accept.
If τ((q, a1, q, . . . , ab−1, q), ab) = {q, qa} or {q} then reject.

This algorithm clearly witnesses that our problem is in NP.
Let M be a non-deterministic Turing machine running in time t(n), for some

polynomial t(n). By introducing extra ‘dummy’ states if necessary, we can assume
that every node in any computation tree of M has at most 2 children. The amended
Turing machine (if indeed we need to amend our original Turing machine), which we
also denote by M , runs in time ct(n), for some constant c.

10



Consider some computation tree T of M , resulting from the input string ω of
length n. We define a bounded environment ENV = (e0, E,A, τ, b) and a set of goal
states G ⊆ E corresponding to T . The state set E = {q, qa}, with the initial state,
e0, being q. The set of actions A is {l, r}. We associate a state with every node of T
as follows: if the node is accepting then its associated state is qa; otherwise it is q.

Given a potential run ρ = (e0, a1, e1, a2, . . . , am, em) and an action a, the output
from the function τ is defined as follows. We begin by checking that there is a path p in
T , starting from the root and obtained from the tuple (a1, a2, . . . , am) by interpreting
the symbol l (resp. r) as meaning ‘go to the left-child (resp. right-child)’, such that
the states of the nodes obtained by traversing p yield the tuple (e0, e1, . . . , em). If this
path p does not exist then τ yields no output. Otherwise, p exists, and if a = l (resp.
a = r) then the output of τ is the state of the left-child (resp. right-child) of the final
node of p, if it exists: if it does not exist then τ yields no output. The function τ can
clearly be computed in polynomial time: in fact, in linear-time. Our set of goal states
G ⊆ E is the set {qa}; and our bound b is set at ct(n). As in the proof of Theorem 3,
the instance (ENV = (e0, E,A, τ, b), G) can be constructed using logspace (including
providing a polynomial-time deterministic Turing machine computing τ).

Let AG be any agent, with agent strategy function σ, acting within the bounded
environment ENV. This agent yields a path in T in the natural way; and by con-
struction of (ENV, G), there is an agent such that every legitimate run contains a
goal state if, and only if, M accepts the input ω. The result follows.

Note that the algorithm in the proof of Theorem 5 is actually a polynomial-time
non-deterministic algorithm to solve the problem AAD(2, k), for any k ≥ 2. Hence,
we immediately obtain the following corollary.

Corollary 6 For every k ≥ 2, the problem AAD(2, k) is NP-complete.

We now restrict the set of actions so that there is (essentially) only one possible
agent strategy function.

Theorem 7 The problem AAD(3, 1) is co-NP-complete.

Proof We first remark that it is straightforward to see that a problem is in co-NP
if, and only if, there exists a polynomial-time non-deterministic Turing machine M
such that:

• the computation tree of M corresponding to some yes-instance of the problem
is such that every leaf is accepting; and

• the computation tree of M corresponding to some no-instance of the problem
is such there exists a leaf which is not accepting.

We say that the language accepted by M according to the above criteria is the lan-
guage co-accepted by M . Hence, co-NP consists of those languages co-accepted by
polynomial-time non-deterministic Turing machines.

We begin by proving that the problem AAD(3, 1) is co-NP-hard. Let M be a
non-deterministic Turing machine which runs in time t(n), for some polynomial t(n).
By introducing extra ‘dummy’ states if necessary, we can assume that every node in

11



any computation tree of M has at most 2 children. The amended ATM (if indeed
we need to amend our original Turing machine), which we also denote by M , runs in
time ct(n), for some constant c.

Consider some computation tree T of M , resulting from the input string ω of
length n. We define a bounded environment ENV = (e0, E,A, τ, b) and a set of goal
states G ⊆ E corresponding to T . The state set E is the set {ql, qr, qa}, with the
initial state, e0, being ql. The set of actions A is {a}. Given some path p in T , starting
from the root, we obtain a tuple (e0, a, e1, a, . . . , a, em), where each ei ∈ E, as follows.
Starting from the root, traverse p and at the ith node on p, where 1 ≤ i ≤ m, the
node ui say (the root is the 0th), define: ei to be the state qa, if ui is an accepting
node, otherwise the state ql (resp. qr) if ui is the left-child (resp. right-child) of its
parent. We say that the tuple (e0, a1, e1, a2, . . . , am, em) is the trace of p.

On input a potential run ρ = (e0, a, e1, a, . . . , a, em) and the action a, the output
from the function τ is defined as follows. We begin by checking that ρ is a trace in T .
If it isn’t then τ yields no output: otherwise, ρ is the trace of some path p in T (note
that ρ can be the trace of at most one path in T ). If ρ is the trace of some path p
and the final node on p has no children then τ yields no output: otherwise, τ yields
the set of states associated with the children of this final node (there are at most 2
and there may be none). The function τ can clearly be computed in polynomial time
(polynomial in m, to be precise): in fact, in linear-time. Our set of goal states G ⊆ E
is the set {qa}; and our bound b is set at ct(n). As in the proof of Theorem 3, this
construction can be completed in logspace (including providing a polynomial-time
deterministic Turing machine computing τ).

Let AG be the agent whose agent strategy function σ yields the action a for every
legitimate run. Note that if AG does not witness that (ENV, G) is a yes-instance
of AAD(3, 1) then no agent does. By construction, our reduction is such that M
co-accepts a string ω if, and only if, every legitimate run in the agent-based system
〈ENV ,AG〉 contains a goal state. That is, AAD(3, 1) is co-NP-hard.

That AAD(3, 1) is in co-NP is straightforward as verifying that an instance
(ENV = (e0, E,A, τ, b), G) of AAD(3, 1) is a yes-instance amounts to building a tree
(of depth at most b for which every node has at most 3 sons) described by τ , whose
nodes are labelled with states of E, and checking that every leaf is labelled by a node
of G.

The fact that AAD(j, 1) is in co-NP, for any j ≥ 3, is trivial, given the above
proof; and so we obtain the following corollary.

Corollary 8 For j ≥ 3, the problem AAD(j, 1) is co-NP-complete.

All that remains is to consider the problem AAD(2, 1) (as the problem AAD(1, k)
is trivial, for any k ≥ 1). However, the proof of Theorem 7 obviates the need for much
more analysis.

Corollary 9 The problem AAD(2, 1) is P-complete.

Proof Let the Turing machine M in the proof of Theorem 7 be deterministic. Then
proceeding in that proof but with a state set E = {ql, qa} yields that the problem
AAD(2, 1) is P-hard. The fact that AAD(2, 1) is in P is straightforward.

12



5 Maintenance problems

We begin my analysing the MAINTENANCE AGENT DESIGN problem, henceforth
abbreviated to MAD, as we did the ACHIEVEMENT AGENT DESIGN. We adopt an
analogous notation when referring to the various restrictions of the problem MAD. As
it turns out, our ‘first principles’ approach from the previous section has accounted
for most of the hard work.

Corollary 10 (a) If j ≥ 3 and k ≥ 2 then MAD(j, k) is PSPACE-complete.

(b) If j = 2 and k ≥ 2 then MAD(j, k) is NP-complete.

(c) If j ≥ 3 and k = 1 then MAD(j, k) is co-NP-complete.

(d) If j = 2 and k = 1 then MAD(j, k) is P-complete.

(e) If j = 1 and k ≥ 1 then MAD(j, k) is trivial.

Proof (a) With respect to the proof of Theorem 3, w.l.o.g. we may further assume
that every path in any computation tree of M ends in either an accepting node or
a rejecting node, where we have designated a particular state of M to be the reject
state. In the proof of Theorem 3, label the nodes of T so that: a node is labelled
qa if it is a rejecting node (formerly, this was the case if it was an accepting node);
otherwise, it is labelled ql or qr (depending upon the child-parent relationship). The
amended proof then yields that the problem MAD(3, 2) is PSPACE-hard. Our
PSPACE algorithm to solve MAD(3, 2) is as was the PSPACE algorithm in the
proof of Theorem 3 except that the depth-first search checks that no node is labelled
by a bad state (as opposed to, formerly, that every leaf is labelled with a state of
G). Hence, MAD(3, 2) is PSPACE-complete; and therefore so is MAD(j, 2), for all
j ≥ 3.

(b) With respect to the proof of Theorem 5, we can devise a similar algorithm,
to the algorithm in that proof, to solve MAD(2, 2) where, at each stage: we reject
if τ((q), ai) = {qa} or {q, qa}; we accept if τ((q), ai) = ∅; and we proceed (as in the
algorithm in the proof) otherwise (note that we are assuming that the state qa is the
solitary bad state). As regards the proof of NP-hardness, we may further assume
that every path in any computation tree of M ends in either an accepting node or
a rejecting node, where we have designated a particular state of M to be the reject
state. The proof then goes through with the only difference being that we associate:
the state qa with a node of T if the node is a rejecting node; and the state q if the
node is not a rejecting node (of course, we define B = {qa}).

(c) and (d) With respect to the proof of Theorem 7, we proceed similarly to as
in (a) and (b) above by flipping the association of states to nodes from accepting to
rejecting. This suffices to yield the result.

(e) Trivial.

Let us now return to a remark we made when defining the problem MAD. We
commented that bounded environments are perhaps not appropriate for maintenance
problems in that the problems involve states of affairs which should persist in per-
petuity rather than over a ‘short’ time-span. Of course, if we consider maintenance

13



problems in unbounded environments then it is not difficult to see that such prob-
lems are (generally) undecidable (hint: reduce from the Halting Problem for Turing
machines). However, a more sensible approach might be to consider maintenance
problems in bounded environments but where the bound is ‘longer’.

Define the problem MAD′ as follows: an instance ENV = (e0, E,A, τ, b) is a
bounded environment and B ⊆ E is a set of bad states ; and a yes-instance is an
instance for which there exists an agent AG such that no legitimate run contains a
bad state but where the notion of legitimate is with respect to the length of run 2b

(rather than b). Our reasoning is that the exponential bound 2b, whilst not being ‘in
perpetuity’, might prove to be ‘long enough in practice’. The state/action restrictions
of the problem MAD′ are defined as expected. Of course, we can also define the
problem AAD′ (and its restrictions) in an analogous fashion (but these problems are
not so practically motivated).

Define

NEXPSPACE = ∪{NSPACE(2s(n)) : s(n) is some polynomial};
NEXPTIME = ∪{NTIME(2t(n)) : t(n) is some polynomial}; and
DEXPTIME = ∪{DTIME(2t(n)) : t(n) is some polynomial}.

Consider the proofs of the theorems in the previous section and the relevance of
the polynomial t(n). This function plays no essential role in the proofs. Indeed,
allowing this function to be 2q(n), where q(n) is some polynomial, in these proofs,
allied with Theorems 1 and 2, immediately yields the following corollary.

Corollary 11 (a) If j ≥ 3 and k ≥ 2 then MAD′(j, k) and AAD′(j, k) are
NEXPSPACE-complete.

(b) If j = 2 and k ≥ 2 then MAD′(j, k) and AAD′(j, k) are NEXPTIME-complete.

(c) If j ≥ 3 and k = 1 then MAD′(j, k) and AAD′(j, k) are co-NEXPTIME-
complete.

(d) If j = 2 and k = 1 then MAD′(j, k) and AAD′(j, k) are DEXPTIME-complete.

(e) If j = 1 and k ≥ 1 then MAD′(j, k) and AAD′(j, k) are trivial.

We could interpret a bound b as giving rise to runs of length up to 22b

or 222b

,
and so on. Of course, there are analogous results to Corollary 11 in these situations.

6 Conclusion

In this paper we have essentially considered whether imposing numeric criteria on the
numbers of states and actions in an agent-based system might make basic achieve-
ment and maintenance agent design problems more tractable. We have discovered
that even under very severe numeric restrictions these problems remain computation-
ally intractable. Consequently, if we are to stand a chance of making these problems
tractable then it must be through restrictions of other sorts. The most obvious re-
striction to make is on the state transformer function in an environment. In this

14



paper, we insisted that any state transformer function is always (a description of)
a polynomial-time computable function. We could go further and ask if our results
still hold when the state transformer function must be logspace computable, or even
something yet more restrictive such as first-order definable. Note that, as remarked
in our proofs, our results still hold if we insist that any state transformer function
must be linear-time computable.

Consider generalizations of our problems where we might consider acceptance
criteria more complicated than any run always containing a goal state or no run ever
containing a bad state. Essentially, our problems deal with the simplest achievement
and maintenance agent design problems we might formulate. Consequently, our lower-
bound (completeness) results should apply (in a similar if not an exact fashion) to
most other sensible criteria, e.g., such as the criterion considered in [20] where the
agent had to aim for a goal state but at the same time avoid every bad state. On the
other hand, the PSPACE and NEXPSPACE upper-bound results (where we do
not restrict the numbers of states and actions) will apply to any property definable in
any sensible temporal logic, such as CTL, LTL or even quantified CTL (since model
checking for these temporal logics can be undertaken in PSPACE). We refrain from
stating and proving any specific results in this vein as the proofs of any such results
would simply be minor extensions of our earlier constructions.

Finally, we remark upon the complexity of optimistic agent-design problems as
studied in [20]. In [20], the authors studied a particular achievement agent-design
problem where instances are pairs (ENV , G) (as in the problem AAD) but an agent
need only ensure that there is at least one run containing a goal state, as opposed
to ensuring that every run should contain a goal state. This problem is known as
OPTIMISTIC ACHIEVEMENT AGENT DESIGN (OAD), and it was shown to be NP-
complete in [20]3 Of course, there are analogously defined problems parameterized by
the number of states and the number of actions in an environment. Our proof of
Theorem 5 essentially shows that any problem OAD(j, k), for j ≥ 2 and k ≥ 2, is
NP-complete: the environment constructed in that proof is deterministic and so for
any agent, the agent ensures that there is at least legitimate run containing a goal
state if, and only if, the agent ensures that every legitimate run contains a goal state.
Our proof of Theorem 7 essentially shows that any problem OAD(j, 1), for j ≥ 3, is
NP-complete: we apply the same construction as in that proof but we work with the
usual notion of acceptance for a non-deterministic polynomial-time Turing machine.
If we assume (as we did in the proof of Corollary 9) that we work with a deterministic
polynomial-time Turing machine in the amended proof of Theorem 7 then we get that
the problem OAD(2, 1) is P-complete. There are corresponding results for the pa-
rameterized versions of the problem OPTIMISTIC MAINTENANCE AGENT DESIGN

(OMD).
The situation as regards the problems OAD′ and OMD′ are similar. The proofs of

the above results yield: that OAD′(j, k) and OMD′(j, k) are NEXPTIME-complete
if j ≥ 2 and k ≥ 2 or if j ≥ 3 and k = 1; and that OAD′(2, 1) and OMD′(2, 1) are
DEXPTIME-complete. Consequently, the results in this paper completely subsume
those of [18, 20].

3Again, we have an analogous remark to make as we did for the problem AAD earlier regarding
bounded environments and runs of length ‘polynomial in the size of |A| × |E|’.

15



References

[1] J.L. Balcázar, J. Dı́az and J. Gabarró, Structural Complexity II , Springer-Verlag
(1990).

[2] C. Baral, V. Kreinovich and R. Trejo, Computational complexity of planning
and approximate planning in presence of incompleteness, Artificial Intelligence
122 (2000) 241–267.

[3] C. Baral, V. Kreinovich and R. Trejo, Computational complexity of planning
with temporal goals, Proceedings of the 17th International Joint Conference on
Artificial Intelligence (ed. B. Nebel) (2001) 509–514.

[4] T. Bylander, The computational complexity of propositional STRIPS planning,
Artificial Intelligence 69 (1994) 161–204.

[5] M. Cadoli, A survey of complexity results for planning, Proceedings of the Italian
Planning Workshop 1993 (IPW’93) (eds. A. Cesta and S. Gaglio), CNR - Na-
tional Research Council of Italy - Special Project on Automatic Planning (1993)
131–145.

[6] A.K. Chandra and L.J. Stockmeyer, Alternation, Proceedings of the 17th IEEE
Symposium on Foundations of Computer Science (1976) 98–108.

[7] P.E. Dunne and M. Wooldridge, The computational complexity of agent verifica-
tion, Proceedings of Intelligent Agents VIII : Agent Theories, Architectures and
Languages (ed. J.-J. Meyer and M. Tambe), Lecture Notes in Artificial Intelli-
gence Volume 2333, Springer-Verlag, Berlin (2002) 115–127.

[8] P.E. Dunne, M.J. Wooldridge and M.R. Laurence, The computational complexity
of boolean and stochastic agent design problems, Proceedings of the 1st Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems , ACM
Press (2002) 976–983.

[9] E.A. Emerson, Temporal and modal Logic, Handbook of Theoretical Computer
Science Volume B (ed. J. van Leeuwen), Elsevier (1990) 995–1027.

[10] J. Esparza, Decidability and complexity of Petri net problems - an introduc-
tion, Lectures on Petri Nets I: Basic Models. Advances in Petri Nets (eds. G.
Rozenberg and W. Reisig), Lecture Notes in Computer Science Volume 1491,
Springer-Verlag, Berlin (1998) 374–428.

[11] M.R. Garey and D.S. Johnson, Computers and Intractability : A Guide to the
Theory of NP-Completeness, Freeman (1979).

[12] R. Greenlaw, H.J. Hoover, S. Miyano, W.L. Ruzzo, S. Shiraishi and T. Shoudai,
The Parallel Computation Project : Volumes I-III, http://www.cs.armstrong.
edu/greenlaw/parallel.html (2000).

[13] K. Heljanko, Model checking with finite complete prefixes is PSPACE-complete,
Proceedings of the 11th International Conference on Concurrency Theory (ed. C.
Palamidessi), Lecture Notes in Computer Science Volume 1877, Springer-Verlag,
Berlin (2000) 108–122.

16



[14] D. Kozen, On parallelism in Turing machines, Proceedings of the 17th IEEE
Symposium on Foundations of Computer Science (1976) 89–97.

[15] M.L. Littman, J. Goldsmith and M. Mundhenk, The computational complexity
of probabilistic planning, Journal of Artificial Intelligence Research 9 (1998)
1–36.

[16] P Odifreddi, Classical Recursion Theory , North-Holland, Amsterdam (1989).

[17] A.P. Sistla and E.M. Clarke, The complexity of propositional linear temporal
logic, Journal of the Association for Computing Machinery 32 (1985) 733–749.

[18] M. Wooldridge, The computational complexity of agent design problems, Pro-
ceedings of the Fourth International Conference on Multi-Agent Systems (ed. E.
Durfee), IEEE Press (2000).

[19] M. Wooldridge, On the sources of complexity in agent design, Applied Artificial
Intelligence 14 (2000) 623–644.

[20] M. Wooldridge and P.E. Dunne, Optimistic and disjunctive agent design prob-
lems, Proceedings of Intelligent Agents VII : Agent Theories, Architectures and
Languages (ed. Y. Lesperance and C. Castelfranchi), Lecture Notes in Computer
Science Volume 1986, Springer-Verlag, Berlin (2001) 1–14.

[21] M. Wooldridge and N.R. Jennings, Intelligent agents: theory and practice, The
Knowledge Engineering Review 10 (1995) 115–152.

17




