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Abstract. We consider the fault-tolerant capabilities of networks of processors whose underlying
topology is that of the k-ary n-cube Qk

n, where k ≥ 3 and n ≥ 2. In particular, given a copy of Qk
n

where some of the interprocessor links may be faulty but where every processor is incident with at
least two healthy links, we show that if the number of faults is at most 4n− 5, then Qk

n still contains
a Hamiltonian circuit, but that there are situations where the number of faults is 4n− 4 (and every
processor is incident with at least two healthy links) and no Hamiltonian circuit exists. We also
remark that given a faulty Qk

n, the problem of deciding whether there exists a Hamiltonian circuit
is NP-complete.
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1. Introduction. The hypercube or, more precisely, the binary n-cube Bn

(where n ≥ 2), is a popular interconnection network for parallel processing as it
possesses a number of topological properties which are highly desirable in the con-
text of parallel processing: for example, it contains a Hamiltonian circuit; many
other networks can be embedded into a binary n-cube; and its symmetry results in
rich communication properties (see, for example, [3, 5, 8, 10, 12] and the references
therein).

Fault-tolerance in the binary n-cube is an important issue, given that many other
networks can be embedded therein, and has been studied in a number of contexts.
For example, the ability of the binary n-cube to route and reconfigure itself in spite
of faults has been considered (see the references in [8]), as has the embedding of
Hamiltonian circuits in binary n-cubes in the presence of faults [8]. In particular,
Chan and Lee [8] proved that a binary n-cube where at most 2n− 5 links are faulty
and where every node is incident with at least two healthy links (a natural assumption
to make) has a Hamiltonian circuit, but that there exist binary n-cubes with 2n− 4
faults (and where every node is incident with at least two healthy links) not containing
a Hamiltonian circuit. It is with an analogous version of this result that we are
concerned in this paper.

One drawback of the binary n-cube is that the number of links incident with
each node is logarithmic in the number of nodes, and this causes problems with
regard to current VLSI technology when the networks built upon the binary n-cube
topology involve a large number of processors. One means proposed to alleviate this
problem is to base networks on the topology of the k-ary n-cube Qk

n (where k ≥ 3 and
n ≥ 2). A network based on Qk

n is such that each node is incident with 2n links, and
consequently k can be increased, in order to incorporate more processors, at the same
time keeping n constant. Moreover, “high-dimensional” networks generally cost more
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and run more slowly than “low-dimensional” networks, and it has also been shown
that low-dimensional networks achieve lower latency and better hot-spot throughput
than their high-dimensional counterparts [9, 11].

The properties of the k-ary n-cube Qk
n relevant to parallel processing have not

been determined to such an extent as those of the binary n-cube: however, some work
has been done (see, for example, [1, 2, 4, 6, 7]). In particular, it has been shown that
Qk

n has a Hamiltonian circuit [6].
In this paper, we examine the number of link faults that a k-ary n-cube Qk

n can
tolerate so that there is still a Hamiltonian circuit. (Of course, we assume that every
node is incident with at least two healthy links.) In particular, we show that a k-ary
n-cube Qk

n where at most 4n−5 links are faulty and where every node is incident with
at least two healthy links has a Hamiltonian circuit, but that there exist k-ary n-cubes
with 4n− 4 faults (and where every node is incident with at least two healthy links)
not containing a Hamiltonian circuit. We also remark that the general problem of
deciding whether a faulty k-ary n-cube contains a Hamiltonian circuit is NP-complete
for all (fixed) k ≥ 3. Our results can be regarded as direct analogues of those in [8]
for k-ary n-cubes as opposed to binary n-cubes.

2. Tolerating faults. Throughout this paper, we prefer to use the terminology
“nodes” and “links” as opposed to “vertices” and “edges,” for whilst the results in
this paper are entirely graph-theoretic, the use of “nodes” and “links” accentuates the
motivational source of our research, i.e., the fault-tolerating capabilities of networks
of processors when the faults which may occur are the failures of the links between
processors in the network.

The binary n-cube, for n ≥ 2, can be represented as the set of 2n nodes {0, 1}n
where there is a link joining nodes u and v if and only if u and v agree on all com-
ponents except one. Note that each node has degree n. The k-ary n-cube Qk

n, for
k ≥ 2 and n ≥ 2, can be represented as the set of kn nodes {0, 1, . . . , k − 1}n where
there is a link joining nodes u and v if and only if u and v agree on all components
except one, and on that component they differ by 1 modulo k. Note that each node
has degree 2n, when k ≥ 3, and n when k = 2. In particular, Q2

n is simply Bn.
For each i ∈ {1, 2, . . . , n}, we refer to all links whose incident nodes differ in the

ith component as lying in dimension i. Note that for any i ∈ {1, 2, . . . , n}, Qk
n consists

of k disjoint copies of Qk
n−1 where corresponding nodes are joined in circuits of length

k using links in dimension i. When we consider Qk
n in this way, with the disjoint

copies joined by links lying in dimension i, we say that we have partitioned Qk
n over

dimension i.
Let us now proceed to the proof of our main theorem. This proof is by induction.

We begin by proving the inductive step, and then we return to the base cases of the
induction.

Theorem 2.1. Let k ≥ 4 and n ≥ 2, or let k = 3 and n ≥ 3. If Qk
n has at most

4n−5 faulty links and is such that every node is incident with at least 2 healthy links,
then Qk

n has a Hamiltonian circuit.
Proof. The proof proceeds by induction on n. We handle the base cases, when

n = 2 and k ≥ 4 and when n = 3 and k = 3, later. As our induction hypothesis,
assume that the result holds for Qk

n, for some n ≥ 2 and for all k ≥ 4, or for some
n ≥ 3 and k = 3. Let Qk

n+1 have 4n−1 faults and be such that every node is incident
with at least two healthy links. Then there exists some dimension, say dimension 1,
which contains at least three faults. We can partition Qk

n+1 over dimension 1 and
consider Qk

n+1 to consist of k disjoint copies Q1, Q2, . . . , Qk of Qk
n with corresponding
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Fig. 2.1. The k copies of Qk
n.

nodes joined in circuits of length k, where the faults contained in Q1, Q2, . . . , Qk total
at most 4n − 4 (see Figure 2.1). Throughout this proof, if u is a node of Qi, say,
then we often denote it by ui, and we refer to its corresponding node in Qj as uj .
Our general aim below is to argue, using induction, that Hamiltonian circuits exist in
each of Q1, Q2, . . . , Qk and that we can “join” these circuits together using links in
dimension 1 to obtain a Hamiltonian circuit in Qk

n+1. (What we mean by “join” will
become clear later: also, the general aim of connecting together circuits in Q1, Q2,
. . ., Qk actually has to be more sophisticated in some scenarios.) Naturally, different
scenarios arise according to the distribution of faulty links in Q1, Q2, . . . , Qk and in
dimension 1. Another complication is that the chosen Hamiltonian circuit in Q2, for
example, might depend upon the Hamiltonian circuit chosen in Q1.

Case (i). Each Qi is such that every node is incident with at least two healthy
links and no Qi contains 4n− 4 faults.

Without loss of generality (w.l.o.g.) we may assume that Q1 has most faults
from amongst Q1, Q2, . . . , Qk. Hence, each of Q2, Q3, . . . , Qk has at most 2n − 2
faults. By the induction hypothesis, Q1 has a Hamiltonian circuit C1. Following our
basic strategy, outlined above, we wish to find a Hamiltonian circuit Ck in Qk or a
Hamiltonian circuit C2 in Q2 so that we might “join” such a Hamiltonian circuit to
C1 using healthy links in dimension 1. By “join” we mean replace a link (x1, y1) of
C1 and the (corresponding) link (x2, y2) of C2, for example, with the links (x1, x2)
and (y1, y2) in dimension 1. However, we must ensure that two mutually compatible
links exist in C1 and C2 and also that the relevant dimension 1 links are healthy.

We begin by applying a counting argument to show that there exist links (x1, y1)
and (y1, z1) of C1 such that either

• (x2, y2), (y2, z2), (x1, x2), (y1, y2), and (z1, z2) are all healthy

or

• (xk, yk), (yk, zk), (x1, xk), (y1, yk), and (z1, zk) are all healthy.

Suppose that it were otherwise. Then there would exist at least 2�kn/3� faults not
in Q1. (Split C1 into groups of three consecutive vertices and look at the links on
either side in dimension 1 and in Q2 and Qk.) However, when n ≥ 2 and k ≥ 4 or
when n ≥ 3 and k = 3, we have that 2�kn/3� > 4n− 1, which yields a contradiction.
Hence, w.l.o.g. we may assume that there exist links (x1, y1) and (y1, z1) of C1 such
that (x2, y2), (y2, z2), (x1, x2), (y1, y2), and (z1, z2) are all healthy.
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What we need to do now is to show that there is a Hamiltonian circuit C2 in Q2

containing either (x2, y2) or (y2, z2): we can then join C1 and C2 as described above.
Suppose that it were otherwise. If necessary, mark some of the links of Q2 incident
with y2 as faulty (that is, temporarily regard them as faulty) so that y2 is incident
with at most three healthy links in Q2, two of which are always (x2, y2) and (y2, z2).
Consequently, as there were originally at most 2n − 2 faulty links in Q2, there are
now at most 4n− 5 faulty links. However, in order to apply our induction hypothesis
(and deduce that this amended Q2 has a Hamiltonian circuit), we need that every
node in (the amended) Q2 is incident with at least two healthy links. Suppose that
it were otherwise. Then there is a node w2 incident with exactly one healthy link.
This must have been because (y2, w2) was a healthy link in the original Q2 and it was
subsequently marked as faulty. Amend the marking of healthy links so that (w2, y2)
is the third healthy link in the amended Q2. Note that in the amended marking
every node is incident with at least two healthy links (because Q2 originally had at
most 2n − 2 faults). Now we can apply the induction hypothesis and deduce that
Q2 has a Hamiltonian circuit C2 containing either (x2, y2) or (y2, z2) (possibly both).
No matter which, we can join C2 to C1 (as described above) to obtain a circuit D2

containing every node of Q1 and Q2. (Henceforth, we now treat those links of Q2

which were temporarily marked as faulty as being healthy again.)

All links of D2 except for (x1, x2) and (y1, y2) are links in Q1 or Q2. Hence, there
is much potential to join D2, as above, to a Hamiltonian circuit in Q3 or Qk. Similarly
to as before (by applying exactly the same counting argument), w.l.o.g. there exist
two consecutive links (u2, v2) and (v2, w2) of D2 ∩ Q2 such that the links (u3, v3),
(v3, w3), (u2, u3), (v2, v3), and (w2, w3) are healthy. Again, by arguing exactly as
before, there is a Hamiltonian circuit C3 in Q3 containing either the link (u3, v3) or
the link (v3, w3); and we can join D2 to C3 using links in dimension 1 to obtain a
circuit D3 containing all nodes of Q1, Q2, and Q3. Exactly the same arguments apply
so that we might extend D3 to a circuit D4, containing all nodes of Q1, Q2, Q3, and
Q4, and so on until we obtain a Hamiltonian circuit in Qn

k+1.

Case (ii). Each Qi is such that every node is incident with at least two healthy
links and some Qj has exactly 4n− 4 faults.

W.l.o.g. we may assume that j = 1. Suppose that there is some fault (x1, y1) of Q1

such that (x1, x2) and (y1, y2) are healthy. Amend Q1 so that (x1, y1) is temporarily
marked as healthy. By the induction hypothesis applied to this amended Q1, there
is a Hamiltonian circuit C1 which may or may not contain (x1, y1); and C1 is a
circuit in the original Q1. The circuit C1 has an isomorphic copy Ci in each Qi for
i = 2, 3, . . . , k. If (x1, y1) is in C1, the circuit C1 can be joined to C2 using the
healthy links (x1, x2) and (y1, y2). Otherwise, because there are exactly three faults
in dimension 1 and �kn/2� > 3, there is a link (u1, v1) of C1 such that (u1, u2) and
(v1, v2) are healthy. (Use a counting argument similar to that used before except split
C1 into groups of two consecutive vertices and look at the pairs of links in dimension
1 joining Q1 to Q2.) C1 can now be joined to C2 using these links to yield a circuit
D2 containing every node of Q1 and Q2. The circuit D2 contains kn − 1 links of Q2.
As �(kn− 1)/2� > 3, the same argument yields that there is a link (u2, v2) of D2 ∩Q2

such that the links (w3, z3), (w2, w3), and (z2, z3) are all healthy. Moreover, (w3, z3)
lies on the circuit C3 of Q3. Hence, we can join D2 and C3 to obtain a circuit D3

containing every node of Q1, Q2, and Q3. Exactly the same arguments apply so that
we can extend D3 to a Hamiltonian circuit of Qn

k+1.

On the other hand, suppose that, for every fault (x1, y1) of Q1, at least one of
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(x1, x2) and (y1, y2), and at least one of (x1, xk) and (y1, yk), are faulty. Let (x1, y1)
be some fault of Q1. As there are exactly three faults in dimension 1, it cannot be
the case that two faults in Q1 are not incident with one another. Let us now count
the maximum number µ of faults of Q1 which could be incident with either x1 or y1.
Consider x1. The number of faults incident with x1, apart from the fault (x1, y1), is
at most 2n− 3. Similarly, the number of faults incident with y1, apart from the fault
(x1, y1), is at most 2n − 3. Hence, µ ≤ (2n − 3) + (2n − 3) + 1 = 4n − 5. However,
there are 4n− 4 faults in Q1 and so we obtain a contradiction.

Case (iii). There exists some Qi in which there is a node incident with exactly
one healthy link in Qi.

W.l.o.g. we may assume that the node x1 in Q1 is incident with exactly one
healthy link, (x1, y1), in Q1. As x1 is incident with 2n − 1 faults in Q1, each Qi,
for i = 2, 3, . . . , k, contains at most 2n − 3 faults; there is no node in any Qi, for
i = 2, 3, . . . , k, which is incident with less than three healthy links in that Qi; and
apart from x1, there is no other node in Q1 which is incident with less than two
healthy links in Q1. Also, as x1 is incident with at least two healthy links in Qk

n+1,
we may suppose that (x1, x2) is healthy. Consider w1, one of the 2n − 1 potential
neighbors of x1 in Q1 for which the link (x1, w1) is faulty. There are two scenarios.

Case (iii)(a). (w1, w2) is a healthy link.

Mark the previously faulty link (x1, w1) as temporarily healthy. By the induction
hypothesis applied to this amended Q1, there is a Hamiltonian path P1 from x1 to w1.
Moreover, this Hamiltonian path P1 is a Hamiltonian path in the original Q1 (where
the links temporarily marked as faulty resume their healthy status).

Mark some of the previously healthy links in Q2 that are incident with x2 as
temporarily faulty and mark the link (x2, w2) as temporarily healthy (if necessary)
so as to ensure that x2 is incident with exactly two healthy links in this amended
Q2 (one of which is (x2, w2)). Note that in order to build this amended Q2 we have
introduced at most 2n − 2 temporary faults; and so this amended Q2 has at most
4n−5 faults and every node is incident with at least two healthy links. Hence, by the
induction hypothesis, there exists a Hamiltonian path P2 in this amended Q2 from
x2 to w2. Moreover, this Hamiltonian path P2 is a Hamiltonian path in the original
Q2. Join P1 and P2 using the healthy links (x1, x2) and (w1, w2) to form a circuit D2

which contains all nodes of Q1 and Q2.

Applying a counting argument similar to that used in Case (ii), along with the fact
that �(kn−1)/2� > 2n (note that the total number of faults in Qk

n+1 not contained in
Q1 is at most 2n), there exists a link (u2, v2) of D2 ∩Q2 such that the links (u3, v3),
(u2, u3), and (v2, v3) are healthy. Temporarily mark healthy links in Q3 incident with
u3 as faulty so that in this amended Q3, u3 is incident with exactly two healthy links,
one of which is (u3, v3). In order to build this amended Q3 we have introduced at
most 2n− 2 temporary faults; and so this amended Q3 has at most 4n− 5 faults and
every node is incident with at least two healthy links. By the induction hypothesis,
there is a Hamiltonian circuit C3 in the original Q3 containing the link (u3, v3). We
can join D2 and C3, using the healthy links (u2, u3) and (v2, v3), to obtain a circuit
D3 containing every node of Q1, Q2, and Q3. Exactly the same argument can be
applied to extend D3 to a circuit D4 and so on until we have a Hamiltonian circuit
of Qk

n+1.

Case (iii)(b). All links from every such w1 to its corresponding node w2 in Q2

are faulty.

This accounts for another 2n− 1 faults in Qk
n+1. Also, if (x1, xk) is healthy, then
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by symmetry we are in Case (iii)(a) (as all but at most one link of the form (w1, wk)
is healthy). Hence, we may assume that (x1, xk) is faulty, and this accounts for all
the faults in Qk

n+1.
Consequently, (y1, y2) and (y1, yk) are both healthy links. (Recall that (x1, y1)

is the only healthy link of Q1 incident with x1.) Let w1 be some potential neighbor
of x1 in Q1 for which the link (x1, w1) is faulty. Amend Q1 by marking the link
(x1, w1) as temporarily healthy. By the induction hypothesis applied to this amended
Q1, there is a Hamiltonian path P1 in the original Q1 from x1 to w1. Rename the
nodes of P1 as x1,1 = x1, x1,2 = y1, x1,3, . . . , x1,kn = w1, and note that in each Qi,
i ≥ 2, there is a corresponding Hamiltonian path Pi which can be extended to a
Hamiltonian circuit Ci of Qi (as (xi, wi) is healthy in Qi). Rename the nodes of Ci

as xi,1 = xi, xi,2 = yi, xi,3, . . . , xi,kn = wi for each i ≥ 2.
For ease of notation, denote kn by m. Suppose k is even. Then the following is a

Hamiltonian circuit in Qk
n+1:

(x1,1, x2,1, . . . , xk,1, xk,2, xk,3, x1,3, x1,4, . . . , x1,m, xk,m, xk−1,m, . . . , x2,m,

x2,m−1, x3,m−1, . . . , xk,m−1, xk,m−2, xk−1,m−2, . . . , x2,m−2, x2,m−3,

x3,m−3, . . . , xk,m−3, xk,m−4, . . . , xk,4, xk−1,4, . . . , x2,4, x2,3, x3,3, . . . ,

xk−1,3, xk−1,2, xk−2,2, . . . , x2,2, x1,2, x1,1).

(See Figure 2.2 where some of the healthy links between the Qi’s are shown and bold
links denote the links of the Hamiltonian circuit.) If k is odd, then the following is a
Hamiltonian circuit in Qk

n+1:

(x1,1, x2,1, . . . , xk,1, xk,2, xk−1,2, . . . , x2,2, x2,3, x3,3, . . . , xk,3, xk,4, xk−1,4, . . . ,

x2,4, x2,5, . . . , x2,m, x3,m, . . . , x2,m, xk,m, . . . , x1,m, x1,m−1, . . . , x1,2, x1,1).

(See Figure 2.3.)
Case (iv). There exists some Qi in which there is a node incident with no healthy

links in Qi.
W.l.o.g. we may assume that x1 is incident with no healthy links in Q1. As x1 is

incident with at least two healthy links in Qk
n+1, the links (x1, x2) and (x1, xk) must

be healthy. There are at least 2n faults in Q1, and so there must be at most 2n − 4
faults distributed amongst Q2, Q3, . . . , Qk. Hence, apart from x1, there are no nodes
which are incident with less than four healthy links in their respective copy of Qk

n.
The node x1 has 2n potential neighbors in Q1. Each of these potential neighbors

is incident with a potential dimension 1 link to Q1 and a potential dimension 1 link to
Qk. (These dimension 1 links might be faulty.) As there are at most 2n− 1 faults in
dimension 1, there must exist potential neighbors y1 and z1 of x1 such that the links
(y1, y2) and (z1, zk) are healthy. (Partition the potential neighbors into n pairs {y1, z1}
and look at the pairs of dimension 1 links {(y1, y2), (z1, zk)} and {(y1, yk), (z1, z2)}.)
Mark the faulty links (x1, y1) and (x1, z1) as temporarily healthy in Q1. Applying
the induction hypothesis to this amended Q1, we obtain a path P1 in the original Q1

from y1 to z1 upon which every node of Q1 appears exactly once, except for x1 which
does not appear at all.

By marking previously healthy links in Q2 that are incident with x2 as temporarily
faulty, and by marking the link (x2, y2) as temporarily healthy (if necessary), ensure
that x2 is incident with exactly two healthy links in this amended Q2, one of which
is (x2, y2). This involves introducing at most 2n− 2 temporary faults into Q2; and so
the amended Q2 has at most 4n − 6 faults and every node is incident with at least
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Fig. 2.2. The Hamiltonian circuit when k is even.

two healthy links. The induction hypothesis yields that there is a Hamiltonian path
from x2 to y2 in the original Q2. Likewise, there is a Hamiltonian path from xk to
zk in Qk. Hence, let D2 be the circuit obtained by joining P1, P2, and Pk using the
healthy links (x1, x2), (y1, y2), (x1, xk), and (z1, zk).

Applying a counting argument similar to that used in Case (ii), along with the
fact that �(kn − 1)/2� > 2n − 1 (note that the total number of faults in Qk

n+1 not
contained in Q1 is at most 2n − 1), there exists a link (u2, v2) of D2 ∩ Q2 such that
the links (u3, v3), (u2, u3), and (v2, v3) are healthy. Temporarily mark healthy links in
Q3 incident with u3 as faulty so that in this amended Q3, u3 is incident with exactly
two healthy links, one of which is (u3, v3). In order to build this amended Q3 we
have introduced at most 2n − 2 temporary faults; and so this amended Q3 has at
most 4n− 6 faults and every node is incident with at least two healthy links. By the
induction hypothesis, there is a Hamiltonian circuit C3 in the original Q3 containing
the link (u3, v3). We can join D2 and C3, using the healthy links (u2, u3) and (v2, v3),
to obtain a circuit D3 containing every node of Qk, Q1, Q2, and Q3. Exactly the
same argument can be applied to extend D3 to a circuit D4 and so on until we have
a Hamiltonian circuit of Qk

n+1.

It remains to show that the result holds for the base cases of the induction, namely,
when n = 2 and k ≥ 4, and when n = 3 and k = 3.

Lemma 2.2. If Qk
2 , where k ≥ 4, has three faulty links and is such that every

node is incident with at least two healthy links, then Qk
2 has a Hamiltonian circuit.

Proof. There exists some dimension, say dimension 1, that contains at least two
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Fig. 2.3. The Hamiltonian circuit when k is odd.

faults. Partition Qk
2 over dimension 1 to obtain k copies of Qk

1 , namely Q1, Q2, . . . , Qk.
Case (i). All faults are in dimension 1.
Consider the circuit Q1 of length k. As there are three faults in dimension 1,

w.l.o.g. there exists an edge (x1, y1) of Q1 such that the links (x1, x2) and (y1, y2)
are both healthy. (Apply our usual counting argument.) Join Q1 and Q2 using these
links to obtain a circuit D2 containing every node of Q1 and Q2. By proceeding as
we have done throughout, the same argument can be used to extend D2 to (w.l.o.g.)
a circuit D3 and so on until we obtain a Hamiltonian circuit of Qk

2 .
Case (ii). Dimension 1 has exactly two faults.
W.l.o.g. the only fault not in dimension 1 may be assumed to be (x1, y1) in Q1.

If the links (x1, x2) and (y1, y2) are both healthy or the links (x1, xk) and (y1, yk) are
both healthy, then we can join Q1 with Q2 or Qk, respectively, as in Case (i), and
extend this circuit to a Hamiltonian circuit of Qk

2 .
Hence, w.l.o.g. we may assume that the links (x1, x2) and (y1, yk) are both faulty.

If k is even, then there exists a Hamiltonian circuit in Qk
2 as pictured in Figure 2.2. (In

that picture, x1,3, x1,2, x2,3, and xk,2 play the roles of x1, y1, x2, and yk, respectively.)
If k is odd, then there exists a Hamiltonian circuit in Qk

2 as pictured in Figure 2.3.
(In that picture, x1,m, x1,1, x2,m, and xk,1 play the roles of x1, y1, x2, and yk,
respectively.)

Lemma 2.3. If Q3
2 has three faulty links and is such that every node is incident

with at least two healthy links, then Q3
2 has a Hamiltonian circuit unless these three

faulty links form a circuit of length 3.
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Proof. There exists some dimension, say dimension 1, that contains at least two
faults. Partition Q3

2 over dimension 1 to obtain three copies of Q3
1, namely Q1, Q2, and

Q3. We may assume that either Q1 contains one fault or all faults are in dimension
1. Denote the nodes of Qi by xi, yi, and zi for i = 1, 2, 3.

Case (i). Q1 contains one fault.
W.l.o.g. we may assume that the fault in Q1 is (x1, y1).
Case (i)(a). The links (x1, x2) and (y1, y2) are healthy.
Form the circuit C = (x1, z1, y1, y2, z2, x2, x1) in Q3

2. There are two possibilities:
either one of the sets of pairs

{(x1, x3), (z1, z3)}, {(y1, y3), (z1, z3)}, {(x2, x3), (z2, z3)}, {(y2, y3), (z2, z3)}

consists of two healthy links or the faulty links in dimension 1 are (z1, z3) and (z2, z3).
In the former case, the circuit C can be joined to the circuit (x3, y3, z3, x3) using the
pair of healthy links to obtain a Hamiltonian circuit in Q3

2: in the latter case, we can
define our Hamiltonian circuit in Q3

2 to be (x1, z1, z2, y2, y1, y3, z3, x3, x2, x1).
Case (i)(b). At least one of the links (x1, x2) and (y1, y2) is faulty.
By symmetry, we may also assume that at least one of (x1, x3) and (y1, y3) is

faulty (as otherwise we are in Case (i)(a)); so this accounts for all faults in Q3
2. The

only configuration possible, up to isomorphism, is that in Figure 2.4(a), and so there
is a Hamiltonian circuit as depicted in that figure. (In Figure 2.4(a), the nodes x1,
y1, and z1 of Q1 form the central column, with the other two columns similarly
depicting the nodes of Q2 and Q3. Faults are denoted by missing links, and links of
the Hamiltonian circuit are drawn in bold.)

Case (ii). All faults are in dimension 1.
Up to isomorphism, there are six different configurations possible, shown in Fig-

ure 2.4(b)–(g), with Hamiltonian circuits as depicted except for Figure 2.4(g) where
no such Hamiltonian circuit exists. (In Figure 2.4(g), w.l.o.g. the bold links are neces-
sarily in any Hamiltonian circuit, if there were to exist one; and one can immediately
see that there is no extension of these bold links to a Hamiltonian circuit.)

Lemma 2.4. If Q3
3 has seven faulty links and is such that every node is incident

with at least two healthy links, then Q3
3 has a Hamiltonian circuit.

Proof. Case (i). Q3
3 contains faults forming a circuit C of length 3.

All of the faults in C must appear in the same dimension, say dimension 1.
Partition Q3

3 across dimension 1 to obtain three copies of Q3
2, namely Q1, Q2, and

Q3, and let the faulty links in C be (x1, x2), (x2, x3), and (x3, x1). We may assume
that Q1 contains the most faults amongst these copies, then Q2, and then Q3.

Case (i)(a). Q1 contains faults forming a circuit D of length 3.
Let y1 and z1 be nodes of D different from x1 (x1 may or may not be on D) so

that the number of faults incident with y1 is no greater than the number of faults
incident with any node of D different from x1. (Note that x1 is incident with at most
two faults in Q1.) If y1 is incident with one healthy link in Q1, then every other node
of Q1 is incident with at least two healthy links in Q1. (As Q3

3 has seven faults, y1

must be incident with at least one healthy link in Q1.) In this case, temporarily mark
the link (y1, z1) as healthy so that there are at most three faults in the amended Q1.
(And these faults do not form a circuit.) Lemma 2.3 yields that there is a Hamiltonian
path in the original Q1 from y1 to z1.

If y1 is incident with two healthy links in Q1, then every node in Q1 is incident
with at least two healthy links in Q1. Mark the link (y1, z1) as temporarily healthy
and a healthy link of Q1 incident with y1 as temporarily faulty. Every node in the
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no Hamiltonian
circuit!

(b)(a) (c)

(d) (e) (f)

(g)

Fig. 2.4. The different configurations for Q3
2.

amended Q1 is incident with at least two healthy links, and there are at most three
faults. (And these faults do not form a circuit.) Lemma 2.3 yields that there is a
Hamiltonian path in the original Q1 from y1 to z1.

Whichever of the above scenarios applies, denote the Hamiltonian path in Q1

from y1 to z1 by P1. The faults in Q1 and the faults (x1, x2), (x2, x3), and (x3, x1)
account for at least six of the seven faults in Q3

3. Hence, w.l.o.g. we may assume
that the links (x1, x2) and (y1, y2) are healthy. There is at most one fault in Q2. By
marking healthy links of Q2 as temporarily faulty (if necessary), ensure that (y2, z2) is
healthy and y2 is incident with exactly two healthy links. Applying Lemma 2.3 to this
amended Q2 yields that there is a Hamiltonian circuit C2 (that is also a Hamiltonian
circuit in the original Q2) including the link (y2, z2). Join P1 and C2 using the healthy
links (y1, y2) and (z1, z2) to obtain a circuit D2 containing every node of Q1 and Q2.

Q3 has an isomorphic copy C3 of C2, and there are no faults in Q3. As C3 has
length 9 and there are at most four faults in dimension 1, by applying our counting
argument as we have done throughout, we can join D2 and C3 using appropriate
dimension 1 links to obtain a Hamiltonian circuit in Q3

3.

Case (i)(b). Q1 does not contain faults forming a circuit D of length 3.

Note that the proofs of Cases (i), (ii), (iii), and (iv) of the main theorem hold for
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Q3
3 except that, throughout, instead of appealing to an inductive hypothesis, we use

Lemma 2.3; in Case (i), we assume that dimension 1 contains at most five faults; and
in Case (iii)(a), when amending Q2 we must ensure that we do not introduce a circuit
of faults of length 3. (This can be done as Q2 has at most 1 fault.) Consequently,
we are left with one scenario to consider: the subcase of Case (i) when each Qi is
such that every node is incident with at least two healthy links and when dimension
1 contains six or seven faults.

Let (a new) 3-ary 2-cube Q3
2 be such that there is a fault (x, y) in Q3

2 if and only
if there is a fault (xi, yi) in Qi for some i ∈ {1, 2, 3}. Then Q3

2 has at most two faults
and, by Lemma 2.3, it has a Hamiltonian circuit C. For each i ∈ {1, 2, 3}, let Ci

be the isomorphic copy of C in Qi. (Note that each Ci consists entirely of healthy
links.) Even if dimension 1 (of our original Q3

3) contains seven faults, our usual
counting argument yields that there exists a pair of healthy links {(u1, u2), (v1, v2)}
or {(u1, u3), (v1, v3)}, where (u1, v1) is a link of C1: w.l.o.g. we may assume that these
healthy links are (u1, u2) and (v1, v2). We can join C1 and C2 using these healthy links
and then proceed similarly to join the resulting circuit to C3 and obtain a Hamiltonian
circuit of Q3

3.

Case (ii). Q3
3 does not contain faults forming a circuit of length 3.

There exists a dimension, say dimension 1, containing at least three faults. Parti-
tion Q3

3 across dimension 1 to obtain three copies of Q3
2, namely Q1, Q2, and Q3. Let

Q1 contain the most faults amongst these copies, then Q2, and then Q3. Proceeding
as in Case (i)(b) yields the result.

The main theorem now follows by induction.

The result in Theorem 2.1 is optimal in the following sense. Let a, b, c, and d
be four nodes in Qk

n, where k ≥ 4 and n ≥ 2, or k = 3 and n ≥ 3, such that there
are links (a, b), (b, c), (c, d), and (d, a). Let the faults of Qk

n consist of those links
incident with a that are different from (a, b) and (a, d), and those links incident with
c that are different from (b, c) and (c, d). In particular, Qk

n has 4n−4 faults and every
node is incident with at least two healthy links; but this faulty Qk

n does not contain
a Hamiltonian circuit, as any Hamiltonian circuit necessarily contains the links (a, b)
and (a, d), and also the links (c, b) and (c, d), which yields a contradiction.

3. Conclusions. We have proven that every k-ary n-cube Qk
n which has at most

4n−5 faulty links and is such that every node is incident with at least two healthy links
has a Hamiltonian circuit. As mentioned earlier, an analogous result for hypercubes
was proven by Chan and Lee [8]. In [8], it was also shown that the problem of
deciding whether a faulty binary n-cube has a Hamiltonian circuit is NP-complete.
Their complexity-theoretic reduction (from the 3-satisfiability problem) can easily be
adapted to show that the problem of deciding whether a faulty k-ary n-cube has a
Hamiltonian circuit is also NP-complete. (We leave the proof of this as a simple
exercise.)

As open problems relating to the research in this paper, we propose the following.
The construction of our Hamiltonian circuits in our faulty k-ary n-cubes does not yield
efficient parallel distributed algorithms for actually building the Hamiltonian circuits.
For example, suppose one had a parallel computer whose underlying interconnection
network was a k-ary n-cube and each node, i.e., processor, had local (or even global)
knowledge of the faulty links. How could we develop an efficient message-passing
algorithm so that, upon termination, every node knew its successor and predecessor
on a Hamiltonian circuit (without necessarily knowing the Hamiltonian circuit in its
entirety)? Such an algorithm would be extremely useful. Also, whilst we provide a
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precise result as to the threshold value on the number of faulty links occurring in a
k-ary n-cube so that there still exists a Hamiltonian circuit (under the assumption
that every node is incident with at least two healthy links) and we also remark that
the general decision problem is NP-complete, it would be useful if “safe patterns” of
faults could be established so that even though there were more than 4n − 5 faulty
links present, one could still be sure of the existence of a Hamiltonian circuit because
these faults were arranged in some specific formation. Finally, we have addressed only
the problem of finding longest circuits in k-ary n-cubes in the presence of faulty links.
It would be interesting to do likewise in the presence of faulty nodes, or even faulty
nodes and links.
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