
PROBABILISTIC FORMULATIONS FOR TRANSFERRING
INFERENCES FROM MATHEMATICAL MODELS TO PHYSICAL

SYSTEMS∗

MICHAEL GOLDSTEIN† AND JONATHAN ROUGIER†

SIAM J. SCI. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 467–487

Abstract. We outline a probabilistic framework for linking mathematical models to the physical
systems that they represent, taking account of all sources of uncertainty including model and simu-
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1. Introduction. In a computer experiment (sometimes referred to as an in sil-
ico experiment) we make inferences about a physical system using a computer simula-
tor of that system. Such computer experiments may be used to investigate problems
for which it would be difficult to carry out the corresponding physical experiments.
Sometimes, the difficulty may be legal, ethical, or financial. But in other cases the
experiment may not be possible, usually because the system is too small or too large.
Thus in a computer experiment we can watch a single protein folding, we can watch
the global climate evolving, or we can watch an entire galaxy coalescing.

We act as though evaluations of our models are informative about the physical
system. For example, the debate on global climate change, which is already having a
profound effect on policy, is guided by computer-based predictions of future climate,
e.g., [9]. This is despite the problems that, in general, (i) our mathematical models
of the underlying physical system are incomplete and often mutually inconsistent,
(ii) the discretized solvers of these models (the simulators) are often woefully under-
resolved, and (iii) the simulators require inputs about which we are very uncertain.
It is natural in these circumstances to require that model-based predictions about the
system are accompanied by a careful evaluation of all sources of uncertainty. This is
essential both for informed scientific debate, and also to assist policy makers within
a decision-theoretic framework.

Our purpose in this paper is to construct a probabilistic framework that links
one or more computer simulators and the underlying physical system, in order that
the information available from evaluations of the simulators can feed through, via
probabilistic conditioning, using a Bayesian statistical approach, into beliefs about
the system. These beliefs include system properties and system behavior (e.g., system
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prediction). In this paper we have described what we believe to be the minimum
amount of modelling necessary to allow us to transfer inferences from one or more
simulators to the underlying system.

The outline of the paper is as follows. Our objective is to make probabilistic
statements about the physical system using evaluations of our simulator and, where
available, data collected from the system. For this purpose we must construct a prob-
abilistic model that links the simulator and the system. We start in section 2 by
considering the simplest case, in which we have a high-quality simulator with well-
defined inputs. In section 3 we discuss the problem of ill-defined “tuning” inputs,
and in section 4 we extend our analysis to include these and the possibility that the
simulator is not of high quality. In section 5 we discuss belief models for the simulator
itself, and in section 6 we extend our analysis to include multiple simulators for the
same system. Section 7 concludes with a discussion. Our analysis is general, covering
a wide range of computer experiments which share certain widely occurring charac-
teristics, but we provide illustrations from the important field of climate modelling.
More details of this application may be found in [3, 13] and, of particular interest to
statisticians, [2, 12].

2. The direct simulator. We start by considering the best possible case for
simulator-based inference about a physical system. We denote the system value y,
where y typically comprises a collection of space- and time-indexed physical quantities.
The possible values that y can take are the set Y. To model this system, we have a
deterministic simulator f , usually represented as computer code. For simplicity we
will assume throughout that the output of f also takes values in the set Y, so that
we can compare the output of the simulator and the actual system directly.

We define the inputs of the simulator at a very general level to comprise the
numbers used to initiate the computer code, i.e., the values that need to be speci-
fied before the code will execute. Typically, this will comprise (i) parameters in the
equations describing the general behavior of the system and (ii) parameters, including
boundary values and forcing functions, that tailor the general behavior of the system
to a specific instance. There may also be quantities that control the way in which the
system of equations is solved. If we wish to model explicitly our uncertainty as to
how changes in such quantities would affect the quality of the computer solutions,
then we might also represent these quantities as functional inputs into the simulator.
However, this would further complicate many aspects of the account of our modelling.
Therefore, for clarity of exposition, we treat the different values of such quantities as
defining a family of different simulators. This will allow us to subsume our treatment
of such quantities within our general treatment of families of related simulators for a
physical system.

We want to use evaluations of a computer simulator of the system to help us
reduce uncertainty about the system itself. We shall describe an approach that we
consider appropriate for such an analysis. This approach will be formulated within a
Bayesian statistical framework. In this framework, all probabilities are quantifications
of the uncertainties of experts (e.g., [1]). This approach is appropriate for making such
inferences, as the uncertainty about the relationship between the simulator and the
system can only be captured by expert judgments. In our applications, the quan-
tifications will be based on experience with the simulator, its underlying theory, its
history of application, and any other prior knowledge relevant to the physical system.
The quality and reliability of the inferences that we are able to make will, therefore,
depend on the care and effort that is taken in assessing such considerations.
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The Bayesian approach has been formulated to allow the expert to synthesize
relevant prior information with data, such data in our case comprising observations
on the physical system and evaluations of the computer simulator. Different experts
may make different prior judgements and, therefore, reach different conclusions as a
result of following this process. Therefore, there are two ways to employ the analysis
that we shall describe. First, an individual expert may explore the implications of his
or her individual judgments for reducing uncertainty over the quantities of interest.
Second, by seeing how such prior judgments vary between experts, the analysis may
be used to assess the degree to which such experts may reasonably disagree in their
posterior judgments, given empirical evidence and evaluations of the simulator.

First, consider the case where the domain of f comprises only inputs that can,
at least in principle, be determined by an experiment independent of the simulator
itself. We call these measurable inputs and denote the space of measurable inputs as
X , with the true input denoted x0 ∈ X . Of particular interest is the degree to which
f(x0) is able to represent y. We define the discrepancy to be the difference between
the true value y of the physical system and the value of the simulator output at the
true input value x0, namely,

ε = y − f(x0).(2.1)

In some situations, most notably where we have a perfect simulator and our only
uncertainty is about, say, the initial value of the state vector, we may have ε = 0.
Generally, however, we would not expect the simulator to exactly replicate the system
value at input x0, and consequently we anticipate that ε �= 0.

We are often uncertain about x0 due to our unwillingness or inability to perform
the experiment that would determine x0 to arbitrary accuracy. Some components of
X are likely to be very well known, e.g., the gravitational constant or the Stefan–
Boltzmann constant, but others, e.g., “historic” forcing functions or boundary con-
ditions, are only known approximately. Likewise, we are uncertain about f , in all
but trivial cases, due to the fact that we cannot costlessly evaluate f at every input
value. We are uncertain about y in any circumstances where y may only be observed
with error, or has not yet been observed, e.g., future values. Finally, we are uncertain
about the discrepancy ε whenever the reasons for the mismatch between the simulator
and the system are not fully understood.

When we assign a probability distribution for the quantities y, f , x0, and ε to
account for this uncertainty, then this distribution is constrained by (2.1). By making
further assumptions that we now describe, we may reformulate the problem so that
our uncertainty about ε, f , and x0 jointly determine our uncertainty about y.

For this purpose we now define a certain type of simulator as follows. We say
that f is a direct simulator if it has two properties. First, its inputs are measurable.
Second, the discrepancy ε is probabilistically independent of x0 and f , according to
the judgments of the expert. This second property corresponds to the judgment that
evaluations of the simulator at inputs other than x0 are believed by the expert to
convey no information about y additional to that in f(x0). That is, given knowledge
of f(x0), there is no additional information contained in any further simulator evalua-
tions for the purposes of predicting y as well as possible. Further, were the true values
of f and x0 to be revealed to the expert, then the uncertainty that the expert would
afterwards specify for y would be the same for each possible value of f and x0 that
could be revealed. Thus, we exclude the kind of problem where we know, for example,
that the solution method used by the simulator is very reliable for some parts of the
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input space but much less reliable for other parts of the input space. In this case
the expert might want to make the predictability of the system using the simulator,
e.g., as measured by Var[ε], depend on x0. Such considerations are unnecessary with
a direct simulator.

For a direct simulator, the relationship between f , x0, the system y, and observed
system data z may be represented in the following Bayesian graphical model:

x0

��

ε

��

e

��
f �� f(x0) �� y ��

���
��

��
��

� yp �� z

yf

(2.2)

A (directed) Bayesian graphical model consists of a collection of nodes, where each
node represents one or a collection of random quantities. The nodes are joined by arcs,
and the construction x → y, or x is a parent of y, indicates, informally, that knowledge
of the value of x is relevant to the specification of the probability distribution of
y, according to the judgment of the expert. The precise property of the graph is
that any two nodes on the graph are conditionally independent given the values of
all of their parent nodes. For a detailed discussion of such models, see [4, 10]. In
particular, graphical models are useful in displaying how the various uncertainties
in a problem relate to each other. For example, we read from (2.2) that our model
has four independent sources of uncertainty, namely, f , x0, ε, e. We combine f and
x0 to get f(x0); we combine f(x0) and ε to get y; we split y into yp and yf and
combine yp with e to get z. As our models and sources of information become more
involved, it becomes increasingly useful to have simple visual representations which
display qualitatively how the various aspects of uncertainty are combined.

In (2.2) we have partitioned the system y into (yp, yf ), heuristically “past” and
“future,” namely, those quantities for which we already have observations (yp), and
those whose values we would like to assess (yf ), and introduced observational data
z, which includes measurement error e, on the “past” system components. We may
suppose that the measurement error is additive, so that

z = yp + e,(2.3)

although other models for the statistical errors are also possible.
The logical basis for inference using a direct simulator is straightforward. The

quantities x0, ε, and e are clearly defined, but there is uncertainty about their values.
We may express this uncertainty as (mutually independent) probability distributions.
In the general case, there may also be uncertainty about f , but for simplicity at
this stage we treat f as known. Using (2.1) and (2.3) we can compute a full joint
probabilistic specification over the collection (x0, yf , z) which can be used to answer,
probabilistically, questions about the system.

For example, we can use observed values for z to help to reduce our uncertainty
over x0, and we can exploit this reduction in uncertainty to reduce our forecast uncer-
tainty for yf . Reducing uncertainty over x0 is often termed (probabilistic) calibration,
or, in the oil industry, history matching; see [16]. Reducing uncertainty over the un-
observed future values yf is often termed (probabilistic) prediction. Using system
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data to reduce uncertainty about inputs and, therefore, to help learn about the future
values is often termed (probabilistic) calibrated prediction. In other cases, we have
no system data z, and we can only learn about yf in terms of our various sources of
uncertainty. This is known as uncertainty analysis. In many problems of uncertainty
analysis, the value of x0 is selected from some population for each case to which the
model is applied; for example, x0 might be the unknown dose of radiation received
by a particular patient, and the model output might be likely symptoms based on a
computer model of the effects of different radiation levels on the patient.

We have

p (x0, yf | z) ∝ p (x0, yf , z) = p (z, yf | x0) p(x0).(2.4)

Our model states that

(z, yf ) = f(x0) ⊕ ε⊕ (e,0),(2.5)

where “⊕” denotes the sum of independent vectors and (x, y) denotes the concatena-
tion of two vectors x and y into a single vector. If we assume that ε and e are both
Gaussian with mean zero, then the conditional distribution (z, yf ) | x0 is Gaussian
with mean f(x0) and variance Var[ε] + Var[(e,0)]. In this case p(z, yf | x0) has the
simple Gaussian functional form.

The practical implementation of these calculations may be complicated. In par-
ticular, the elicitation of expert knowledge about the variance structure of the discrep-
ancy ε may be challenging; for example, if y is a time series, such as some important
climate variables aggregated on a weekly basis, then beliefs about ε will reflect this
time structure, and modelling for the future may be based on similar considerations
to those in Bayesian forecasting for complex time series, where, if appropriate, we
may use discrepancies between the model and historical data to modify beliefs about
the underlying parameters generating the time series. However, despite such practical
complications, the way in which the overall analysis should be carried out and the
logical meaning of the various uncertainty statements are clear.

Simple example. We now introduce a simple example, which we shall develop in
the following sections to illustrate the relevance of each of the features that we shall
introduce. Our simulator is

f(x) = (apx, afx);(2.6)

i.e., it has a single input x and two outputs, where we consider apx to be the “past”
output and afx to be the “future” output, where ap and af are known scalars but we
are uncertain about the true input value x0. In order to make inferences about x0 and
yf = afx0 using the system data z we need to provide distributions for x0, ε, and e.
We might choose mean-zero Gaussian distributions for the latter two, as this simplifies
the inference as described above. This requires a 2 × 2 variance matrix for ε and a
variance scalar for e. In general, there are no computational advantages that accrue
for particular choices for the distribution p(x0), so we will leave this undetermined.

With these assumptions, the calibrated prediction calculation for (2.4) is

p (x0, yf | z) ∝ N2((z, yf ) | f(x0),Σ) × p (x0) ,(2.7)

where “N2” is the bivariate Gaussian density function with given mean and variance,
and

Σ = Var [ε] +

(
Var [e] 0

0 0

)
.(2.8)
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Clearly, this calculation generalizes straightforwardly to many inputs and many out-
puts with a known simulator, although Monte Carlo methods might be necessary in
large problems; see [14] for more details.

3. Indirect simulators. Unfortunately, very few of the simulators that we use
in practice are direct simulators. This is because (i) they include inputs that are not
measurable, and (ii) they are not sufficiently “good” that we are prepared to believe
in a single “best” input value. Often both of these limitations apply.

3.1. “Tuning” inputs. Within the full set of inputs to the simulator we find
it useful to distinguish two main types: those which may be measured independently
of the simulator, and those where no such measurement is meaningful. Measurable
inputs were introduced in section 2. We term the other inputs tuning inputs. These
are inputs which have meaning only with reference to the simulator.

The classification into “measurable” and “tuning” inputs is not always clear-cut.
Consider, for example, the four-compartment model of the Atlantic described in [17],
hereafter zsr, for investigating the northward transport of heat from the tropics. We
will use this model to illustrate various features of our approach throughout the paper.
If we restrict our attention to an equilibrium analysis, then there are 18 inputs and
eight outputs, the latter comprising equilibrium temperature and salinity for each
compartment. Of the inputs (given in zsr Table 1), five are measurable inputs, for
example, the specific heat capacity and density of sea-water, and five are tuning inputs
and are labeled as such. The remaining eight have physical analogues, for example,
the volume and depth of each compartment; it is not immediately clear how to classify
these inputs. A model of the Atlantic with four simply connected compartments is
highly stylized, and we may be reluctant to attach too much physical meaning to each
compartment. However, were we to construct a model of the Atlantic with four million
small compartments arranged in a three-dimensional lattice that carefully respected
the ocean margins, then, arguably, we would be concerned to match depths and
volumes in the simulator at least approximately to their natural physical analogues.
In section 4.1 we will introduce the possibility of “linking” a measurable input with
a tuning input, which can be used to handle ambiguous cases.

It is important to understand the role of tuning inputs. They do not exist solely
to permit a good fit to the system data z. Rather they make allowances for simulator
imperfections. These imperfections are of two main types.

Poorly understood physics. Often the underlying physics (taken in its broadest
sense) of the system is poorly understood or understood on a scale that is not ap-
propriate to the simulator. In studies of climate change, for example, the large-scale
behavior of clouds is an important determinant of the earth’s albedo. However, cloud
formation is not a well-understood process and detailed models reflecting current un-
derstanding would require information not available in a typical climate model (e.g.,
to account for the effect of localized “seeding” by the nonuniform distribution of at-
mospheric particulate matter). The same points could be made about the oceanic
carbon cycle, or sea-ice. These types of subprocesses are represented in simulators
in quite general terms, with parameters which do not relate directly to measurable
attributes, but which attempt to compensate for aspects of the missing underlying
physics, for example to bridge effects assessed at different scales.

Solver deficiencies. The second source of simulator imperfection is solver deficien-
cies. A given physical model expressed as ordinary or partial differential equations is
almost invariably solved on a finite grid. Sometimes circumstances dictate that the
grid must be larger than the characteristic scale of important physical processes. A
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well-known example of this is the treatment of viscosity in large coupled ocean/climate
models. At the moment, the solution grid of these models is constrained by computing
requirements to have a cell-size that is too large to capture the transport of water and
heat by turbulence, which tends to be highly localized. Consequently, this transport
is represented in the simulator by a parameterization of local turbulence in terms of
tuning inputs such as horizontal and vertical “eddy viscosities.” Experiments on the
current generation of ocean simulators find that eddy viscosities need to be orders
of magnitude larger than underlying molecular viscosity (which is measurable). As
computers become more powerful and the solver resolution improves, then we may
often find that these types of tuning inputs tend to well-defined limits, although, for
any particular simulator, this may be subject to a variety of complex numerical and
modelling issues.

Returning to the zsr example, we may choose to treat the four-compartment vol-
umes as measurable inputs, as we could divide the Atlantic into sections by latitudes
from which volumes can be inferred, as is done in the paper. In this case we might
want to treat the compartment depths as tuning inputs, because the appropriate av-
eraging method for each compartment will depend upon physics that we are not clear
about.

3.2. Indirect simulators. If our simulator is not a direct simulator, then we
label it an indirect simulator. To include the tuning inputs we write f : X × U → Y,
where X is the space of measurable inputs and U of tuning inputs; where there are
no tuning inputs we set U = ∅. Note that we do not have to have tuning inputs for f
to be an indirect simulator—we may simply feel that f is not good enough for us to
want to connect it directly with the system via the true but unknown value x0.

The treatment of indirect simulators, both in the literature and in practice, is
somewhat inconsistent, falling somewhere between the following two extremes.

1. We pretend that the simulator really is a direct simulator with true physical
input value (x0, u0) and carry out the analysis just as for the direct simulator as
described above. We call this a pseudodirect analysis.

2. We take the view that the simulator is a device for forecasting, so that inputs
(x, u) for which ‖z − fp(x, u)‖ is small are likely to give rise to a prediction error
‖yf − ff (x, u)‖ that is also small. We call this a black-box analysis, in which we treat
all inputs implicitly as tuning inputs.

The logical problems for the pseudodirect approach are clear. If there is no
true value of (x, u), then there is no object over which it is meaningful to specify
uncertainties. Further, there is no obvious way to express how much additional error
we are introducing by the pretense of such a precise value. The logical problems for
the black-box approach are even worse. If there is no physical basis for the terms of
our model, in the sense that we do not even claim a generalized relationship between
the inputs and some physical counterparts in the underlying system, then it is very
difficult to construct a logical argument for the claim that good calibration in the past
should result in good forecasts for the future. For example, we may be able to achieve
many perfect matches using a purely statistical approach (e.g., by fitting high-order
polynomials): are all of our predictions equally good, or equally bad?

Current practice in climate research with large simulators is to perform an ensem-
ble of runs at different input values and use these as the basis of inference. Suppose
we are interested in the mean value of future climate, given system data z and runs
of the simulator at (x1, u1), . . . , (xn, un). Typically, this mean value is estimated as
a weighted sum of ff (xi, ui), where the weights are determined as some function of
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‖z−fp(xi, ui)‖; the norm in this case accounts for factors such as the observation error
variance structure. So far, this approach is consistent with the black-box view. How-
ever, the (xi, ui) are sampled from a prior distribution that reflects beliefs about the
underlying inputs—this is more consistent with the pseudodirect view. This combined
approach has been adopted, for example, for the innovative www.climateprediction.net
experiment.

We should add that statisticians developing methodology in this area, including
ourselves, are not exempt from criticism. Our own papers using the Bayes linear
approach [5] propose what we now refer to as a pseudodirect analysis. The fully
Bayesian approach of Kennedy and O’Hagan [11] tends toward a black-box analysis
(see, particularly, their response to the discussion on [p. 461]).

4. Direct analysis using an indirect simulator. We need a way to connect
our indirect simulator to the underlying system. In particular, we need to understand
the precise role of the tuning inputs. This will allow us to have well-defined beliefs
about the tuning inputs which can be used in inference about the system. A natural
part of the linkage between an indirect simulator and the system is an assessment
of the degree to which the indirect simulator fails to function as a direct simulator.
Therefore, we augment f with a description of a further direct simulator to which
the indirect simulator approximates. Call this hypothetical direct simulator the direct
version of f , denoted fD. For the moment we assume that fD has the same measurable
input space as f , so that fD : X → Y . We have now divided the problem of linking
our simulator f and the system y into two parts. First, f tells us about fD; second,
fD(x0) tells us about y. Note that in this formulation the value f(x0, u) is not
especially informative about the system, except insofar as it is informative about
fD(x0).

In this context the role of the tuning inputs is to capture some of the difference
between f and fD. There are various levels of detail to which we may describe how
tuning works within the simulator. The simplest view (generalized in section 6.1),
which is sufficient to demonstrate our general approach and will be adequate for
many problems, is to treat the tuning inputs in an analogous way to that in which
we have treated the direct simulator in section 2. Thus, we suppose that there is an
unknown value u0 with the property that, if we knew this value, then we would only
evaluate the function f(x, u) at u = u0 in order to learn about the form of the direct
simulator fD(x). This does not mean that f(x, u0) = fD(x), but rather that the
conditional probability distribution fD(x) | u0 depends only on the function f(x, u0).
Equivalently, the simulator provides no information about the functional discrepancy
between f and fD,

εD(x) = fD(x) − f(x, u0),(4.1)

beyond that which may be obtained from evaluating the simulator at u0, for each
value of x. In particular, we might set E[εD(x)] = 0 so that E[fD(x) | u0] = f(x, u0).
Typically, we will have some view as to the likely order of magnitude discrepancy
between the tuned version of f and the value of fD for a typical input x, which will
suggest the variance for εD(x), usually the same for each x. Similarly, an order of
magnitude view as to how large a change in x would be required to make a large change
in the functional discrepancy may be used to suggest a correlation parameter for the
process. More sophisticated views concerning likely differences in tuning achievable
in different regions of the input space could similarly be introduced into the belief
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specification. We have, from (4.1), that

Var [fD(x)] = Var [E [fD(x) | u0]] + E [Var [fD(x) | u0]]
(4.2)

= Var [f(x, u0)] + Var [εD(x)] .

The first term in (4.2) expresses the variation in fD(x) which may be removed by
careful tuning, while the second term expresses the residual variation between the
tuned version of the simulator and fD(x). Tuning inputs and the directed version of
f are incorporated onto the graphical model as follows:

εD

���
��

��
��

� u0

��

x0

��
f �� fD �� fD(x0) ����� same as (2.2)

(4.3)

Returning to the calibrated prediction calculation, we now add u0 to the collection of
quantities we want to learn about using z, to get

p (x0, u0, yf | z) ∝ p (z, yf | x0, u0) p (x0) p (u0) .(4.4)

Our model now states

(z, yf ) = f(x0, u0) ⊕ εD(x0) ⊕ ε⊕ (e,0).(4.5)

If, in addition to our previous Gaussian assumptions, we assume that εD is a Gaussian
random field with zero mean, then the distribution (z, yf ) | (x0, u0) is Gaussian with
mean f(x0, u0) and variance Var[εD](x0)+Var[ε]+Var[(e,0)]. Once again the practical
implementation may be tricky, involving the elicitation of the distribution of u0 and
the variance kernel of εD, but the procedure and the meaning of the various quantities
are clear.

Note that, computationally, our beliefs about fD are induced by our beliefs about
u0 and εD. This is not to say that u0 and εD are necessarily the primitive quantities.
It may be that our beliefs about f and fD give rise to beliefs about u0 and εD. We can
always check that our two sets of beliefs are consistent and plausible by integrating
u0 and εD out of fD explicitly.

In the zsr model, we are already provided with several tuning inputs. But we
must first consider whether the experts feel comfortable with the idea of a direct
simulator defined only on the five measurable inputs. For a model this simple, we
may suppose that the answer is almost certainly “No.” Therefore, we must consider
alternative rationales for interpreting the output of the simulator. The simplest case
for an indirect simulator is that there exists some unknown value u0 for the tuning
inputs such that fD(x) = f(x, u0) + εD(x), where fD is a direct simulator, so that
y = fD(x0) + ε. The next simplest case is to assert that our simulator cannot be
turned into a direct simulator by appropriate choice of u0, but that there is another
simulator defined on X which can, and to which our own simulator approximates.
This simulator, which we call the top simulator, will be introduced in section 6.1.
But we may not believe that any simulator defined on X alone is good enough to
function as a direct simulator. Perhaps, for example, we may consider that no model
this highly aggregated can sufficiently account for the complex spatial patterns of
Atlantic currents, but that a model with more compartments might. Therefore, a
simple approach based on (4.1) will not be acceptable, and we will have to be more
subtle in the way that we relate the simulator and the system. We will discuss such
alternative relationships in section 6.3.
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Example (cont). We will develop our example both with and without a tuning
input. Suppose our beliefs about fD are that it has the same functional form as f
but that x is likely to have a larger impact on fDp and a smaller impact on fDf . It
may be that this is already embodied in a tuning input for f , for example,

f(x, u) = ((ap + u)x, (af − u/2)x)(4.6)

for some tuning input u > 0. We may choose in this case to use a simple stationary
Gaussian process for εD and set Var[εD](x) = ΣD for all x. With these additional
assumptions and a prior distribution for u0, the calibrated prediction calculation is

p (x0, u0, yf | z) ∝ N2((z, yf ) | f(x0, u0),Σ) × p (x0) × p (u0) ,(4.7)

where

Σ = ΣD + Var [ε] +

(
Var [e] 0

0 0

)
.(4.8)

Alternatively, we may not have a tuning input with this feature, in which case
our beliefs will need to be modelled by a more careful choice for εD. Write fD(x) as

fD(x) = (aDpx, aDfx)(4.9)

for unknown parameters aDp and aDf , so that

εD(x) = fD(x) − f(x) = ((aDp − ap)x, (aDf − af )x) = (vpx, vfx),(4.10)

where vp and vf are uncertain quantities. Our beliefs about vp and vf then induce
beliefs about the random field εD. In this case, beliefs corresponding to (4.6) would
suggest that E[vp] > 0 and E[vf ] < 0. We have the choice here of modelling vp and
vf jointly (which would be a generalization of the joint model induced by the tuning
input u), or modelling them independently. Either way, our calibrated prediction
calculation would be

p (x0, yf | z) ∝
∫∫

N2((z, yf ) | f(x0) + (vpx0, vfx0),Σ)

(4.11)
× p (x0) × p (vp, vf ) dvpdvf

for some choice of density p(vp, vf ), where (vp, vf ) are treated as nuisance parameters
and have been integrated out; Σ is as defined in (2.8).

4.1. Linking to measurable inputs. In many cases we want to treat a mea-
surable input as a tuning input, usually because insight and experience combine to
suggest that this is predictively effective. In other words, allowing a measurable input
to move away from its actual value can offset some of the deficiencies of the simula-
tor. Viscosity in ocean models, as discussed in section 3.1, provides a good example.
Where this is the case, we suggest that the original measurable input remains in X
but that a tuning input is introduced into U , which modifies the impact of the mea-
surable input in the simulator. We term this linking to the measurable input. Thus
X contains the original measurable input ν, say, and U contains the multiplier mν ,
and the effective value of the input in the simulator is mν × ν, or some other known
deterministic function of mν and ν. This will require us either to modify the simula-
tor code or to provide a wrapper to the simulator to implement the transformation.
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We can put our uncertainty about ν into our beliefs about x0, and we can put our
uncertainty about how the role of x differs in f and fD into our beliefs about u0.

In the zsr example we may choose to link to the thermal and haline expansion co-
efficients. These enter the model on the presumption of a linear relationship between
north-south temperature and salinity gradients and the meridional volume transport
(i.e., the quantity of water flowing northward). Insofar as this relationship is ap-
proximate, we may choose to replace measurable inputs with more adaptable tuning
inputs. This is not necessarily the best response to functional uncertainty—we could,
for example, use a random field with a linear mean function—but it serves as a simple
“quick fix,” allowing us to introduce some uncertainty attributable to the linear ap-
proximation without disproportionate effort. Of course, linking to these measurable
inputs does not compensate for the more fundamental problems that arise if there is
no direct version of the simulator defined on X , as already discussed.

Example (cont). Suppose we wanted to link to x in our example, where for sim-
plicity we do not have the tuning input u. In this case we would create the “wrapper”
function g(x,m) = f(mx), where m is our new tuning input, and we would have

fD(x) = g(x,m0) ⊕ εD(x) = ((apm0)x, (afm0)x) ⊕ εD(x).(4.12)

Thus our beliefs about m0 induce beliefs about the parameters of fD in quite a
different way than those induced, for example, by (4.6). If we thought that aDp and
aDf were about the same as ap and af , then we might choose a gamma distribution
for m0 with mean 1 and small variance. For the calibrated prediction calculation we
would proceed in a similar way to (4.7), replacing f with g and u0 with m0.

In this example we have now seen three different ways to model the relationship
between f and fD: through existing tuning inputs (if they are appropriate), through
a careful choice for εD, and by linking to measurable inputs. They each have different
implications for the distribution of fD | f and so provide a range of modelling options
for the expert.

5. Statistical emulators. Up until now, we have assumed that the simulator f
is known to the analyst. In practice, our precise knowledge of f often extends only as
far as a finite collection of evaluations at known inputs, F = {f(x1), . . . , f(xn)}. This
set of inputs can be very small with respect to the dimension of the input space; for
example, coupled ocean/climate simulators have large input spaces but can take weeks
(or longer) for a single run. Unless we can evaluate the simulator instantaneously, we
will have to treat its output at arbitrary x as uncertain for computational purposes.
This means that we have to add the data from the simulator evaluations to our
graphical model. In the simplest case of a single direct simulator, the graphical model
(2.2) becomes

x0

��
f ��

��

f(x0) ����� same as (2.2)

F

(5.1)

Now we must provide a probabilistic description of our beliefs about f , which is a
random field indexed by x ∈ X , and then update those beliefs using F . The use of
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stochastic processes to model deterministic functions such as computer simulators has
been widely studied; see, for example, [15] and the more recent references in [5, 11].
We give here a brief outline of the approach that we have found effective in physical
modelling with large numbers of inputs and outputs.

A natural and convenient way to represent beliefs about f is to represent f as
the sum of two components. The first component expresses our beliefs about the sys-
tematic variation in f given x, and the second component captures residual variation
with local structure

fi(x) =
∑
j∈Ji

β
(i)
j Lj(x) + δi(x), i = 1, . . . , k = dimY,(5.2)

where i indexes the components of the simulator output, Ji is a collection of indices,
the Lj are known functions of x, and δi is a stationary random field with zero mean,
independent of β = (β(1), . . . , β(k)). The expression (5.2) is often termed a statistical
emulator, or simply an emulator, for the function fi(x). The emulator expresses the
beliefs of the expert about the value of the function for each x, in a convenient and
easily computable form. When the expert has specified probabilistic beliefs concerning
the coefficients β and the parameters of the stationary field δi(x), then this automat-
ically generates probabilistic beliefs about the value of fi(x) for each x. The use of
such emulators is standard within a wide range of analyses of computer experiment.
More details about the use of statistical emulators may be found in [6, 7].

It is often convenient to represent Lj as a product of polynomials in individual
components of x so that Ji comprises p-tuples of nonnegative integers (where p =
dimX ), and

Lj(x) = Lj1(x1)Lj2(x2) · · ·Ljp(xp),(5.3)

where Lv(xk) is a polynomial of degree v in the kth component of x. For example, if
X = [−1, 1]p, then the product of Legendre polynomials provides a basis for continuous
squared-integrable functions on X .

The δi field is parameterized by its covariance kernel. The choice

Cov [δi, δi′ ] (x, x
′) = Σδ

ii′ exp(−θ ‖x− x′‖2
), θ > 0,(5.4)

is often used to reflect the belief that the underlying function f is very smooth, with
derivatives of all orders everywhere in x. In geostatistics it is common to treat fi as
stationary and model it entirely using δi and a careful choice of covariance kernel (or,
equivalently, semivariogram; see [8]). In large problems with a relatively small number
of evaluations we prefer to capture the main effects explicitly in a nonstationary model
with several carefully chosen Lj terms, using a combination of expert elicitation with a
detailed analysis of data from “coarsened” versions of the simulator f , which run much
faster but are correspondingly less accurate. If δ contributes only a small amount of
variation to the model, our beliefs about f are driven primarily by our choices for
L and our beliefs about the coefficients β. For simplicity we will largely ignore the
contribution of δ in the following discussion and treat it as a simple “nugget” with
covariance kernel

Cov [δi, δi′ ] (x, x
′) =

{
Σδ

ii′ , x = x′,

0 otherwise.
(5.5)
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While we are at liberty to make any reasonable distributional assumptions for β
and δ, the inferential calculations for updating beliefs about f by the evaluations F
are much simplified by taking β to be Gaussian and δ to be a Gaussian random field
independent of β, in which case f is itself a Gaussian random field—sometimes it may
be necessary to transform the output of the simulator to make this appropriate. In
this case the updating of beliefs about β using the outcomes of the evaluations F is
straightforward because (F, β) is jointly Gaussian.

For inference, (2.5) still holds, but the distribution of (z, yf ) | x0 now has mean
µ(x0) and variance κ(x0) + Var[ε] + Var[(e,0)], where µ(x) = E[f ](x) is the mean
function of f and κ(x) = Var[f ](x) the variance kernel, both computed using updated
beliefs β | F . This distribution is Gaussian if β, δ, ε, and e are all Gaussian, and,
computationally, this is a compelling reason for making this choice of distribution
(perhaps after transforming the output of f) unless both the input and output spaces
of f are small.

The zsr simulator provides an interesting challenge for emulation, because its
equilibrium state may be solved analytically, while its transient behavior must be
solved numerically for given forcing (in this case, of environmental temperature and
fresh-water flux through time). This is not unusual. Dynamic simulations are of-
ten started from equilibrium conditions, as a period of stability can be identified in
the system record (e.g., preindustrial climate) and this reduces the size of the in-
put space. It is also quite common that we have some analytic knowledge of the
equilibrium state (e.g., in the case of climate, from energy balance models). There-
fore, the components of the emulator as indexed by time must make a transition
from a specific functional form with well-known β coefficients to a more generic func-
tional form (e.g., a subset of a basis) with more uncertain β coefficients. One way
to achieve this is to take the collection {L1, L2, . . . } to be the union of the known
and generic components and to arrange for the prior mean and variance of the set of
β(i) vectors to reflect a transition from one to the other according to the time value
of i.

Example (cont). In our example, we have been treating f as a known function,
e.g.,

f(x, u) = ((ap + u)x, (af − u/2)x).(5.6)

If we thought that f was only approximately of this form, then we might express this
belief through an emulator of the form

f(x, u) = (ap0 + ap1x + ap2ux + δp, af0 + af1x + af2ux + δf ),(5.7)

where we are uncertain about the 6-vector a = (ap, af ) = (ap0, . . . , af2). We treat
the 2-vector δ = (δp, δf ) as a simple nugget with variance Σδ, where the magnitudes
of the variances quantify our beliefs about the quality of the approximation.

Treating (5.7) as an emulator, we require prior beliefs about the quantities in a;
we will assume that they are jointly Gaussian, with given mean vector and variance
matrix, and independent of δ. In our prior beliefs we might want conditions such
as E[ap0] = E[af0] = 0, E[ap2] = 1, and af2 = −ap2/2 with probability 1. Having
assigned the mean and variance, f(x) is a Gaussian random field with mean function
and variance kernel
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µ(x, u) =

(
L(x, u)Tµp

L(x, u)Tµf

)
,(5.8)

κ(x, u) =

(
L(x, u)TΣppL(x, u) L(x, u)TΣpfL(x, u)

L(x, u)TΣfpL(x, u) L(x, u)TΣffL(x, u)

)
+ Σδ,(5.9)

where L(x, u) = (1, x, ux). Even before we evaluate the simulator we may make
inferences about (x0, u0, yf ). Under the same assumptions as (4.7), our calibrated
prediction calculation for the system is

p (x0, u0, yf | z) ∝ N2((z, yf ) | µ(x0, u0),Σ(x0, u0)) × p (x0) × p (u0) ,(5.10)

where now

Σ(x, u) = κ(x, u) + ΣD + Var [ε] +

(
Var [e] 0

0 0

)
.(5.11)

This is now a slightly more complicated calculation than (4.7), as the variance as well
as the mean of the Gaussian density function varies with (x0, u0).

The only effect of performing evaluations of f in the above calculation is to change
the mean and variance of the vector of coefficients, a. This is because f separates F
from the rest of the objects on the graph (5.1), and we have assumed a simple nugget
form for δ. Updated beliefs about a change the mean function and covariance kernel,
and so affect the conditional distribution (x0, u0, yf ) | (z, F ), where we now add F
to the conditioning set. Because calculations based on Gaussian emulators remain
tractable even for large simulators we can use the emulator both in the inferential
calculation and also off-line, for example, to make informative choices of inputs at
which to evaluate the simulator.

6. Multiple simulators. In challenging problems we can expect there to be
several different simulators for a given physical system. We have the choice of per-
forming a rigorous probabilistic analysis for each simulator and then attempting an
informal synthesis at the end, or generalizing our approach outlined above to link mul-
tiple simulators and the system within a single coherent belief model. Either way, we
will have to confront two questions: (i) how similar are the simulators to each other?
and (ii) how “good” is each simulator? Without answers to these questions we will
not know how to weigh the contribution from each simulator to our joint inference.
The natural and coherent approach is to link each of the simulators and the system
together within a single belief model which fully accounts for the common and the
distinctive information about the system that is provided by each simulator.

6.1. The “top” simulator. The simplest case of multiple simulators occurs
when we have only a single simulator f , but we want to weaken our assertion that
there exist a u0 and a εD such that fD(x) = f(x, u0) ⊕ εD(x). As with the direct
simulator and the system, this is a belief statement that f is “sufficiently good” that
we can link it to fD via an unknown value u0 for u. If we do not think that f is
tunable in this way, then we need to consider how f should be modified in order for it
to be a tunable simulator. To make this link we introduce a second simulator which
is sufficiently good but which we do not know. We denote this simulator the top
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simulator and write it f∗ : X ×U → Y. This is represented in the following graphical
model:

εD

���
��

��
��

� u0

��
f

��

�� f∗ �� fD ����� same as (4.3)

F

(6.1)

Thus we use our runs F to tell us about fD, but in order to pass this information
along we must construct a joint model for (f, f∗).

In practice we will have described our beliefs about f in the form of an emulator
such as (5.2). It is natural to describe our prior beliefs about the relationship between
f and f∗ through the relationship between the emulators of the two functions. There-
fore we construct an emulator for f∗ to express probabilistic beliefs about the value
of f∗(x) for each x. For simplicity, at this stage, we suppose that we choose the same
form as that of the emulator for f . This corresponds to the class of problems where
we have no information which would cause the expert to have qualitatively different
beliefs about the effects of changes of x on changes in f∗(x) than about the effect of
such changes on f(x). If we had such information, then this would be reflected in the
qualitative differences in the emulators that we would construct. Examples of such
constructions are given in section 6.3. Thus, for now, we suppose that the emulator
is

f∗
i (x) =

∑
j∈Ji

γ
(i)
j Lj(x) + δ∗i (x), i = 1, . . . , k,(6.2)

and treat both (β, γ) and (δ, δ∗) as jointly Gaussian. Then our beliefs about the
relationship between f and f∗ are described by the covariance between β and γ, and
between δ and δ∗.

This type of multiple-emulator construction is particularly useful when we have
more than one simulator for a physical system, as we will now discuss.

6.2. Multiple simulators with the same input space. The simplest gen-
eralization to more than one actual simulator occurs for a collection of simulators
with the same input space. This will often happen when the solution method for
constructing the outputs for given inputs is very complicated and computationally
expensive. Consider, for example, a set of partial differential equations, to be solved
by an implicit time-marching method. At each time point we must perform a large
(sparse) matrix inversion. To perform the inversion we choose an iterative method.
It may be computationally infeasible with existing resources to iterate all the way to
convergence for every time-step, and, therefore, our simulator truncates the iteration
after a given number of steps, or when an error estimate becomes small. Hence we
can imagine a sequence of simulators, with different numbers of steps, all with the
same input space.

Likewise, as technology improves it becomes possible to solve the same differential
equations on a higher-resolution grid. With a careful treatment of spatial input fields
this can also give rise to a sequence of simulators with the same input space. In both
of these cases it would be advantageous to combine the information from different
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simulators in a formal way. This would allow us to make informed choices about how
best to reduce our uncertainty about the system—for example, by doing a few runs
of a very expensive simulator, or many runs of a cheap one, or some combination of
the two. It also means that we do not have to discard or downgrade the results from
an old simulator that becomes superseded by a better one. In weather forecasting,
increases in computing power have typically resulted in the construction of larger
simulators rather than in increased numbers of evaluations of existing simulators.

Following the introduction of the top simulator, the treatment of multiple sim-
ulators with the same input space is conceptually simple. A joint model over all
available simulators and the top simulator allows us to pass information from each
set of evaluations into our beliefs about fD. However, the way in which we choose to
implement the joint model will depend on the situation. The simplest case, and one
that often occurs in practice, is where there is a simple ranking across the simulators,
so that we can easily say that simulator 2 is better than simulator 1. Both of the
examples given above tend to lead to rankings of this kind, with the better simulators
having the greater number of iterations, or the higher spatio-temporal resolution. In
this case we might want to impose a Markov structure across simulators. This will
both reduce the number of uncertainty assessments that we need to make and also
simplify the computations that are required to update beliefs over the model given
evaluations of the various simulators. Therefore, we might construct a joint model of
the form

εD

���
��

��
��

� u0

��
f1

��

�� f2

��

�� f∗ �� fD ����� same as (4.3)

F1 F2

(6.3)

where we have two simulators, and we understand the statement “f2 is better than
f1” to mean that f2 separates f1 from the top simulator f∗. This Markov structure
imposes strong restrictions on the joint distribution of the emulators’ coefficients and
δ-terms, such that the emulators for f1 and f∗ are conditionally independent given
the emulator for f2.

Of course, in many situations it will not be possible to give such an unambiguous
ranking. In such cases, we need to complete our specification in a way which does
not impose an ordering on the quality of the simulators. We now describe one such
approach.

6.3. General input spaces. Generally, we can expect that different simulators
of the same physical system will not be easily rankable. Further, they may have dif-
ferent input spaces because of the different modelling assumptions and simplifications
made in translating the model into solvable form. In fact there can often be more
simulators than there are research groups. In ocean/climate modelling a single group
might develop both a large-scale general circulation model and a faster but less ac-
curate intermediate complexity model, where the latter is not just a low-resolution
version of the former but incorporates a different treatment of the physics. It is also
common to adopt a modular approach in the simulator options, in which subprocesses,
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such as an oceanic carbon cycle, can be switched on or off. We cannot necessarily
proceed as though the “off” simulator is just the “on” simulator with some inputs set
to zero. Integrated models, such as the Integrated Assessment Model being developed
by the Tyndall Centre, take this a step further by defining a common interface that
will allow “third party” modules to be linked together into a single simulator. In this
most general case we do not expect there to be a simple ranking across simulators,
although certainly the experts will have beliefs that some simulators are better in
some respects than others.

In combining information from these simulators, the distinction between measur-
able inputs and tuning inputs is helpful. Measurable inputs, being defined outside of
any simulator, can be pooled across simulators. Tuning inputs, on the other hand,
belong to a given simulator. Consider the case of two simulators,

fA : XA × UA → Y, fB : XB × UB → Y,(6.4)

where XA = X 1 ×X 2 and XB = X 1 ×X 3, so that X 1 is common to both simulators.
Following our previous approach, we need to consider a top simulator f∗ that both fA
and fB are informative for. Its measurable input space is the union of the individual
input spaces, X ∗ = XA ∪ XB = X 1 × X 2 × X 3, but its tuning input space is the
product, U∗ = UA × UB .

In the zsr example, we may consider that no simulator defined on the original
measurable input space is sufficiently good to be treated as a direct simulator, i.e.,
that there is no top simulator defined on X but that a similar model with more
compartments might suffice. We could, for example, take each of the original four
compartments and subdivide them. In this way the compartment volumes and depths
of the original model can be taken as linear combinations of those in the expanded
model, so that the old input space is a subset of the new, which will simplify the
joint statistical modelling of the two simulators. It is not necessary for us to build
this new simulator, but it is necessary for us to have beliefs about it, both in rela-
tion to the original simulator and to the system, in order that we might construct
a probabilistic link between the four-compartment simulator that we have and the
Atlantic ocean that we want to make inferences about. We consider that it is easier
to think about the relationship between the four-compartment model and the more-
compartment model, and the more-compartment model and the Atlantic, than it is
to think directly about the relationship between the four-compartment model and the
Atlantic.

There is an alternative approach for the zsr example, which is to introduce a
second actual simulator. The zsr paper concerns the fitting of the four-compartment
model to a larger climate simulator of intermediate complexity, climber-2. It may
be that climber-2 is an indirect simulator for which a direct version is considered
to exist. In this case the joint statistical modelling of the zsr model and climber-2

is sufficient, in conjunction with beliefs about u0 and εD(x) which relate climber-2

to its directed version, and about x0 and ε, which relate that directed version to the
Atlantic. Alternately, it may be that a direct version of climber-2 is not considered
to exist, but there is a top simulator, perhaps climber-2 solved with smaller time-
steps. In this case the joint statistical modelling of the zsr model and climber-2

must be augmented with the joint statistical modelling of climber-2 and the top
simulator, and we may choose to impose a Markov structure on the three simulators.
Then the top simulator must be related to the Atlantic through u0, εD(x), x0, and ε,
as before.
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And, of course, it may be that no top simulator is thought to exist defined on the
climber-2 input space, in which case we must introduce a further simulator, say, an
ocean general circulation model (ogcm). In the statistical modelling of this ogcm

and its relationship with climber-2 we may have a specific ogcm in mind, which
would be useful if we were able to utilize its evaluations, or we may have an ideal
ogcm in mind, which might simplify the modelling.

6.4. Statistical modelling. Modelling the joint behavior of functions with dif-
ferent input spaces is extremely challenging. For reasons of space we can only sketch
here an approach based on the construction of additional emulators that are used to
share information across simulators. We consider two simulators

fA : X 1 ×X 2 → Y and fB : X 1 ×X 3 → Y,(6.5)

where, for simplicity, all inputs are measurable. We decompose each simulator into
orthogonal emulators

fA(x1, x2) = gA(x1) ⊕ gA(x1, x2),(6.6)

fB(x1, x3) = gB(x1) ⊕ gB(x1, x3),(6.7)

where gA(·) is the emulator for fA with x2 fixed at some baseline value and gA(·, ·)
is the “residual,” with gA(·) independent of gA(·, ·), and similarly for fB . If X 2 in
simulator A is providing separate information from X 3 in B, then we can express this
in terms of orthogonality of the emulators across the two functions and take gA(·) and
gB(·, ·) to be independent; the same is true for gB(·) and gA(·, ·). This belief model is
more easily understood in the following graphical model (where we include the input
values for clarity):

fA(x1, x2) fB(x′
1, x

′
3)

gA(x1)

��

��
gA(x1, x2)

�������������
gB(x′

1)

��

gB(x′
1, x

′
3)

�������������
(6.8)

Thus, if we evaluate fA at (x1, x2), then this information passes through to fB at
(x′

1, x
′
3) via the relationship between gA(x1) and gB(x′

1).
Now we can connect both fA and fB to the top simulator f∗ after decomposing

f∗ into four orthogonal emulators

f∗(x1, x2, x3) = g∗(x1) ⊕ g∗(x1, x2) ⊕ g∗(x1, x3) ⊕ g∗(x1, x2, x3),(6.9)

where the final term comprises information that we cannot infer from either fA or fB .
We connect the three functions through emulators with common input spaces to give
the full joint model, in which we also include evaluations FA and FB and the direct
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simulator fD:

FA FB

fA(x1, x2)

��

fB(x′
1, x

′
3)

��

gA(x1)

��

		



��������������������������� gA(x1, x2)

�������������

��

gB(x′
1)

��

��

gB(x′
1, x

′
3)

��������������

��
g∗(x′′

1 , x
′′
2 , x

′′
3)

��

g∗(x′′
1 , x

′′
2)

		�����������
g∗(x′′

1)

��

g∗(x′′
1 , x

′′
3)

�����������

f∗(x′′
1 , x

′′
2 , x

′′
3)

��
fD

(6.10)

where the second and third rows are the same as (6.8), and the third and fourth rows
connect like emulators into the decomposition of f∗. The graphical model continues
through fD in the same way as (6.3).

If we want to model the belief that fB is a better model than fA, we can by
strengthening the correlations between gB(x′

1) and g∗(x′′
1) and/or between gB(x′

1, x
′
3)

and g∗(x′′
1 , x

′′
3) in (6.10). This kind of model gives us a high level of control in stating

exactly how it is that B is better than A, because of the multiple but still clearly
delineated paths from fA and fB to f∗. For example, we could model the situation
in which fB has a higher resolution than fA, but fA contains a subprocess that fB
ignores. This often happens in practice, where additional complexity can only be
achieved by sacrificing resolution.

The inferential calculations may be computationally quite challenging, not least
the accounting necessary to construct and use a belief model such as (6.10). However,
the inferential procedure is unambiguous, and the meaning of the various uncertainty
statements is clear. The emulators, the top simulator, and the direct simulator form
the logical links that relate evaluations of our collection of actual simulators to the
system and give meaning to the various uncertainties that separate our simulators
from that system.

7. Discussion. Computer simulators embodying complex mathematical models
are increasingly the method of choice for studying large-scale physical systems. While
this approach offers many opportunities, it is also open to gross abuse, unless we are
very clear as to the limitations of such models when used as surrogates for the system
itself. Explicit assessment of the difference between the system and models of the
system is, therefore, of fundamental importance.

In this paper, we have outlined a general approach for structuring the uncertain-
ties which arise in transferring inferences from models, typically computer simulators,
to physical systems. To do this, we have introduced ingredients which go substan-
tially beyond the kinds of reasoning that are currently offered to justify the relevance
of computer-based analyses. Does this mean that our formulation is overelaborate?
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We would argue quite the opposite, namely, that our specification has been stripped
down to the barest minimum of ingredients which must be in place before we can even
attempt the task of relating the model to the system. It is incumbent on the analyst
either to make use of a formulation along the lines that we have suggested or to sug-
gest an alternative logic for developing such relationships as may exist between the
model analysis and the phenomena in question. However, we know of no systematic
alternative approach which may form the basis of such a development.

We consider that there are two principle advantages inherent in using our struc-
tured uncertainty approach. The first advantage of the approach is in achieving con-
sistency and accuracy in the specification of all the relevant aspects of uncertainty.
It may be daunting for the analyst even to consider how a single model, with many
unknown inputs and many outputs, may be linked to a corresponding physical sys-
tem. Therefore, it is helpful to separate out, for careful, individual consideration, the
various aspects of the relationship between the model and the system, within a fully
coherent framework. Such representations are even more important for those prob-
lems which are informed by a wide variety of computer models. Seldom do the various
models represent fully independent sources of information about the system, and it
is essential to distinguish information that is common to several of the models from
information that is specific to a particular model. We know of no other formulation
which will allow us to do this to a high level of generality.

Second, the approach helps to achieve clarity. Model-based inference is not a pri-
vate activity, and the objective of a scientific analysis is to make a clear and convincing
case to the wider community concerning the behavior of the physical system to which
each of the models relates. This is not possible unless the logic of the argument is
made transparent, and this can only be achieved by attaching uncertainty statements
to well-defined quantities, so that the meaning of each part of the analysis is clear,
and carrying out a careful sensitivity analysis over each aspect of the specification, so
that the degree to which the scientific conclusions depends on each of the underlying
assumptions can be fully understood.

In conclusion, we would hope that forms of reasoning similar to those that we have
described will be taken up in general as part of the standard methodology for reasoning
about computer experiments and, in particular, in specific applications, where highly
specialized versions of these structures may be constructed after careful and expert
consideration. This points to both the need for a software interface to aid in building
and analyzing such extended models, and also the value in developing elicitation
tools to aid the experts in specifying beliefs over such elaborate constructions. For a
discussion of aspects of the construction of such tools, see [7].
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