
PHYSICAL REVIEW E, VOLUME 65, 026616
Excitability of excitons and biexcitons in a ring cavity

V. Z. Tronciu* and R. A. Abram
Department of Physics, University of Durham, Durham, DH1 3LE, United Kingdom

~Received 16 May 2001; revised manuscript received 23 October 2001; published 25 January 2002!

We discuss the excitable behavior of excitons and biexcitons in a nonlinear optical ring cavity. The nonlin-
earity is due to the process of the creation of biexcitons by photon-assisted conversion of excitons. In the
bifurcation analysis a region where a saddle point is close to an equilibrium has been found. In this region the
system shows excitability. It is shown that the mechanism of the excitable behavior of excitons and biexcitons
in a ring cavity is different from that of two-level atoms in the same system. The possible applications of an
excitable ring cavity are discussed.
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I. INTRODUCTION

Excitability is quite an old concept, which is particular
well known in biology @1–3# where it is used to explain a
number of phenomena including neural communication
nerve cells via electrical signalling. A system is said to
excitable if a stimulus below some threshold value produ
a negligible response while one above the threshold resul
a substantial response which is essentially independent o
size of the stimulus. Excitability also occurs in chemistry@4#,
physics, and engineering@5–8#. Some general concepts o
excitability in optics and associated models have been
cussed in Ref.@9#. Excitability in optics is of great interes
because of its prospects for applications in optoelectro
devices, primarily for optical switching, clock recover
pulse reshaping, tuneable pulses, and for generating a co
ent resonance output pulse in communication networks.

Reference@5# has proposed and discussed excitability in
ring cavity containing a homogeneously broadened two-le
nonlinear medium. Excitability in this system occurs in t
small parameter window close to a bistable operating reg
and originates from the combined dynamical effects of n
linear intracavity field saturation and temperature-depend
absorption in the medium on two different times scales. T
origin of the excitability is similar to that in the FitzHugh
Nagumo model. More recently, excitability has been p
dicted in lasers with a saturable absorber@6#, with delayed
optical feedback@7# and with an integrated dispersive refle
tor @8#. In Ref. @6# it is shown that a laser with a saturab
absorber displays excitability just below threshold. The a
lytical expression for the excitability threshold was obtain
by considering the slow-fast nature of the system. Under
influence of optical noise the laser displays coherence r
nance. Excitability in this system is due to an attractor clo
to a saddle point. This is the second type of mechan
leading to excitability that is found in literature.

In this paper, we have studied the excitability of excito
and biexcitons in a nonlinear optical ring cavity. The optic
nonlinearity is considered to be due to the creation of bi
citons by the interaction of excitons and photons. The rel
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ation times of excitons and biexcitons are very short, be
of the order of picoseconds, which means that mechani
based on them are suitable for use in optoelectronic dev
where ultrafast response is required. Biexcitons can
readily created in wide gap semiconductors such as Cu
CuBr, and CdS where the electron-hole interaction is stro
But different mechanisms for their formation in bulk sem
conductors have been proposed in the literature. The g
oscillator strength model which has been proposed by Ha
mura, and Gogolin and Rashba@10,11# has been successfull
applied to explain many biexciton-related optical proces
in bulk semiconductors. More recently, Ivanov, Haug, a
Keldysh have proposed a bipolariton model of biexcito
@12#. It has been shown@13–15# that both microscopic mod
els can be used to form the basis of theoretical descriptio
the phenomena of optical bistability, self pulsation, a
chaos. Comparison with high-precision experiments supp
the view @12,16# that the bipolariton model gives the bett
description of the microscopic processes, particularly in lo
dimensional systems. Nevertheless, the giant oscilla
model has had considerable success in bulk semicondu
and provides a basis for a model of excitability which
substantially more tractable than what is currently poss
with the bipolariton theory.

The paper is structured as follow. In Sec. II we present
model equations for excitons, biexcitons, and photons in
ring cavity and the bifurcation analysis. Section III demo
strates excitable behavior in the system and the possible
plications of excitability are discussed. The conclusions
given in Sec. IV.

II. DYNAMICS

A. Equations

For simplicity we use the three-level model which h
been previously applied to a CuCl crystal, where there
convincing experimental evidence of the existence of biex
tons. In a CuCl crystal the biexciton bond energy is of t
order of 40 meV and the exciton absorption band and theM
band of biexciton recombination are well separated fr
each other. We study the simultaneous action of two indep
dent optical pulses. The photons of the first pulse with ene
hv15Eg2I ex are in resonance with a transition in the exc
ton spectral range. The photons of the second pulse, w
d-
©2002 The American Physical Society16-1
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V. Z. TRONCIU AND R. A. ABRAM PHYSICAL REVIEW E 65 026616
cause exciton-biexciton conversion, have an energyhv2
5Eg2I ex2I biex and are in resonance with the region of t
fluorescenceM band of a CuCl crystal.Eg is the band gap,
I ex and I biex are the exciton and biexciton binding energie
respectively.

The full Hamiltonian of the system consists of a sum
the Hamiltonians for free excitons, biexcitons, and the el
tromagnetic field, and the interaction Hamiltonian, which h
the form

H int52\g~aE1
12a†E1!2\gG~a†E2b2ab†E2

1!,

wherea† andb† are the creation operators of an exciton a
a biexciton, respectively, andEj

1 is the positive frequency
component of the electric field of electromagnetic wave
the j th pulse (j 51,2). g is the constant of the exciton
photon interaction andG is the exciton-biexciton conversio
coefficient. This Hamiltonian treats excitons and biexcito
as independent Bose quasiparticles.

The macroscopic equations for the positive-frequen
field componentsEj

1 and for the exciton~A! and biexciton
~B! amplitudes@17#, neglecting spatial dispersion have th
form

c1
2

]2E1
1

]z2 2
]2E1

1

]t2 54p\g
]2A

]t2 , ~1!

c2
2

]2E2
1

]z2 2
]2E2

1

]t2 54p\gG
]2~A* B!

]t2 , ~2!

i
dA

dt
5vexA2gE1

12gGBE12 igexA, ~3!

i
dB

dt
5vbiexB2gGE2

1A2 igbiexB, ~4!

wherecj is the velocity of j th field propagation in the me
dium, \vex (\vbiex) is the energy of exciton~biexciton! for-
mation andgex andgbiex are the inverse coherence lifetime
of excitons and biexcitons, respectively. Although the li
times can be considered as phenomenological parame
Eqs.~3! and~4! can by derived rigorously using the quantu
theory of fluctuations@18# ~see also@19#!.

In the subsequent analysis we use the slowly varying
velope approximation@20,21#. That is, we represent the so
lution of Eqs.~1!–~4! in the form of relatively slowly vary-
ing envelopese1

1 , e2
1 , Ã, B̃, and rapidly oscillating

components with frequenciesv1 andv2 with corresponding
wave-vectorsk1 andk2

E1
15e1

1~z, t !exp~2 iv1t1 ik1z!,

E2
15e2

1~z, t !exp~2 iv2t1 ik2z!,

A5Ã~z, t !exp~2 iv1t1 ik1z!,

B5B̂~z, t !exp@2 i ~v11v2!t1 i ~k11k2!z#. ~5!
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We describe the phenomenon of excitability of excito
and biexcitons in the ring cavity shown schematically in F
1. The input and output mirrors have reflectivityR512T
and are separated by distanceL. The other corner mirrors in
the ring have a reflectivity of unity. The boundary conditio
for the ring cavity are

eT, j~ t !5ATej
1~L, t !,

ej
1~0, t !5ATeI , j1Reib0ej

1~L, t2Dt !, ~6!

whereDt5(Lr2L)/c is the retardation time introduced b
the feedback,Lr52(L1 l ) is the length of ring cavity,c is
the velocity of light in vacuum,b0 is the cavity-laser phase
detuning.

For integration of Eqs.~1! and ~2! we use the mean-field
theory @22,23# which corresponds mathematically to the r
placement of*E(z)dz by @E(L)2E(0)#L. In this approxi-
mation with the trial solutions~5! and boundary condition
~6!, Eqs.~1!–~4! become in dimensionless form

dX1

dt
5s1~2X112C1U1Y1!, ~7!

dX2

dt
5s2~2X222C2UV1Y2!, ~8!

dU

dt
52dU2d~X11X2V!, ~9!

dV

dt
52V1X2U, ~10!

where YJ5eI , jgG/ATgexgbiex
and XJ5eT, jgG/ATgexgbiex

5ej
1(L, t)gG/Agexgbiex are the normalized field ampli

tudes, whileU5 iÃAgbiex/AgexG and V5B̃/G are the nor-
malized exciton and biexciton amplitudes, respectively. H
we have used the dimensionless timet5tgbiex ~for a typical
value ofgbiex51012 s21, t51 corresponds to a time of 1 ps!
and the following notation:d5gex/gbiex is the decay rate of
an exciton relative to that of a biexciton,s j5cjT/gbiexL is
the damping of the electric-field amplitude in the cavity a

FIG. 1. A schematic diagram of the nonlinear ring cavity,eI , j

andeT, j are incident and transmitted fields, respectively (j 51,2).
6-2
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EXCITABILITY OF EXCITONS AND BIEXCITONS IN . . . PHYSICAL REVIEW E65 026616
Cj5a jL/4T with a j54p\g2v j /gexcj . Close to a cavity
resonanceeib0'11 ib0 and we consider only the real part o
amplitudes.

Equations~7!–~10! completely describe the evolution o
excitons and biexcitons in the ring cavity in the model us
and are the basis of the analysis that follows.

B. Bifurcation diagrams

In this section, we discuss the ring cavity dynamics
excitons and biexcitons in terms of bifurcation diagrams. T
calculations were carried out with the software packa
AUTO97 @24# for continuation and bifurcation problems i
ordinary differential equations. Specifically, we applied a n
merical bifurcation analysis to Eqs.~7!–~10!. The initial con-
ditions (X1 ; X2 ; U; V)5@Y1 /(112C1); 0; X1 ; 0# have
been used, which correspond to the steady state with a
stant pump so that there is a steady-state population of e
tons. In particular, we consider the bifurcation diagram in
plane X22Y2 ~output amplitude-input amplitude! with the
amplitude of the input pulseY2 as the parameter to be varie
~branching parameter!. Figure 2 shows a typical example o
the bifurcation diagram for the system. The parameters u
are s15s25s50.1, C15C255, d50.1, andY1510. A
thin continuous line represents stable stationary solutio
and unstable stationary solutions are indicated by a thin
ted line. A thick solid line represent a stable periodic so
tion. The unstable periodic solutions are marked by th
dotted line. It is well known that a Hopf bifurcation poin
~marked by the square! connects the stationary solution wit
the periodic solution. It is apparent in Fig. 2 that the perio
branch turns back and loses stability. This kind of bifurcat
is described as subcritical. WhenY2 is increased fromY3(0)

FIG. 2. The bifurcation diagram forY1510, s50.1, C15C2

55, andd50.1. Thin solid: stable stationary states. Thin dotte
unstable stationary states. Thick solid: stable periodic solutio
Thick dotted: unstable periodic solutions. The square denote
Hopf bifurcation. The rhombuses mark saddle-node bifurcatio
FN shows the transition from unstable focus to unstable node,
NF the transition from stable node to stable focus. PointG marks
the operating point. The inset: sketch of phase portrait for reg
Y2(S1)2Y2(S2) in the planeX22X1 .
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to Y2(H), X2 jumps to a large amplitude periodic orbit a
hard generation of a limit cycle occurs. WhenY2 is reduced
from Y2(T) a discontinuity occurs again atY2(P) with a
jump from a large value to equilibrium. In the regionOP at
any givenY2 , there is only one equilibrium state, a stab
focus which attracts all orbits. A stable periodic orbit,
stable equilibrium, and an unstable periodic orbit coexist
the domainY2(P)2Y2(H). In this interval we have a hys
teresis loop of periodic solutions. Moving fromH to T, a
stable limit cycle is the only attractor. The periodic bran
ends atT where a homoclinic orbit is present and the perio
of periodic orbits tends tò . The nature of self-pulsations in
the regionHT for different parameters has been discussed
@14#.

Two saddle-point bifurcations are marked by rhombu
in Fig. 2. A stability analysis of Eqs.~7!–~10! shows that
betweenH andS2 there is a transition from an unstable foc
to an unstable node at pointFN. On the other hand, at poin
NF we detect the transition from a stable node to a sta
focus.

Now we discuss in more detail the region between
saddle-node bifurcationsS1 and S2 . It is known that the
existence of a saddle point close to an attractor is the requ
ment for excitable behavior. The inset in Fig. 2 shows
sketch of the phase portraits in the planeX22X1 in this
region. There is an attractor~stable node in nonlinear case!, a
saddle, and an unstable focus for a fixed value of amplit
of the input pulseY2 . A sufficiently large perturbation can
bring the system below the stable manifold~separatrix! of
the saddle point so that the system makes a big loop aro
the unstable focus~dotted line in inset of Fig. 2!. In this
region the system shows excitability with a mechanism si
lar to that in Ref.@6#.

III. EXCITABILITY

A. Demonstration of excitability and discussion

A system is excitable if it exhibit the following propertie
@6,7#:

~i! the existence of a threshold above which an excitat
can occur,

~ii ! above threshold the form of the response independ
of the perturbation magnitude,

~iii ! a refractory period exists.
As noted in the previous section, our system is excita

in the regionS12S2 , and we now discuss the dynamics
this phenomenon in more detail. We choose suitable va
of the parameters to achieve excitability. The criterion for t
existence of hysteresis of stationary solutions is the ineq
ity Y1.A2(112C1)2/C2 @14#. The parameterss andd in-
fluence the dynamics of the system and we choosed50.1
since we consider the relaxation time of excitons to be o
order smaller than that of biexcitons. In this case for anys
,0.1 the behavior of the system is similar to that sketched
Fig. 2. We choose the operating point close to the sad
point S1 . First we consider the response of the system t

:
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FIG. 3. Transient response to
rectangular input perturbation fo
Y258.8 and initial condition
which correspond to pointG in
Fig. 2. The perturbation ampli-
tudes are~a! Y050.69 and~b! Y0

50.70. ~c! Trajectories in the
phase planeX22X1 ; trajectoryA
corresponds to a subthreshold an
trajectory B to a superthreshold
stimulus. The parameters are as
Fig. 2.
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the
rectangular input pulse of amplitudeY0 . The initial condi-
tions correspond to pointG in Fig. 2, for whichY258.8. For
this point we found the threshold perturbation valueY0
50.695. Figure 3~a! shows the response of the system to
perturbation of amplitudeY050.69, which is below thresh
old. When the amplitude of the perturbation is increased
Y050.7 which is above the threshold the system starts
exhibit excitable behavior with a significant pulselike redu
tion in X2 as shown in Fig. 3~b!. To study the trend of tra-
jectories in the phase space, let us assume that the dur
dt of applied stimulusY0 is much shorter than the chara
teristic time of the system. In that case the stimulus affe
only the amplitudeX2 and the phase trajectories start
(X1 , X2 , U, V)5(X1

st, dX2 , Ast, Bst). Figure 3~b! shows
the trajectories in the planeX22X1 , for a stimulus below
threshold-trajectoryA (dX251.05), and above threshold
trajectoryB(dX251.06). TrajectoryA turns back to equilib-
rium in contrast to trajectoryB which makes a big loop
around the unstable focus. The position of trajectoryA is
situated higher than the stable manifold of the saddle~see
inset of Fig. 2! while the starting point of trajectoryB is
down that stable manifold. The threshold is situated alo
the stable manifold. The dependence of excitable thresh
X2

th on Y2 is shown in the inset of Fig. 4. With the increase
Y2 from Y2(S1), the saddle point moves down and the a
plitude of threshold increases meaning that the system
comes less excitable. Figure 4 shows the dependence o
value of the minimum in the response of the transmitted fi
X2

min on the amplitude of the perturbationY0 for two differ-
ent values ofY2 . It shows that nearS1 we need only a smal
perturbation amplitude in contrast to pointS2 , where a
higher-perturbation amplitude is necessary to achieve ex
ability and also the jump at the threshold is less pronounc
However above threshold the response is essentially in
pendent of perturbation magnitude, and the second chara
istic of excitability is fulfilled.

Finally we give an example to confirm the existence o
refractory period. Two pulses with amplitudes above thre
old are applied to the system. Figure 5~a! shows the respons
of the system when the delay time between pulses istd
525. It does not differ from the response to a single pu
~see Fig. 3~b! for comparison!. When the second pulse i
applied with delay timetd550 there is a small reaction to i
After increasingtd further to 75 we can distinguish a clea
response to the second pulse. The system is able to ma
02661
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distinct and essentially identical response to both pul
when td.100. We conclude that for this set of paramete
the refractory time is the order of 45t.

B. Applications of excitability

One motivation for research into excitability is its po
sible application in all-optical signal processing. This sect
shows some examples of the possible applications of ex
ability. As an optical limiter, the excitable element cou
serve to limit or suppress the noise level and any pul
below threshold. The excitable element can also be used
logic element. For a subthreshold input we have zero out
but for an input above threshold the output is a one sign

Consider a sequences of pulses~t515 width! with differ-
ent amplitudes and different delay time between pulses, s
as the case shown in Fig. 6~a!. We observe a big respons
only to input pulses which exceed the threshold. Other pu
cause negligible response and should be recognized as

FIG. 4. The dependence of the value of the minimum in
response of the amplitude of transmitted fieldX2

min on the amplitude
of perturbationY0 for Y258.8 ~solid line! and forY2510 ~dotted
line!. The inset shows the dependence of excitability thresholdX2

th

on injected amplitudeY2 in the excitable regionY2(S1)2Y2(S2).
The other parameters areY1510, s50.1, C15C255, and d
50.1.
6-4
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signals. The dashed line indicates the threshold of the p
amplitude. The selection criterion~position of threshold! can
be varied by changing the parameters of the system. W
all the pulses exceed the threshold, the response is simil
coherent resonance. Figure 6~c! shows such a response
above threshold, equally spaced pulses at a value oft550.

Hitherto it has been tacitly assumed that the experime
detection of excitability may be realized for a system of e
citons and biexcitons in a ring cavity. Here we consid
whether it is possible to choose the parameters for C
crystal so that the operating point is in the excitable regi
For CuCl reasonable material parameter values are: bin
energy of biexcitons is 40 meV,gex50.03 meV, gbiex
50.3 meV, \g50.3 eV/(cm1/2V), G51.253108 cm3/2.
For a cavity withL53 mm andT50.01, the intensitiesI 1
'uE1u2510 kW/cm2 andI 2'uE2u2589 kW/cm2 ensure that
the cavity is in the excitable region. On the basis of o
investigations and parameter estimations we conclude th
should be possible to observe excitability in a system
excitons and biexcitons in a ring cavity.

IV. CONCLUSIONS

We have shown that excitability of excitons and biex
tons in a ring cavity can occur. In the bifurcation analysis
is found that the excitable region is situated in the dom

FIG. 5. Response of the system to two consecutive input pu
with amplitude above threshold (Y050.8) and different delay time
td between pulses~a! td525, ~b! td550, ~c! td575, and~d! td

5125 (td5gbiext). The other parameters areY1510, s15s2

50.1, C15C255, d50.1, andY258.8.
02661
se

en
to

al
-
r
l
.

ng

r
t it
f

t
n

where a saddle point is close to an equilibrium. In contras
the excitable behavior of two-level atoms in ring cavity@5#,
where the behavior is similar to the FitzHugh-Nagum
model, excitons and biexcitons in a ring cavity show an ot
type of excitability, similar to that in a laser with saturab
absorber@6#, where a perturbation can push the system ab
the stable manifold of a saddle point. We have demonstra
the existence of the threshold above which the system sh
a long excursion in phase space. The amplitude of the ou
field for a perturbation above threshold is independent of
perturbation. The presence of a refractory period has a
been demonstrated. A set of cavity and material parame
have been identified for a system which could give an
periment demonstration of the kind of excitability discusse
It is concluded that the type of excitable system conside
has possible applications as a functional optoelectro
element.
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