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Excitability of excitons and biexcitons in a ring cavity
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We discuss the excitable behavior of excitons and biexcitons in a nonlinear optical ring cavity. The nonlin-
earity is due to the process of the creation of biexcitons by photon-assisted conversion of excitons. In the
bifurcation analysis a region where a saddle point is close to an equilibrium has been found. In this region the
system shows excitability. It is shown that the mechanism of the excitable behavior of excitons and biexcitons
in a ring cavity is different from that of two-level atoms in the same system. The possible applications of an
excitable ring cavity are discussed.
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[. INTRODUCTION ation times of excitons and biexcitons are very short, being
of the order of picoseconds, which means that mechanisms
Excitability is quite an old concept, which is particularly based on them are suitable for use in optoelectronic devices
well known in biology[1—3] where it is used to explain a Where ultrafast response is required. Biexcitons can be
number of phenomena including neural communication byeadily created in wide gap semiconductors such as CuCl,
nerve cells via electrical signalling. A system is said to beCUBr, and CdS where the electron-hole interaction is strong.
excitable if a stimulus below some threshold value produce8ut different mechanisms for their formation in bulk semi-
a negligible response while one above the threshold results igonductors have been proposed in the literature. The giant
a substantial response which is essentially independent of tHscillator strength model which has been proposed by Hana-
size of the stimulus. Excitability also occurs in chemig#y, ~ mura, and Gogolin and Rashfi0,11] has been successfully
physics, and engineerind—8]. Some general concepts of applied to explain many biexciton-related optical processes
excitability in optics and associated models have been digh bulk semiconductors. More recently, Ivanov, Haug, and
cussed in Ref[9]. Excitability in optics is of great interest Keldysh have proposed a bipolariton model of biexcitons
because of its prospects for applications in optoelectronickL2]- It has been showfi.3-1§ that both microscopic mod-
devices, primar"y for 0ptica| Switching, clock recovery, els can be used to form the basis of theoretical description of
pulse reshaping, tuneable pulses, and for generating a condfe phenomena of optical bistability, self pulsation, and
ent resonance output pulse in communication networks. ~ chaos. Comparison with high-precision experiments supports
Referencd5] has proposed and discussed excitability in athe view[12,16 that the bipolariton model gives the better
ring cavity containing a homogeneously broadened two-levefiescription of the microscopic processes, particularly in low-
nonlinear medium. Excitability in this system occurs in thedimensional systems. Nevertheless, the giant oscillator
small parameter window close to a bistable operating regionfnodel has had considerable success in bulk semiconductors
and originates from the combined dynamical effects of nonand provides a basis for a model of excitability which is
linear intracavity field saturation and temperature-dependerubstantially more tractable than what is currently possible
absorption in the medium on two different times scales. Thavith the bipolariton theory.
origin of the excitability is similar to that in the FitzHugh- ~ The paper is structured as follow. In Sec. Il we present the
Nagumo model. More recently, excitability has been pre-model equations for excitons, biexcitons, and photons in the
dicted in lasers with a saturable absorp@}, with delayed ring cavity and the bifurcation analysis. Section Ill demon-
optical feedback?7] and with an integrated dispersive reflec- strates excitable behavior in the system and the possible ap-
tor [8]. In Ref.[6] it is shown that a laser with a saturable plications of excitability are discussed. The conclusions are
absorber displays excitability just below threshold. The anagiven in Sec. IV.
lytical expression for the excitability threshold was obtained
by considering the slow-fast nature of the system. Under the Il. DYNAMICS
influence of optical noise the laser displays coherence reso-
nance. Excitability in this system is due to an attractor close
to a saddle point. This is the second type of mechanism For simplicity we use the three-level model which has
leading to excitability that is found in literature. been previously applied to a CuCl crystal, where there is
In this paper, we have studied the excitability of excitonsconvincing experimental evidence of the existence of biexci-
and biexcitons in a nonlinear optical ring cavity. The opticaltons. In a CuCl crystal the biexciton bond energy is of the
nonlinearity is considered to be due to the creation of biexorder of 40 meV and the exciton absorption band and\ihe
citons by the interaction of excitons and photons. The relaxband of biexciton recombination are well separated from
each other. We study the simultaneous action of two indepen-
dent optical pulses. The photons of the first pulse with energy
* Author to whom correspondence should be addressed. Email adiw;=E4— I ¢, are in resonance with a transition in the exci-
dress: V.Z.Tronciu@durham.ac.uk ton spectral range. The photons of the second pulse, which

A. Equations
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cause exciton-biexciton conversion, have an enengy T

-
=Eg—lex—Iniex @and are in resonance with the region of the “ AN Cr
fluorescenceM band of a CuCl crystalEy is the band gap,

| ox @and | i @re the exciton and biexciton binding energies, " 1

respectively.

The full Hamiltonian of the system consists of a sum of !
the Hamiltonians for free excitons, biexcitons, and the elec-
tromagnetic field, and the interaction Hamiltonian, which has
the form

Hiw=—%g(aE; —a'E;)—AgG(a’E,b—ab'Ey),

wherea' andb™ are the creation operators of an exciton and A=t A=t

a biexciton, respectively, anElJ-+ is the positive frequency FIG. 1. A schematic diagram of the nonlinear ring cavéy;

component of the electric field of electromagnetic wave ofander; are incident and transmitted fields, respectivgly (,2).

the jth pulse (=1,2). g is the constant of the exciton-

photon interaction an is the exciton-biexciton conversion We describe the phenomenon of excitability of excitons

coefficient. This Hamiltonian treats excitons and biexcitonsand biexcitons in the ring cavity shown schematically in Fig.

as independent Bose quasiparticles. 1. The input and output mirrors have reflectiviR=1—-T
The macroscopic equations for the positive-frequencyand are separated by distariceThe other corner mirrors in

field componentsEJ* and for the excitor(A) and biexciton the ring have a reflectivity of unity. The boundary conditions

(B) amplitudes[17], neglecting spatial dispersion have the for the ring cavity are

form
erj(H=\Te/ (L, 1),
,’E]  J°E; 9°A .
Crz ~ gz 4mhg oz 1) e/ (0, t)=ﬁe|,j+Ré50ej+(L, t—At), (6)
PES PEF 2/ mw whereAt=(L,—L)/c is the retardation time introduced by
c2 22 _ 22 :477th‘7 (Az B) (2) the feedbacklL,=2(L+1) is the length of ring cavityc is
2 gz at o the velocity of light in vacuumg, is the cavity-laser phase
detuning.
_dA . For integration of Eqs(1) and (2) we use the mean-field
_ +
I gp = @eA—9E; —gGBE —17eA, 3 theory[22,23 which corresponds mathematically to the re-
placement off E(z)dz by [E(L) —E(0)]L. In this approxi-
dB mation with the trial solutiong5) and boundary condition
[ T pieB—9GE; A—i YpieB, (4) (6), Egs.(1)—(4) become in dimensionless form
. . N o dX;
wherec; is the velocity ofjth field propagation in the me- —=0(—X;+2CU+Y,), (7
dium, i wey (A wpiey) IS the energy of excitorbiexciton for- dr
mation andy,, and yy;.x are the inverse coherence lifetimes dX
qf excitons and bleXC|tons, respectively. AIthpugh the life- —2=0'2(—X2—2C2UV+Y2), ®
times can be considered as phenomenological parameters, dr

Egs.(3) and(4) can by derived rigorously using the quantum
theory of fluctuationg18] (see alsd19]).

In the subsequent analysis we use the slowly varying en- ar dU—d(X1+XzV), ©)
velope approximatiof20,21. That is, we represent the so-
lution of Egs.(1)—(4) in the form of relatively slowly vary-

ing envelopese; , e,, A, B, and rapidly oscillating a4, VXU, (10
components with frequencies; and w, with corresponding
wave-vectork,; andk, where Y,=e;9G/{T, ,  and X,=er;gG/\T, ,

=eJ-+(L, t)9G/ VYexypiex @re the normalized field ampli-

tudes, whileU =iA\/ypied V7exG andV=B/G are the nor-
malized exciton and biexciton amplitudes, respectively. Here
we have used the dimensionless timet y,;., (for a typical
value of yye= 102571, 7=1 corresponds to a time of 1)ps
and the following notationd= v,/ ypiex IS the decay rate of

R an exciton relative to that of a biexciton; = ¢; T/ ypie,L IS
B=B(z, t)exd —i(w;+wy)t+i(k;+Kk,)z]. (50  the damping of the electric-field amplitude in the cavity and

E;=e;(z, t)exp —iwit+ik,2),
E, =6, (z, t)exp —iwyt+ik,z),

A=A(z, t)exp—iwt+ik,z),
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X, to Y,(H), X, jumps to a large amplitude periodic orbit as
101 hard generation of a limit cycle occurs. Wh¥p is reduced
‘ from Y,(T) a discontinuity occurs again af,(P) with a
NF jump from a large value to equilibrium. In the regi@P at
any givenY,, there is only one equilibrium state, a stable
G focus which attracts all orbits. A stable periodic orbit, a
J stable equilibrium, and an unstable periodic orbit coexist in
D the domainY,(P)—Y,(H). In this interval we have a hys-
teresis loop of periodic solutions. Moving frol to T, a
stable limit cycle is the only attractor. The periodic branch
ends afl where a homoclinic orbit is present and the periods
of periodic orbits tends tee. The nature of self-pulsations in

-,-. ..................................... the [e[“()l II II IOI d| Iele“ parametels ||aS been dlSCuS I |
OIS YOUUPSUPPIETSEEEE S FN |

2 in Fig. 2. A stability analysis of Eqs7)—(10) shows that
. o _ _ _ betweerH andS, there is a transition from an unstable focus
FIG. 2. The bifurcation diagram for; =10, 7=0.1, C1=Ca 4 o ynstaple node at poiRN. On the other hand, at point

=5, andd=0.1. Thin solid: stable stationary states. Thin dotted: -
unstable stationary states. Thick solid: stable periodic squtionsNF we detect the transition from a stable node to a stable

Thick dotted: unstable periodic solutions. The square denotes EPCUS' ) ) ) )

Hopf bifurcation. The rhombuses mark saddle-node bifurcations. NOW we discuss in more detail the region between the

FN shows the transition from unstable focus to unstable node, angaddle-node bifurcation§; and S,. It is known that the

NF the transition from stable node to stable focus. P@nnarks  existence of a saddle point close to an attractor is the require-

the operating point. The inset: sketch of phase portrait for regiooment for excitable behavior. The inset in Fig. 2 shows a

Y2(S1) = Y2(S,) in the planeX;—X; . sketch of the phase portraits in the plaXg— X, in this

region. There is an attracttable node in nonlinear cgsa

Cj=a;L/4T with aj=47-rﬁgzwj/yexcj. Close to a cavity saddle, and an unstable focus for a fixed value of amplitude

resonance'#o~1+i 3, and we consider only the real part of of the input pulseY,. A sufficiently large perturbation can

amplitudes. bring the system below the stable manifgkkparatrix of
Equations(7)—(10) completely describe the evolution of the saddle point so that the system makes a big loop around

excitons and biexcitons in the ring cavity in the model usedthe unstable focu¢dotted line in inset of Fig. 2 In this

and are the basis of the analysis that follows. region the system shows excitability with a mechanism simi-

B. Bifurcation diagrams lar to that in Ref[6].

In this section, we discuss the ring cavity dynamics of
excitons and biexcitons in terms of bifurcation diagrams. The Ill. EXCITABILITY
calculations were carried out with the software package
AUTO97 [24] for continuation and bifurcation problems in
ordinary differential equations. Specifically, we applied a nu-
merical bifurcation analysis to Eq&’)—(10). The initial con-
ditions (X;: X,; U; V)=[Y,/(1+2C,); 0; X;; 0] have
been used, which correspond to the steady state with a con-
stant pump so that there is a steady-state population of excran oceur, i
tons. In particular, we consider the bifurcation diagram in the _ (ii) above threshold the form of the response independent
plane X,— Y, (output amplitude-input amplitudlewith the  ©f the perturbation magnitude,
amplitude of the input puls¥, as the parameter to be varied (iii) a refrz_;\ctory perlqd exists. _ _
(branching parametgrFigure 2 shows a typical example of As noted in the previous section, our system is excitable
the bifurcation diagram for the system. The parameters usel@d the regionS; —S,, and we now discuss the dynamics of
are o;=0,=0=0.1, C;=C,=5, d=0.1, andY,;=10. A this phenomenon in more detail. We choose suitable values
thin continuous line represents stable stationary solution®f the parameters to achieve excitability. The criterion for the
and unstable stationary solutions are indicated by a thin doexistence of hysteresis of stationary solutions is the inequal-
ted line. A thick solid line represent a stable periodic solu-ity Y;>2(1+ 2C,)%/C, [14]. The parameters andd in-
tion. The unstable periodic solutions are marked by thickfluence the dynamics of the system and we chabs®.1
dotted line. It is well known that a Hopf bifurcation point since we consider the relaxation time of excitons to be one-
(marked by the squareonnects the stationary solution with order smaller than that of biexcitons. In this case for any
the periodic solution. It is apparent in Fig. 2 that the periodic<0.1 the behavior of the system is similar to that sketched in
branch turns back and loses stability. This kind of bifurcationFig. 2. We choose the operating point close to the saddle-
is described as subcritical. Whéf is increased fronY3(0) point S;. First we consider the response of the system to a

A. Demonstration of excitability and discussion
A system is excitable if it exhibit the following properties

[6,7]:
(i) the existence of a threshold above which an excitation
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FIG. 3. Transient response to a
rectangular input perturbation for
Y,=8.8 and initial condition
which correspond to poinG in
Fig. 2. The perturbation ampli-
tudes arga) Y,=0.69 and(b) Y,
=0.70. (c) Trajectories in the
phase plan&,—X;; trajectoryA
corresponds to a subthreshold and
trajectory B to a superthreshold
stimulus. The parameters are as in
Fig. 2.

S
]

a) by

perturbation Y,
]
|
1
|

perturbation Y,

l

0 T T T T
7 (100 / div)

T

1 (100 / div)

rectangular input pulse of amplitudg,. The initial condi- distinct and essentially identical response to both pulses
tions correspond to poir@ in Fig. 2, for whichY,=8.8. For  when 74>100. We conclude that for this set of parameters
this point we found the threshold perturbation valMg  the refractory time is the order of 45
=0.695. Figure &) shows the response of the system to a
perturbation of amplitud& o=0.69, which is below thresh- B. Applications of excitability
old. When the amplitude of the perturbation is increased to I . e
o L One motivation for research into excitability is its pos-

Y,=0.7 which is above the threshold the system starts tq. o ; : X . ;

L : ) . o : sSible application in all-optical signal processing. This section
exhibit excitable behavior with a significant pulselike reduc—ShOWS some examoles of the possible applications of excit-
tion in X, as shown in Fig. @). To study the trend of tra- P P bp

jectories in the phase space, let us assume that the durati@r?i”ty' As an optical limiter, the excitable element could
or of applied stimulusY, is much shorter than the charac- €rve to limit or suppress the noise level and any pulses

o . below threshold. The excitable element can also be used as a
teristic time of_the system. In that case th_e St'm“'us aﬁect?ogic element. For a subthreshold input we have zero output,
only the amphtude)s(tz and th? phase trajectories start at but for an input above threshold the output is a one signal

— S S H b
(X1, Xz, U, V)=(X{, 6X,, A”, B )- Figure 3b) shows Consider a sequences of pulges- 15 width) with differ-
the trajectories in the plan¥,—X,, for a stimulus below o 5 mpjitudes and different delay time between pulses, such
threshold-trajectoryA (6X,=1.05), and above threshold- 55 the case shown in Fig(@. We observe a big response
trajectoryB(6X,=1.06). TrajectonyA turns back to equilib- - 51y 1 input pulses which exceed the threshold. Other pulses
rium in contrast to trajectoryd which makes a big 100p  ¢4;se negligible response and should be recognized as zero
around the unstable focus. The position of trajectérys

situated higher than the stable manifold of the saddée

min

inset of Fig. 2 while the starting point of trajectorf is 2

down that stable manifold. The threshold is situated alon¢ ] 5

the stable manifold. The dependence of excitable threshol o i

X‘zh onY, is shown in the inset of Fig. 4. With the increase of el

Y, from Y,(S;), the saddle point moves down and the am- | el ) 0

plitude of threshold increases meaning that the system be el ® A

comes less excitable. Figure 4 shows the dependence of tl ¢ | \
value of the minimum in the response of the transmitted fielc
XJ" on the amplitude of the perturbatiofy, for two differ-
ent values ofY,. It shows that nea®; we need only a small
perturbation amplitude in contrast to poi,, where a 37
higher-perturbation amplitude is necessary to achieve excii
ability and also the jump at the threshold is less pronouncec
However above threshold the response is essentially inde
pendent of perturbation magnitude, and the second characte
istic of excitability is fulfilled. - . ; . - T
Finally we give an example to confirm the existence of a 3
refractory period. Two pulses with amplitudes above thresh-
old are applied to the system. Figur@pshows the response g, 4. The dependence of the value of the minimum in the
of the system when the delay time between pulsesyis response of the amplitude of transmitted fid" on the amplitude
=25. It does not differ from the response to a single puls&f perturbationY, for Y,=8.8 (solid line) and forY,=10 (dotted
(see Fig. &) for comparison When the second pulse is Jine). The inset shows the dependence of excitability threskdld
applied with delay timery="50 there is a small reaction to it. on injected amplitudey, in the excitable regioY,(S;) — Y»(S,).
After increasingry further to 75 we can distinguish a clear The other parameters ar¢;=10, 0=0.1, C;=C,=5, and d
response to the second pulse. The system is able to make=a.1.

2
perturbation amplitude Y,
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perturbation Y,
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perturbation Y,

w

perturbation Y,

o o o

5 = @
]
1

o

=

5 6
< 5 4
N
0 o) b
£ (100 / div) £ (100 dv) o !

o ©(100/ div)
FIG. 5. Response of the system to two consecutive input pulses
with amplitude above thresholdrg=0.8) and different delay time FIG. 6. (8 An input sequence of pulses with different ampli-
74 between pulsesa) 74=25, (b) 74=50, (¢) 74=75, and(d) 74 tudes, (b) responseX, to the pulses in(@), (c) response of the
=125 (14= yviet). The other parameters aré;=10, o1=0,  system to a sequence of equally spaced pulses above threshold. The
=0.1,C;=C,=5,d=0.1, andY,=8.8. other parameters aré,=8.8, Y;=10, 0=0.1,C,;=C,=5, andd

=0.1.

signals. The dashed line indicates the threshold of the pulSghere a saddle point is close to an equilibrium. In contrast to
amplitude. The selection criterigposition of thresholdcan 14 axcitable behavior of two-level atoms in ring caVisy,

be varied by changing the parameters of the system. Wheipare the behavior is similar to the FitzHugh-Nagumo
all the pulses exceed the threshold, the response is similar {Q,qe| excitons and biexcitons in a ring cavity show an other
coherent resonance. Figuréchshows such a response 10 yyne of excitability, similar to that in a laser with saturable
above threshold, equally spaced pulses at a value=d0.  ap5orhef6], where a perturbation can push the system above
Hitherto it has been tacitly assumed that the experimenta}e siaple manifold of a saddle point. We have demonstrated
detection of excitability may be realized for a system of €x-y¢ existence of the threshold above which the system shows
citons and biexcitons in a ring cavity. Here we considers |ong excursion in phase space. The amplitude of the output
whether it is possible to choose the parameters for CuCg|q for a perturbation above threshold is independent of this
crystal so that the operating point is in the excitable regionseryrhation. The presence of a refractory period has also
For CuCl reqsongble m.aterial parameter values are: bindingean demonstrated. A set of cavity and material parameters
energy of biexcitons is 40/2 meVyex=0.03 meV, Yhiex  have been identified for a system which could give an ex-
=0.3meV, hg=03eV/(cnt?V), G=1.25¢10° cm™” periment demonstration of the kind of excitability discussed.

For azcavity withL=3 um and'l;=0.01, the intensitie$; ¢ js concluded that the type of excitable system considered
~|E4|?=10 kW/cnt andl,~|E;|*=89 kW/cnt ensure that has possible applications as a functional optoelectronic
the cavity is in the excitable region. On the basis of ourgjement.

investigations and parameter estimations we conclude that it
should be possible to observe excitability in a system of ACKNOWLEDGMENTS
excitons and biexcitons in a ring cavity.
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