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Exciton-light coupling in spherical microcavities containing quantum dots has been treated by means of
classical electrodynamics within the nonlocal dielectric response model. Typical anticrossing behavior of
zero-dimensional exciton-polariton modes has been obtained, as well as the weak-coupling-strong-coupling
threshold. The influence of the cavityQ factor on the optical response of the structure has been analyzed.
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I. INTRODUCTION

Exciton-light interactions have been a subject of grow
interest since the 1950s, when the concept of exciton po
tons was originally formulated by Hopfeld1 and Agranovich.2

An exciton polariton is a quasiparticle combining the pro
erties of an electronic excitation and a light wave. Excit
polaritons can play a major role in the low-temperature
tical properties of semiconductor structures and exhibit a
markable variety of properties that are mostly dependen
the dimensionality of the system.

Bulk exciton polaritons have been studied experimenta
in semiconductor films since the 1970s~see, e.g., Refs. 3 an
4!. The epoch of quantum wells~QWs! started in the 1980s
and revealed the crucial influence on the properties of e
ton polaritons of the dimensionality of the excitonic state t
was coupled to the light. The semiclassical theory of exci
polaritons in QWs and superlattices was developed b
number of workers, including Andreaniet al.5 and
Ivchenko.6 At the beginning of the 1990s, the rapid develo
ment of molecular-beam epitaxy allowed further reduction
the dimensionality of both the exciton and photon sta
forming the exciton polaritons. High-quality quantum wi
and quantum dot~QD! structures are now widely studied b
different experimental techniques, including time-resolv
optical spectroscopy, which can give information on the
netics of exciton polaritons in these structures.7,8 The basic
principles of the semiclassical description of these syste
have been formulated9,10 and are currently being applied t
predict the behavior of structures of topical interest.
0163-1829/2001/64~11!/115305~9!/$20.00 64 1153
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Since the first report of the strong coupling in quantu
microcavities by Weisbuchet al.,11 a huge number of paper
devoted to exciton polaritons in planar microcavities ha
appeared. Strong enhancement of the light-matter coup
strength in these structures has been demonstrated, bot
perimentally and theoretically~e.g., Ref. 12 and reference
therein!. A further decrease of the dimensionality of the ph
tonic state coupled to the exciton is possible in pil
microcavities13,14 and spherical Bragg microcavities.15 Re-
cent progress in photonic crystal fabrication gives hope t
the four-decade-long progression to lower dimensionality
exciton-polariton systems will soon achieve its logical co
clusion with the appearance of photonic dots with embed
electronic quantum dots. In particular, technological a
vances in the fabrication of spherical objects by the te
niques of colloidal chemistry,16,17 and other methods18 will
hopefully provide a means for the practical fabrication
multilayered structures of spherical symmetry in due cour

A rigorous theoretical analysis of an ideal system th
exhibits coupling of zero-dimensional photons with zer
dimensional excitons seems timely.

We consider an ideal spherical QD embedded in an id
spherical microcavity~SMC!, as shown in Fig. 1, and we us
the Green-function approach for quantum dots proposed
Banyai and Koch.10 The fact that it is possible to obtain a
analytical solution of the polariton eigenmode equati
makes this model system especially attractive for a theor
cal study.

The essential difference between our model system
that considered by Andreaniet al.14 is that we restrict our
©2001 The American Physical Society05-1
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attention to a system having a spherical symmetry, ra
than one of cylindrical symmetry.14 As will be shown below,
these two cases show quite important differences in beha
We also demonstrate the distinctive features of ze
dimensional~spherical! exciton polaritons compared to con
ventional polaritons formed by plane light waves.

II. BASIC EQUATIONS

A. Reflection of the spherical light wave by a quantum dot

A spherical electromagnetic wave can be represented
superposition of two waves with decoupled polarizations:19 a
TE wave with componentsHr ,Eu ,Ef ,Hu ,Hf , and a TM
wave with componentsEr ,Eu ,Ef ,Hu ,Hf . Here E and H
denote the electric and magnetic fields, respectively. The
tial dependence of the electric and magnetic fields in
spherical wave can be expressed in terms of spherical
monics characterized by a positive integerl and an integerm
in the interval from2 l to l, which are related to the angula
orbital momentum and its projection. The valuel 50 corre-
sponds to a fully spherically symmetric electromagne
wave, which does not exist for nonzero frequency.15,19 In the
case of the TE polarization, the spherical wave field w
frequencyv in a medium with dielectric constant« can be
written as

EW l ,m52mk0S m

sinu
Pl

umu~cosu!eW u1 i
]

]u
Pl

umu~cosu!eWfD
3V~r !exp~ imf!, ~1a!

HW l ,m5H l ~ l 11!

r
j l~kr !Pl

umu~cosu!eW r1S ]

]u
Pl

umu~cosu!eW u

1
im

sinu
Pl

umu~cosu!eWfD 1

r

]

]r
@rV~r !#J exp~ imf!,

~1b!

FIG. 1. A schematic diagram of a spherical microcavity with
quantum dot at its center. A central core of radiusR0 with the
refractive indexn0 is surrounded by a spherical Bragg reflect
constructed from alternative layers of refractive indicesn1 andn2 .
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whereV(r )5Ahl
(1)(kr)1Bhl

(2)(kr), A andB are constants,
k5A«v/c, and the spherical functionshl

(1)(x) and hl
(2)(x)

are related to the Hankel functions byhl
(1,2)(x)

5Ap/2xHl 11/2
(1,2) (x). Pl

umu(cosu) is an associated Legendr
function.

Similarly, for the TM eigenmodes

HW l ,m5«k0S m

sinu
Pl

umu~cosu!eW u

1 i
]

]u
Pl

umu~cosu!eWfDV~r !exp~ imf!, ~2a!

EW l ,m5H l ~ l 11!

r
j l~kr !Pl

umu~cosu!eW r1S ]

]u
Pl

umu~cosu!eW u

1
im

sinu
Pl

umu~cosu!eWfD 1

r

]

]r
@rV~r !#J exp~ imf!.

~2b!

An electromagnetic field in the central core of the microca
ity can be represented as the sum of incoming and outgo
waves. The field at the center of the microcavity should
finite, and this requires, in the case of the empty microcav
that the incoming and outgoing waves have equal amplit
in the central core and the radial dependence of the field
described by the spherical Bessel functionj l5@hl

(1)(x)
1hl

(2)(x)#/2. Thus, the electromagnetic field of each eige
mode is described by Eqs.~1! and ~2! with V(r )5 j l(kr).

Only in the case of the TM mode withl 51 is the electric
field of the eigenmode not equal to zero at the center of
SMC. Hence, only with this mode is there significant inte
action with a~nonmagnetic! quantum dot placed at the cent
of the microcavity. For all other cavity modes, the elect
field at the center of the SMC vanishes, and there is ne
gible interaction with a QD placed there.

The electric field of the TM eigenmode of an empty SM
characterized byl 51, m50, has the form

EW hom5
2

r
j 1~kr !cos~u!eW r2

1

r

d

dr
@r j 1~kr !#sinueW u . ~3!

Using the matrixM̂ ,

M̂5S sinu cosf cosu cosf 2sinf

sinu sinf cosu sinf cosf

cosu sinu 0
D ~4!

for the transformation from spherical to Cartesian coor
nates, we can represent the electric field in the form
5-2
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EW hom5S 2

r
j 1~kr !2

1

r

d

dr
@r j 1~kr !# D cosu sinu~cosfeW x

1sinfeW y!1S 2

r
j 1~kr !cos2u

1
1

r

d

dr
@r j 1~kr !#sin2u DeW z , ~5!

from which it follows that the electric field near the center
the SMC is spatially uniform and is directed along thez axis,
as illustrated in Fig. 2.

The electromagnetic field in the vicinity of a QD is d
scribed by Maxwell’s equations with the excitonic contrib
tion to the polarizationPW (rW) taken into account:

¹3¹3EW 2«k0
2EW 54pk0

2PW ~rW !. ~6!

Herek05v/c and

PW ~rW !5E x̃~v,rW,rW8!EW ~rW !drW8. ~7!

The nonlocal excitonic susceptibility has the form10

x̃~v,rW,rW8!5x~v!F~rW !F~rW8!, ~8!

where the functionF(rW) is related to the exciton envelop
function C(rW,rW8) by F(rW)5C(rW,rW), and

x~v!5
«vLTaB

3/4

ṽex2v2 iG
~9!

in terms of the transverse-longitudinal splittingvLT , the
Bohr radiusaB , the resonance frequencyṽex, and the non-

FIG. 2. Schematic distribution of the magnitude of the electr
field intensity in a cross section of the spherical microcavity for
TM mode withl 51, m50. The quantum dot is shown in the cent
of the microcavity as a patterned circle. The gray shading co
sponds to the magnitude of the electric field. The magnitude
direction of the electric field are also indicated by arrows.
11530
radiative damping factorG. Further, we shall neglect th
complex valence-band structure and apparent short-ra
and long-range exchange splittings of the exciton-state Q
These effects have been addressed in Ref. 20. In the num
cal calculations we shall use the parameters of the hea
hole exciton resonance in GaAs. An extention of our form
ism by taking into account the exciton fine structure
straightforward but requires quite tedious computations.
the exciton ground state in a spherical QD, the wave funct
F(rW) is spherically symmetric , soF(rW)5F(r ). Substitut-
ing Eq. ~8! into Eq. ~7!, we can writePW (rW) as

PW ~rW !5x~v!F~r !LW , ~10!

whereLW 5*F(r )EW (rW)drW.
The solution of Eq.~6! can be found by the Green

function technique:

Ea~rW !5Ea
hom~rW !1k0

2E Gab~rW2rW8!Pb~rW8!drW8, ~11!

wherea,b5x,y,z and the Green function, expressed in C
tesian coordinates, has the form

Gab~rW2rW8!54p ikF dab1
1

k0
2

]2

]r a]r b
Gh0

(1)~kurW2rW8u!.

~12!

Using Eq.~10!, we can rewrite Eq.~11! in the form

Ea~rW !5Ea
hom~rW !1k0

2x~v!Dab~rW !Lb , ~13!

where

Dab5E Gab~rW2rW8!F~r 8!drW8. ~14!

Using the relation21

h0
(1)~kurW2rW8u!

55 (
n50

`

~2n11!hn
(1)~kr ! j n~kr8!Pn~cosu!, r .r 8

(
n50

`

Hn
(1)~kr8! j n~kr !Pn~cosu!, r ,r 8,

~15!

the matrixD̂ can be expressed in the form

-
e

-
d

5-3
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Dab54p ikE F~r 8!F dab1
1

k0
2

]2

]r a]r b
G

3S 5
(
n50

`

~2n11!hn
(1)~kr ! j n~kr8!Pn~cosu!,

r .r 8

(
n50

`

Hn
(1)~kr8! j n~kr !Pn~cosu!,

r ,r 8

D drW8.

~16!

Using the identity*0
pPn(cosu)sin(u8)du852d0n , one can

conclude that only those terms in Eq.~16! that haven50
give nonzero contribution toDab , and

Dab5~4p!2ikF dab1
1

k0
2

]2

]r a]r b
GS~r !, ~17!

whereS(r ) depends on the radius only,

S~r !5h0
(1)~kr !E

0

r

F~r 8! j 0~kr8!r 82dr8

1 j 0~kr !E
r

`

F~r 8!h0
(1)~kr8!r 82dr8

5 j 0~kr !E
0

`

F~r 8! j 0~kr8!r 82dr8

1 iy0~kr !E
0

r

F~r 8! j 0~kr8!r 82dr8

1 i j 0~kr !E
r

`

F~r 8!y0~kr8!r 82dr8 ~18!

and can be represented in the form

S~r !5
1

4p
@ j 0~kr !V01 iV1~r !# ~19!

whereV05*F(r ) j 0(kr)drW and

V1~r !54pS y0~kr !E
0

r

F~r 8! j 0~kr8!r 82dr8

1 j 0~kr !E
r

`

F~r 8!y0~kr8!r 82dr8D .

Thus

Dab54p ikF dab1
1

k0
2

]2

]r a]r b
G @ j 0~kr !V01 iV1~r !#.

~20!
11530
If r exceeds the size of the exciton wave functio
V1(r )5V0y0(kr), S(r )5(V0/4p)h0

(1)(kr), and the matrix

D̂ can be represented in the form

Dab54p ikF dab1
1

k0
2

]2

]r a]r b
Gh0

(1)~kr !. ~21!

Now, multiplying Eq.~13! by F(rW) and integrating overrW,

E F~rW !Ea~rW !drW

5E F~rW !Ea
hom~rW !drW1k0

2x~v!E F~rW !Dab~rW !drWLb .

~22!

The integral on the left side of the equation is justLW . Making
use of the identities

1

r

d

dr
@r j 1~kr !#5k j0~kr !2

j 1~kr !

r
, ~23a!

E
0

p

sin3u du5
4

3
, ~23b!

E
0

p

cos2u sinu du5
2

3
, ~23c!

and Eq.~5!, one can show that

E EW homF~r !dr5
2

3
kV0eW z . ~24!

Taking into account the spherical symmetry of the functio
F(rW) and S(rW), we conclude that the integral*F(rW)@dab

1(1/k0
2)(]2/]r a]r b)#S(rW)drW vanishes ifaÞb, so that we

can rewrite Eq.~22! in the form

LeW z5
2
3 kV0eW z1k0

2xWLeW z , ~25!

whereW5*F(rW)DzzdrW. It is apparent that the presence
the quantum dot does not affect the direction of the elec
field of the eigenmode near the QD, and the resulting po
iton state is threefold-degenerate. Equation~25! yields

L5
2/3kV0

12k0
2xW

. ~26!

Using the identity~23a!, we can rewrite Eq.~17! in the form

Dab54p ikH V0F S 3
j 1~kr !

r
2k j0~kr ! D r ar b

r 2
1dab

1S k j0~kr !2
j 1~kr !

r D G1 i F dab1
1

k0
2

]2

]r a]r b
GP~r !J .

~27!

In particular,
5-4
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Dzz54p ikV0F S 3
j 1~kr !

r
2k j0~kr ! D cos2u

1S k j0~kr !2
j 1~kr !

r D G
24pkF P~r !1

sin2u

k0
2

]P~r !

]r
1

cos2u

k0
2

]2P~r !

]r 2 G ,

~28!

from which it follows that

W5 8
3 p ik2V0

224pkQ, ~29!

where

Q5E F~r !F P~r !1
sin2u

k0
2

]P~r !

]r
1

cos2u

k0
2

]2P~r !

]r 2 GdrW.

We can rewrite Eq.~13! in spherical coordinates using th

matrix D̂̃5M̂ 21D̂:

Eab~rW !5Ehom~rW !1k0
2x~v!D̃ab~rW !Lb . ~30!

At the large distance from the QD,

D̃rz5
8p ikV0

r
h1

(1)~kr !cosu, ~31a!

D̃uz52
4p ikV0

r

d

dr
@rh1

(1)~kr !#sinu, ~31b!

D̃fz50, ~31c!

and we obtain the result that

EW ~rW !5EW hom~rW !1k0
2x~v!~D̃rzeW r1D̃uzeW u!L. ~32!

Substituting Eqs.~3! and ~28! into Eq. ~30!, we can obtain
the electric field

EW ~rW !5
1

r
h1

(2)~kr !cosueW r2
1

2r

d

dr
@rh1

(2)~kr !#sinueW u

1@118p ikk0
2x~v!V0L#

3S 1

r
h1

(1)~kr !cosueW r22
1

2r

d

dr
@rh1

(2)~kr !#sinueW uD .

~33!

Considering the field as the superposition of the converg
~incident! and diverging ~reflected from QD! spherical
waves, we can obtain the amplitude reflection coefficien
the spherical wave incident on the QD as

r QD5@118p ikk0
2x~v!V0L#. ~34!

Substituting Eqs.~9!, ~26!, and ~29! into Eq. ~34!, we can
obtain the reflection coefficient in the form
11530
g

f

r QD511
2iG0

vex2v2 i ~G1G0!
, ~35!

where the radiative damping factor

G05 2
3 pk4V0

2vLTaB
3 ~36!

and renormalized resonance frequency

vex5ṽex1pQvLTk3aB
3 . ~37!

When a converging spherical wave reaches the center o
microcavity, it becomes a diverging wave, contributing to t
reflection coefficient. It follows that the absorption and r
flection coefficients are related by

A512ur QDu2. ~38!

B. Eigenmodes of a spherical microcavity with an embedded
quantum dot

The radial dependence of the tangential components
the magnetic@which in the case of TM polarization is des
ribed by Eq. 2~a!# field in a central core containing a quan
tum dot located at the center of the SMC can be written
the form

H~r !5h1
(2)~kr !1r QDh1

(1)~kr ! ~39!

and can be represented as a two-dimensional ve
„h1

(2)(kr),r QDh1
(1)(kr)…, whose components are the magn

tudes of the converging and diverging waves. At the bou
ary of the central sphere in Fig. 1, which has the radiusR0,
the ratio of the amplitudes of the converging and diverg
waves is given by the reflection coefficientr B of the spheri-
cal Bragg mirror, which provides the optical confinement
the structure, and the magnetic field can be represente
C(r B,1), whereC is a constant. The equation defining th
frequencies of the eigenmodes of the SMC with an emb
ded quantum dot can be obtained by equating the two vec
defined above, to give

h1
(2)~kR0!5r BRr QDh1

(1)~kR0!. ~40!

In the case of negligible absorption of light in the dot, E
~40! can be reduced to

arg„h1
(2)~kR0!…2arg„h1

(1)~kR0!…2arg~r BR!2arg~r QD!

52p N. ~41!

The amplitude reflection coefficient of a QD can be rep
sented in the form

r QW5
~vex2v!21~G22G0

2!1 i2G0~vex2v!

~vex2v!21~G1G0!2
. ~42!

Let us assume that the frequencies of the exciton polar
are sufficiently different from the resonance frequencyvex
~this is the case in planar and cylindrical microcavities in t
5-5
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strong-coupling regime! so (G1G0)!uvex2vu . In this
case, the phase ofr QD is given to a good approximation by

arg~r QW!>
2G0

~vex2vem!
. ~43!

When the central core radius exceeds the wavelength o
light, the spherical function can be approximated by th
asymptotic values, which gives arg„h1

(1)(kR0)…
2arg„h1

(2)(kR0)…'p12kR0, and the phase of the reflectio
coefficient of the Bragg reflector can be approximated by
expression

arg~r BR!'b
v2vb

vb
, ~44!

where12 b5pn1n2 /A«(n22n1), and allows us to rewrite
Eq. ~41! in the form

p1b
v2vb

vb
2

2G0

v2vex
12

v

c
A«R052pN. ~45!

Since the frequency of the TM eigenmode withl 51 of an
empty SMC is given by

vN5
vb@p~2N11!1b#

b12
R0

c
A«vb

, ~46!

we can rewrite Eq.~45! in the form

~v2vN!~v2vex!5~D/2!2, ~47!

where the value of the splitting is

D52A 2G0vb

b12
R0

c
A«vb

. ~48!

Finally, the frequencies of the exciton polaritons are given

v5
vN1vex

2
6

A~vN2vex!
214d2

2
. ~49!

III. RESULTS AND DISCUSSONS

Figure 3 shows the spectral dependence of the absorp
coefficient for a spherical electromagnetic wave withl 51
incident on a quantum dot with different values of the no
radiative dampingG. Note that in the caseG50, the magni-
tude of the absorption coefficient is zero, which is quite na
ral since in this case there is no dissipation of energy. T
magnitude of the diverging wave is the same as the ma
tude of the converging wave in this case, while its init
phase is modified according to Eqs.~42! and ~43!. As G
increases, the peak value of the absorption coefficient, w
corresponds to the exciton resonance frequencyv5vex, in-
creases and reaches unity when the nonradiative and r
tive damping are equal (G5G0), as shown in the inset in
Fig. 3. Further increase ofG leads to a decrease of the pe
11530
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value of the absorption coefficient and a broadening of
absorption line. Similar behavior has been found recently
the case of a cylindrical light wave incident on a quantu
wire.22 The latter can be understood by taking into acco
the fact that the systems have either a point or line where
converging wave diverges~and vice versa!.

The interaction between localized exciton and pho
modes has two different regimes, namely the strong-coup
regime, which holds when the splitting of the modes exce
the half-sum of their damping parameters and two peaks
be distinguished in the absorption spectrum, and the we
coupling regime, which holds when the half-sum of t
damping parameters exceeds the splitting and the two p
in the absorption spectra merge into one. In the case
realistic quantum well or quantum wire exciton, the nonra
ative damping of the exciton is usually much larger than
radiative one. This is because the acoustic phonon scatte
of excitons is quite efficient within continuous energy ban
In contrast, quantum dots possess a discrete energy spec
Therefore, the nonradiative damping of a quantum dot ex
ton is very small, and comparable with the radiati
damping.23 Experimentally, the emission linewidth of
quantum dot exciton is difficult to measure directly, ofte
being less than the spectral resolution of the curr
equipment.24 Therefore, the lifetime of the zero-dimension
polariton in this case is governed by the quality factor (Q
factor! of the spherical Bragg microcavity.

Figure 4 shows the absorption spectra, calculated us
the transfer matrix method, of a SMC formed by a cent
core of refractive index 2.7 and a seven-period spher
Bragg reflector, with layers of refractive indices 1.45 and 2
Results for different values of the central core radius
shown. The refractive indices correspond to those for Zn
and SiO2, which are the materials whose layers can be
posited by means of colloidal chemistry.16,17. The parameters
of the QD are chosen to be similar to those for realistic Q
based on a II-VI semiconductor compound:G052

FIG. 3. Spectral dependence of the absorption coefficient o
spherical TM converging wave withl 51, m50 incident on a
quantum dot calculated for different values of the nonradiat
dampingG: solid line, G5G0; dashed line,G51/2G0; dotted line,
G51/4G0 . The inset shows the reflection coefficient at the reson
frequency as a function of the nonradiative damping factorG .
5-6
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31026vex, G51026vex. Increasing the central core radiu
reduces the frequency of the eigenmode of the empty ca
When a cavity mode is detuned from the exciton resonan
the spectrum exhibits a well pronounced peak, correspon
to an excitonic transition and a small peak corresponding
the uncoupled cavity mode@see the curves of Figs. 4~a! and
4~e!#. Tuning the optical mode towards the exciton resona
leads to a shift of both peaks, which exhibit identical sha
in the case of precise tuning@Fig. 4~c!#. The splitting of the
cavity mode corresponds to the value of the vacuum R
splitting D given by Eq.~48!. This behavior of the absorptio
spectrum as a function of detuning is a signature of
strong-coupling regime. The first theoretical proof of t
possibility of strong coupling of quantum dot excitons wi
cavity photons has been given by Andreaniet al.14 The
present analysis of the eigenmodes of a spherical micro
ity confirms those predictions.

Decreasing the number of layers in the Bragg reflecto
the cavity reduces theQ factor of the cavity and leads to
broadening of the cavity mode. Figure 5 shows the abso
tion spectra of the SMC with a QD and a reflector consist
of five pairs of layers. In this case, the width of the cav
mode exceeds the splitting. When the cavity mode is detu

FIG. 4. Absorption spectra in the strong-coupling regime o
spherical microcavity comprising a central core and a seven-per
thick Bragg reflector. The five spectra relate to different values
the central core radiusR0; ~a! R0vex/2pc50.102 65; ~b!
R0vex/2pc50.1028; ~c! R0vex/2pc50.102 955; ~d! R0vex/2pc
50.1031;~e! R0vex/2pc50.103 25. The values of the radiative an
nonradiative damping areG05231026vex, G51026vex.
11530
ty.
e,
ng
to

e
s

bi

e

v-

f

p-
g

ed

from the exciton resonance, the absorption peak is asymm
ric. Tuning the cavity mode towards the exciton resonan
leads to a shift and broadening of the peak as shown in
6, but the camelback structure does not appear. In the ca
precise tuning, the position of the peak in the absorpt
spectrum corresponds to the exciton resonance freque
while its width corresponds to the value of Rabi splittin
These spectral features are typical of the weak-coupling
gime. Excitons in single quantum dots are subject to
Fermi exclusion principle, and thus only two optically activ
excitons are allowed in each quantum confined state. Ne
theless, the excitonic transition in a QD has enough oscilla
strength to exhibit strong coupling with a spherical cav
mode, as we have shown here.

One can see that in zero-dimensional microcavities w
quantum dots, the vacuum field Rabi splitting has essenti
the same order of magnitude as in one-dimensional cav
with quantum wires and two-dimensional cavities with qua
tum wells. Thus, the coupling constant of the exciton to
cavity photon is only weakly influenced by the dimension
ity. On the other hand, the threshold to the nonlinear reg
takes place at drastically different pumping intensities in
systems of different dimensionalities. In quantum wells,

d-
f

FIG. 5. Absorption spectra in the weak-coupling regime o
spherical microcavity comprising a central core and a five-peri
thick Bragg reflector. The five spectra relate to different valu
of the central core radiusR0; ~a!R0vex/2pc50.102 65; ~b!
R0vex/2pc50.1028; ~c! R0vex/2pc50.102 955; ~d! R0vex/2pc
50.1031; ~e! R0vex/2pc50.103 25. The values of radiative an
nonradiative damping areG05231026vex, G51026vex.
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concentration of about 1011 electrons is needed to screen t
free-exciton resonance and to make the biexciton reson
visible. On the other hand, in a zero-dimensional microcav
with a single quantum dot, the creation of only two electro
hole pairs causes already the nonlinear phenomena, an
biexciton can be formed. This peculiar behavior could hav

FIG. 6. Dependence on the core radiusR0 of the eigenmode
frequencies of the microcavity with an embedded quantum dot
tained by solving Eq.~41! ~shown by solid lines!, compared with
the positions of the peaks in the absorption spectra in the str
coupling regime~open circles! and weak-coupling regime~solid
circles!. The vertical bars indicate the width of the absorption pe
in the weak-coupling regime. The dashed line shows the co
sponding dependence for the empty microcavity. The values of
radiative and nonradiative damping areG05231026vex, G
51026vex.
.
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.
y

s

11530
ce
y
-
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substantial influence on the optical properties
microcavities.25 In particular, this effect could lead to th
sublinear dependence of the intensity of light emission fr
a microcavity in a zero-dimensional case.

Finally, we should point out that by varying the param
eters of the system, we can change the splitting of the z
dimensional polariton states. Thus, a SMC with a QD p
vides an opportunity for quantum state engineering, wh
could be interesting from the point of view of the experime
tal implementation of a quantum computer.26

IV. CONCLUSION

The interaction of zero-dimensional excitons and photo
has been analyzed theoretically using the theory of nonlo
dielectric response and the transfer matrix method. Light
sorption by a single quantum dot has been analyzed and
shown that the resonant excitonic absorption of thel
51 TM spherical wave incident on the quantum dot is to
when the nonradiative and radiative damping factors of
exciton are equal. An equation for the eigenenergies and
expression for the value of the vacuum Rabi splitting for t
zero-dimensional polariton have also been obtained. Abs
tion spectra for a specific type of structure have been
tained and the transition between the strong- and we
coupling regime has been illustrated.
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