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Exciton-light coupling in spherical microcavities containing quantum dots has been treated by means of
classical electrodynamics within the nonlocal dielectric response model. Typical anticrossing behavior of
zero-dimensional exciton-polariton modes has been obtained, as well as the weak-coupling-strong-coupling
threshold. The influence of the cavify factor on the optical response of the structure has been analyzed.
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[. INTRODUCTION Since the first report of the strong coupling in quantum
microcavities by Weisbucht al,'! a huge number of papers
Exciton-light interactions have been a subject of growingdevoted to exciton polaritons in planar microcavities have
interest since the 1950s, when the concept of exciton polariappeared. Strong enhancement of the light-matter coupling
tons was originally formulated by Hopféldnd Agranovictf.  strength in these structures has been demonstrated, both ex-
An exciton polariton is a quasiparticle combining the prop-perimentally and theoreticall{e.g., Ref. 12 and references
erties of an electronic excitation and a light wave. Excitontherein. A further decrease of the dimensionality of the pho-
polaritons can play a major role in the low-temperature optonic state coupled to the exciton is possible in pillar
tical properties of semiconductor structures and exhibit a remicrocavities®'* and spherical Bragg microcavitié Re-
markable variety of properties that are mostly dependent onent progress in photonic crystal fabrication gives hope that
the dimensionality of the system. the four-decade-long progression to lower dimensionality in
Bulk exciton polaritons have been studied experimentallyexciton-polariton systems will soon achieve its logical con-
in semiconductor films since the 197@G=e, e.g., Refs. 3 and clusion with the appearance of photonic dots with embedded
4). The epoch of quantum well[QWSs) started in the 1980s electronic quantum dots. In particular, technological ad-
and revealed the crucial influence on the properties of excivances in the fabrication of spherical objects by the tech-
ton polaritons of the dimensionality of the excitonic state thamiques of colloidal chemistri}?'*” and other method® will
was coupled to the light. The semiclassical theory of excitorhopefully provide a means for the practical fabrication of
polaritons in QWs and superlattices was developed by aultilayered structures of spherical symmetry in due course.
number of workers, including Andreanietal® and A rigorous theoretical analysis of an ideal system that
Ivchenko® At the beginning of the 1990s, the rapid develop- exhibits coupling of zero-dimensional photons with zero-
ment of molecular-beam epitaxy allowed further reduction ofdimensional excitons seems timely.
the dimensionality of both the exciton and photon states We consider an ideal spherical QD embedded in an ideal
forming the exciton polaritons. High-quality quantum wire spherical microcavitySMC), as shown in Fig. 1, and we use
and quantum dotQD) structures are now widely studied by the Green-function approach for quantum dots proposed by
different experimental techniques, including time-resolvedBanyai and Koch® The fact that it is possible to obtain an
optical spectroscopy, which can give information on the ki-analytical solution of the polariton eigenmode equation
netics of exciton polaritons in these structuf@sThe basic  makes this model system especially attractive for a theoreti-
principles of the semiclassical description of these systemsal study.
have been formulatéd® and are currently being applied to  The essential difference between our model system and
predict the behavior of structures of topical interest. that considered by Andreamit all* is that we restrict our
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whereV(r)=Ah{")(kr)+Bh{®(kr), A andB are constants,
k= ew/c, and the spherical functiorts*(x) and h{*)(x)
are related to the Hankel functions by(*?(x)
= Jal2xH*2(x). P|M(cos6) is an associated Legendre
function.

Similarly, for the TM eigenmodes

- m R
Him= sko( snd PM(cosh)e,

+i{%P,m(cosa)éd))V(r)exp(im@, (2a)

- [(1+1) Iml - 1% Im -
E m= ; Ji(kr)P{™(cos@)e, + ﬁFﬁ (cosh)ey
FIG. 1. A schematic diagram of a spherical microcavity with a im [ - |19 .
quantum dot at its center. A central core of radRg with the + singpl (cose)e¢ n E[rV(r)] expime).
refractive indexng is surrounded by a spherical Bragg reflector,
constructed from alternative layers of refractive indingsandn, . (2b)

attention to a system having a spherical symmetry, rather

than one of cylindrical symmetry.As will be shown below, An electromagnetic field in the central core of the microcav-

these two cases show quite important differences in behavioity can be represented as the sum of incoming and outgoing
We also demonstrate the distinctive features of zerowaves. The field at the center of the microcavity should be
dimensional(spherical exciton polaritons compared to con- finite, and this requires, in the case of the empty microcavity,

ventional polaritons formed by plane light waves. that the incoming and outgoing waves have equal amplitude
in the central core and the radial dependence of the field be
IIl. BASIC EQUATIONS described by the spherical Bessel functi(jm:[h,(l)(x)
A. Reflection of the spherical light wave by a quantum dot +h{®(x)]/2. Thus, the electromagnetic field of each eigen-

naode is described by Eqgl) and(2) with V(r)=j,(kr).

A spherical electromagnetic wave can be represented as Only in the case of the TM mode wilh-1 is the electric

superposition of two waves with decoupled polarizatihs: . )
TE wave with componentsi, ,E,,E,,Hy,H,, and a TM field of the eigenmode not equal to zero at the center of the

wave with componentg, ,E,E,,H,,H,. Here E and H SMC. Hence, only with Fhis mode is there significant inter-
denote the electric and magnetic fields, respectively. The sp&ction with alnonmagnetitquantum dot placed at the center
tial dependence of the electric and magnetic fields in e?f the microcavity. For all other cavity modes, the (.—:-Iectrlc.
spherical wave can be expressed in terms of spherical hafi€ld at the center of the SMC vanishes, and there is negli-
monics characterized by a positive integjand an integem  gible interaction with a QD placed there.

in the interval from—1 to |, which are related to the angular ~ The electric field of the TM eigenmode of an empty SMC,
orbital momentum and its projection. The valueO corre-  characterized by=1, m=0, has the form

sponds to a fully spherically symmetric electromagnetic
wave, which does not exist for nonzero frequeted? In the
case of the TE polarization, the spherical wave field with

R 2 . 1d R
h _ . _ - - . .
frequencyw in a medium with dielectric constast can be EPM=—ja(kr)cosO)e — — - lrja(kr)]sinde,. (3

written as

- m .0 R . .
Eim= —Mko(mP.m(cose)ew ﬁP.m(cosa)%) Using the matrix¥l,

X V(r)exp(ime), (1a _ .

sinfcos¢ cosfcos¢y —sing
- [(1+1 - d - - . . .
I m= ( . )j,(kr)P|m|(cosa)er+ a—ePl"“(cose)eg M=| sin#sing cosfsing  cose 4
cosé sing 0

im I
+ mle(cosa)e¢) FE[rV(r)]]exp(iqu),
! for the transformation from spherical to Cartesian coordi-
(1b) nates, we can represent the electric field in the form
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radiative damping factof’. Further, we shall neglect the
complex valence-band structure and apparent short-range
and long-range exchange splittings of the exciton-state QD.
These effects have been addressed in Ref. 20. In the numeri-
cal calculations we shall use the parameters of the heavy-
hole exciton resonance in GaAs. An extention of our formal-
ism by taking into account the exciton fine structure is
straightforward but requires quite tedious computations. For
the exciton ground state in a spherical QD, the wave function

®(r) is spherically symmetric , s@(r)=®(r). Substitut-
ing Eq. (8) into Eqg.(7), we can Writeﬁ(F) as

P(r)=x(0)®(NA, (10)

whereA = [ (r)E(r)dr.
The solution of Eq.(6) can be found by the Green-
FIG. 2. Schematic distribution of the magnitude of the electric-fynction technique:

field intensity in a cross section of the spherical microcavity for the

TM mode withl =1, m=0. The quantum dot is shown in the center

of the microcavity as a patterned circle. The gray shading corre- - hom, = 2 - -

sponds to the magnitude of the electric field. The magnitude and Eu(r)=E, "‘(r)+k0f Gaﬁ(r_r )Pﬁ(r )dr’,  (11)

direction of the electric field are also indicated by arrows.

) 2 1 d R wherea, 8=X,Y,z and the Green function, expressed in Car-
ghom= Fjl(kr)— T m[rj 1(kr)])cos¢9 sin f(cosge, tesian coordinates, has the form
+singe,) + 2'(k) g6 2
singe —ji(kr)co - . - -
y r )y — - (1) e
Gup(r—r')=4mik 6alg+k§ &ra&rﬁlho (k[r=r"]).
1d -
+ = —rj 1(kr)]sin20)ez, (5) (12
r dr
from which it follows that the electric field near the center of Using Eq.(10), we can rewrite Eq(11) in the form
the SMC is spatially uniform and is directed along #eis,
as illustrated in Fig. 2. . hom = - 12 .
The electromagnetic field in the vicinity of a QD is de- Ea(r)=E5"(r) +kox(@)Dap(r)Ag, (13
scribed by Maxwell's equations with the excitonic contribu-
tion to the polarizatiorP(r) taken into account: where
VX VXE—ek2E=4mk2P(r). (6)
Hereko= w/c and Daﬁ=J Gap(r =1 )®(r")dr’. (14
5(F>=f}<w,F,F'>E(F>dF'- (7) Using the relatiof*
The nonlocal excitonic susceptibility has the fdfm
. . h§V(klr—r"])
X(@,r,r")=x(w)P(r)P(r’), 8 .
where the function®(r) is related to the exciton envelope 20 (2n+1)h(kr)ja(kr')Py(cose), 1>r
- > N - > n=
function W (r,r’) by ®(r)=¥(r,r), and ={
swL1ag/4 2 HP(kr)jn(kr)Py(coso), r<r’,
X(w)== : 9
wWex—w—iT (15)

in terms of the transverse-longitudinal splitting 1+, the
Bohr radiusag, the resonance frequenay,,, and the non- the matrixD can be expressed in the form
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2
Daﬁ=4’77|qu)(r ) 5aﬁ+k—ém‘|

2 (2n+1)h®O(kn)j,(kr')P,(cosh),

r>r’

nZO H{P(Kr')jo(kr)Ppo(cose),

’
\ r<r

(16)
Using the identity[ §P,(cosé)sin(@')dé’ =25, one can
conclude that only those terms in Ed.6) that haven=0
give nonzero contribution t® 4, and

(92

D, 5= (4m)?k| & (17

pt S(r)1
% araarﬁl

whereS(r) depends on the radius only,
S(r):hgl)(kr)f;¢(r')j0(kr’)r’2dr’
+j0(kr)frmtb(r’)hgl)(kr’)r’zdr’
otk [ @itk Zar
+iyo(kr)er)(r’)jo(kr')r’zdr’
+ijO(kr)ertl)(r’)yo(kr')r'zdr’ (18

and can be represented in the form

1
S(r)= 7 —Lio(kNVo+iVy(r)] 19

whereVy=[®(r)jo(kr)dr and

Vl(r)=47-r(yo(kr)jod)(r’)jo(kr’)r’Zdr’

+jo(kr)frm¢(r’)yo(kr’)r’zdr’).

Thus

&2

1[] o(KNVo+iVy(r)].
(20)

Sap’t k2 ar ,r

PHYSICAL REVIEW B 64 115305
If r exceeds the size of the exciton wave function,

V1(r)=Voyo(kr), S(r)=(Vo/4m)h{Y(kr), and the matrix
D can be represented in the form

D, p=4ik| 6

1hgl)(kr). (21)
B
Now, multiplying Eq.(13) by ®(r) and integrating over,
f ®(r)E (r)dr

fd)(r)Eho”‘(r)de X(w)f @(r)Daﬁ(r)drAB

(22)

The integral on the left side of the equation is jﬁstMaking
use of the identities

L kr) ] =kjg(kn) — 12K 23
S gelriakn]=kjg(kn -, (233
T 4
f sinfdo==, (23b)
0 3
™ _ 2
f cosfsinfdo= -, (230
0 3
and Eq.(5), one can show that
- 2 -
J Eh°m<I>(r)dr=§kV0ez. (24)

Taking into account the spherical symmetry of the functions
®(r) and S(r), we conclude that the integrdld®(r)[ 5,5
+(1kg 2 (0%lor, arﬁ)]S(r)dr vanishes ifa# 8, so that we
can rewrite Eq(22) in the form

Ae,=2kVoe,+ kZyWAe,, (25)

whereW=f(D(F)DZZdF. It is apparent that the presence of
the quantum dot does not affect the direction of the electric

field of the eigenmode near the QD, and the resulting polar-
iton state is threefold-degenerate. Equati@b) yields

213V,
A=TR0 (26

Using the identity(23a), we can rewrite Eq(17) in the form

j1(kr
D, p=4mik{ Vg (3“( _ jo(kr )) £t 5.
+{kjotkry— 25 | il 5 4 L ” P
jo(kr) ; i| Oap K2 oy (r)g-
(27)
In particular,
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D,,= 4mikVgl | 325 (k)| cogo =1+ 2o 35
72z~ | 0 r - JO( r) co r.QD_ wex_w_i(r+r0) 1 ( )
j1(kr where the radiative damping factor
. kjo(kr)_n(r )” ping
FOZ %Wk4ngLTag (36)
sifg dP(r) cog6 d°P(r) _
—4mk| P(r)+ — +— > | and renormalized resonance frequency
kg " kg oar
(28) Wex™ Z’ex+ 71'Q‘J‘)LTkgag . (37)
from which it follows that When a converging spherical wave reaches the center of the
8 22 microcavity, it becomes a diverging wave, contributing to the
W= 3mik“V5—47kQ, (29 reflection coefficient. It follows that the absorption and re-
where flection coefficients are related by
—1_ 2
_Jq) 5 Jrsin2¢9 aP(r)+co§0 PP(r)| - A=1-|rqol* (38)
Q= | ®()| PN+ =" 5=+ = — 5

B. Eigenmodes of a spherical microcavity with an embedded

We can rewrite Eq(13) in spherical coordinates using the quantum dot

matrix D=M~1D: The radi_al de_pen_dence of the tangential_ components of
the magnetic[which in the case of TM polarization is des-
E ()V=E+ (F)+Kk2 D A, 30 ribed by Eg. 2a)] field in a central core containing a quan-
«p(1)=Enorl 1) +kox(@)Dag(r)A g (30 tum dot located at the center of the SMC can be written in
At the large distance from the QD, the form
- 8mikV H(r)=h{®(kr)+rqph{P(kr 39
Drz:—oh(ll)(kr)COSH, (31@ ( ) 1 ( ) QD'"1 ( ) ( )
r

and can be represented as a two-dimensional vector
d (h{?)(kr),roph{M(kr)), whose components are the magni-
—[rh{P(kr)]sins, (31  tudes of the converging and diverging waves. At the bound-
dr ary of the central sphere in Fig. 1, which has the radtys

the ratio of the amplitudes of the converging and diverging
D4.=0, (319  waves is given by the reflection coefficieny of the spheri-
cal Bragg mirror, which provides the optical confinement in
the structure, and the magnetic field can be represented as
> o = . 2 ~ -~ - C(rg,1), whereC is a constant. The equation defining the
E(r)=E"™r) +kox() (D16 +Dyep)A. (32 freqiencies of the eigenmodes of the SMC with an embed-
Substituting Eqs(3) and (28) into Eq. (30), we can obtain ded quantum dot can be obtained by equating the two vectors

0z— — r

and we obtain the result that

the electric field defined above, to give
.1, . 1d 5 o h(lz)(kRo):rBRrQDh(ll)(kRo)- (40)
E(r)=—h{®(kr)cosbe, — > d—[rh(l )(kr)]sin 6e,
' rar In the case of negligible absorption of light in the dot, Eq.
+1+ 87Tikk(2)X(w)V0A] (40) can be reduced to
1 R 1d R argh{?(kRy))—argh{Y(kRy)) — arg(r gr) — arg r
x| =h{P(kr)coshe, — — o —[rh{P(kr)]sinoe,|. ohi " tkRo)) — arglhy“(kRy)) —ar(Fgr) ~ ardr o)
r 2r dr _
=27 N. (41)

33
33 The amplitude reflection coefficient of a QD can be repre-
Considering the field as the superposition of the convergingented in the form

(incideny and diverging (reflected from QD spherical
waves, we can obtain the amplitude reflection coefficient of (@ey— w)2+(1“2—1“§)+i21“o(wex— ®)

the spherical wave incident on the QD as row= . (42
(wex— w)2+(r+ro)2

rop=[1+8mikkix(w)VoA]. 34
oo=1 mikkox(@)VoA] (34 Let us assume that the frequencies of the exciton polariton

Substituting Eqs(9), (26), and (29) into Eq. (34), we can are sufficiently different from the resonance frequengy,
obtain the reflection coefficient in the form (this is the case in planar and cylindrical microcavities in the
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strong-coupling regimeso (I'+1'g)<|we— w| . In this
case, the phase ofy; is given to a good approximation by
2T,
argrow)=—"—"—""-~ (43

(Wex— ®em)
When the central core radius exceeds the wavelength of the
light, the spherical function can be approximated by their
asymptotic  values, which gives  &d"(kRy))
—argh{?(kRy))~ 7+ 2kR,, and the phase of the reflection
coefficient of the Bragg reflector can be approximated by the

expression

argrBR)wbw_wb, (44)

Wp

wheré? b=mnn,/\e(n,—n;), and allows us to rewrite

Eqg. (41) in the form

0w—w 2r w
b ——0+ZE\/;R0=27TN. (45)

Wp @~ Wey

7+b

Since the frequency of the TM eigenmode with 1 of an
empty SMC is given by

_wb[w(2N+1)+b]

, (46)

wN

R
b+ 2?0\/gwb
we can rewrite Eq(45) in the form

(0= on) (0= we) =(A12)%, (47)

where the value of the splitting is

ZTOwb (48)

FIG. 3. Spectral dependence of the absorption coefficient of a
spherical TM converging wave with=1, m=0 incident on a
guantum dot calculated for different values of the nonradiative
dampingl’: solid line, I'=T"g; dashed line]’=1/2I";; dotted line,
I'=1/4I";y . The inset shows the reflection coefficient at the resonant
frequency as a function of the nonradiative damping fattor

value of the absorption coefficient and a broadening of the
absorption line. Similar behavior has been found recently in
the case of a cylindrical light wave incident on a quantum
wire.?2 The latter can be understood by taking into account
the fact that the systems have either a point or line where the
converging wave diverge@nd vice verspa

The interaction between localized exciton and photon
modes has two different regimes, namely the strong-coupling
regime, which holds when the splitting of the modes exceeds
the half-sum of their damping parameters and two peaks can
be distinguished in the absorption spectrum, and the weak-
coupling regime, which holds when the half-sum of the
damping parameters exceeds the splitting and the two peaks
in the absorption spectra merge into one. In the case of a
realistic quantum well or quantum wire exciton, the nonradi-
ative damping of the exciton is usually much larger than the

Finally, the frequencies of the exciton polaritons are given bytadiative one. This is because the acoustic phonon scattering

_ oyt Dex \/(wN— wex)2+452

2 2

(49

Ill. RESULTS AND DISCUSSONS

of excitons is quite efficient within continuous energy bands.

In contrast, quantum dots possess a discrete energy spectrum.
Therefore, the nonradiative damping of a quantum dot exci-
ton is very small, and comparable with the radiative
damping® Experimentally, the emission linewidth of a
quantum dot exciton is difficult to measure directly, often

Figure 3 shows the spectral dependence of the absorptidieing less than the spectral resolution of the current

coefficient for a spherical electromagnetic wave wlithl

equipment* Therefore, the lifetime of the zero-dimensional

incident on a quantum dot with different values of the non-polariton in this case is governed by the quality fact@r (

radiative damping’. Note that in the casE=0, the magni-
tude of the absorption coefficient is zero, which is quite natu-

facton of the spherical Bragg microcavity.
Figure 4 shows the absorption spectra, calculated using

ral since in this case there is no dissipation of energy. Théhe transfer matrix method, of a SMC formed by a central
magnitude of the diverging wave is the same as the magnicore of refractive index 2.7 and a seven-period spherical
tude of the converging wave in this case, while its initial Bragg reflector, with layers of refractive indices 1.45 and 2.7.

phase is modified according to Eq&l2) and (43). As I

Results for different values of the central core radius are

increases, the peak value of the absorption coefficient, whickhown. The refractive indices correspond to those for ZnTe

corresponds to the exciton resonance frequeneyw,,, in-

and SiQ, which are the materials whose layers can be de-

creases and reaches unity when the nonradiative and radipesited by means of colloidal chemistf}’. The parameters
tive damping are equall(=1"g), as shown in the inset in of the QD are chosen to be similar to those for realistic QDs

Fig. 3. Further increase df leads to a decrease of the peakbased on a

II-VI  semiconductor compound: =2
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FIG. 4. Absorption spectra in the strong-coupling regime of a  FIG. 5. Absorption spectra in the weak-coupling regime of a
spherical microcavity comprising a central core and a seven-periodspherical microcavity comprising a central core and a five-period-
thick Bragg reflector. The five spectra relate to different values ofthick Bragg reflector. The five spectra relate to different values
the central core radiusRy, (a) Rowed27mc=0.10265; ()  of the central core radiusRy; (8)Rywed2mc=0.10265; (b)
Rowed2mC=0.1028; (C) Roweyd27mc=0.102 955; (d) Rywed2mc  Rowe,2mC=0.1028; (¢) Rywe,2mc=0.102955;(d) Rowed2mcC
=0.1031;(e) Rywed27c=0.103 25. The values of the radiative and =0.1031;(€) Rywed27c=0.103 25. The values of radiative and
nonradiative damping arB,=2x 10 %wey,, I'=10"%wy,. nonradiative damping arBy=2x10"%wey, I'=10"%w.

X10 ®wey, =10 ®w,,. Increasing the central core radius from the exciton resonance, the absorption peak is asymmet-
reduces the frequency of the eigenmode of the empty cavityic. Tuning the cavity mode towards the exciton resonance
When a cavity mode is detuned from the exciton resonancdeads to a shift and broadening of the peak as shown in Fig.
the spectrum exhibits a well pronounced peak, correspondin@, but the camelback structure does not appear. In the case of
to an excitonic transition and a small peak corresponding t@recise tuning, the position of the peak in the absorption
the uncoupled cavity modesee the curves of Figs(@ and  spectrum corresponds to the exciton resonance frequency,
4(e)]. Tuning the optical mode towards the exciton resonancevhile its width corresponds to the value of Rabi splitting.
leads to a shift of both peaks, which exhibit identical shapeIhese spectral features are typical of the weak-coupling re-
in the case of precise tuniri§rig. 4(c)]. The splitting of the gime. Excitons in single quantum dots are subject to the
cavity mode corresponds to the value of the vacuum RabiFermi exclusion principle, and thus only two optically active
splitting A given by Eq.(48). This behavior of the absorption excitons are allowed in each quantum confined state. Never-
spectrum as a function of detuning is a signature of theheless, the excitonic transition in a QD has enough oscillator
strong-coupling regime. The first theoretical proof of thestrength to exhibit strong coupling with a spherical cavity
possibility of strong coupling of quantum dot excitons with mode, as we have shown here.

cavity photons has been given by Andreatiall* The One can see that in zero-dimensional microcavities with
present analysis of the eigenmodes of a spherical microcajuantum dots, the vacuum field Rabi splitting has essentially
ity confirms those predictions. the same order of magnitude as in one-dimensional cavities

Decreasing the number of layers in the Bragg reflector ofwvith quantum wires and two-dimensional cavities with quan-
the cavity reduces th® factor of the cavity and leads to a tum wells. Thus, the coupling constant of the exciton to the
broadening of the cavity mode. Figure 5 shows the absorpeavity photon is only weakly influenced by the dimensional-
tion spectra of the SMC with a QD and a reflector consistingty. On the other hand, the threshold to the nonlinear regime
of five pairs of layers. In this case, the width of the cavity takes place at drastically different pumping intensities in the
mode exceeds the splitting. When the cavity mode is detuneslystems of different dimensionalities. In quantum wells, the
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300 : e : : substantial influence on the optical properties of
\\ i microcavities” In particular, this effect could lead to the
200 \ r sublinear dependence of the intensity of light emission from
\‘ a microcavity in a zero-dimensional case.
(o 1007 | r Finally, we should point out that by varying the param-
= \ I eters of the system, we can change the splitting of the zero-
3§ 01 ) i dimensional polariton states. Thus, a SMC with a QD pro-
3 | I vides an opportunity for quantum state engineering, which
1004 \ i could be interesting from the point of view of the experimen-
» ' i tal implementation of a quantum computér.
oo | | \ | IV. CONCLUSION
0.1015 0.1(|)20 0.1625 0.1630

0.1035  0.1040  0.1045 The interaction of zero-dimensional excitons and photons
ROwex/ 2mc has been analyzed theoretically using the theory of nonlocal
dielectric response and the transfer matrix method. Light ab-
sorption by a single quantum dot has been analyzed and it is
shown that the resonant excitonic absorption of the
=1 TM spherical wave incident on the quantum dot is total
YWhen the nonradiative and radiative damping factors of the

Kexciton are equal. An equation for the eigenenergies and an
in the weak-coupling regime. The dashed line shows the corre€XPression for the value of the vacuum Rabi splitting for the

sponding dependence for the empty microcavity. The values of th&ero-dimensional polariton have also been obtained. Absorp-
radiative and nonradiative damping af@,=2X10 %wg,, T

. tion spectra for a specific type of structure have been ob-
=10 Swe,. tained and the transition between the strong- and weak-
coupling regime has been illustrated.

FIG. 6. Dependence on the core radiRg of the eigenmode
frequencies of the microcavity with an embedded quantum dot ob
tained by solving Eq(41) (shown by solid lines compared with
the positions of the peaks in the absorption spectra in the stron
coupling regime(open circley and weak-coupling regimésolid
circles. The vertical bars indicate the width of the absorption pea

concentranon of about 1belectrons is need.ed tp screen the ACKNOWLEDGMENTS
free-exciton resonance and to make the biexciton resonance

visible. On the other hand, in a zero-dimensional microcavity The work was partly funded by EPSRC research Grant
with a single quantum dot, the creation of only two electron-GL/R 73258 and 73159, by European Commission, project
hole pairs causes already the nonlinear phenomena, and tH&T-1999-19009 PHOBOS, and partly by INTAS 928 and

biexciton can be formed. This peculiar behavior could have &FBR. M.V.M. thanks the A. von Humboldt Foundation.

1J.J. Hopfield, Phys. Rel12, 1555(1958. 12E L. Ivchenko, M.A. Kaliteevski, A.V. Kavokin, and A.l. Nes-
2\V.M. Agranovich, Zh.'Iisp. Teor. Fiz37, 430(1959 [Sov. Phys. vizhskii, J. Opt. Soc. Am. BL3, 1061(1996.

JETP37, 307 (1960 ]. ; 133.M. Grard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and
SV.A. Kiselev, I.N. Uraltsev, and B.S. Razbirin, Pisma ZKsR. V. Thierry-Mieg, Phys. Rev. Leti81, 1110(1998.

Teor. Fiz.18, 504 (1973 [JETP Lett.18, 296 (1973]. 14| C. Andreani, G. Panzarini, and J.M. Gerard, Phys. Re60B
“4D. Frohlich, A. Kulik, B. Uebbing, A. Mysyrowicz, V. Langer, H. 13 276(1999.

Stolz, and W. von der Osten, Phys. Rev. Léf, 2343(1991)). 5M.A. Kaliteevski, R.A. Abram, S. Brand, and V.V. Nikolaev,
5L.C. Andreani, F. Tassone, and F. Bassani, Solid State Commun. Phys. Status Solidi A83 183 (2001); J. Mod. Opt.48, 1503

77, 641(199). (200).
8E.L. Ivchenko, Fiz. Tverd. TeldLeningrod 33, 2388 (1991

18T, Rajh, O.I. Micic, and A.J. Nozhik, J. Phys. Che@¥, 11 999
[Sov. Phys. Solid Stat@3, 1344(1991)]. (1993.

M. Sugasaki, H.W. Ren, S.V. Nair, K. Nishi, S. Sugou, T. Okuna,’Yu.A. Vlasov, V.N. Astratov, O.Z. Karimov, A.A. Kaplianskii,
and Y. Masumoto, Phys. Rev. B9, R5300(1999.

V.N. Bogomolov, and A.V. Prokofiev, Phys. Rev.35, R13 791
S M. Bayer, A. Kuther, A. Forchel, A. Gorbunoy, V.B. Timofeev, F.

(1997.
Schofer, J.P. Reithmaier, T.L. Rienecke, and S.N. Walk, Phys!®M.V. Artemyev and U. Woggon, Appl. Phys. Let?6, 1353
Rev. Lett.82, 1748(1999. (2000.
9E.L. Ivchenko and A.V. Kavokin, Fiz. Tverd. TeldLeningrad  °D. S. JonesThe Theory of ElectromagnetistRergamon, Lon-
34, 1815(1992 [Sov. Phys. Solid Statg4, 1815(1992)]. don, 1964, p. 483; W. K. H. Panovsky and M. Phillip§lassi-
10, Banyai and S.W. KochSemiconductor Quantum Dotgvorld cal Electricity and MagnetisnfAddison-Wesley, London, 1962
Scientific, Singapore, 1993

p. 233; J. J. JacksorGlassical Electrodynamic$Wiley, New
1LC. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys.  York 1999, p. 95.
Rev. Lett.69, 3314(1992.

203\, Gupalov, E.L. Ivchenko, and A.V. Kavokin, Zhk&p. Teor.
115305-8



ELECTROMAGNETIC THEORY OF THE COUPLING ©. .. PHYSICAL REVIEW B 64 115305

Fiz. 113 703(1999 [JETP86, 388(1999]. 24\M. Grundmann, J. Christen, N.N. Ledentsov, J. Bohrer, D. Bim-
21G. A. Korn and T. M. Korn,Mathematical Handbook for Scien- berg, S.S. Ruvimov, P. Werner, U. Richter, U. Gosele, J. Heiden-
tists and Engineers : Definitions, Theorems and Formulas for reich, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, P.S. Kop’ev, and

Reference and Revie(icGraw-Hill, New York, 196}, Chap. Z.1. Alferov, Phys. Rev. Lett74, 4043(1995.

21.8-13, formulas 21.8-73. 25E. Dekel, D. Gershoni, E. Ehrenfreund, D. Spektor, J.M. Garcia,
22M.A. Kaliteevski, S. Brand, R.A. Abram, V.V. Nikolaev, M.V. and P.M. Petroff, Phys. Rev. Le80, 4991(1998.

Maximov, N.N. Ledentsov, C.M. Sotomayor-Torres, and A.V. 265 jmamoglu, D.D. Awshalom, G. Burkard, D.P. DiVincenzo, D.

Kavokin, Phys. Rev. B51, 13 791(2000. Loss, M. Sherwin, and A. Small, Phys. Rev. LeB3, 4204
23D, Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, and D. (1999.

Park, Phys. Rev. LetfZ6, 3005(1996.

115305-9



