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Abstract

We show how mutually utility independent hierarchies, which weigh the various costs of an
experiment against benefits expressed through a mixed Bayes linear utility representing the
potential gains in knowledge from the experiment, provide a flexible and intuitive methodology
for experimental design which remains tractable even for complex multivariate problems. A
key feature of the approach is that we allow imprecision in the trade-offs between the various
costs and benefits. We identify the Pareto optimal designs under the imprecise specification
and suggest a criterion for selecting between such designs. The approach is illustrated with
respect to an experiment related to the oral glucose tolerance test.

Keywords: Imprecise utility; Multi-attribute utility; Pareto optimality; Oral glucose tolerance
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1 Introduction

This paper is concerned with the decision theoretic approach to the design of experiments. In
principle, the choice of an experimental design is a decision problem. We have a number of possible
choices of design (decisions). Each choice has certain benefits, typically derived from expected
gains in knowledge, and incurs expenditure, typically relating to both resource and ethical costs.
Choosing a good design is a hard decision problem, which would benefit, in two fundamental
ways, from appropriate methodology, in which all costs and benefits were quantitatively assessed,
combined and jointly optimised. Firstly, the formulation of design choice as a decision problem,
by making all relevant judgments explicit, would bring a clarity to the process. Such a quantitative
formulation would make explicit the implied trade-offs between costs and benefits which underlie
the choice of design for each of the participants, namely the experimenters, the subjects in the
experiment, the ethics committee, the funding body and so forth. Secondly, the solution of the
resulting decision problem would identify the best choice of design, or, more in the spirit of decision
analysis, the collection of designs which are almost optimal would identify the pragmatic range of
design choices that merit serious consideration.

Among the problems that we must address in developing a decision theoretic approach to
design are the following: (i) costs: resource usage, ethical costs, and so forth may be hard to
quantify; (ii) benefits: potential gains in knowledge from the experiment may be even harder to
quantify; (iii) trade-offs: experimenters may find it very difficult to weigh the relative importance
of the different costs, and even harder to weigh such costs against the potential benefits of the
experiment; (iv) prior knowledge: this is hard to quantify for complex problems; (v) design:
even were we able to specify fully all of the above ingredients, for example within a full Bayes
framework, choosing the optimal design would be an extremely difficult computing problem.

While there is plenty of theoretical work on Bayes designs, (see, for example, the review in
Chaloner and Verdinelli, 1995), there is little Bayes (or any other!) methodology which, in practice,
offers guidance on decision theoretic design for complex multivariate experiments with realistic cost
structures. Much of the Bayesian design literature is concerned with one or other of two aspects
of the problem. The first, which we might term the design-point selection problem, is concerned
with finding an “optimal” design, often specified by a design matrix, given a fixed total sample
size. Most literature on the second aspect, the sample size problem, involves simple designs and,
usually, a simple trade-off between the cost of experimental units and information gain.

In the design-point selection literature, by relaxing the requirement for the numbers of observa-
tions at different design points to be integers, the problem, at least in linear models, can be made
one of selecting the proportions of the total sample to be allocated to each design point. Thus the
question of choosing a sample size is avoided. Moreover, usually no allowance is made for differ-
ences in costs between observations at different design points. The optimality criterion is often
the Bayesian version of a criterion such as A- or D-optimality. These two and some others can be
justified as maximising the expectation of a utility function which values information gain in some
sense. For example, Sebastiani and Wynn (2000) use maximum entropy sampling which, in the
normal linear model, leads to Bayesian D-optimality. Recent work in this area has included the
combination of several information-gain criteria, for example to measure learning about different
possible models. Examples of this include Clyde and Chaloner (1996) and Dette and Franke (2000).
The criteria are usually combined as a weighted sum or one is optimized subject to constraints
on the values attained for the others. In this paper we combine an information-gain utility with
utilities for costs. The information-gain utility involves combining, not necessarily additively, a
number of sub-utilities, each of which is related to the utility leading to the Bayesian A-optimality
criterion. Verdinelli and Kadane (1992) use a utility which combines information gain, in the
D-optimality form, with the total value of the dependent variable in an experiment.

The Bayesian sample-size literature generally involves maximising the expectation of a utility
which involves the cost of making observations and either the consequence of some action following
the experiment or a measure of information gain. Lindley (1997), Bernardo (1997) and Adcock
(1997) give a useful introduction to the area. Recent examples include Walker (2003), whose utility
involves the consequence of an action such as choice of treatment, for the case of a simple random
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sample, and Gittins and Pezeshk (2000), who propose both a “public health” utility, involving both
the benefit of a new treatment and the number who will use it as well as costs, and a “commercial”
utility, for the case of a clinical trial to compare two treatments. For a Bayes linear approach to
finding sample sizes to obtain specified reductions in variance, see Goldstein and Wooff (1997) and
Shaw and Goldstein (1999).

Tan and Smith (1998) consider the use of realistic utility functions for both sample-size determi-
nation and allocation to treatments in a two-treatment clinical trial, with a cost-benefit trade-off in
which benefit is related to “success” of the trial. Claxton et al. (2000) discuss choice of treatment
(not design) with “cost-benefit” trade-off.

This paper has two parts. In the first part, we develop a multi-criterion decision theoretic
approach to the design of experiments. We use a flexible cost utility structure which allows costs
of several types and differences in costs between design points. We allow multivariate observations
and use a correspondingly flexible information-gain utility. To provide a focus for our discussion, we
discuss a multivariate, grouped, repeated measurement study in a medical context, with two types
of cost (financial, ethical), which must be weighed against the potential gains from the experiment.

While decision theory addresses the choices of the individual, experimental design typically
needs to reconcile the preferences of many protagonists. Further, even in fairly simple examples,
a single individual may not be able to specify precisely the relative importance of the various
costs and benefits. Therefore, one of the most difficult steps in many decision analyses is the
quantification of the relative importance of the different attributes of the design, due either to the
unwillingness or inability on the part of the experimenter to specify certain risk trade-offs or from
disagreement on priorities within a committee with responsibility for the design. In the second
part of the paper, we therefore address this issue by developing an approach which explicitly allows
for and incorporates such imprecision in the trade-offs between the different costs and benefits of
the experiment.

In Section 2 of this paper we introduce our illustrative example. In Section 3 we introduce
a suitable structure for utility functions in experimental design problems and, in particular, a
method of assigning utilities to the gains in knowledge obtained by the experiments. In Section
4 we describe how an optimal design may be selected. In Section 5 we generalise the method
by allowing imprecision in the trade-offs between the attributes of the utility. This leads to the
selection of a set of Pareto optimal designs as shown in Section 6. A criterion for selecting between
the Pareto optimal designs is suggested in Section 7. Finally, in Section 8, we extend the method
to allow a more general form of utility function.

2 Example: The oral glucose tolerance test

We shall consider an experiment, actually conducted some years ago, concerning the oral glucose
tolerance test (O.G.T.T.) which is used to help measure the severity of disease suffered by a
diabetic patient. After a period without food, patients are given glucose orally. Blood samples
are taken immediately before the glucose is given and at intervals thereafter. The concentration of
glucose in each sample is determined and, roughly speaking, the quicker the glucose concentration
returns to its fasting level the more healthy is the patient. High fasting levels of glucose, or slow
return to fasting levels after taking glucose, are suggestive of diabetes. For example, the World
Heath Organisation diagnostic levels were that a fasting glucose level above 7 mmol/litre or a two
hour level above 10 mmol/litre suggests diabetes, while a fasting level below 7 mmol/litre and a
two hour level between 7 and 10 mmol/litre suggest “impaired glucose tolerance” (World Health
Organisation, 1980). One of the main reasons for the study was that the experimenters believed
that methods of interpretation of O.G.T.T. results designed for young patients might need to be
altered to suit the elderly because of a generally slower response rate in old people. The groups
of elderly subjects in the study included Group 1: “Well-controlled” (diabetes controlled by diet
with or without drugs but not insulin), and Group 2: “Insulin dependent” (the most severe form,
requiring insulin treatment). (To simplify our account, we accept the clinicians’ classifications at
face value.)

Blood samples were taken immediately before the glucose was given and at intervals thereafter.
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From each sample, the concentrations of glucose and, in addition, C-peptide could be determined.
(See also Wickramasinghe et al.,1992, Farrow and Leyland, 1991, and Farrow and Goldstein, 1992).
The experiment had two aims. Firstly, in order to improve the interpretation of test results for
elderly patients and perhaps shorten test duration for such patients, information was required
on typical responses to the O.G.T.T. from elderly patients with different degrees of diabetes.
Secondly the investigators wished to see whether C-peptide measurements, in addition to blood
glucose, provided extra diagnostic information, as C-peptide concentration in the blood is thought
to indicate insulin production.

There are two types of cost in this experiment. Firstly, there are financial costs, both in
taking each blood sample and also the laboratory costs for each determination of glucose or C-
peptide concentration. It costs much more to determine a C-peptide concentration than a glucose
concentration. Further, there are staff costs involved in the care and administration for each patient
and these increase with the duration of the test and the severity of illness. Secondly, there are
ethical costs, which arise not only from the inconvenience and discomfort, but also because there
may be damage to a diabetic patient’s health, from fasting, taking glucose and fasting again. These
costs greatly increase with the severity of the illness and the duration of the test. They must be
weighed against the benefits of the experiment which derive from our gain in knowledge.

To simplify our account, we restrict our attention to Groups 1 and 2 and to the baseline and
60 minute values and we suppose that we always take the cheaper observation, namely the glucose
level, for each patient, making the more expensive, C-peptide, observation on a subset of the
patients. Thus our design choices are to determine four numbers ngv, where ngv is the number
of patients chosen from group g, where g = 1, 2, for which variables v are observed where v = 1
labels the subset on which only glucose measures are taken, and v = 2 labels the subset on which
both glucose and C-peptide measures are taken. We will denote a particular design choice by the
quadruple (n12, n22, n11, n21).

If, as here, financial and ethical costs are of serious concern, then decision analysis is the only
approach which allows us to weigh the benefits of different experiments against the costs in a
manner which allows us to identify the design of maximal value. In order to carry out such an
analysis, we must (i) formulate a utility function on experimental costs and outcomes, (ii) quantify
all uncertainties and (iii) optimise expected utility over all choices of design. Of course, if we do
not use decision analysis, we will still have to choose a design, but without a formal approach for
weighing costs and benefits the choice will be much more difficult and, to a large extent, arbitrary.
In the following sections, we shall show how to set up and analyse experiments such as these within
the decision formalism, and then introduce certain extensions to the standard methodology which
are useful for dealing with problems involving risk trade-offs that are considered difficult to specify.

The first step is to construct the utility function. To motivate our general discussion, observe
that it is often valuable to think of the utility in the form of a hierarchy. See figure 1. In the
present example, the top level node is the overall utility of the designed experiment. We may
view this utility as having two attributes, namely Costs and Benefits. So on the second level
we have a Cost node and a Benefit node, both leading into the Overall node. The Cost node
itself has two attributes, namely Ethical and Financial costs, and so, on the third level, each has
a node, both leading into the Cost node. The Benefit node similarly has various attributes, all
arising from gains in information about the various patient responses in the two groups. There
are many ways that we may choose to represent such benefits, depending on the context in which
we plan to use our results. In our account, we will suggest a simple choice for benefits, which is
sufficient to illustrate the general approach, namely to suppose that there are four attributes for
the benefit comprising improved information about each of the following collections of quantities:
M1 fasting levels for C-peptide; M2 fasting levels for glucose; M3 changes in C-peptide levels
over one hour; M4 changes in glucose levels over one hour. For example, M1 represents gains in
information about the joint distribution of fasting C-peptide levels both for individuals who are
“Well controlled” and individuals who are “Insulin dependent”. We will clarify the precise way in
which this benefit is quantified in later sections. Our utility hierarchy is therefore completed by
adding nodes representing each of M1 to M4 at the third level, entering the Benefit node.

4



Figure 1: Utility hierarchy.
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3 Utility hierarchies for experimental design

3.1 Mutually utility independent hierarchies

We now explain the formal properties that we require of a utility hierarchy, in order that it should
be amenable to formal specification and analysis, and construct appropriate utility functions for
experimental design. In this section we consider a general class of multi-attribute utility functions.
Attributes Y = (Y1, ..., Yk) are utility independent of the attributes Z = (Z1, ..., Zr) if conditional
preferences over lotteries with differing values of Y but fixed values, z, of Z, do not depend on the
particular choice of z. Attributes X = (X1, ..., Xs) are mutually utility independent if every subset
of X is utility independent of its complement. If attributes X are mutually utility independent,
then the utility function for X must be given by the multiplicative form, (1+kU(X)) =

∏s
i=1(1+

kaiUi(Xi)), or the additive form, U(X) =
∑s

i=1 aiUi(Xi), (see Keeney and Raiffa, 1976), where
Ui(Xi) is a conditional utility function for attribute Xi, namely an evaluation of the utility of Xi for
fixed values of the other attributes. The coefficients in these equations are the trade-off parameters;
the ai reflect the relative importance of the attributes and k reflects the degree to which rewards
may be regarded as complementary, if k > 0, or as substitutes, if k < 0 (Keeney and Raiffa, 1976,
section 5.4.5). Keeney and Raiffa (1976) also describe the idea of a hierarchy of utilities, as follows.
We form an overall multi-attribute utility from marginal utilities for the various attributes by a
hierarchical structure which may be represented as a graph in which each attribute of the problem
is represented as a node. Some of the attributes are themselves comprised of sub-attributes and, in
the graphical representation, each attribute node is joined to each of the constituent sub-attributes
by an arc. An example of such a structure is given as figure 1. The overall utility is constructed
as follows. For each attribute with no sub-attributes, we specify a utility function. At each other
node in the structure, we construct the utility by merging the utilities of all of the constituent sub-
attributes. Eventually, one overall utility function is formed corresponding to the node at the head
of the graph. If, at each node, we have mutual utility independence for the utilities combined at
that node, then we term such a utility function a Mutually Utility Independent Hierarchic (MUIH)
utility. Thus, in a MUIH utility, at each node we combine utilities using either the multiplicative
or additive form.

In our utility hierarchy we consider the overall utility node to be at the “top” level and the
predecessors of a node to be at “lower” levels. We refer to the nodes corresponding to the individual
attributes, that is nodes which have no predecessors, as marginal nodes. We refer to a direct
predecessor of a node as a parent and a direct successor as a child. For each node i, we denote
by N(i), the sub-hierarchy under i, where N(i) is the set of nodes containing i and all of its
predecessors. We divide the child nodes in the hierarchy into three types: additive, binary and
multiplicative. In an additive node utilities are combined using the additive form giving

U =
s∑

i=1

aiUi (1)

with
∑s

i=1 ai ≡ 1 and ai > 0 for i = 1, . . . , s. In a binary node, with parameters a1, a2, h, precisely
two utilities are combined and we rescale the combined utility as

U = a1U1 + a2U2 + hU1U2 (2)

where 0 < ai < 1, −ai ≤ h ≤ 1− ai and a1 + a2 + h = 1. In a multiplicative node more than two
utilities are combined and the parameter k in the multiplicative form may be nonzero. We rescale
the utility so that

U =
∏s

i=1(1 + kaiUi)− 1∏s
i=1(1 + kai)− 1

(3)

where a1 ≡ 1, k > −1 and, for i = 1, . . . , s, we have ai > 0 and kai > −1.
The above categorisation embraces all of the different specifications that we may make which

are consistent with the property of utility independence. (Binary nodes are the special case of
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multiplicative nodes where s = 2. Equation (2) is derived by setting s = 2 and h = ka1a2 in (3).
We distinguish between binary and multiplicative nodes only because some results may be stated
more simply in the binary case.) For some problems, it will be sufficient to work only with additive
nodes. However, we gain much flexibility by allowing the more general forms, as this allows us
to consider problems where, while the attributes are utility independent, they still complement or
substitute for each other. See the discussion in Keeney and Raiffa (1976).

For each child node i, we denote by φi = (φi1, . . . , φim(i)) the collection of trade-off parameters
which determine how the parent utilities at node i are combined to give the value at the child node.
Thus, each φij corresponds to an ai in (1) an ai or h term in (2), or an ai or k in (3). If there are
n child nodes, then we denote by θ = (φ1, . . . ,φn) the collection of all the trade-off parameters
in the hierarchy. As the marginal utility at each marginal node is expressed in a utility scale, we
norm all the marginal utilities to lie between 0, the worst outcome that we shall consider for the
problem, and 1, the best outcome. The effect of the scalings that we have chosen for additive,
binary and multiplicative nodes is that, at each node i in the hierarchy, the utility is 1 for the
outcome Ci when all marginal predecessor nodes have utility 1, and is zero for the outcome ci

when all marginal predecessor nodes have utility zero. Therefore, a utility value of u at node i may
always be interpreted as the utility of a gamble giving Ci with probability u and ci with probability
1−u, irrespective of the chain of trade-off parameters in the hierarchy. This utility scale is termed
the standard scale for the hierarchy. Throughout this paper, all utilities are assumed to be on
the standard scale.

3.2 Costs and benefits

We now construct MUIH hierarchies for experimental design. Our overall utility U(D) for choosing
a design D depends on the costs, C, and the benefits, B. If costs and benefits can be taken to be
mutually utility independent, then our overall utility, Ud, for a design is a binary node (2) with
parents Uc, Ub, the marginal utilities for cost and benefit, scaled to [0,1], with parameters ac, ab, h.

Ud = acUc + abUb + hdUcUb (4)

We now separate Uc and Ub into contributory attributes. As an illustration, suppose that Uc

depends both on ethical costs, E, and financial costs, F, which we judge to be utility independent.
Then

Uc = aeUe + afUf + hcUeUf (5)

where Ue and Uf are utilities for ethical and financial costs respectively, placed on a [0, 1] scale by
setting each cost utility to one for the null experiment, i.e. no experiment at all, and to zero for
the largest cost which might be tolerated.

In some circumstances, it will be reasonable to construct benefit utilities which relate directly
to the effectiveness of potential future treatments in a well-defined clinical context, e.g. Gittins and
Pezeshk (2000), Walker (2003). Such utility specifications will typically be highly problem specific
and usually will require great care in taming the computational complexity required to identify
good designs, as Bayesian design choice is a notoriously computer intensive problem, often requiring
simulations (e.g. Müller, 1999). In many cases, however, treatment decisions will not follow directly
from the individual study, which, as in our example, is part of an ongoing series of investigations
which will in combination identify treatment regimes. In such cases, the main benefits from a
medical experiment derive from our gain in knowledge. This might lead to the development of
better diagnostic or therapeutic methods, it might show that the test or treatment was useless or
it might lead to further experiments which are eventually fruitful in some currently unsuspected
way. Therefore, a natural way to express the benefit is to quantify the change in information,
relative to our current state of knowledge. This view, of course, is also the justification for the
use of criteria such as Bayesian A- and D-optimality which are widely used in the Bayesian design
literature (Chaloner and Verdinelli, 1995). We may then weigh the value of possible gains in
knowledge against the various costs. (Additional benefits, for example direct benefit to patients in
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a trial from the new treatment, may be handled analogously to the costs.) We now develop such
a benefit utility in a flexible form which leads to a tractable design methodology.

3.3 Mixed Bayes linear utilities for gains in knowledge

Design calculations for full Bayes analyses are notoriously expensive, as, for each choice of design,
the reduction in uncertainty must be assessed for each possible sample that could be obtained.
Therefore, we instead choose to assess the reduction in uncertainty from a Bayes linear viewpoint.
This approach may be viewed either as applying when the underlying uncertainties are roughly
Gaussian, or as providing a general, simple and tractable upper bound approximation to the pre-
posterior expectation of the posterior variance given certain simple moment assessments, or as the
appropriate form of analysis when we are only prepared to make a partial prior belief specification
in the form of first and second moments. (See Goldstein, 1999, and Farrow and Goldstein, 1993).
However, provided the experiment is sufficiently simple for a full Bayes preposterior design calcu-
lation to be tractable, then the methodology that we develop below for design choice will apply
equally for any such Bayes analysis. We now describe the Bayes linear utility, which we build in
three stages.

(i) Consider an experiment in which we learn about a single quantity, X. Suppose that, from
design D, we observe data d, and calculate the Bayes linear adjusted expectation, Ed(X) for X.
As the Bayes linear approach takes expectation as primitive it is natural and tractable to consider
a basic attribute of the experiment to be the magnitude of the difference between Ed(X) and the
actual value of X, namely d(X) = X−Ed(X), assessed as (X−Ed(X))2 (see, for example, de Finetti
(1974) in which the preferred choice of penalty of this type is taken as the operational definition for
expectation). A simple benefit utility, constructed from this attribute, is given by the expectation
of this quantity, namely E(d2(X)) = vard(X), the adjusted variance of X given d. We scale so that
the utility of carrying out a precise experiment, i.e. one which will reveal exactly the value of
X, is 1, and the utility of carrying out no experiment is 0, so that U(X) = 1− vard(X)/var(X).

(ii) Now suppose that we learn about a collection X = (X1, ..., Xm), where all linear com-
binations of X are considered equally important. Then, a corresponding collection of attributes
which express our gain in knowledge is the vector d(X) = X −Ed(X), where Ed(X) is the vector
of adjusted expectations for the elements of X after observing data d. If (X1, ..., Xm) are un-
correlated, then a corresponding representation of the joint utility is the additive form, namely
U(X) = m−1

∑m
i=1 U(Xi), where each U(Xi) = 1 − vard(Xi)/var(Xi). If (X1, ..., Xm) are corre-

lated, then we may apply this to the principal components of X, equivalently assessing U(X) to
be

U(X) = 1− E{m−1d(X)T V −1
X d(X)}, (6)

where V X is the prior variance matrix of X. (If V X is of less than full rank, we first reduce X to
a maximal sub-collection for which V X has full rank.) We term (6) the Bayes linear utility as we
may evaluate U(X) purely in terms of the sufficient belief specifications necessary to carry out a
Bayes linear analysis. A priori, our variance matrix for d(X) is V X −CXDV −1

D CDX , where V D

is the variance of the data and CXD = C ′
DX is the covariance between X and the data, D. The

Bayes linear utility U(X) in (6) is therefore evaluated as

U(X) = 1−m−1trace{V −1
X (V X −CXDV −1

D CDX)} = 1−m−1trace{MD} (7)

where MD = I − V −1
X CXDV −1

D CDX is the adjustment transform matrix for X adjusted by
the data from the proposed experiment (see Farrow and Goldstein, 1993). This utility may be
compared with the utility U (A)(X) = 1 − E{m−1d(X)T Ad(X)} which leads, in the univariate
normal linear model, to the Bayesian A-optimality criterion (e.g. Chaloner and Verdinelli, 1995).
In our multivariate setting we obtain 1 − m−1trace{A(V X − CXDV −1

D CDX)} and we choose
A = V −1

X although other values of A could easily be used.
(iii) Suppose that we judge that increased knowledge for some linear combinations of elements of

X is more important than for others. We construct the linear space L(X) of all linear combinations
of the elements of X, i.e. all quantities of the form

∑k
i=1 ciXi. Then we divide L(X) into linear
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subspaces L1, ...,Lr for which we judge increased knowledge about each linear combination within
a particular collection Li to be of equal value. We assess the utility, Ui(Li), of the experiment for
learning about the elements of subspace Li, by applying (6) to any maximal collection of elements
of Li with variance matrix of full rank.

In many circumstances, we will judge gains in information over each of L1, ...,Lr to be mutually
utility independent. Therefore, for a particular choice of design and a particular collection of
experimental outcomes, we can represent our overall benefit utility, Ub, for the experiment by
(1+kbUb) =

∏r
i=1[1+kbbiUi(Li)], where Ui(Li) is given by (6). We call this form the mixed Bayes

linear utility for X. In the special case where kb = 0, Ub is given by the additive form

Ub =
r∑

i=1

biUi(Li), (8)

with constraints as in (1). Similarly, if r = 2, we have a binary benefit node and

Ub = b1U1(L1) + b2U2(L2) + hbU1(L1)U2(L2), (9)

with constraints as in (2), and where r > 2 and the parameter kb may be nonzero,

Ub =
∏r

i=1[1 + kbbiUi(Li)]− 1∏r
i=1(1 + kbbi)− 1

(10)

with constraints as in (3). These scalings ensure that, for any choices of trade-off parameters in
the mixed Bayes linear utility, the utility of carrying out no experiment is zero, while the utility of
a precise experiment for all elements of X is 1, so that the overall benefit utility is on the standard
scale.

Note that, when the additive form (8) is used, this benefit utility function leads to a “weighted”
or “compound” optimality criterion (e.g. Clyde and Chaloner, 1996) in which the individual terms
are the Bayes linear version of the multivariate generalisation of the usual Bayesian A-optimality
criterion. The forms (9) and (10) allow greater flexibility in the way that the individual “criteria”
are combined.

It is also possible to justify the use of (7) as the expectation of a utility function based directly
on the value of d(X).

4 Choosing optimal designs for the glucose trial

4.1 Example: utilities for the glucose trial

We now illustrate the Bayes linear choice of optimal design for an experiment based on a MUIH
by working through the prior assessment and design choice for the glucose trial example. For the
purposes of this example, we will consider the utility of the financial costs to be proportional to
the monetary costs, as given in Table 1. For simplicity, the expected marginal ethical utility for
each type of patient was elicited directly as there was no prior belief in substantial correlations
between benefits and ethical costs. The expected ethical costs were assessed in “units of ethical
cost.” (Compare Farrow and Goldstein, 1992). Both costs varied between groups. All costs
were then converted to an approximately [0, 1] utility scale by Ue = (emax − ecost)/emax and
Uf = (fmax − fcost)/fmax, where ecost and fcost are the ethical and financial costs and emax and
fmax are the values corresponding to a “large” experiment, actually one with 40 patients in each
group. The expected ethical and financial costs (in scaled units) and the corresponding marginal
utilities for a single patient in each group were as given in Table 1. Notice that the ratio of Group
2 to Group 1 costs is greater for ethical costs than for financial costs and so the design will be
sensitive to the trade-off between financial and ethical costs, tending to concentrate patients in
the healthier group if ethical costs are given relatively high weighting. However, the experimenters
found it very hard to specify this trade-off. We will be particularly concerned with considerations
of trade-off sensitivity in later sections.
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Table 1: Ethical and financial costs. (1): Glucose only. (2): Glucose and C-Peptide.

Ethical Cost Financial Cost (1− Ue)× 103 (1− Uf )× 103

(1) (2) (1) (2)
Group 1: Well controlled 192 3.50 8.86 6.82 4.02 10.19
Group 2: Insulin 512 7.52 12.88 18.18 8.65 14.81

The benefit utility is based on our gain in knowledge. For each patient in each group, there
are two possible measurements, glucose and C-peptide, at each of two time points. We wish to
learn about the means at each time point for each variable in each group. Each quantity may be
of clinical interest, as may be various combinations of the quantities. Because the purpose of the
OGTT is to distinguish the more severe from the less severe level of diabetes, it is natural to work
in terms of the following four sets of quantities which, collectively, are equivalent to the means:
M1 and M2, the fasting (i.e. t = 0) means, and M3 and M4, the mean change over 60 minutes,
for C-peptide and glucose respectively. The change in glucose level over time and the fasting level
for an individual patient are diagnostic for diabetes.

These groups having been established, the marginal utility function for the benefit from learning
about each of these groups of quantities is of the form (6) with mi = 2. The utilities for the four
groups are then combined using (8), (9) or (10) to give Ub. The financial and ethical cost utilities
are combined using (5) and finally the overall utility is formed using (4).

Our overall utility function might contain products of marginal utilities and we may well have
beliefs in which the utilities are not independent of each other. In some cases evaluation of expec-
tations may require specification of moments beyond the second. However we will often be able
to simplify this task, even without fully specified probability distributions. For reasons of space
details are left to be presented elsewhere.

4.2 Example: choice of trade-off parameters

To simplify our account, we first consider the case where all utilities are additive. We therefore
need to specify the benefit trade-off values b1, . . . , b4 in (8), the cost trade-off ae, af in (5) and the
cost benefit trade-off ac, ab in (4).

Our experience was that the four benefit utilities were sufficiently comparable that we could
ask a series of elicitation questions which effectively fixed these values. The values used for this
illustration are b1 = 0.18, b2 = 0.12, b3 = 0.35 and b4 = 0.35, and these are regarded as fixed
for now. (For further details of the elicitation of such a benefit utility, see Farrow and Goldstein,
1992). All evaluations of expected benefit utilities are given by (7).

The financial-ethical trade-off was assessed indirectly by comparing the desirability of omitting
patients from different groups. For example, the financial cost for a patient in Group 2 is 45 %
greater than for a patient in Group 1, when both variables are observed, but the ethical cost for
Group 2 is 167 % greater than that for Group 1. In fact, the value chosen was af = 0.45 which
suggests that one patient from Group 2 would “cost” approximately the same as two from Group
1 and gives 22% more weight to financial cost than to ethical cost in Group 1 but still gives 50%
more weight to the ethical cost than to the financial cost for a patient in Group 2.

We found it helpful in eliciting the cost-benefit trade-off to evaluate the expected costs and
benefits for a range of simple, standard designs, for which we chose (n, n, 0, 0) designs with n =
1, 2, . . . , and to elicit np, the preferred value of n among these, where the various costs were to be
informally weighed against the square root of the expected benefit, expressed as a “reduction in
standard deviation.” A rough preference for np = 15, combined with af = 0.45 led to a value of
ab = 0.85.

The experimenters felt uncomfortable with the need to specify precise values for these trade-off
parameters. Thus there is a need for methods which do not rely on such precise choice of trade-offs.
We will introduce methods of this type in Section 5.
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Table 2: Beliefs for simplified example.

Mean Variances and Covariances
M110 M111 M120 M121 M210 M211 M220 M221

M110 0.41 0.10000 0.10000 -0.04400 -0.04400 0.05000 0.05000 -0.02200 -0.02200
M111 2.17 0.20580 -0.04400 -0.08370 0.05000 0.10460 -0.02200 -0.04490
M120 1.95 0.04000 0.04000 -0.02200 -0.02200 0.02000 0.02000
M121 3.27 0.07145 -0.02200 -0.04490 0.02000 0.04015
M210 -0.69 0.09000 0.09000 -0.03900 -0.03900
M211 -0.06 0.20260 -0.03900 -0.08655
M220 2.30 0.03500 0.03500
M221 3.81 0.07690

Variances and Covariances Variances and Covariances
R1i10 R1i11 R1i20 R1i21 R2i10 R2i11 R2i20 R2i21

R1i10 0.09905 0.06905 -0.02802 -0.02302 R2i10 0.06383 0.04083 -0.00360 -0.00260
R1i11 0.09905 -0.02302 -0.02802 R2i11 0.06383 -0.00260 -0.00360
R1i20 0.12707 0.09207 R2i20 0.06383 0.04083
R1i21 0.12707 R2i21 0.06383

4.3 Example: prior beliefs

As our approach is based on the quantification of gains in knowledge, it is necessary to express
our current state of knowledge about the O.G.T.T. Currently, elderly patients are being classified,
at least in part, on their response to this test, so there already exists an implicit prior judgment
as to the relevance of the outcome of the test to such patients. Establishing the framework for
such a prior specification is outside the scope of this paper, and so here we give only the necessary
moment specifications.

Within each group, we suppose that individuals are second-order exchangeable (i.e. second or-
der beliefs are unaffected by permutation of the members of the group) and co-exchangeable with
individuals in the other group (i.e. covariances between individuals are unaffected by permutation
of members within each group). From the representation theorem for second order exchangeable
structures (Goldstein, 1986), we may therefore express the observation at time t for individual
i in group g for variable v as Ygivt = Mgvt + Rgivt where Mgvt may be considered to be the
underlying population mean at time t in group g and Rgivt, termed the individual variation, rep-
resents the deviation, from that expectation, of individual i. Individual variation of one individual
is uncorrelated with that of another individual in any group and with any underlying mean. Thus
E(Rgivt) = 0, E(MgvtRg′i′v′t′) = 0 for all g, v, i, t, g′, v′, i′, t′ and E(RgivtRg′i′v′t′) = 0 unless
g = g′ and i = i′. Thus belief specification requires prior expectations, variances and covariances
for the collection of means Mgvt and variances and covariances within individuals for the individual
variation Rgivt.

The values are given in Table 2. Variables 1 and 2 are the logarithms of the C-peptide and
glucose concentrations respectively. We worked in terms of logarithms to stabilise the variance and
to make the uncertainties symmetric in the sense that the events that an observation is more than
x units greater or less than its expectation would be judged to be equally likely.

4.4 Example: optimal design

Using the trade-off parameters specified in section 4.2, the optimal choice is (21, 11, 1, 0). That is,
we have 22 subjects in Group 1 and 11 in Group 2 but, for 1 of the patients in Group 1, we only
analyse the blood samples for glucose content. The final zero shows that it is not worth subjecting
a Group 2 patient to the trial if we are not going to measure C-peptide.
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We can examine the sensitivity of this choice to the trade-offs by varying the trade-off param-
eters. For example, holding af = 0.45 fixed but increasing ab to 0.90, corresponding to np = 20,
gives an optimum at (26,15,3,0), while decreasing ab to 0.74, corresponding to np = 10, gives an
optimum at (14,7,0,0). Similarly, holding ab = 0.85 constant but varying af , setting af = 1, so
that ethical cost is ignored, gives an optimum of (13,11,14,1), while setting af = 0, so that financial
cost is ignored, gives an optimum of (24,11,0,0).

4.5 Example: generalisation to binary nodes

To illustrate the use of binary nodes we now allow hd in (4) and hc in (5) to be nonzero. In this
example we consider Uf , Ue and Ub to be stochastically independent.

Consider first the ethical-financial trade-off. We might prefer the costs of a design where the
expectations of the two scaled cost utilities, afUf and aeUe, are approximately equal to one where
they are very different. This would suggest a positive value for hc. With af = 0.45, ae = 0.55,
hc = 0, we have E(afUf ) = E(aeUe) approximately when n2 = 30 + 0.25n1 among (n1, n2, 0, 0)
designs, for example (8,32,0,0). Also, approximately, E(afUf + aeUe) is a constant when n1 + 2n2

is a constant so that, for example, we would be indifferent in terms of costs between (0,35,0,0),
(8,31,0,0) and (16,27,0,0). Now consider the effect of varying hc. If we continue to be indifferent in
terms of cost between (0,35,0,0) and (16,27,0,0) this implies, approximately, that ae = 0.55(1−hc)
and af = 0.45(1 − hc) but, a preference for the central design, (8,31,0,0), over either of these
suggests a positive value for hc. However, in this particular case, even increasing hc to 1.0 is
insufficient to make (8,32,0,0), a slightly larger design, preferable to (0,35,0,0) or (16,27,0,0).

If we set hc = 1.0 and ae = af = 0.0, we need to adjust ab to 0.875 and ac to 0.125 to preserve
np = 15. The optimum design with these parameter values is (19,11,3,0). Similarly by maintaining
ae = 0.55(1− hc) and af = 0.45(1− hc) and setting hc = −0.81818, the smallest value it can take
under this condition, we obtain ae = 1.0 and af = 0.81818. This requires adjustment of ab to 0.81
and ac to 0.19 and this makes the optimum design (22,11,0,0).

Restoring the financial-ethical trade-off parameters to the values specified in section 4.2, we
turn our attention to hd. If we set hd = 1, we have no choice over the values of ab and ac. This leads
to np = 5 which conflicts with the expressed value. In fact we need to reduce hd to approximately
0.18, while holding ac = 0, to restore np = 15. The overall optimum in this case is (21,11,1,0).

Similarly, if we set hd = −1, we must have ab = ac = 1 and this leads to a preference for no
experiment at all since this maximises the cost utility. We can restore the preference for np = 15
by setting hd = −0.91, ab = 1.0 and ac = 0.91. This gives an overall optimum at (28,16,4,0), a
design which clearly compensates for a poor cost utility with a good benefit utility.

These explorations show that, while the choice of design seems to be fairly insensitive to the
value of hc, it can be greatly affected by the value chosen for hd.

5 Using Imprecise Trade-off Parameters

One of the most difficult tasks in specifying a mutually utility independent structure is the quan-
tification of the various trade-off parameters in the forms (1), (2) and (3), as this typically requires
the comparison of intrinsically different types of costs and benefits. For example, in medical stud-
ies, many clinicians would be unwilling to place a precise financial cost on the possible health risks
to patients in a trial. Further, many experiments must satisfy various participants who may make
different judgments as to such trade-offs. In practice, this means that we can often elicit Ue and
Uf , but not elicit an agreed value for ae, af or hc, in (5). Therefore, it is of fundamental interest
to consider problems where we are unwilling to fix on particular trade-off values or where a group
of individuals must make a joint decision, and there is broad agreement on the marginal utilities,
but different members of the group have different priorities when trading risks. We now develop
an appropriate methodology for treating such imprecise utility.

We proceed as follows.
(i) We explain how we may formally introduce imprecision into our utility trade-offs, as follows.

For each child node at which attributes are combined, we identify which preferences we are prepared
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to assert between collections of sub-attribute values. From this collection of preferences, we deduce
the implied constraints on the trade-off parameters which are used to combine attributes at that
node. (In a precise utility specification, we would be prepared to specify preferences between all
sets of attribute values, which would uniquely determine the trade-off values).

(ii) We now introduce a weak condition which is often sufficient to eliminate many of the designs
under consideration, essentially that we should prefer design A to design B if we prefer A to B
under every choice of trade-off parameters consistent with our stated preferences. (Under such
circumstances, we would remove design B from further consideration). We then identify a greatly
reduced subset of possible trade-off choices which is sufficient to check such design preferences,
essentially the vertices of the region of allowable trade-off parameters identified at stage (i).

(iii) We now suggest various theoretical arguments for selecting a particular choice of design
among those retained at stage (ii), which is based on optimising a linear combination of the utilities
corresponding to the vertex trade-offs identified as sufficient at stage (ii). We discuss the properties
of this choice, and illustrate how we may explore the sensitivity of our chosen design to variation
in our specification.

If we allow imprecision in some of the elements of θ, then we refer to the resulting utility spec-
ification as an imprecise independence hierarchy (IIH). This methodology is much more straight-
forward to describe for simple imprecise independence hierarchies, where all nodes are additive or
binary, than for the more general case. If there are no multiplicative nodes in the hierarchy, then
we refer to the specification as a simple imprecise independence hierarchy (SIIH). To clarify the
exposition, we shall first present the theory for the SIIH.

5.1 Imprecise utility trade-offs

The theory of imprecise probability can be built around the notion that, while we may be unwilling
to specify a precise value for the probability of some particular event, there are various prices at
which we would certainly buy a gamble on the outcome of the event and other prices at which we
would certainly sell such a gamble. These preferences may be used to construct upper and lower
probabilities for the corresponding event, see e.g. Walley (1991).

We may apply a similar approach to develop the theory of imprecise utility and in particular
to quantify the imprecision in trade-offs between attribute values. Although we are unwilling to
place strict values on the trade-offs, there will be certain combinations of outcomes over which
we are prepared to state preferences and these comparisons establish the region of the space of
trade-off parameters which we must consider. We choose to elicit our imprecision in the values of
the trade-off parameters θ based on our stated preferences over utility combinations for outcomes,
as this is usually more meaningful than considering directly the imprecision in the elements of θ.
We proceed as follows.

For each child node, we make a collection of pairwise comparisons between vectors of values of
parent utilities (or, equivalently, the corresponding vectors of attribute values). As we shall vary
the trade-off parameters, and thus the utilities at the child nodes, we require a scale for all utilities
in the IIH, whose interpretation does not depend on the choice of trade-off parameters. Recall
that the standard scale that we are using is such that a utility value of u at node i may always be
interpreted as the utility of a gamble giving Ci with probability u and ci with probability 1 − u,
irrespective of the chain of trade-off parameters in the hierarchy.

At node i, we denote strict preference for utility vector U = (U1i, U2i, ..., Usi) over utility vector
V = (V1i, V2i, ..., Vsi) as U �∗ V , and denote the weak preference, namely that we do not prefer
V to U as U �∗ V . Each such preference places constraints on the allowable choices for the
trade-off parameters φi. We term the collection, R, of all sets of trade-off parameters consistent
with each of the stated preferences the feasible set of choices for the trade-off parameters. We say
that the collection of pairwise comparisons is consistent if R is non-empty, i.e. there is at least
one set of trade-off parameters satisfying all stated preferences. A comparison is redundant if its
removal does not affect R. A change in any marginal utility will produce a change of the same
sign in the overall utility. Therefore, when comparing two utility vectors where A �∗ B, we may
consider whether we can decrease any of the utilities in A or increase any of the utilities in B while
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preserving the preference. In this way, we should avoid redundancy and make stringent comparisons
leading to the smallest feasible set that we can determine through our stated preferences. We
describe a comparison as sharp if (U11, . . . , Us1) �∗ (U12, . . . , Us2) but there is no vector (δ1, . . . , δs)
such that δi ≥ 0, for i = 1, . . . , s, and

∑s
i=1 δi > 0 for which we are prepared to assert that

(U11 − δ1, . . . , Us1 − δs) �∗ (U12, . . . , Us2). In general, we seek sharp comparisons to restrict R as
far as possible.

We have described our formulation from the viewpoint of an individual who does not wish to
state precise utility trade-offs. The same formulation describes a group of decision makers who
agree on the marginal utilities but disagree on the utility trade-offs, where now each preference
between pairs of utility vectors denotes the sharpest comparison which is agreed by all members
of the group.

For additive and binary child nodes, elicitation is unconstrained. For each such node, we state
whichever preferences we wish between pairs of utility vectors for the parent nodes. However, if we
allow such unconstrained comparisons at the multiplicative child nodes, then the analysis that we
shall develop becomes more complex. Therefore, we shall leave discussion of such nodes to section
8. We now describe the implications of the above elicitation.

Theorem 1 The shape of the region of trade-off parameters resulting from the above elicitation
scheme for an SIIH is as follows. At each additive or binary node i, we obtain a convex polyhedron
Ri for the allowable values of φi. The regions R1, . . . , Rn together define a region R in the combined
space of parameters θ, where θ ∈ R if and only if φi ∈ Ri for i = 1, . . . , n.

Proof Consider first a single child node. We treat the two types of node in turn.
(i) Suppose node i is additive. From the definition, the parameters a2, . . . , as lie within a convex

polyhedron bounded by a2 = 0, . . . , as = 0 and
∑s

i=2 ai = 1. Suppose that, for a particular pair
of vectors of parent utilities (U11, . . . , Us1) �∗ (U12, . . . , Us2). This preference imposes the linear
inequality a1(U11 − U12) + a2(U21 − U22) + · · · + as(Us1 − Us2) ≥ 0 on the values of a2, . . . , as

(where a1 ≡ 1 −
∑s

i=2 ai), which is of the form b1 +
∑s

i=2 biai ≥ 0. If a1 = (a12, . . . , a1s)′ and
a2 = (a22, . . . , a2s)′ both satisfy this inequality, then so does λa1 + (1− λ)a2. Thus the region Ri

is convex and the boundary is made up of a finite number of intersecting planes.
(ii) Suppose node i is binary. If (U11, U21) �∗ (U12, U22) then (1−a2−h)(U11−U12)+a2(U21−

U22)+h(U11U21−U12U22) > 0. Therefore, binary nodes are the same as additive nodes except that
the parameters are a2, h and the boundaries given by the definition are a2 = 0, a2 = 1, h = −a2

and h = 1− a2.
As all preferences are based on the marginal utilities using the standard scale, the ranges of

parameters at one node are independent of the values at other nodes and so the whole feasible set
is as described. 2

5.2 Example: trade-off imprecision

We now illustrate the construction of a feasible set. For example, in the hierarchy in the OGTT
example, shown in figure 1, trade-off imprecision at node B is determined by eliciting pairwise
preferences between values of the vector {U1(L1), . . . , U4(L4)}, while at node C ranges are deter-
mined by preferences between vectors (E,F ). In every case, preferences are expressed between
lotteries over the corresponding marginal attributes. For example, at node C, we express prefer-
ences between pairs of utility vectors (E∗, F ∗) and (E∗∗, F ∗∗). All utilities are expressed in the
standard scale.

Suppose that, at node B, for the vector {U1(L1), . . . , U4(L4)}, (0.6, 0.9, 0.7, 0.7) �∗ (0.7, 0.7, 0.7, 0.7).
This leads to 0.7b1 +0.7(1−b1−b3−b4)+0.7b3 +0.7b4 < 0.6b1 +0.9(1−b1−b3−b4)+0.7b3 +0.7b4

and thence to 1.5b1 + b3 + b4 < 1. Further, increasing the value of any of the utilities in the
second vector leads to uncertainty over the preference so that, for example, it is not agreed
whether (0.6, 0.9, 0.7, 0.7) should be preferred to (0.71, 0.7, 0.7, 0.7). Therefore the comparison is
sharp and we adopt 1.5b1 + b3 + b4 < 1 as part of the boundary of our parameter region. Simi-
larly, (0.81, 0.7, 0.7, 0.7) �∗ (0.6, 0.74, 0.74, 0.74) but we are unwilling to state preferences between
(0.8, 0.7, 0.7, 0.7) and (0.6, 0.74, 0.74, 0.74). The definite preference here leads to b1 > 0.16.
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Table 3: Trade-off parameter ranges.

Node B Node C Node D
Vertex a1 a2 a3 a4 ae af hc ab ac hd

1 0.24 0.12 0.32 0.32 0.577 0.823 -0.400 0.82 0.16 0.02
2 0.16 0.20 0.32 0.32 0.225 0.375 0.400 0.82 0.27 -0.09
3 0.16 0.08 0.44 0.32 0.871 0.529 -0.400 0.90 0.27 -0.17
4 0.16 0.08 0.32 0.44 0.526 0.074 0.400 0.90 0.16 -0.06

Also (0.7, 0.7, 0.77, 0.7) �∗ (0.78, 0.78, 0.6, 0.78) and (0.7, 0.7, 0.7, 0.77) �∗ (0.78, 0.78, 0.78, 0.6)
but we do not state a preference between (0.7,0.7,0.76,0.7) and (0.78,0.78,0.6,0.78) or between
(0.7,0.7,0.7,0.76) and (0.78,0.78, 0.78,0.6). Here, the definite preferences lead to b3 > 0.32 and
b4 > 0.32. These four inequalities define a feasible region. We could impose more constraints but
the region would always be the convex hull of a finite number of vertex points. In the absence of
suitable information on definite preferences, the absolute limits would apply. For example, if the
first inequality above was not given, then b1 + b3 + b4 < 1 would be the fourth face of the region.

Node C is a binary node. Suppose that, for the vector (Ue, Uf ), (0.5, 0.5) �∗ (0.65, 0.4) and
that this comparison is sharp, leading to 0.5ae +0.5af +0.5×0.5hc ≥ 0.65ae +0.4af +0.65×0.4hc

which gives −0.15ae + 0.1af − 0.01(1 − ae − af ) ≥ 0 and hence af ≤ 0.09 + 1.27ae. Similarly
(0.6, 0.27) �∗ (0.5, 0.5) and this leads to af ≥ −0.62 + 1.32ae. To obtain two more inequalities it
is helpful to introduce lotteries. Suppose that we offer a choice between the following alternatives:
(1) with certainty attribute values such that Ue = Uf = 0.5; (2) with probability α, attribute
values such that Ue = Uf = 1, that is zero cost, and, with probability 1− α, attribute values such
that Ue = Uf = 0. Suppose that (2) is preferred whenever α ≥ 0.6, leading to 0.5ae + 0.5af +
0.25(1 − ae − af ) ≤ 0.6 and hence af ≤ 1.4 − ae, and that (1) is preferred whenever α ≤ 0.4,
leading to af ≥ 0.6 − ae. These latter two constraints are equivalent to −0.4 ≤ hc ≤ 0.4. These
four constraints give the four sides of a quadrilateral region in the plane of ae and af .

Consider the non-marginal node D. Suppose that we offer a choice between the following al-
ternatives: (1) with certainty, attribute values such that Ub = 0 and Uc = 1, equivalent to the
expectations when no experiment is conducted; (2) with probability α, attribute values such that
Ub = Uc = 1, that is complete information at no cost, and, with probability 1 − α, attribute
values such that Ub = Uc = 0, that is a costly experiment which provides no information. Sup-
pose that (1) is preferred whenever α < 0.16 and that (2) is preferred whenever α > 0.27. Then
0.16 ≤ ac ≤ 0.27. Similarly, if, when offered the alternatives: (1) with certainty attribute values
such that Ub = 1 and Uc = 0, that is a costly experiment which provides full information; (2) with
probability α, attribute values such that Ub = Uc = 1 and, with probability 1−α, attribute values
such that Ub = Uc = 0; (1) is preferred whenever α < 0.82 and (2) is preferred whenever α > 0.90,
then 0.82 ≤ ab ≤ 0.90. Thus we obtain a rectangular region in the plane of ab and ac. However, in
general, the region need not be rectangular and boundaries not parallel to the ab and ac axes can
be obtained by varying the utility values offered in the lotteries.

Table 3 gives the vertex set Pi for the feasible region Ri, at each node i.

6 Pareto optimality

6.1 Pareto optimal decisions

We have to choose from a set D of designs. The utility of any choice of design A ∈ D depends
on the values of the trade-off parameters that we specify. As we are comparing different choices
of trade-offs, we denote the utility of A, using trade-off parameters θ, evaluated as described in
section 3, as UAθ.

Different choices of trade-off parameters induce different preference orderings over the possible
alternatives. A natural weak, partial preference ordering over allowable alternatives is that alter-
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native A is at least as good as B, over feasible region R, written A � B, if UAθ ≥ UBθ, ∀θ ∈ R,
A is preferred to B, over R written A � B, if A � B and UAθ > UBθ for some θ ∈ R, and A is
equivalent to B, written A ' B, if UAθ = UBθ ∀θ ∈ R. Alternative A is Pareto optimal for R if
there is no other allowable alternative B for which B � A over R. It seems reasonable to restrict
attention to Pareto optimal alternatives. Furthermore, if we form equivalence classes of equivalent
decisions A1 ' A2 ' ... ' Ar, then it is reasonable to restrict attention to only one representative
member of each equivalence class. When we eventually choose a design, we may re-examine the
collection of alternatives in the corresponding equivalence class by any subsidiary criteria, which
have not yet been introduced into the problem. In this section, we discuss the identification of the
Pareto optimal class. In later sections we suggest criteria for choosing between the Pareto optimal
designs.

We now develop an equivalent form for the Pareto optimal designs which is much easier to
compute. We first consider the difference between the expected utilities of a general pair of alter-
natives A,B as a function of the trade-off parameters θ, namely dAB(θ) = UAθ − UBθ. We have
the following lemmas.

Lemma 1 In a SIIH utility, the utility Uj at any non-marginal node j is of the form

Uj(θj) =
∑

l

{
πlj(θj)U?

lj

}
(11)

where πlj(θj) is a product of parameters with not more than one from each node and U?
lj is a

product of marginal utilities (possibly just one).

Proof. Clearly (11) is true for a marginal node.
Suppose (11) is true for the utilities at each of the parent nodes of a node i. Then, whether i

is additive or binary, it is clearly also true at i. Hence, by induction, (11) holds for any node. 2

For each node i, we define Pi to be the set φi = {φi1, . . . , φir(i)} of values at the r(i) > m(i)
vertices of Ri, and denote by P the set of overall vertex specifications for R, so that P is the subset
of R with elements θ = (φ1, . . . ,φn) ∈ R such that φi ∈ Pi for i = 1, . . . , n.

Lemma 2 If we have a SIIH utility, then, for any alternatives A,B, the minimum and maximum
values of dAB(θ) in R are taken at points in P.

Proof. From Lemma 1 it follows that dAB(θ) =
∑

l[πl(θ){EA(U?
l )−EB(U?

l )}], where EA and
EB denote expectations under designs A,B respectively.

Consider node i, with parameters at all other nodes fixed. We see that dAB(θ) is a linear
function of the parameters at node i. It therefore follows that it is maximised with respect to those
parameters at a vertex of Ri.

We can now fix φi1, . . . , φim(i) at this point in Pi and vary the parameters of another node i′.
By applying the same argument we can see that we can move these parameters to a point in Pi′

without increasing dAB(θ). This argument can then be applied to the parameters at each node in
turn leading to the conclusion that for any point in R there is a point in P at which the value of
dAB(θ) is no greater.

Similarly, for any point in R there is a point in P at which the value of dAB(θ) is no less. 2

We now deduce that it is sufficient to check for Pareto designs in the vertex set P .

Theorem 2 For a SIIH utility, Pareto optimal alternatives for R are the same as Pareto optimal
alternatives for P.

Proof If dAB ≥ 0 over P it follows from Lemma 2 that dAB ≥ 0 over R. The converse is
obvious since P ⊆ R. It follows immediately that A � B over R if and only if A � B over P. If
A � B over P then dAB ≥ 0 over P and dAB > 0 at some point in P so, since P ⊆ R, it also
follows that A � B over R. The converse follows since the maximum of dAB in R must be in P.2
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Table 4: Maxima and minima of n12, n22, n11, n21 among designs optimal at the vertices of R.

n12 n22 n11 n21

Minimum 13 8 0 0
Maximum 29 15 12 0

6.2 Example: Pareto optimal designs

For each of the sixty four vertices of R, we found the design which maximised the overall utility at
this vertex. There is a wide variety among these vertex-optimal designs. Table 4 gives the maxima
and minima of n12, n22, n11, n21 among them.

We searched for Pareto optimal designs among all designs where 11 ≤ n12 ≤ 30, 5 ≤ n22 ≤ 24,
0 ≤ n11 ≤ 19 and 0 ≤ n21 ≤ 4. This set of 40000 candidate designs contains every design optimal
at a vertex of R with some room to spare. Among these we found 433 Pareto optimal designs.
The search can be conducted quickly since we know, from Theorem 2, that it is only necessary to
compare candidate designs at the vertices of R.

There are various ways by which we can, in practice, further reduce the size of the Pareto
optimal set, by eliminating designs which are “almost dominated” everywhere over the feasible
region. For reasons of space, we shall address such reductions elsewhere, and instead, we now
consider further criteria for selecting designs within the Pareto optimal collection.

7 Boundary linear utility

7.1 Definitions and motivation

The feasible region for the trade-off parameters in a SIIH is the convex hull of a finite collection of
trade-off parameters θi ∈ P, i = 1, . . . , s. Let Ui be the utility function determined by the choice
of trade-offs θi ∈ P, i = 1, . . . , s. Any function of the form

Ūλ =
s∑

i=1

λiUi (12)

where λ = (λ1, . . . , λs) are non-negative constants such that
∑s

i=1 λi = 1 is termed a boundary
linear utility . For any such Ūλ, we may identify the rule which maximises ŪA,λ =

∑s
i=1 λiUA,i,

where UA,i is the utility of alternative A with trade-off θi.
The boundary linear form is motivated by various theoretical considerations as follows. Suppose

that, to solve the design problem, we intend to construct a single overall utility function Ū . We
have shown that Pareto optimality over the full feasible region of trade-off parameters is completely
determined by optimality over the vertex set P . Suppose that we therefore insist that Ū is to be a
function only of the corresponding boundary utilities U1, . . . , Us. Each of the following arguments
suggests the boundary linear form.

1. If Ū is to agree with the weak preference ordering, i.e. Ū(A) > Ū(B), Ū(A) ≥ Ū(B), when
A � B, A � B, over P , respectively, then Harsanyi’s theorem (Harsanyi, 1955) implies that
Ū must be of the form (12), for some λ. A further condition that Ū must be unaffected by
a permutation of the utilities at the points in P would imply that λi = 1 for all i (see e.g.
Resnik, 1987).

2. Suppose that we regard, for each alternative, the values of the boundary utilities U1, . . . , Us

as attributes of the alternative; for example, the various boundary values of the trade-off
parameters might be identified as corresponding to the different views of members of some
committee which must be synthesised by the decision maker. Theorem 10.6 of Keeney and
Raiffa (1976) shows that the following assumptions hold if and only if Ū is of the form (12):
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(a) the attributes {Ui, Uj} are preferentially independent of their complement Ũij for all
i 6= j, that is, the conditional preference structure over Ui, Uj does not depend on the
other utilities;

(b) the conditional utility function u?
i over the attribute Ui, in the combined utility, is

strategically equivalent to Ui, that is, u?
i and Ui imply the same preferences over lotteries;

(c) each attribute Ui is utility independent of the others;

(d) if there is agreement over parameter values, that is the ranges for parameters shrink to
a point, then the combined utility should be the same as each of the individual utilities;

3. If we regard the boundary utilities , U1, . . . , Us, as being the utilities of members of a
group then Theorem 2 of Keeney (1976) shows that the following assumptions (adapted
from Keeney) hold if and only if Ū is of the form (12) :

(a) s ≥ 2, the number of alternatives is at least two and overall utilities are specified for all
possible U1, . . . , Us.

(b) If the overall utilities indicate alternative A is preferred to alternative B for a certain
set of values of U1, . . . , Us, then the overall utilities must imply that A is preferred to
B if:

i. the values of U1, . . . , Us are not changed for alternatives other than A and
ii. the values of U1, . . . , Us under A either remain unchanged or are increased.

(c) If an alternative is eliminated from consideration, the new overall utilities for the re-
maining alternatives should be equivalent to the original overall utilities for these same
alternatives.

(d) For each pair of alternatives, A and B, there is some set of values U1, . . . , Us such that,
overall, A is preferred to B.

(e) There is no member of P such that whenever A is preferred to B at that point, A is
preferred to B overall regardless of the utilities at other members of P.

In addition to such theoretical support, the boundary linear form is easy to interpret, gives a
clear comparison between different choices and leads to tractable procedures even for large numbers
of alternative decisions. The choice of the λ weights can be used to emphasise or de-emphasise the
importance of a particular attribute by putting more or less weight on vertices corresponding to
different values for a particular trade-off.

7.2 Properties of the boundary linear utility

From Theorem 2 we may deduce the natural relation between Pareto optimality and Bayes rules
for boundary linear utilities as follows.

Corollary 1 A decision in D which is either (i) a unique Bayes decision for some Ūλ, or (ii) a
Bayes decision for some Ūλ, with λi > 0 for i = 1, . . . , s, is Pareto optimal over R.

Proof For any pair of decisions A,B, we have ŪAλ − ŪBλ =
∑s

i=1 λidAB(θi). If A is the
unique Bayes decision for Ūλ then, for some i, dAB(θi) > 0. Alternately, if A is Bayes for Ūλ, with
each λi > 0 then, for any other decision B, either dAB(θi) = 0 for all i, and hence, by lemma 2,
dAB(θ) = 0 everywhere in R, or dAB(θi) > 0 for at least one i. Hence A is Pareto optimal over R.
2

It is often helpful to equate the boundary linear form with the utility at interior trade-off
values. Suppose that at node i we assign weights λi1, . . . , λir(i) to φi1, . . . ,φir(i), for i = 1, . . . , n,
and that the weight λ assigned to any overall parameter specification θ obtained by combining
specifications from the n nodes, is given by the product of the corresponding weights. That is,
if θ is the combination of φ̃1, . . . , φ̃n, which were assigned weights λ̃1, . . . , λ̃n, at nodes 1, . . . , n,
then λ =

∏n
i=1 λ̃i. Such a weight specification is called a multiplicative weighting. For such a
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Table 5: “Best” and “worst” Pareto optimal designs, equal vertex weights.

Rank Design Ūλ Rank Design Ūλ

1 21 11 1 0 0.883155 11 19 11 4 0 0.883063
2 20 11 2 0 0.883146 12 22 11 1 0 0.883062
3 21 11 0 0 0.883138 426 26 15 5 0 0.878881
4 20 11 1 0 0.883137 427 23 15 9 0 0.878868
5 19 11 3 0 0.883129 428 14 8 2 0 0.878720
6 20 11 3 0 0.883115 429 13 8 4 0 0.878667
7 22 11 0 0 0.883114 430 15 8 0 0 0.878547
8 19 11 2 0 0.883114 431 13 8 3 0 0.878268
9 21 11 2 0 0.883103 432 14 8 1 0 0.878210

10 20 11 0 0 0.883073 433 13 8 2 0 0.877745

specification, we may vary the weights at each node separately. It follows directly from the fact
that Ri is a convex polyhedron that, for any θ in R, there exists a multiplicative weighting λ such
that θ = θ̄λ and, for any multiplicative weighting λ, there exists a θ in R such that θ = θ̄λ, where
θ̄λ =

∑
j λjθj and the sum is taken over all of the vertices of R. We now give a theorem which

establishes a correspondence between the elements of R and the multiplicative boundary linear
utilities.

Theorem 3 In a SIIH, if λ is a multiplicative weighting then Ūλ = U(θ̄λ).

Proof. Consider a particular term πl(θ)U?
l in (11). Suppose πl(θ) = φ1 · · ·φM . In Ūλ the

coefficient of U?
l is

∑
j λjφ1k(1j) · · ·φMk(Mj) where k(ij) denotes which value of φi is selected at

vertex j. Since λ is multiplicative, we can write λj = λ1k(1j) · · ·λMk(Mj). Hence the coefficient of U?
l

can be written
∏

m (
∑

k λmkφmk) but, since
∑

λnk = 1, we can write λmk = λmk

∏
n6=m (

∑
k λnk)

and the coefficient is
∏

m

(∑
j λjφmk(mj)

)
, which is its value in U(θ̄λ). 2

We know, from Theorem 3, that, for any θ in R, we can find λ1, . . . , λs such that U(θ) =∑
i λiUi. Values of θ not on the boundary of R will give λ values satisfying the condition for

Corollary 1. Rules which are Bayes for such internal θ values will therefore be Pareto optimal over
R.

7.3 Example: boundary linear design choices

Placing equal weights on all vertices gives (21,11,1,0) as the optimum design, as in Section 4.4.
Table 5 shows the first twelve and last eight designs when ranked in decreasing order of U(θ̄λ)

with equal weights on the vertices. Since this is a multiplicative weighting, Theorem 3 shows that
U(θ̄λ) = Ūλ. There is a relatively large drop in Ūλ after the first nine designs. The differences
in utility among the first few are small. For example, an increase in Uf of 4.52 × 10−4, that is a
decrease in financial cost of 0.0452 % of fmax, would bring the value of Ūλ for the tenth ranked
design up to that of the ninth ranked design.

Only two of the “best nine” designs are also optimal at vertices of R, the third and seventh
ranked.

Table 6 shows the maxima and minima obtained by evaluating the utility of each of the “best
nine” at each vertex, subtracting it from the best utility attainable at that vertex, then multiplying
by 103. We can make comparisons such as this because all utilities are always on the standard scale.
We see that the difference for none of these designs is ever worse than 6 × 10−3 anywhere in the
feasible region so there is little difference in performance between these designs. The third and
seventh ranked designs, being optimal at vertices, give the best minima in Table 6. The best
maximum in the table belongs to the fourth ranked design and the second best belongs to the
third ranked design. The third ranked design is thus better than the first in terms of both maxima
and minima. It will be noted that it is a very similar design.
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Table 6: Comparison of “best nine” designs with optima at vertices. The figures shown are the
maxima and minima obtained by evaluating the utility of each of the first nine designs, ranked
by U(θ̄λ) (equal weights), at each vertex, subtracting it from the best utility attainable at that
vertex, then multiplying by 103.

Design rank 1 2 3 4 5 6 7 8 9
Minimum 0.041 0.134 0.000 0.095 0.066 0.140 0.000 0.079 0.116
Maximum 5.320 5.012 4.907 4.874 4.990 5.546 5.674 4.922 5.783

This analysis suggests that our design is locally robust, i.e. that there is no design of very
different form to our suggested choice which is almost as good according to our suggested criterion.
For reasons of space, we stop our investigation at this point. Elsewhere, we will describe how the
structure allows us a much fuller investigation of the sensitivity and robustness properties of our
chosen decision, based on optimisation under different choices of boundary linear utility.

8 Methodology for multiplicative nodes

We now describe how the methodology is modified for a general IIH, in which there are imprecise
multiplicative nodes. In order to extend the types of analyses that we have described to a general
IIH, we impose the following restrictions on the preferences that we elicit at a multiplicative child
node. First, at each such node, we choose one of the parent utilities to be a standard or reference
utility. Suppose that this is U1. We set a1 ≡ 1. We then assess trade-off ranges for each of the other
attributes at the node by comparing that attribute with the standard. Thus, in each comparison,
we vary only one of the utilities at a time, so that we compare each attribute j with attribute 1.
Denote by U+

j (u) the vector (U1, . . . , Us) for which Uj = u and Ui = 0, j 6= i. For each j > 1, we
make at least one comparison of the form U+

1 (u1) �∗ U+
j (uj), and optionally, several comparisons

of the form U+
j (uj) �∗ U+

1 (u1). Secondly, we elicit pairwise preferences between utility vectors of
the form U+

1 (u) and vectors (U12, . . . , Us2), where only U1 = U12 and Uj = Uj2 are positive. The
resulting feasible set generalises theorem 1 as follows.

Theorem 4 The shape of the region of trade-off parameters resulting from the above elicitation
scheme for an IIH is as follows. At each additive or binary node i, the shape is as given in theorem
1. For each multiplicative node i, for each fixed value of k, we obtain a bounded rectangular region
Ri(k) for the remaining elements of φi. The region Ri of allowable specifications for φi is the
union of the collections {k, Ri(k)}. For each fixed value of the remaining elements of φi, we obtain
an interval for the value of k. The regions R1, . . . , Rn together define a region R in the combined
space of parameters θ, where θ ∈ R if and only if φi ∈ Ri for i = 1, . . . , n.

Proof All that we need to show is the form of the region for multiplicative nodes. Suppose node
i is multiplicative. Each preference of form U+

1 (u1) �∗ U+
j (uj), implies u1 ≥ ajuj , so that u1/uj ≥

aj . Now suppose, for example, that the utility vector U+
1 (U11) is preferred to that vector where

all utilities are zero except U1 = U12 and Uj = Uj2. This leads to U11 > U12 + ajUj2 + kajU12Uj2

and then to k < (U11 − U12 − ajUj2)/(ajU12Uj2). Thus, the form for Ri is as stated. 2

Note that while the feasible region for each additive and binary node is a convex polyhedron,
the shape of the feasible region for a multiplicative node i is more complex. Therefore, we often
choose to expand such a region to a more convenient shape R?. For additive and binary nodes
we define R?

i ≡ Ri. For multiplicative nodes we define R?
i as follows. Firstly, we identify the

maximum and minimum values of k, denoted kM , km, in the set Ri. For each trade-off parameter
aj , we define ajM , ajm to be the maximum and the minimum values of aj respectively over the
two sets Ri(kM ), Ri(km). Denote by R?

i , the rectangular region bounded by the values km < k <
kM , ajm < aj < ajM , j = 2, .... Then R?

i is the smallest rectangular region for which Ri ⊆ R?
i .

When we replace each such Ri by R?
i , we denote the corresponding extended feasible region as
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R?. For each additive or binary node define P ?
i to be the set {φi1, . . . ,φir(i)} of the r(i) > m(i)

vertices of R?
i . For each multiplicative node with s parents define P ?

i to be the set of φi such
that aj = ajm or aj = ajM , for j = 2, . . . , s, and km < k < kM . Then P ? is the set of overall
specifications each element of which is the combination of one element from each of P ?

1 , , . . . , P ?
n .

We may now generalise theorem 2 as follows. The details of the proof are in the appendix.

Theorem 5 For a general IIH utility, Pareto optimal alternatives for R? are the same as Pareto
optimal alternatives for P ?.

The further modification we must make is to the boundary linear forms. If there are some
multiplicative nodes with imprecise values for the parameter k in (2), the corresponding boundary
is continuous over k. The natural generalisation of the boundary linear form to a continuous weight
function is as follows. Let the imprecise k parameters be k = (k1, . . . , kw)′. Now let θi denote a
vertex specification of the other parameters so that each element of P is a particular θi combined
with a value for k and replace λi with λi(k), a scaled probability density function for k so that

s∑
i=1

∫
· · ·

∫
λi(k).dk1 . . . dkw = 1,

where the integrals are taken over the ranges of k1, . . . , kw. Then

Ūλ =
s∑

i=1

∫
· · ·

∫
λi(k)Ui.dk1 . . . dkw.

We may also allow λi(k) to be wholly or partly discrete with some or all of the weight concentrated
at discrete values of some or all of k1, . . . , kw. In this case, integrals are replaced by summations
as appropriate. We may generalise theorem 3 as follows. The proof is given in the appendix.

Theorem 6 In any IIH, for any θ in R there exists a multiplicative weighting λ such that U(θ) =
Ūλ.

9 Concluding comments

This paper has two aims. Firstly, we show how mutually utility independent hierarchies, which
weigh the various costs of the experiment against benefits expressed through a mixed Bayes linear
utility, provide a flexible and intuitive methodology for experimental design which remains tractable
even for complex multi-variate problems. Secondly, we develop methodology for problems in which
the experimenters are unwilling to specify unique trade-off values between the attributes in the
hierarchy. Partly, we do this as we consider that precise specification of such trade-offs is likely to
be one of the main stumbling points in implementing our approach. Partly also, we consider that
problems in imprecise utility are of fundamental interest in their own right, in much the same way
as are problems in imprecise probability.

This paper is intended to offer a framework for experimental design which respects the com-
plexities of the cost and benefit structure. The imprecise utility formulation is intended to identify
classes of designs which are worthy of further consideration and to suggest criteria for selecting
between these designs. This raises important methodological questions concerning the best ways
to identify and choose between the leading contenders for the best choice of design, and these
questions will be pursued elsewhere.

APPENDIX: PROOFS OF THEOREMS

Proof of Theorem 5

First we need to modify Lemma 1. We now show that
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U(θ) =
∑

l

{π?
l (θ)U?

l } , (13)

where π?
l (θ) = π?

l1(θ)/π?
l2(θ).

Here π?
l1(θ) is a product of parameters with not more than one from each additive or binary

node and any parameters, other than k, from a multiplicative node which are present are present
linearly and π?

l2(θ) is either a product of terms of the form
∏s

i=1(1 + kai)− 1 from multiplicative
nodes or is 1.

Clearly (13) holds for a marginal node.
Suppose (13) holds for the utilities at each of the parent nodes of a node i. Then, if i is additive

or binary, it clearly also holds at i. If i is multiplicative then we observe that the numerator in (3)
can be written as a sum of terms, each of which is of the form km

∏
a

p(j)
j U

p(j)
j where p(j) is either

0 or 1 and Uj is a parent utility. It follows that (13) holds for node i. Hence, by induction, (13)
holds for the overall utility.

Now we can write dAB(θ) =
∑

l[π
?
l (θ){EA(U?

l )− EB(U?
l )}].

Consider a single parameter aij at a multiplicative node i. We can write dAB(θ) in the form
f(aij) = [C1 + C2aij ]/[C3 + C4aij ] + C5, where C1, . . . , C5 are constants. As ∂f(aij)/∂aij =
(C2C3−C1C4)/(C3−C4aij)2, it follows that f(aij) is monotonic in aij , over any domain in which
|f(aij)| is bounded away from infinity. So dAB(θ) is monotonic in any single aij . If we minimise
dAB(θ) with respect to any single aij we will always reach one of the limits for aij . Hence the
minimum of dAB(θ) for any fixed ki must be at a vertex of the subset of R?

i , for this value of ki,
where R?

i for a multiplicative node is the rectangular region bounded by the upper and lower limits
of ai2, . . . , ais(i). Now, if we allow ki to vary, we see that the global minimum of dAB(θ) must be
at a point in P ?

i .
The rest of the proof follows as before.

Proof of Theorem 6

Suppose that multiplicative weightings can be found for each of the parent nodes of node i such
that U(θj) = Ūλj , where the subscript j denotes that this applies to the sub-hierarchy under node
j. Trivially we can find such a weighting for a marginal node. If node i is additive or binary it is
clear from Theorem 3 that we can find a multiplicative weighting such that U(θi) = Ūλi.

Suppose node i is multiplicative. Our definition allows us to concentrate all of the weight at the
chosen value of ki so we can now consider ki to be fixed. Suppose that we assign weights λ?

ij and

(1−λ?
ij) to the lower and upper values of ai2, . . . , air(i), where ai1 = 1−

∑r(i)
j=2 aij , and then obtain

weights for the vertices of Ri by multiplying together the appropriate combinations of these. In
this way we can consider averaging over each of ai2, . . . , air(i) in turn. The averaging property will
now apply, with respect to ai2, . . . , air(i), to the unscaled utility

U?
i = k−1

i

r(i)∏
j=1

(1 + kiaijUij)

− 1 = k−1
i (1 + kiaijUij)

∏
f 6=j

(1 + kiaifUif )

− 1

where Ui = U?
i /Fi and

Fi = k−1
i

r(i)∏
j=1

(1 + kiaij)

− 1 = k−1
i (1 + kiaij)

∏
f 6=j

(1 + kiaifUif )

− 1

but does not apply exactly to the scaled utility Ui because F−1
i is not linear in aij .

Now write Ui(aij) and Fi(aij) to show dependence on aij and let the lower and upper values
of aij be aij1, aij2 (such that aij1 < aij2). Choose any other value aij3 with aij1 ≤ aij3 ≤ aij2. We
can write aij3 = µijaij1 + (1− µij)aij2 for some µij with 0 ≤ µij ≤ 1. Clearly
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Ui(aij3) = [U?
i (µijaij1 + {1− µij}aij2)]/[Fi(µijaij1 + {1− µij}aij2)]

= [µijU
?
i (aij1) + {1− µij}U?

i (aij2)]/[µijFi(aij1) + {1− µij}Fi(aij2)]

but

λ?
ijUi(aij1) + (1− λ?

ij)Ui(aij2) = λ?
ij [U

?
i (aij1)]/[Fi(aij1)] + (1− λ?

ij)[U
?
i (aij2)]/[Fi(aij2)].

We require

[µij ]/[µijFi(aij1) + (1− µij)Fi(aij2)] = [λ?
ij ]/[Fi(aij1)]

and
[(1− µij)]/[µijFi(aij1) + (1− µij)Fi(aij2)] = [(1− λ?

ij)]/[Fi(aij2)]

and these are satisfied when

λ?
ij = [µijFi(aij1)]/[µijFi(aij1) + (1− µij)Fi(aij2)]

which is in 0 ≤ λ?
ij ≤ 1.

We can now extend the argument to the other parameters at node i.
Thus we can find a multiplicative weighting such that U(θi) = Ūλi and, by induction, we can

find a multiplicative weighting such that U(θ) = Ūλ.
2
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