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Gravity-Sensitive Quantum Dynamics in Cold Atoms

Z.Y. Ma,1 M.B. d’Arcy,2 and S.A. Gardiner3

1Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
2Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8424, USA

3JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440, USA
(Dated: February 28, 2008)

We subject a falling cloud of cold cesium atoms to periodic kicks from a sinusoidal potential created by a
vertical standing wave of off-resonant laser light. By controllably accelerating the potential, we show quantum
accelerator mode dynamics to be highly sensitive to the effective gravitational acceleration when this is close to
specific, resonant values. This quantum sensitivity to a control parameter is reminiscent of that associated with
classical chaos, and promises techniques for precision measurement.
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The identification and observation of signatures of chaos in
quantum dynamics is the goal of considerable current effort.
Much of this work centers on the theoretical definition and
characterization of energy spectra [1], or such quantitiesas
the Loschmidt echo [2] and fidelity [3], which essentially de-
velop the idea that sensitivity of a wavefunction’s evolution to
small variations in a system’s Hamiltonian be used as a defini-
tion of quantum instability [1, 2, 3, 4]. Such quantities could
be observed experimentally but require some interpretation to
highlight the way in which their nature betokens stability or
chaos. An attractive alternative would be the observation of
different motional regimes. This is more in sympathy with
the techniques and philosophy used to identify classical chaos,
and is the approach used here.

In certain systems the decay of the overlap of two ini-
tially identical wavefunctions evolving under slightly differing
Hamiltonians can be expressed in the long time limit as the
sum of two decay predictions, governed by Fermi’s Golden
Rule and the classical Lyapunov exponent [2]. The decay
rate serves as a quantum signature of instability, which can
be compared with that of the corresponding classical system.
Such sensitivity can be probed by interferometric techniques
[5, 6]. In the quantum-mechanical system presented here, the
classical limit of which is chaotic, extreme sensitivity ofthe
qualitative nature of the motional dynamics to a control pa-
rameter is directly observable. It is manifested by the effect on
quantum accelerator mode (QAM) dynamics [6, 7, 8, 9, 10]
of small variations in the effective value of gravity in theδ-
kicked accelerator [7], an extension of the paradigmaticδ-
kicked rotor [11]. The QAM observed in this atom optical
realization [6, 7, 8, 9, 10], are characterized by a momentum
transfer, linear with kick number, to a substantial fraction (up
to ∼ 20%) of the initial cloud of atoms. This is due to a reso-
nant rephasing effect, dependent on the time-interval between
kicks, for certain initial wavefunctions [9, 12]. The sensitiv-
ity in the dynamics we observe also promises the capability
of precisely calibrating a relationship between the local grav-
itational acceleration andh/m, wherem is the atomic mass,
and we describe how our observations constitute a prelimi-
nary feasibility-demonstration of such a measurement.

The Hamiltonian of theδ-kicked accelerator, realized using

a magneto-optic trap (MOT) of laser-cooled atoms that are
then released and subjected to pulses from a standing wave of
off-resonant light, is

Ĥ =
p̂2

2m
+ mgẑ − ~φd[1 + cos(Gẑ)]

+∞
∑

n=−∞

δ(t − nT ), (1)

whereẑ is the position, ˆp the momentum,m the particle mass,
t the time,T the pulse period,~φd quantifies the strength of the
kicking potential,G = 2π/λspat, andλspat is the spatial period
of the standing wave applied to the atoms. The quantityg is
normally the gravitational acceleration. However, by ‘acceler-
ating’ the standing wave, it is possible to effectively modifyg.
We have previously used this technique to counteract gravity
and regain kicked rotor dynamics [7, 13].

In an innovative analysis by Fishman, Guarneri, and Re-
buzzini (FGR) [12], the fact that QAM are observed only
whenT approachesℓT1/2 = ℓ2πm/~G2, whereℓ ∈ Z+ and
T1/2 is the half-Talbot time [9], is exploited to yield a dra-
matically simplified picture of QAM dynamics. In a frame
accelerating withg, the linear potential is removed to leave a
spatially periodic Hamiltonian. The quasimomentumβ is then
conserved, i.e., if a momentum state|p〉 = |(k + β)~G〉, where
k ∈ Z andβ ∈ [0, 1), ‘ladders’ of momentum states of dif-
ferentβ evolveindependently. The resultingn-dependent and
β-specific kick-to-kick time evolution operator is

F̂n(β) =exp(−i{ρ̂ + sgn(ǫ)[πℓ + kβ − γ(n − 1/2)]}2/2ǫ)

× exp(ik̃ cosχ̂/|ǫ|),
(2)

wherek̃ = |ǫ|φd, k = 2πT/T1/2, andγ = gGT 2. We have in-
troduced a smallness parameter,ǫ = 2π(T/T1/2 − ℓ), to quan-
tify the closeness ofT to ℓT1/2 and the dynamical variables
are now an angle ˆχ = Gẑ and a discrete conjugate momen-
tum ρ̂ = p̂|ǫ|/~G, such that [ ˆχ, ρ̂] = i|ǫ|. If one constructs a
kick-to-kick Heisenberg map corresponding to Eq. (2) for the
dynamical variables, then in the limitǫ → 0, the commutator
vanishes along with the uncertainty principle, and the opera-
tors can be replaced by their mean values. Thus

ρ̃n+1 = ρ̃n − k̃ sin(χn) − sgn(ǫ)γ, (3a)

χn+1 = χn + sgn(ǫ)ρ̃n+1, (3b)
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FIG. 1: Phase space plots produced by Eq. (3), when 2πγ/k2 =

1/1 ⇒ γ = (2π + ǫ)2/2π, and k̃ = |ǫ|0.8π for (a) ǫ = −0.88,
(b) ǫ = −0.02, (c) ǫ = 0.03, (d) ǫ = 0.6. This corresponds to
T = 57.4µs, 66.5µs, 67µs, 73µs. For (a), (b) the island corresponds
to a (p, j) = (1, 1) QAM, and for (c), (d), to a (p, j) = (1,−1) QAM.

whereθn = 〈θ̂n〉 andρ̃n = 〈ρ̂n〉 + sgn[πℓ + kβ − γ(n − 1/2)].
Quantum accelerator modes are one-to-one related to stable
periodic orbits of this map [6, 8, 12]. It is very important to
note thatǫ → 0 coincides with~ → 0 only if ℓ = 0. Oth-
erwise, as in the experiments here, the classical-particle-like
behavior of QAM is due to a quantum resonance effect.

The stable periodic orbits yielded by Eq. (3) (and hence
QAM) are classified by their orderp and jumping indexj (the
number of momentum units, in terms of the size of the phase-
space cell, traversed afterp iterations). The sign ofj is deter-
mined by whether this is in the positive or negative momen-
tum direction. A necessary condition [12] for the existenceof
a periodic orbit is|j/p + sgn(ǫ)γ/2π| ≤ k̃/2π, which can be
rewritten (for smallǫ) as

−|ǫ|

(

φd

2π
+

2ℓγ

k2

)

≤
j

p
+ sgn(ǫ)2πℓ2

γ

k2
≤ |ǫ|

(

φd

2π
−

2ℓγ

k2

)

. (4)

Both φd and γ/k2 = gm2/~2G3 are independent ofT , and
therefore ofǫ. Equation (4) is convenient whenT is varied
from just below to just aboveℓT1/2, i.e., scanningǫ from neg-
ative to positive, as in the experiments described here. As
ǫ → 0, the QAM that occur must be characterized byj and
p such thatj/p → −sgn(ǫ)2πℓ2γ/k2. In general 2πℓ2γ/k2 is
an irrational value, and one usually observes a succession of
increasingly high-order QAM asT → ℓT1/2 [8]. If we tune
g so that 2πℓ2γ/k2 = r/s, wherer and s are integers, then
j/p+sgn(ǫ)2πℓ2γ/k2 = 0 for j/p = −sgn(ǫ)r/s. Once the (p, j)
QAM satisfying this condition appears, shiftingT closer to
ℓT1/2 does not result in higher-order QAM.

In a frame accelerating withg, the momentum afterN
kicks, for an initial condition near a (p, j) stable periodic orbit

[12], in ‘grating recoils’~G [9] is

qN ≃ q0 + N
2π
|ǫ|

[

j

p
+ sgn(ǫ)

γ

2π

]

, (5)

whereq0 is the initial momentum. ForN a multiple ofj, this
result is exact forǫ-classical initial conditions located on (p, j)
periodic orbits. We now consider the momentum of orbits
specified byj/p = r/s (for ǫ < 0) andj/p = −r/s (for ǫ > 0)
as a single function ofN andǫ, in the case where 2πℓ2γ/k2

approaches rational values. Letting 2πℓ2γ/k2 = r/s + wℓ2

[14], we find:

qN ≃ q0 + N
r
s

(

2
ℓ
+
ǫ

2πℓ2

)

+ Nw

(

2πℓ2

ǫ
+ 2ℓ +

ǫ

2π

)

. (6)

Scanning throughǫ from negative to positive values, one does
not generally observe two QAM of the samep and magnitude
of j (with positive sign for negativeǫ, and negative sign for
positiveǫ) [8, 15]. However, in the gravity-resonant cases we
consider, when 2πℓ2γ/k2 is close tor/s, we always observe
an r/s and then a−r/s QAM as we scanǫ in this way. This
is shown in Fig. 1, where we plot Poincaré sections produced
by Eq. (3) forγ = k2/2π = (2π + ǫ)2/2π (i.e., r/s = 1) and
k̃ = |ǫ|φd = |ǫ|0.8π (the approximate experimental mean value
[7]). The islands around the (p, j) = (1,−sgn(ǫ)1) periodic
orbits remain large over a wide range ofǫ and, in dramatic
contrast to Ref. [8], no higher-order island structures appear
asǫ → 0. In Fig. 2(a) the corresponding QAM are similarly
robust and uninterrupted by higher-order QAM asT → T1/2.

From Eq. (6) we thus see that for a givenN, q is a linear
function of ǫ wheneverw = 0. If w , 0 this changes to a
hyperbolic function ofǫ, where the arms of the hyperbolae
point in opposite directions for oppositely signedw. Devi-
ation from straight line behavior in a QAM accelerated to a
given momentum will be greater for a gravity-resonant mode
corresponding to a smaller value ofj/p = r/s. This is because
the acceleration of the mode is∝ j/p, but the deviation is∝ N.
We consider only QAM wherej = r = 1, so high-order modes
exhibit, for a given momentum transfer, greater sensitivity to
variations ing than low-order modes.

In our realization of the quantumδ-kicked accelerator,
∼ 107 cesium atoms are trapped and cooled in a MOT to a
temperature of 5µK, yielding a Gaussian momentum distribu-
tion with FWHM 6~G. The atoms are then released and ex-
posed to a sequence of equally spaced pulses from a standing
wave of higher intensity light 15 GHz red-detuned from the
62S 1/2 → 62P1/2, (F = 4 → F′ = 3) D1 transition. Hence
the spatial period of the standing wave isλspat= 447 nm, and
T1/2 = 66.7µs. The peak intensity in the standing wave is
≃ 5 × 104 mW/cm2, and the pulse duration istp = 500 ns.
This is sufficiently short that the atoms are in the Raman-
Nath regime and hence each pulse is a good approximation
to a δ-function kick. The potential depth is quantified by
φd = Ω

2tp/8δL, whereΩ is the Rabi frequency andδL the
detuning from the D1 transition. During the pulse sequence,a
voltage-controlled crystal phase modulator is used to strobo-
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FIG. 2: (color online). Color density plots of experimentalmomentum distributions for different effective gravityg corresponding to (a)
r/s = 1/1 (after 15 kicks), (b)r/s = 1/2 (30 kicks), (c)r/s = 1/3 (45 kicks), and (d)r/s = 1/4 (60 kicks), asT is varied in the vicinity of
the half Talbot timeT1/2 = 66.7µs, from 60.5µs to 74.5µs in steps of 0.128µs. In each case the QAM corresponds toj/p = r/s; subplot (i)
corresponds tow ≃ −8.5× 10−4 (deviation from resonantg is ∼ −8.6× 10−2 ms−2), subplot (ii) tow ≃ 0, and subplot (iii) tow ≃ 8.5 × 10−4

(deviation from resonantg is ∼ 8.6 × 10−2 ms−2). Overlaid lines, labeled (p, j), indicate QAM momenta predicted by Eq. (6). Population
arbitrarily normalized to maximum value= 1, and momentum defined in a frame falling withg. Note the significantly greater population at
high momentum (up to 50~G) nearT1/2 in (d.i) and (d.iii), compared to (a.i) and (a.iii).

scopically accelerate the standing wave profile. The atoms
therefore effectively experience a non-standard, and control-
lable, value of gravity. After the pulsing sequence, the atoms
fall through a sheet of laser light resonant with the 62S 1/2 →

62P3/2, (F = 4 → F′′ = 5) D2 transition, 0.5 m below the
MOT. By monitoring the absorption, the atoms’ momentum
distribution is then measured by a time-of-flight method, with
resolution~G. For further details see Refs. [7, 9].

In Fig. 2 we show momentum distributions for experiments
in which the value ofT was scanned aroundT1/2 (ℓ = 1)
from 60.5µs to 74.5µs, with 2πγ/k2 varied in the vicinity of
r/s equal to (a) 1/1, (b) 1/2, (c) 1/3, and (d) 1/4. To main-

tain the ideal (w = 0) total momentum transfer, 15, 30, 45
and 60 kicks were applied, respectively, fixingNr/s. For each
of Figs. 2(a), 2(b), 2(c), and 2(d) the data displayed are: in
subplot (ii), from experiments in which 2πγ/k2 = r/s is ful-
filled as exactly as feasible, yielding linear variation of the
QAM momentum withT ; and in subplots (i) and (iii), for
equal positive and negative deviations, respectively, from this
near-ideality, yielding hyperbolic variation of the QAM mo-
mentum. Typically∼ 10–20 % of the atoms are accelerated
away from the cloud centered atp = 0.

In each subplot (ii) of Fig. 2, the QAM momentum pre-
dicted by Eq. (6), shown as an overlaid line, is identical. The
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expected linear dependence onT appears to be well confirmed
by the data, although the separation of the QAM from the
main, non-accelerated cloud, centered at zero momentum, is
clearer for smallers = p (there is less momentum diffusion
of the main cloud due to the smaller number of kicks). The
effect of imperfectly resonant gravity, shown in subplots (i)
and (iii) in Fig. 2, is much more dramatic for largers = p, for
which more kicks are applied. In Fig. 2(a), subplots (i) and
(iii) are barely distinguishable from subplot (ii), whereas in
Fig. 2(d), the momentum distributions in subplots (i) and (iii)
are highly asymmetric compared with subplot (ii), with, close
to T1/2, noticeable population at up to 50~G. The asymmetry
inverts as one changes from below [subplot (i)] to above [sub-
plot (iii)] the resonant value of gravity. We therefore observe
a clear qualitative change in the QAM dynamics, highly sen-
sitive to a control parameter. The displayed predictions ofEq.
(6) show that deviations from linear behavior only occur when
very close toT1/2 in Figs. 2(a.i) and 2(a.iii), but are much more
significant in Figs. 2(d.i) and 2(d.iii). This is due to the larger
number of kicks necessary for larges = p to achieve the same
QAM momentum.

The procedure of determining the ‘standing wave acceler-
ation’ at which straight-line behavior of a given (p, j) QAM
momentum is observed as a function ofT could, in principle,
be used as a sensitive atom-optical means of relatingh/m [16]
to the local gravitational acceleration [17]. This is because
2πℓ2γ/k2 = r/s can be rephrased asg = (h/m)2(r/s)λ3

spatand
would be determined by noting when thetotal acceleration
(sinusoidal potential plus gravitational) causes these equali-
ties to be fulfilled for a knownr/s, and then subtracting the
imposed acceleration of the potential. In our setup, where the
sinusoidal potential is ‘accelerated’ by using a crystal phase
modulator to phase-shift the retroreflected laser beam [7, 9],
the value of the phase shift due to a particular applied volt-
age is difficult to calibrate more precisely than∼ 1 %. This
accordingly limits our measured precision of the relationship
between the local gravitational acceleration andh/m to∼ 1 %.
Accurate prediction of the QAM momenta for imperfectly res-
onant values of the effective gravity, as displayed in Fig. 2, is
also hampered. This could be improved by a configuration in
which a moving sinusoidal potential is formed by two coun-
terpropagating beams with a controllable frequency difference
[18], where calibration of the phase shift to between 1ppm and
1ppb is possible. Calibration ofλspat to less than 1ppb is also
feasible [17], allowing for the possible sensitive determina-
tion of either the local gravitational acceleration [17] orh/m
[16], depending on which is known more precisely at the out-
set. The feasibility of any such scheme will ultimately depend
on how precisely the atomic ensemble’s dynamics permit the
determination of the acceleration of the sinusoidal potential
for which the resonant, linear withT , behavior of the QAM
occurs. Ascertaining this will require substantial theoretical
and experimental investigation.

In conclusion, we have observed qualitative changes in the

motional quantum dynamics of cold cesium atoms, which are
highly sensitive to the precise value of an externally adjustable
parameter, the effective gravity. This is distinct from concep-
tually related proposals that consider slightly differing Hamil-
tonians to study the Loschmidt echo or fidelity, and demon-
strates an attractive link to the concepts of highly sensitive dy-
namics in classically chaotic systems. Furthermore, we have
described a feasible experimental scheme taking advantageof
this sensitivity to determine a relationship between the local
gravitational acceleration andh/m.
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