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We formulate a general method for the study of semiclassiicaldynamics in stable regions of a mixed
phase-space. In the simplest case, this involves detergnsiable Gaussian wavepacket solutions, and then
propagating them using a cumulant-based formalism. Weyamn method to the problem of quantum ac-
celerator modes, determining their relative longevity emdifferent parameter regimes, and obtaining good
gualitative agreement with exact wavefunction dynamics.
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Semiclassical approaches in quantum chaotic dynamicgaluesu, = @& andu; = (Zy only asy — 0. In this limit there
have proved very successful in forging conceptual links beis a well-definedé, ¢} phase space, which generally consists
tween classically chaotic systems and their quantum mechawf a mixture of stable islands based around stable perigeic o
ical counterparts [1]. When trying to include quantum me-bits, and a chaotic sea. This is the case for our model example
chanical &ects, an obvious step beyond point-particle dy-thegs-kicked accelerator (see FIg. 1) [5].
namics is to consider the evolution of Gaussian wavepack- When considering dynamics near a stable periodic orbit in
ets. Straightforward semiclassical Gaussian wavepacket d phase space, we use that: local dynamics approximate those o
namics are limited in that, e.g., the wavepacket is unrigalis a harmonic oscillatol [11], and Gaussian wavepackets remai
cally forced to maintain its Gaussian form. Pioneering workGaussian when experiencing harmonic dynamics. This moti-
by Huber, Heller, and LittlejohrL[2] proposed remedyingsthi vates the initial use of a Gaussian ansatz of the form_[2, 12]
by allowing complex classical trajectories. These alse per
mit the study of a wider range of classically forbidden pro-

cesses, and the propagation of superpositions of Gaussians/(¢) =(2roz) ™/

We propose an alternative approach, which, most simply, is [1—i202 /0l[é - uel? i 3 1
to follow the dynamics of the cumulants of initially Gaus- x exp| - & > ‘ + et — e , @)
sian wavepackets. When taken to second order, the dynam- 40—.4—“ n

ics are described purely in terms of means and variances, as ~ ~ .

in a Gaussian wavepacket, but evolution into non-Gaussiawhereo? = (&%) — (£)* is the variance ir¢, ando7, =
wavepackets is not proscribed. After developing the formal (&7 + 7€)/2 — (£)(7) is the symmetrized covariance énand
ism, we apply it to an exciting development in atom-opticalZ. As Eq. [1) describes a minimum uncertainty wavepacket,

studies of quantum-nonlinear phenomena: quantum aceelerthe / variance,(rf = (Z% — (0)%, can be deduced from the

tor modes (QAM)[3LA4LI5.J€.1 1. 8! 9]. Quantum acceleratorgeneral uncertainty relation?o? - (02,)? = n?/4 [this can
modes have proved to be a fascinating example of a robugfe seen from Eq[I1), usingnd/o¢ as thet representation of
quantum resonancedfect, and the demonstrated coherence of|. |f the stable islands around the periodic orbits of insere
their formation [5] promises important applications in eoh  are significant compared to the size of a minumum uncertainty
entatom optics [4, 10]. In a configuration consisting of @tas \yavepacket, we find stable periodic orbits{in, (Tf:, U?:}
cooled cloud of freely falling cesium atoms subjected td-per when such a Gaussian ansatz is enforced. In reality this sta-
odic o-like kicks from a vertically orientedfé-resonant laser pjlity is only approximate, but we will nevertheless utdiz
standing wave [3./4. 5| B, I7, 8], QAM are characterized expersych solutions, as they are good estimates to maximalljestab
imentally by a momentum transfer, linear with kick number, Gaussian wavepackets.
to a substantial fraction (up te 20%) of the initial cloud of A complete picture of the observable dynamics can only be
atoms. This system is also attractive in that it is possible t §atermined from the time-evolution of all possible exptiota
tune its éfective classicality in an accessible regime far from,,5|,es of products of the dynamical variables. Except foy ve
the true semiclassical limit, making it an ideal testingugrd simple systems, this produces a complicated hierarchywf co
for semiclassical theories. We use our approach to obtain inyjed equations. In order to gain any insight we must detezmin
sight into the relative longevity of QAM, and presentvery en g tryncation scheme to reduce this to a managable desariptio
couraging results on its utility. This is in a sense achieved by the Gaussian ansatz, which
We consider two conjugate self-adjoint operatgrsnd/, considers only means and variances. Means and variances
such that§, 7] = in, and a Hamiltoniai(£, ). The dynam-  are the first two orders of an infinite hierarchy of cumulants
ics of these operators can be fully described by the expentat [13], which we denote by double angle brackets to distinguis
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them from expectation values. The non-commutative cumu- The approach we have described is most obviously applica-
lants can be obtained directly in terms of operator expiectat ble in the standard semiclassical regime, but is not résttic

values through [14] to it. We will illustrate our method by applying it to a very-in
teresting and experimentally relevant system, the quadtum
(- Gn) = 9 .9 In(e™ ...emy. o o (2) kicked accelergtor [5], out_sid_e the semiclassica_l regioer _
or oty approach provides useful insights on the longevity of QAM in

this system, essential for their possible application imerent
atom opticsi[4, 10].
The dynamics of the atoms in the Oxford QAM experiment

(G =((@1) [3,14,15,16,7 18] are well modelled by the one-dimensional
N Al AlA | R N s-kicked accelerator Hamiltonian:
(202> =((0102)) + ((Qu)){(2)),

3 & o
(O10203) =((0b203)) + ((G)){((Gls)) + ((G2))(0nb3)) ) H 2p_2 +Mg2 — higg[1 + cosG2)] Z s(t-nT). (4
+ (G2 + (AN, - - - m n=—co

ereZis the positionpthe momentumnthe particle masg

where the ordered observables have been partitioned in ag,1 o : .
. ) e gravitational acceleratiohthe time,T denotes the pulse
possible ways into products of cumulants. Cumulants tend to

become smaller with increasing order, unlike expectatain v perlode - %/ASDatWhere’lSpa"s the spaygl period of the

ues; intuitively, higher-order cumulants encode only at ‘e potential applied to the atoms, ahly quantifies the depth of
Ly e oo % this potential.

tra bit'" of information that lower-order cumulants have not The near-fulfilment of the quantum resonance condition

yet provided. It is therefore often possible to provide adjoo . 9 N -yt

description by systematically truncating, expressing reots (closeness to partlculgr resonant pulse pe”Od'C't.e‘.;’.w’])

of all orders in terms of cumulants up to some finite order'€ans th(_afree evolution ofawav_efu_nctlonz €.9., mmaﬂ;ll

[14]. Truncating at first order is equivalent to consideimdy localized in momentum and (periodic) position space imme-

. iately after it experiences a kick, causes it to rephaskotec
mean values, and thus reproduces the corresponding Hamji-". =7 =" L .
) . . ; . . 0 its initial condition just before each subsequent kickeT
ton’s equations of motion. It is tempting to think that trun-

. . . : . treatment due to Fishman, Guarneri, and Rebuzzini accounts
cating at second order is equivalent to enforcing the Ganssi

S ) . . for this in terms of a so-called-classical limit [9], where a
ansatz. This will not in general reproduce the dynamicsrgive

by enforcing the Gaussian ansatz. Gaussian wavepacket dki_nd of kick-to-kick classical point dynamics is regained i
nZ\mics aregunitary meaning that.the uncertainty rzlatinn i%e limit of the pulse periodicity approaching integer mul-
' t(iJoIes of the half-Talbot timeTq,, = 2rm/hG? [d], i.e., as

always exactly observed, and that one need consider only twg™_ .
of {(r?, a’?, (T?g}' This is only true when no terms in the Hamil- € ~ 2n(T/Taj2 - £) — 0, wheref € Z. This accurately ac-

) ) . A counts for the observed acceleration for up-tt00 kicks, as
tonian are of greater than quadratic ordegir} [2]. Further- e a5 predicting numerous experimentally observed high-
more, finding a fixed point off, 1, o-g, o-é} is equivalent to

- . . N . order accelerator modes [7]. It is thiswhose smallness indi-
finding a perfectly Gaussian eigenstate of the system, whicRates nearess to special resonant kicking frequencigtint
is only true for the_harmonlc oscillator. ) to the production of QAM[9], and ndt, which takes the place

When propagating the second-order truncated equations @k, in our cumulant-based approach. We now sketch the treat-
motion for the first and second order cumulants, it is Nee¥ssa ent of Refs [9] to justify the appropriate phase-spaceivhi

i ; 2 2 2 ici ) ol . e .

to consider the dynamics of each fof;, o7, o} explicitly, g the starting point of our analysis, providing enough ileta
as, unlike for the Gaussian ansatz [HG. (1)], the uncestaint¢, he explanation to be self-contained.

relation is not _hard-wire_d into the f(_)rmalism. This implies Moving to a frame comoving with the gravitational accel-

that the evolution descrlped solelly in terms of the first andy 5ti0n U = exp(mg2t/h)], Eq. @) transforms to:

second order cumulants is not unitary. This feature of our ap

proach more accurately reflects the fact that truncatingigen 5 — vi)? s

ally leaves us with an incomplete description of the dynamic H= v zﬂ — (1 +cosy) Z s(T-n). ®)

with a correspondingly inevitable loss of information abou ==

the state of the system. We are also not restricted to ilyitial We have used scaled unijg:="Gz, p = GTp/m, andi = t/T.

pure states, although this flexibility is not exploited here The parameters are: the rescal@@et of gravityy = gGT?,
Nonetheless, when situated inside a stable island, i} and the stochasticity parametet %¢4G>T/m = k¢q, where

phase space, such a ‘stable’ Gaussian wavepacket should ke= #G?T/m = 27T/Ty, = —i[y,p] is a rescaled Planck

long-lived due to the harmonic nature of the local dynam-constant. As the transformed Hamiltonian is spatially peri

ics [15]. We then use the equations of motion appropriate todic, we parametrize the momentum in terms of tjuasi-

second-order cumulant dynamics to get an idea of how longmomentum (in the lab frame, thénitial quasimomentump,

lived the initial wavepacket actually is, as physicallyséle i.e., o) = |(n + B)Kk), wheren € Z andg € [0,1). The cor-

imperfections are included in the dynamics in a straightfor responding time-dependent kick-to-kick time-evolutigpen

ward manner. ator Fy, = [dBFn(B)P(8). HereP(p) is a projection oper-

whereq € {£,7}. More conveniently, the expectation values
can be expressed in terms of cumulants:




FIG. 1: (color online). Poincaré sections determinectnjassical
versions of Eq.[{7) (white dots), superimposed on Wignections
corresponding to single wavepackets of the form given in @&. '
(color density plots). Means and variances determined hy@@q | 1 0 1 2
fork = 2 and (a)e = 0.2, (b) e = 0.2. Units are dimensionless.

cal solution

ator ensuring thaE,(8) acts on a subspace of one value of

B only,. a”?' the time-evolution Oﬁ,thq transformed WaVEVECE|G. 2: (color online). Number of iterations of E] (9) evetivby
tor |y) is given byly(t = n')) = [, Fal¥(0)). Substituting  a Gaussian stable fixed point such thit < z. Black indicates

€=2n(T/Ty2 - ) = k- 2n¢, absence of-classical stable solutiorld [9], white absence of Gaussian
R stable solutions. Numbers label the contours whgte< x for that
lfn(ﬁ) =expEild + sgnE)[xf + kB — y(n— 1/2)]}2/25) number of iterations (the number of iterations is capped@j.1The

(6) solid line marks the average experimental laser intenrgity 0.8x,
dashes demarcate its experimental rang@r(d.2x) [B]. Units are

. dimensionless.
Subspaces of fierents are decoupled. A wavefunction con-

tained within any such subspace is periodic, multiplied by a
phasee %, and can be equivalently represented by a rotovarianceS?, and the symmetrized covarian®e correspond-
wavefunction Eb]. We have therefore introduced the anglang to the general quantitie{ag,u;,ag, 0'?, a'é}. Enforcing

variable = ymod(2r) and its discrete conjugate momentum o Gaussian ansatz of ERl (1) and implicitly assumiGe?
I ( plel/k with a discrete spectrum of integer multiples of {4 pe small compared tor2the resulting kick-to-kick Gaus-
lel), where P, I = ile| andk = «le|/K = @glel. sian mapping is given by

The kick-to-kick Heisenberg map corresponding to the

x expik cosd/|e|).

time-evolution operator of E(X(6) is given by One1 =0n + SONE) T s 1, (8a)
én+1 =én + Sgn(f)jml, (7a) Inw1 =In ~ Re_ojn/z sin6n — sgne)y, (8b)

Fner =Fn — ksindy — sgne)y, (7b) A =04+ 2SgnE)(Tn — ke /202 coshy)
+[2("n — kem¥252 costn)? + €7]/402, (8c)

where we have introduced, = 7, + sgne)[xf + kKB — y(n — v o2 o

1/2)]. We thus reduce the dynamics of each of the decou- Tn+1 =Tn— ke™n o coson

pled B-rotor subspaces to a mapping [EQl (7)] plus a sim- + sgne)[2(rn - Refoﬁ/Zgﬁ costh)? + €2] /402, (8d)

ple transformation, where the overall dynamics can be recov

ered by the superposition principlé [9]. The general retati whereS? | can be deduced from2,,S2,, — 2., = €/4. In

[£,¢] = in, which we is for this specific example replaced our search for ‘stable’ Gaussian wavepackets, we search for

by [@,j] = ile]. Quantum accelerator modes are explainedsolutions extending the conditiofig;; = 6, and Jni1 = Jn,

by stable periodic orbits in th@, 9} phase space obtained appropriate to ag-classical fixed point, to—ﬁ+l =02, Sﬁﬂ =

by taking the pseudoclassical limjt|(— 0) ﬂg], independent  S2 andy,1 = Y. A Gaussian solution is thus dependent on

of what the phase space structure in the semiclassical limit as well ask andy. We consider situations which correspond

(k — 0) might be. We consider the originally discovered (1,0)experimentally to freely varying the kicking periodicitpé

accelerator modes aroud = Ty [@], corresponding to a the laser intensity, witty = gGT?2 determined byl = (e +

fixed point of order 1 and jumping index O in tkeclassical ~ 27)Ty/2/27, g = 9.8 ms?, andG = 2x/(447 nm). Wigner

mapping produced by replacing the operators in Bqg. (7) WithepresentationEILS] of such ‘stable’ Gaussian wavepacket

their mean value$|[9]. overlaid by Poincaré sections of tkeclassical phase space
The quantities we consider are the mean positipthe [ﬂ], are shown in FigJl. We see that the Wigner functions

mean momentuny, the position variance?, the momentum closely match the shape of the stable island.
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This corresponds to a spatially periodic train of shiftediSa
sians. Figurgl3 shows the results of these integrations eé/e s
that Fig.[2 reproduces its qualitative features quite wesl,
pecially for smaller values of andk. More surprising is the
replication of a saddle-point feature at aroyad= —1.5,k =

2}, indicating a resurgence of stability for largthat is clearly
not an artefact of our approximations.

In conclusion, we have developed a general method for
using second order cumulants to study semiclassical-like
dynamics near stable periodic orbits in phase space. We
have successfully applied this method to quantum accelerat
mode dynamics, which operate in an unusitaémiclassical
regime, thus gaining insight into the longevity of quantwm a
celerator modes in fferent parameter regimes.

FIG. 3: (color online). As in Figd2, but for exact wavepackeb-
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