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Abstract

We show that high energy hadronic reactions which contain a rapidity gap and a

hard subprocess have a specific dependence on the kinematic variables, which results in

a characteristic behaviour of the survival probability of the gap. We incorporate this

mechanism in a two-channel eikonal model to make an essentially parameter-free estimate

of diffractive dijet production at the Tevatron, given the diffractive structure functions

measured at HERA. The estimates are in surprising agreement with the measurements

of the CDF collaboration. We briefly discuss the application of the model to other hard

processes with rapidity gaps.
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1 Introduction

There has been much interest in the probability of rapidity gaps in high energy interactions to

survive, since they may be populated by secondary particles generated by rescattering processes,

see, for example, [1]–[8]. The effect can be described in terms of screening or absorptive

corrections. To the best of our knowledge, the term survival probability was introduced by

Bjorken [2] who estimated the probability using

S2 =

∫ |M(s, b)|2 e−Ω(b) d2b
∫ |M(s, b)|2 d2b

, (1)

where M is the amplitude (in impact parameter b space) of the particular process of interest

at centre-of-mass energy
√
s. Ω is the opacity (or optical density) of the interaction of the

incoming hadrons1.

It is perhaps more accurate to use the term “suppression factor” of a hard process ac-

companied by a rapidity gap, rather than “survival probability”. It depends not only on the

probability of the initial state to survive, but is sensitive to the spatial distribution of par-

tons inside the incoming hadrons, and thus on the dynamics of the whole diffractive part of

the scattering matrix. It is important to note that the suppression factor S2 is not universal,

but depends on the particular hard subprocess, as well as the kinematical configurations. In

particular, S2 depends on the nature of the colour-singlet (Pomeron or W/Z boson or photon)

exchange which generates the gap as well as on the distributions of partons inside the proton

in impact parameter space [9, 10, 11, 12]. In this paper we emphasize the importance of the

dependence on the characteristic momentum fractions carried by the active partons in the col-

liding hadrons. This leads to a much richer structure of the probability of rapidity gaps in

processes mediated by colour-singlet t-channel exchange. The framework was introduced long

ago2 [15, 16], but only with the advent of rapidity gap events being observed in hard processes

at the Tevatron and at HERA, is this rich physics now revealing itself.

In Section 2 we briefly review the general framework, and, in particular, discuss a two-

channel partonic model of diffraction. Measurements of diffractive dijet production with a

leading antiproton have been made recently by the CDF collaboration [17] at the Tevatron.

This is an ideal process with which to compare the specific predictions of the models for high

energy diffraction. In Section 3 we specify the partonic structure of the diffractive two-channel

eigenstates. To set the scene for our main study we first, in Section 4, discuss diffractive dijet

production assuming, for the moment, that rescattering corrections may be neglected. As was

emphasised in Ref. [17], the calculation of the cross section, based on factorization in terms of

diffractive structure functions obtained from HERA data, indicates a large discrepancy with the

CDF measurements — both in the normalisation and in the shape of the observed distribution.

1That is i[1 − exp(−Ω/2)] is the usual elastic scattering amplitude in impact parameter space. Ω/2 is

frequently called the eikonal.
2Reviews can be found, for example, in Refs. [13, 14].
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The calculation lies about a factor of 10 above the data; the precise discrepancy depends on

the kinematic domain. In Section 5 we include rescattering corrections. Clearly these will

decrease the predictions, since now the rapidity gaps may be populated by secondary particles.

To allow for rescattering we use the two-channel eikonal model, reviewed in Sections 2 and

3, with parameters previously determined in a global description of the total, elastic and soft

diffractive data available in the ISR to Tevatron energy range [9]. In this way we are able to

make an essentially parameter-free prediction of both the normalisation and the shape of the

CDF diffractive dijet data. In Section 6 we discuss the application of the model to other hard

processes with rapidity gaps, but on a less quantitative level than for dijet production. In all

cases the specific rescattering corrections are in the direction to improve the description of the

data. Finally, in Section 7, we present our conclusions.

2 Inelastic diffraction and diffractive eigenstates

In order to deduce the behaviour of inelastic diffraction, we start with the s-channel unitarity

relation, which interrelates the proton-proton total cross section, elastic and inelastic scattering.

The unitarity relation is, in fact, valid at each value of the impact parameter separately, that

is

2Im Tfi =
∑

n

T ∗

nf Tni, (2)

where Tfi(s, b) is the transition amplitude to go from state i to state f .

We follow a presentation by Pumplin [14], after the original interpretation of Good and

Walker [15]. First we introduce states φk which diagonalize the diffractive part of the T matrix.

Such eigenstates of diffraction only undergo elastic scattering. Let us denote the orthogonal

matrix which diagonalizes Im T by C, so that

Im T = CFCT with 〈φk|F |φj〉 = Fj δjk. (3)

Now consider the diffractive dissociation of an arbitrary incoming state

|i〉 =
∑

k

Cik |φk〉. (4)

The elastic scattering amplitude for this state satisfies

〈i|Im T |i〉 =
∑

k

|Cik|2 Fk = 〈F 〉, (5)

where Fk ≡ 〈φk|F |φk〉 and where the brackets of 〈F 〉 mean the average of F over the initial

probability distribution of diffractive eigenstates. After the diffractive scattering described by

Tfi, the final state |f〉 will, in general, be a different superposition of eigenstates than those of
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|i〉 shown in (4). Suppose for simplicity, we neglect the real parts of the diffractive amplitudes,

then

dσtot

d2b
= 2 Im〈i|T |i〉 = 2

∑

k

|Cik|2 Fk = 2〈F 〉

dσel

d2b
= |〈i|T |i〉|2 =

(

∑

k

|Cik|2 Fk

)2

= 〈F 〉2 (6)

dσel + SD

d2b
=

∑

k

|〈φk|T |i〉|2 =
∑

k

|Cik|2 F 2
k = 〈F 2〉.

It follows that the cross section for the single diffractive dissociation of a proton,

dσSD

d2b
= 〈F 2〉 − 〈F 〉2, (7)

is given by the statistical dispersion in the absorption probabilities of the diffractive eigenstates.

Note that if all the components φk of the incoming diffractive state |i〉 were absorbed

equally then the diffracted superposition would be proportional to the incident one and again

the inelastic diffraction would be zero. Thus if, at very high energies, the amplitudes Fk at

small impact parameters are equal to the black disk limit, Fk = 1, then diffractive production

will be equal to zero in this impact parameter domain and so will only occur in the peripheral

b region. This behaviour has already occurred in pp (and pp̄) interactions at Tevatron energies.

On the other hand, if there are, say, two diffractive channels with different eigenvalues, then

the amount of inelastic diffraction increases with the spacing of the two eigenvalues.

For instance, consider just two diffractive channels [18, 12, 9] (say, p,N∗), and assume, for

simplicity, that the elastic scattering amplitudes for the two channels are equal. Then the T

matrix has the form

Im T = 1 − e−Ω/2, (8)

where the eikonal matrix Ω has elements

Ωfi
f ′i′ = Ω0 ω

fi ωf ′i′ . (9)

The individual ω matrices, which correspond to transitions from the two incoming hadrons,

each have the form

ω =

(

1 γ

γ 1

)

. (10)

The parameter γ(s, b) determines the ratio of the inelastic to elastic transitions. The overall

coupling Ω0 is also a function of the energy
√
s and the impact parameter b.

With the above form of ω, the diffractive eigenstates are

|φ1〉 =
1√
2

(|p〉 + |N∗〉) , |φ2〉 =
1√
2

(|p〉 − |N∗〉) . (11)
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In this basis, the eikonal has the diagonal form

Ωmn
m′n′ = Ω0 r

mn rm′n′ , (12)

where m,n = φ1, φ2 and

r =

(

1 + γ 0

0 1 − γ

)

. (13)

In the case where γ is close to unity, γ = 1 − ε, one of the eigenvalues is small.

3 Parton configurations of the diffractive eigenstates

The simple two-channel model of Section 2 allows the prominent features of hard diffractive

processes to be explained, which are beyond the scope of the single channel eikonal. First we

note that the parameter γ, which determines the ratio of inelastic to elastic transitions, needs

to be in the range 0.4–0.6 to be in accord with the experimental data on diffractive dissociation

at moderate energies. Thus we know that there will be a big difference (1±γ) in the absorptive

cross sections for scattering in the two diffractive eigenstates. To be specific, in this work we

use the results of the detailed analysis of the elastic and soft diffractive data that was presented

in Refs. [9, 10]. There γ was taken to be 0.4.

In QCD the diagonal states correspond to quark and gluon configurations with different

transverse coordinates3. For small transverse size r such (colourless) configurations interact as

small colour dipoles with total interaction cross sections ∼ r2. Thus, to a rough approximation,

we can separate all the parton configurations of the colliding hadrons into those with small size

and those with large size. In our two-channel example above these would correspond to the

states |φ2〉 and |φ1〉 respectively.

It is informative to discuss the phenomenon in terms of the usual Reggeon diagrams. Assume

that some “hard” diffractively produced state4 “h” is strongly coupled to state |φ2〉 and weakly

to |φ1〉. It follows from (11) that the Pomeron couplings of h to p and N∗ satisfy

gIP
ph = −gIP

N∗h, (14)

and that the p and N∗ intermediate states for double-Pomeron exchange contribution (Fig. 1)

interfere destructively, since

gIP
pp g

IP
ph + gIP

pN∗ gIP
N∗h = gIP

pp g
IP
ph(1 − γ). (15)

The cancellation which occurs for γ ≈ 1, happens, in this simple model, for all multiple-Pomeron

exchanges. This phenomenon of “colour transparency” for small-size configurations has been

known for a long time [21].

3Partonic models of diffraction were originally introduced in Refs. [19, 20].
4The state h should really be regarded as a third diffractive channel, but such a new state with a small

production cross section gives a negligible contribution to Ω.
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p p

h

+

p N*

h

Figure 1: The double-Pomeron exchange contribution to diffractive h production in the simple

two-channel model of (13).

In order to specify the diffractive eigenstates |φ1〉 and |φ2〉 we shall consider two simple

models (A and B). It is natural to identify the component with the smaller absorptive cross

section (that is |φ2〉) with the state which contains less partons and which has a large typical

momentum fraction x for each parton. From the QCD viewpoint, the small size component

of the proton (where all the valence quarks are close together) has the smallest absorptive

cross section, due to colour transparency. From the Regge viewpoint, the component with the

largest absorptive cross section corresponds to the eigenstate (|φ1〉) with a larger number of

partons in the small x region. Thus from both viewpoints we expect the component with the

smaller cross section (smaller transverse size) to have a larger average x of each parton. At the

moment, it is impossible to be more specific, and so to make numerical estimates we consider

two alternatives.

First, in model A, we identify the valence quarks with |φ2〉 with the smaller absorption,

and the gluons and sea quarks with |φ1〉. Of course the model is oversimplified. It is clear

that there is a part of the valence component with large size, while on the other hand the

gluons and sea quarks contribute to the small size component. In general, one can write each

partonic distribution fi(x,Q
2) (i = valence, sea, glue) as the sum of a small (S) and large (L)

size component

fi(x,Q
2) = fS

i (x,Q2) + fL
i (x,Q2). (16)

In a model, where the probabilities of the S and L components in the proton are equal, as in

Section 2, these components should satisfy the following sum rules,

∫ 1

0
dx fS

V (x,Q2) =
∫ 1

0
dx fL

V (x,Q2) =
3

2
(17)

∫ 1

0
dx x

∑

i

fS
i (x,Q2) =

∫ 1

0
dx x

∑

i

fL
i (x,Q2) =

1

2
, (18)

which follow from the conservation of valence quark number and energy respectively.

We can therefore introduce an alternative model in terms of modified parton distributions

fS,L
i (x,Q2) = P S,L

i (x,Q2) fi(x,Q
2), (19)
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where the projection operators have the simple forms

PL
i = (1 − x)ni(Q

2), P S
i = 1 − PL

i . (20)

We determine the values of ni in order to satisfy the sum rules of (17) and (18). We call this

model B. It turns out that both models A and B give rather similar predictions. We study the

implications of the models in Section 5.

4 Diffractive dijet production — a first look

Recently CDF have measured diffractive dijet production for events with a leading antiproton

at the Tevatron [17]. These observations, coupled with the diffractive measurements by H1

[22] and ZEUS [23] at HERA, offer the opportunity to explore the diffractive framework in

some detail. The processes are shown schematically in Fig. 2, in the absence of rescattering

corrections. The lower parts of the diagrams, shown as Pomeron exchange, are to be understood

as including multiple Pomeron contributions.

M2j

j

p

p
p

β

x1

PI

(a)

TEVATRON HERA

γ

p
p

β

Q2

PI

(b)

Figure 2: Schematic diagrams for diffractive dijet production at the Tevatron and for diffractive

deep inelastic scattering at HERA. The rescattering corrections are omitted in these diagrams.

If we ignore rescattering corrections, for the moment, then the cross section for diffractive

dijet production of Fig. 2(a), integrated over t, may be written as

σ =
∑

i,k

∫

FIP (ξ) f IP
i (β,E2

T ) f p
k (x1, E

2
T ) σ̂ dβdx1dξ, (21)

where σ̂ is the cross section to produce dijets from partons carrying longitudinal momentum

fractions x1 and β of the proton and Pomeron respectively. This would correspond to the
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Ingelman-Schlein conjecture [24]. Information on the diffractive structure functions f IP
i (β,Q2)

is obtained from measurements of the process of Fig. 2(b) at HERA [22, 23]. FIP (ξ) is the flux

factor taken for the Pomeron

FIP (ξ) =
∫

dt
CIPe

Bt

ξ2αIP (t)−1
, (22)

where ξ is the fractional momentum loss of the recoil antiproton. In Regge theory, the coupling

satisfies CIP = (gIP
pp)

2/16π, such that the total pp̄ cross section is given by

σtot(pp̄) = (gIP
pp)

2 (s/s0)
∆, (23)

where s0 ≡ 1 GeV2 and ∆ = αIP (0)− 1. When ξ is not too small the contribution of secondary

Reggeons must be added.

CDF present measurements of the ratio of dijet production for ET (jet1, jet2) > 7 GeV

with a rapidity gap to that without a gap as a function of x = βξ (the fractional longitudinal

momentum of the p̄ carried by the parton), for six ξ bins in the range 0.035 < ξ < 0.095

with |t| < 1 GeV2 [17]. In the ratio, the terms f p
j (x1, E

2
T )σ̂ cancel, assuming that single gluon

t-channel exchange dominates the hard subprocess. Hence the data determine the diffractive

structure function of the antiproton5

F̃D
jj =

1

ξmax − ξmin

∫ ξmax

ξmin

dξ FIP (ξ) β
[

f IP
g (β,E2

T ) + 4
9
f IP

q (β,E2
T )
]

(24)

+ secondary Reggeon contributions.

The CDF measurements of F̃D
jj are shown by the data points in Fig. 3, together with five

curves representing predictions of F̃D
jj based on various sets of diffractive structure functions,

themselves obtained by fitting to HERA diffractive data. The structure functions f IP
i (β,Q2)

are evaluated at Q2 = 75 GeV2, which approximately corresponds to the average E2
T of the

CDF data.

The prediction labelled by H1 is obtained from the H1 diffractive data, and corresponds

to fit 2 of the H1 collaboration [22]. The curve labelled by ZEUS(Pom) corresponds to the

prediction obtained from ZEUS data in Ref. [23]6. It does not include the contribution of

secondary Reggeons. Note that the ZEUS data are in the region of very small ξ and thus are

practically insensitive to these contributions. The curve labelled ZEUS′ includes the secondary

Reggeon contribution as determined by H1 collaboration7. A comparison of the two latter

curves shows that the non-Pomeron “background” is rather important in the ξ region covered

by CDF (about 50% of the total contribution). These three predictions are representative of

5Here we define the Pomeron flux slightly differently to Ref. [17] by including CIP in (22).
6Note that the curve in Fig. 3 for the ZEUS structure function differs from that calculated in [25].
7This procedure may not be completely consistent as values of the Pomeron intercept are different in the

analyses of the H1 and ZEUS data (see Refs. [22, 23]). This can lead to a modification of the secondary Reggeon

contribution for the ZEUS parametrization.

7



those obtained from the various sets of diffractive structure functions that are available [26].

They illustrate the large uncertainties in the predictions of the shape of F̃D
jj at large β, and in the

overall normalisation. On the other hand, the shape predicted for β <∼ 0.15 is well determined

to be β−δ with δ = 0.4 − 0.5, and differs markedly from the measured δ ≃ 1 behaviour of the

CDF data.

β

Fjj(β)

H1

ZEUS(Pom) ZEUS

I

II /

D

Figure 3: A comparison of the measured CDF dijet diffractive distribution as a function of

β, with different predictions obtained from analyses of HERA diffractive data assuming Regge

factorization and that rescattering corrections are neglected. The shaded region on the CDF

data shows the band of uncertainty shown in Ref. [17].

The diffractive gluon distribution is the main contributor to the predictions of F̃D
jj . Although

the diffractive quark distributions are well-measured at HERA (since the photon couples directly

to the quark), the gluon distribution is determined from the detailed Q2 behaviour of the

experimental data using QCD evolution. Moreover, the uncertainties in the diffractive structure

functions f IP
i (β,Q2) are amplified by sizeable differences between H1 and ZEUS diffractive
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data in certain β,Q2 domains. These uncertainties mainly affect the gluon distribution and are

responsible for the ambiguity in the predictions for the shape of F̃D
jj at large β, and in the overall

normalisation. All the predictions give similar shapes for β <∼ 0.15, because they are determined

mainly by the QCD evolution. We will therefore study this evident difference between the CDF

and HERA shape of F̃D at small β, as well as the difference in overall normalisation8, which

are clearly not reproduced in the naive model based on Fig. 2.

Although we see from the curves shown in Fig. 3 that, at present, there are large uncer-

tainties in the Pomeron structure function measured at HERA, curves I and II should provide

a realistic illustration of the range of acceptable values, for the reasons given above. These

two alternative curves are used in the analysis of the CDF data presented below. The curve

I corresponds to the function 4.6(1 − β)1.1β−0.45, and is very close to the parametrization of

Capella et al. [28] (with secondary reggeons taken from [22]), while the curve II corresponds

to the parametrization 2.5(1 − β)β−0.58, which we choose to account for possible variations

due to the uncertainty in the secondary Reggeon contribution. Recall both parametrizations

corresponding to Q2 = 75 GeV2.

The discrepancies between the Tevatron and HERA data were discussed in [29], where it

was emphasized that the survival probability of the gap is (i) small, and (ii) dependent on

the value of β. Physical arguments were presented which qualitatively reproduce the scale of

normalisation and some trends in the β dependence at large β. Note that the effects causing the

observed β-dependence of the diffractive structure function considered in [29] and in this paper

concern different regions in β and are of different dynamical origin. While the fall-off at β → 1

is attributed in [29] dominantly to Sudakov suppression effects, in this paper the variation of

the shape of the β-distribution is explained mainly by the competition between the different

parton configurations. In this way, we present below a two-channel model prediction, based on

[9], which turns out to be in surprising agreement with both the normalisation difference and

in the shape of the distributions at low β.

5 Diffractive dijet production including rescattering

effects

To explain the main features of the CDF diffractive dijet data it is sufficient to consider the two-

component diffractive models introduced in Section 3. In model A we assume that the sea quarks

and gluons mainly occur in large-size configurations of the incident proton, while the valence

quarks occupy predominantly small-size configurations. This is, of course, an oversimplification

of the real situation, but we find even this simple physical model is able to account for the

behaviour of the data.

8Note that earlier CDF results [27] on diffractive W boson, dijet, b-quark and J/ψ production rates, using

forward rapidity gap tagging, have already provided evidence against approaches which do not account for

rescattering effects.
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The two-channel generalisation of (1) gives, using model9 A of Section 3, the survival prob-

ability of the gaps10

|S|2 =

∫

d2b
(

|Mv|2 e−Ωv(s,b) + |Msea|2 e−Ωsea(s,b)
)

∫

d2b (|Mv|2 + |Msea|2)
, (25)

where Mv,sea are the probability amplitudes (in impact parameter space) of the hard diffractive

process corresponding to the valence quark and to the sea quarks and gluons respectively. The

functions Ωi can be parametrized in the form11

Ωi = Ki

(gIP
pp)

2 (s/s0)
∆

4πB
e−b2/4B, (26)

with i = v, sea, and where the slope of the Pomeron amplitude is

B = 1
2
B0 + α′ ln(s/s0), (27)

with s0 = 1 GeV2. We take Kv = 1 − γ and Ksea = 1 + γ, consistent with the simple physical

model introduced above. The values of the other parameters were determined in a two-channel

global description of the total, differential elastic and soft diffraction cross sections [9], in which

the parameter γ was fixed to be 0.4.

First we indicate why the soft rescattering effects (Ωi 6= 0) of the model based on (25) modify

the β distribution of the dijet process in a characteristic way. Note that the CDF measurements

cover a narrow ξ interval, 0.035 ≤ ξ ≤ 0.095, and hence that the invariant mass squared of the

diffractively produced state, M2 = ξs, remains close to the average value 2 × 105 GeV2. Also

the mass squared of the produced dijet system,

M2
jj = x1βM

2, (28)

see Fig. 2, does not change much compared to its average value of about 1×103 GeV2 calculated

for the CDF kinematical range. Thus x1β ≃ 0.005 and so for β >∼ 0.25 we have x1
<∼ 0.02,

whereas for β ∼ 0.025 we have x1 ∼ 0.2. Therefore for large β (small x1) sea quarks and gluons

will give the dominant contribution, while for small β the valence quarks play an important

role. Hence the survival probability should increase as x1 increases and β decreases.

9In model B the subscripts ‘v’ and ‘sea’ correspond to the components with the smaller and larger absorption

cross sections respectively.
10In fact in the calculations a more accurate formula is used which takes into account the inelastic rescatterings

of both of the colliding protons, see Appendix B of Ref. [9].
11We show formula (26) in order to again simplify the discussion. In this simplified form the values of the

parameters would be about (gIP
pp)

2 = 25 mb, B0 = 8 GeV−2, ∆ = 0.1 and α′ = 0.15 GeV−2. However, in

practice we use the more realistic Ωi(i = v, sea) that were determined in the global description of total, elastic

and soft diffractive data in the ISR to Tevatron energy range [9]. In addition the pion-loop contribution in the

Pomeron was included (that is the nearest t-channel singularity), as well as the contribution coming from large

mass single- and double-diffractive dissociation. These refinements are not crucial for the effects that we discuss

here.
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PS / PLB

A quark / gluon

Fjj(β)

β

D

I

II

I

II(Small / Large σabs)

Figure 4: The predictions for diffractive dijet production at the Tevatron, obtained from two

alternative sets of ‘HERA’ diffractive parton distributions I and II (of Fig. 3), compared with

the CDF data [17]. The upper two curves correspond to the neglect of rescattering corrections,

whereas the lower four curves show the effect of including these corrections using model A (con-

tinuous curves) and model B (dashed curves) for the diffractive eigenstates (|φi〉 of Sections 2

and 3).

The calculation of the diffraction dijet rate, incorporating the rescattering effects of (25),

confirms these expectations, as shown by the lower pair of continuous curves (I and II) in

Fig. 4. These curves are parameter-free predictions of the diffractive dijet rate based on the

two-channel eikonal model of Ref. [9] and on the diffractive distributions obtained from HERA

data. The two models (A and B of Section 3) for the diffractive eigenstates (|φ1〉 and |φ2〉)
give similar predictions to each other, as shown respectively by the continuous and dashed

curves in the lower part of Fig. 3. We see that the pair of curves II satisfactorily reproduce

the normalisation and the experimentally observed shape of the β distribution. Curves I also
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give a satisfactory description at low β; the difference at larger β just reflects the uncertainty

in the ‘HERA’ diffractive distributions. Recall that the predicted shapes show an anomalously

strong increase12, 1/βδ with δ ≈ 0.8 − 0.9, for small β, as compared with the δ ≈ 0.4 − 0.5

behaviour given by the partonic distributions of the Pomeron. A possible change of ET (jet),

due to a variation ∆ET of the transverse energy of the underlying event with β, was taken into

account in our calculations. We took ∆ET = C(1 − β)2 with C = 0.76 GeV chosen so as to

satisfy the observed 〈∆ET 〉 = 0.54 GeV [17]. The origin of such β-behaviour can be traced

to the fragmentation of the gluon jet. It leads to a small ∼ 10% decrease of the theoretical

predictions for β >∼ 0.2.

The overall normalisation of the prediction for the CDF dijet data, which is reproduced

by the average value of the survival probability (25), is sensitive to the impact parameter dis-

tributions, Mi(s, b), of the hard diffractive process. Such a comparison can therefore provide

information on these distributions which, in turn, reveal the spatial structure of the hard pro-

cess. Our curves are obtained under the same assumptions for the single diffractive production

of a massive hadronic state as were used in Ref. [9]. That is, as for the minimum bias single

diffractive process, but without the term α′ ln(M2/s0), since α′ → 0 in (LO) DGLAP evolution

to the scale µ2 ∼ 75 GeV2 of the hard subprocess.

Our calculation of diffractive dijet production illustrates a crucial ingredient necessary in

the description of rapidity gap processes. Namely that the survival probability of a gap can

depend on x1 of the partons in the proton (see Fig. 2(a)). This leads to many experimental

consequences for processes with rapidity gaps. For instance, if diffractive dijet production were

measured at higher (LHC) energies with the same jet threshold (Ej
T ), then the values of x1 of

the partons from the proton will be much smaller throughout the same interval of β. Thus the

variation of |S|2 with β will disappear, and the shape of the β distribution in this interval will

be close to that measured at HERA. The effect that is observed at the Tevatron is predicted

to occur at the LHC, but at much smaller values of β, see (28).

5.1 Other β dependent effects
We also estimated other possible mechanisms that may influence the predictions of the dijet

β distribution shown in Fig. 4. We discuss these mechanisms in turn below. None of them

is expected to be significant, and anyway influences mainly the region of β ∼ 1. Most of the

effects tend to make the β distributions steeper and to improve the agreement with experi-

ment. However we have not included them in our predictions so as not to obscure the main

phenomenon discussed in our paper.

(a) The mechanism shown by the diagram of Fig. 5(a) describes the situation where the

Pomeron couples to the ‘ladder’ in the upper part of the diagram, rather than to the
12This increase is still somewhat weaker than that seen in the data (δ ≈ 1) [17]. However the CDF data

include up to 4 jets, while the theoretical predictions are given for 2 jet production. If the data are restricted

to two jet production then the increase is less steep (and given by the lower part of the shaded band) [17], and,

in fact, in agreement with our β dependence.
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Figure 5: (a) Another possible contribution relevant to the calculation of the survival prob-

ability of the rapidity gap in diffractive dijet production, where the ‘rescattering’ Pomeron

couples to the upper ‘ladder’, rather than to the incoming proton. (b) The contribution to

the diffractive dijet cross section coming from the interference of diagram (a) with the Born

diagram of Fig. 2(a).

proton as we have considered so far. It may influence the value of the survival probability

at very small x1. The interference of Fig. 5(a) with the Born diagram of Fig. 2(a) leads

to a contribution to the cross section shown in Fig. 5(b). It contributes when the rapidity

intervals yi (shown in Fig. 5(b)) are large; note that y1 +y2 = ln 1/x1. This effect is small

at the Tevatron because of the lack of phase space (y1 + y2
<∼ 5), but it should be taken

into account at the LHC.

(b) Another possible non-factorizable contribution is where a soft gluon from the Pomeron

couples to the upper partons or spectator quarks of the proton [30, 29]. Their dominant

contribution may be summed and absorbed in the reggeization of the gluon, that is BFKL

effects in parton evolution. The remaining contribution is strongly suppressed since, when

the soft t-channel gluon crosses an s-channel parton, it changes the colour structure of

the corresponding splitting kernel. For the singlet (gluon ladder) NC is replaced by NC/2,

whereas for the non-singlet (quark ladder) CF = (N2
C − 1)/2NC is replaced by −1/2NC .

Using the double log approximation we estimate this effect increases the prediction by

less than 10% for small β, and less than 4% for β > 0.3.
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(c) For large β there is an additional Sudakov-like suppression due to QCD radiation from

high ET jets [29]. Again the dominant contribution is already included in the effective

structure of the Pomeron measured in DIS at HERA. However conventional DGLAP

evolution does not account for double logs of the type (αS/4π) ln2(1 − β), which sum up

to exp(−(αS/4π)C ln2(1−β)). The effect may be important when β → 1, but is negligible

in the β < 0.5 domain of present interest.

(d) Hadronization may change the longitudinal momentum of the high ET jet [34]. The

general effect is to shift the hadronic jet towards the centre-of-mass of the hadronic state,

M2 in Fig. 2(a), and to reduce the effective value of β. A conservative estimate is that

the prediction for F̃D
jj is changed by less than 10% for β < 0.3, although it works in the

desired direction to steepen the β dependence.

(e) The predictions depend on the spatial size of the triple-Pomeron vertex. The correspond-

ing slope bp is small, but not well known. We use the same slope bp = 1 GeV−2 as in

[9], but bp = 0 or 2 GeV−2 are not excluded. Moreover we may expect bp to be smaller

for larger β → 1, when the Pomeron couples just to the hard sub-process. If we take

bp = (1 − β) GeV−2 then the prediction is unchanged in the small β region, although it

decreases by about 10% at β = 1/3. The sensitivity to the radius of the triple-Pomeron

vertex indicates the importance of the experimental study of diffractive dissociation pro-

cesses to better determine bp.

6 Predictions for other hard diffractive processes

The observation that the suppression factors can depend on the values of the momentum

fractions xi, carried by the partons in the colliding hadrons, has implications for hard diffractive-

like processes in general. For example, diffractiveW -production at the Tevatron [31] is mediated

dominantly by valence quarks in the proton, and hence the survival probability for such a process

is comparatively large, S2 ≃ 0.2 − 0.3. On the other hand, for diffractive processes mediated

by the gluonic components of the colliding hadrons (such as bb̄, J/ψ, ψ′ or Υ production) the

survival probabilities should be smaller S2 ≃ 0.06 − 0.1.

An interesting application is to the production of two high pT jets (p1T ≃ −p2T ) separated

by a large rapidity gap, as measured by both the D0 [32] and CDF [33] collaborations at the

Tevatron at two energies,
√
s = 630 and 1800 GeV. Both the quark and gluon components of

the proton contribute in this case. However, in our approach the suppression factor depends

strongly on the type of parton (model A) or on the x value of the parton (model B). For a

fixed energy
√
s, the ratio of the quark to the gluon component increases as ET of the jets

increases, and as the rapidity interval ∆η between the jets increases. The relative importance

of the quark component also increases as the energy
√
s decreases, simply due to kinematics.

These features of the simple two-channel model give effects which move in the right direction to

14



explain outstanding puzzles in the interpretation of the D0 and CDF data for jets separated by

a rapidity gap [32, 33]. In particular, they help to understand the
√
s, ET and ∆η dependences

of the colour-singlet (rapidity gap) fraction measured at the Tevatron [32, 33]. Our model gives

a natural explanation of the observation by the D0 collaboration, that the suppression factor

depends mainly on the x of the partons and increases strongly with x, see Fig. 4(d) of [32].

All of the effects discussed above can be studied in hard diffractive processes in p-nucleus

collisions at RHIC and LHC. Investigation of the A-dependence can provide new information on

the strength of shadowing effects. Indeed for weak shadowing, the cross sections for coherent

diffraction dissociation of a proton on nuclei behave as ∼ A4/3, while incoherent diffraction

cross sections behave as ∼ A. In the opposite limit of very strong shadowing both cross

sections have much weaker dependence on A, of the form ∼ A1/3. Thus there is a strong change

in A-dependence of diffractive production on nuclei depending on the strength of the shadowing

effects.

We also note that the survival probability for central Higgs production by WW fusion, with

large rapidity gaps on either side, is enhanced in the two-channel model in comparison with

previous estimates [9, 11], which also included allowance for the survival probability. Thus

in Ref. [9] for WW → H process at the LHC S2 was found to be 0.15, while the approach

of this paper gives S2 = 0.24. This is an important process because it appears that large qT
Higgs configurations can be chosen such as to identify the Higgs over the possible background

processes at the LHC [36, 35]. The same survival probability is applicable to central Z boson

production with a rapidity gap on either side, originating from t-channel gauge boson exchange.

Therefore Z production at the LHC can be used to directly measure the survival probability

of rapidity gaps relevant to Higgs production by WW fusion [3].

7 Conclusions

For hard processes with large rapidity gaps, we have demonstrated that the survival probability

of the gaps has a much richer structure than is given by the simple one-channel eikonal approx-

imation of (1). We introduced two-channel eikonal models in which either the valence quark

and the sea quark (+ gluon) components of the proton have substantially different total cross

sections of absorption σtot
i (s), which we called model A, or alternatively, model B, in which the

small and large size diffractive components are specified according to sum rules (17) and (18).

The two models give similar results, and predict that the survival probability of the rapidity

gap has a characteristic dependence on the kinematics of the process. Data for diffractive dijet

production at the Tevatron [17] enabled this kinematic dependence to be checked. Taking the

parameters of the two-channel models which were previously constrained in a global description

[9] of total, elastic and soft diffraction data, we calculated the β distribution of diffractive dijet

production. The results are shown by the lower four curves in Fig. 4. We see that there is gen-

eral agreement between the predictions and the CDF measurements [17], both in normalisation
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and shape. In fact, the use of Pomeron structure function II quantitatively reproduces the CDF

data [17]. We emphasize that if the Pomeron structure function were known unambiguously

then we would have an essentially unique prediction for the Tevatron data, demonstrated by

the small difference between the predictions of models A and B.

Unfortunately, the agreement between the CDF diffractive dijet data and our calculations

can be taken as a strong support for the low value of the survival probability S2, which leads to

the rather pessimistic expectations for the missing-mass Higgs search at the Tevatron [6, 37].

As precise data for other hard processes with rapidity gaps become available, it will be

possible to refine the model and to identify the parton content of the diffractive eigenchannels.

We already showed that the simple two-channel model gave rescattering corrections which

moved in the right direction to resolve discrepancies between the predictions and the data for

processes which have so far been measured. In this way, as precise data become available, it

will be possible to perform a quantitative study to (i) determine the partonic content of the

Pomeron, (ii) check the QCD evolution of the Pomeron structure functions, (iii) confirm the

universality of the partonic decomposition, (iv) determine σtot
i (s) for the different diffractive

eigenchannels, and (v) measure the impact parameter distributions of the ‘Born’ amplitudes of

the hard processes with rapidity gaps.
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